JP2014019671A - 芳香族ヘテロ環化合物及びそれを用いた有機薄膜トランジスタ - Google Patents

芳香族ヘテロ環化合物及びそれを用いた有機薄膜トランジスタ Download PDF

Info

Publication number
JP2014019671A
JP2014019671A JP2012161021A JP2012161021A JP2014019671A JP 2014019671 A JP2014019671 A JP 2014019671A JP 2012161021 A JP2012161021 A JP 2012161021A JP 2012161021 A JP2012161021 A JP 2012161021A JP 2014019671 A JP2014019671 A JP 2014019671A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
aromatic heterocyclic
formula
organic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012161021A
Other languages
English (en)
Inventor
Hideji Ikeda
秀嗣 池田
Kota Terai
恒太 寺井
Satoshi Hachiya
聡 蜂屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2012161021A priority Critical patent/JP2014019671A/ja
Publication of JP2014019671A publication Critical patent/JP2014019671A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】塗布法の適用が可能であり、かつ高移動度、低電圧で作動する有機薄膜トランジスタを作製できる化合物の提供。また、該化合物を使用した有機薄膜トランジスタの提供。
【解決手段】下記式(A)で表される芳香族ヘテロ環化合物であり、該化合物を有機半導体層に使用した有機薄膜トランジスタ。
Figure 2014019671

[式(A)中、R〜R11は同一でも異なっていてもよく、それぞれ水素原子、ハロゲン原子、炭素数1〜30のアルキル基、炭素数3〜30のシクロアルキル基などであり、RとRとは互いに結合して芳香環を形成してもよい。]
【選択図】図1

Description

本発明は、芳香族ヘテロ環化合物、それを含む有機薄膜トランジスタ用組成物、及びそれを用いた有機薄膜トランジスタに関する。
薄膜トランジスタ(TFT:Thin Film Transistor)は、液晶表示装置等の表示用のスイッチング素子として広く用いられている。代表的なTFTは、基板上にゲート電極、絶縁体層、半導体層をこの順に有し、半導体層上に、所定の間隔をあけて形成されたソース電極及びドレイン電極を有している。有機半導体層はチャネル領域を成しており、ゲート電極に印加される電圧でソース電極とドレイン電極の間に流れる電流が制御されることによってオン/オフ動作する。
従来、このTFTは、アモルファスや多結晶のシリコンを用いて作製されていたが、このようなシリコンを用いたTFTの作製に用いられるCVD(化学気相成長)装置は、非常に高価であり、TFTを用いた表示装置等の大型化は、製造コストの大幅な増加を伴うという問題点があった。また、アモルファスや多結晶のシリコンを成膜するプロセスは非常に高い温度下で行われるので、基板として使用可能な材料の種類が限られてしまうため、軽量な樹脂基板等は使用できないという問題があった。
このような問題を解決するために、アモルファスや多結晶のシリコンに代えて有機物を用いたTFT(以下、有機TFTと略記する場合がある。)が提案されている。有機物でTFTを形成する際に用いる成膜方法として真空蒸着法や塗布法等が知られているが、これらの成膜方法によれば、製造コストの上昇を抑えつつ素子の大型化が実現可能になり、成膜時に必要となるプロセス温度を比較的低温にすることができる。このため、有機TFTでは、基板に用いる材料の選択時の制限が少ないといった利点があり、その実用化が期待されており、盛んに研究報告がなされている。
有機TFTの有機物半導体層に用いるp型FET(電界効果トランジスタ)材料としては、共役系ポリマーやチオフェン等の多量体、金属フタロシアニン化合物、ペンタセン等の縮合芳香族炭化水素等が、単体又は他の化合物との混合物の状態で用いられている。また、n型FET材料としては、例えば、1,4,5,8−ナフタレンテトラカルボキシルジアンヒドライド(NTCDA)、11,11,12,12−テトラシアノナフト−2,6−キノジメタン(TCNNQD)、1,4,5,8−ナフタレンテトラカルボキシルジイミド(NTCDI)や、フッ素化フタロシアニンが知られている。
一方、有機TFTと同じように電気伝導を用いるデバイスとして有機エレクトロルミネッセンス(EL)素子がある。有機EL素子では、一般に100nm以下の超薄膜に、膜厚方向に10V/cm以上の強電界を印加して強制的に電荷を流しているのに対し、有機TFTの場合には、数μm以上の距離を10V/cm以下の電界で高速に電荷を流す必要があるため、有機TFTに用いられる有機物自体に、さらなる電導性が必要であった。
しかしながら、従来の有機TFTにおける上記有機半導体材料は電界効果移動度が小さく、応答速度が遅く、トランジスタとしての高速応答性に問題があった。また、オン/オフ比も小さかった。
尚、ここで言うオン/オフ比とは、ゲート電圧をかけたとき(オン)のソース−ドレイン間に流れる電流を、ゲート電圧をかけないとき(オフ)のソース−ドレイン間に流れる電流で割った値である。オン電流とは、通常、ゲート電圧を増加させていき、ソース−ドレイン間に流れる電流が飽和したときの電流値(飽和電流)である。
電界効果移動度が大きく、応答速度が早いTFTを得るために、例えば特許文献1はアリールエチニレン基を有する化合物を開示している。特許文献1では、素子の作製において、基板に単分子膜処理を施し、さらに基板を加熱しながら蒸着を行うことにより、高い移動度を得ている。しかしながら、このような処理は複雑であるという問題があった。
有機TFTの代表的な材料としてペンタセンが挙げられ、特許文献1及び2では、ペンタセンを有機半導体層に用いた有機TFTを作製している。ペンタセンは大気中における安定性が低いという欠点があるため、素子作製直後は非常に高い移動度を示すものの、時間の経過と共に移動度が低下してしまう。さらに、難溶性のため安価な塗布法に適用できないという欠点を有していた。
特許文献3には、下記のクリセン誘導体の有機トランジスタ特性が開示されている。しかし、塗布によって作製した有機トランジスタの移動度は0.0012cm/Vsと低いものであった。
Figure 2014019671
また、特許文献3には、下記のクリセン誘導体が開示され、これを用いた有機トランジスタの移動度は0.91cm/Vsと開示されているが、素子作製方法が単結晶の貼り付けによるものであり、量産に耐えうる工業的製造法とは言い難い。この化合物の蒸着法による通常のトランジスタ素子の電界効果移動度は0.041cm/Vsと低いものであった。
Figure 2014019671
特許文献4には、下記のクリセン誘導体が開示されており、塗布法により作製したトランジスタ素子の電界効果移動度が1.4cm/Vsであると報告されているが、閾値電圧の記載はない。
Figure 2014019671
また、特許文献4には、下記の化合物が開示されており、塗布法により作製したトランジスタ素子の電界効果移動度が0.5cm/Vsであると報告されているが、閾値電圧の記載はない。
Figure 2014019671
特開平5−55568号公報 特開2001−94107号公報 特開2010−118415号公報 国際公開第2010/024139号パンフレット
上記のように、これまで有機半導体として用いられてきた有機化合物は炭化水素系化合物が主流であり、本発明のような含窒素ヘテロ環構造を有する化合物はほとんど知られていなかった。また、炭化水素系材料の欠点の1つは閾値電圧が高いことであり、より低電圧で駆動できる有機半導体材料が熱望されていた。
本発明の目的は、塗布法の適用が可能であり、かつ高移動度、低電圧で作動する有機薄膜トランジスタを作製できる化合物を提供することである。
また、本発明の他の目的は、優れたトランジスタ特性を有する有機薄膜トランジスタを提供することである。
本発明によれば、以下の芳香族ヘテロ環化合物が提供される。
1.下記式(A)で表される芳香族ヘテロ環化合物。
Figure 2014019671
(式(A)中、R〜R11は同一でも異なっていてもよく、それぞれ水素原子、ハロゲン原子、炭素数1〜30のアルキル基、炭素数3〜30のシクロアルキル基、炭素数2〜30のアルケニル基、炭素数2〜30のアルキニル基、炭素数1〜30のハロアルキル基、炭素数1〜30のアルコキシ基、炭素数1〜30のハロアルコキシ基、炭素数1〜30のアルキルチオ基、炭素数1〜30のハロアルキルチオ基、炭素数1〜30のアルキルアミノ基、炭素数2〜60のジアルキルアミノ基、炭素数6〜60のアリールアミノ基、炭素数6〜60の芳香族炭化水素基、炭素数3〜60の芳香族複素環基、炭素数3〜20のトリアルキルシリル基、炭素数5〜60のアルキルシリルエチニル基又はシアノ基であり、これらの各基はさらに置換基を有していてもよい。RとRは互いに結合して芳香環を形成してもよい。)
2.下記式(B)で表される芳香族ヘテロ環化合物。
Figure 2014019671
(式(B)中、R〜R、R10〜R15は同一でも異なっていてもよく、それぞれ水素原子、ハロゲン原子、炭素数1〜30のアルキル基、炭素数3〜30のシクロアルキル基、炭素数2〜30のアルケニル基、炭素数2〜30のアルキニル基、炭素数1〜30のハロアルキル基、炭素数1〜30のアルコキシ基、炭素数1〜30のハロアルコキシ基、炭素数1〜30のアルキルチオ基、炭素数1〜30のハロアルキルチオ基、炭素数1〜30のアルキルアミノ基、炭素数2〜60のジアルキルアミノ基、炭素数6〜60のアリールアミノ基、炭素数6〜60の芳香族炭化水素基、炭素数3〜60の芳香族複素環基、炭素数3〜20のトリアルキルシリル基、炭素数5〜60のアルキルシリルエチニル基又はシアノ基であり、これら各基はさらに置換基を有していてもよい。)
3.前記式(A)のR、R〜R、R10及びR11が水素原子である1に記載の芳香族ヘテロ環化合物。
4.前記式(A)のR,R及びR〜Rのうち、少なくとも1つが炭素数1〜30のアルキル基である3に記載の芳香族ヘテロ環化合物。
5.前記式(A)のR〜R及びR〜R11が水素原子である1に記載の芳香族ヘテロ環化合物。
6.前記式(A)のRが炭素数1〜30のアルキル基である5に記載の芳香族ヘテロ環化合物。
7.前記式(B)のR、R〜R、R10、R11及びR15が水素原子である2に記載の芳香族ヘテロ環化合物。
8.前記式(B)のR,R及びR12〜R14のうち、少なくとも1つが炭素数1〜30のアルキル基である7に記載の芳香族ヘテロ環化合物。
9.前記式(B)のR〜R、R10〜R12、R14及びR15が水素原子である2に記載の芳香族ヘテロ環化合物。
10.前記式(B)のR13が炭素数1〜30のアルキル基である9に記載の芳香族ヘテロ環化合物。
11.1〜10のいずれかに記載の化合物を含む有機薄膜トランジスタ用組成物。
12.1〜10のいずれかに記載の化合物を含む有機薄膜トランジスタ。
13.少なくとも基板上にゲート電極、ソース電極及びドレイン電極の3端子、絶縁体層並びに有機半導体層が設けられ、ソース−ドレイン間電流をゲート電極に電圧を印加することによって制御する有機薄膜トランジスタにおいて、前記有機半導体層が1〜10のいずれかに記載の化合物を含む有機薄膜トランジスタ。
本発明によれば、塗布法の適用が可能であり、かつ高移動度、低電圧で作動する有機薄膜トランジスタを作製できる化合物が提供できる。また、本発明によれば、優れたトランジスタ特性を有する有機薄膜トランジスタが提供できる。
本発明の有機薄膜トランジスタの素子構成の一例を示す図である。 本発明の有機薄膜トランジスタの素子構成の一例を示す図である。 本発明の有機薄膜トランジスタの素子構成の一例を示す図である。 本発明の有機薄膜トランジスタの素子構成の一例を示す図である。 トップアンドボトムコンタクト型有機薄膜トランジスタの素子構成の一例を示す図である。 縦形の有機薄膜トランジスタの素子構成の一例を示す図である。
本発明の第1の芳香族ヘテロ環化合物は、下記式(A)で表される。
Figure 2014019671
式(A)中、R〜R11は同一でも異なっていてもよく、それぞれ水素原子、ハロゲン原子、炭素数1〜30のアルキル基、炭素数3〜30のシクロアルキル基、炭素数2〜30のアルケニル基、炭素数2〜30のアルキニル基、炭素数1〜30のハロアルキル基、炭素数1〜30のアルコキシ基、炭素数1〜30のハロアルコキシ基、炭素数1〜30のアルキルチオ基、炭素数1〜30のハロアルキルチオ基、炭素数1〜30のアルキルアミノ基、炭素数2〜60のジアルキルアミノ基、炭素数6〜60のアリールアミノ基、炭素数6〜60の芳香族炭化水素基、炭素数3〜60の芳香族複素環基、炭素数3〜20のトリアルキルシリル基、炭素数5〜60のアルキルシリルエチニル基又はシアノ基であり、これらの各基はさらに置換基を有していてもよい。RとRは互いに結合して芳香環を形成してもよい。
式(A)において、R、R〜R、R10及びR11が水素原子であると好ましい。また、R,R及びR〜Rのうち、少なくとも1つが炭素数1〜30のアルキル基であると好ましい。
式(A)において、R〜R及びR〜R11が水素原子であると好ましい。また、Rが炭素数1〜30のアルキル基であると好ましい。
本発明の第2の芳香族ヘテロ環化合物は、下記式(B)で表される。
Figure 2014019671
式(B)中、R〜R、R10〜R15は同一でも異なっていてもよく、それぞれ水素原子、ハロゲン原子、炭素数1〜30のアルキル基、炭素数3〜30のシクロアルキル基、炭素数2〜30のアルケニル基、炭素数2〜30のアルキニル基、炭素数1〜30のハロアルキル基、炭素数1〜30のアルコキシ基、炭素数1〜30のハロアルコキシ基、炭素数1〜30のアルキルチオ基、炭素数1〜30のハロアルキルチオ基、炭素数1〜30のアルキルアミノ基、炭素数2〜60のジアルキルアミノ基、炭素数6〜60のアリールアミノ基、炭素数6〜60の芳香族炭化水素基、炭素数3〜60の芳香族複素環基、炭素数3〜20のトリアルキルシリル基、炭素数5〜60のアルキルシリルエチニル基又はシアノ基であり、これら各基はさらに置換基を有していてもよい。
式(B)において、R、R〜R、R10、R11及びR15が水素原子であると好ましい。また、R,R及びR12〜R14のうち、少なくとも1つが炭素数1〜30のアルキル基であると好ましい。
式(B)において、R〜R、R10〜R12、R14及びR15が水素原子であると好ましい。また、R13が炭素数1〜30のアルキル基であると好ましい。
以下、式(A)のR〜R11、式(B)のR〜R、R10〜R15の具体例を説明する。
ハロゲン原子としては、フッ素、塩素、臭素及びヨウ素の各原子が挙げられる。
炭素数1〜30のアルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−ノナデシル基、n−イコサン基、n−ヘニコサン基、n−ドコサン基、n−トリコサン基、n−テトラコサン基、n−ペンタコサン基、n−ヘキサコサン基、n−ヘプタコサン基、n−オクタコサン基、n−ノナコサン基、n−トリアコンタン基等が挙げられる。
アルキル基の炭素数は、好ましくは1〜20であり、より好ましくは3〜10である。
アルキル基は直鎖でも分枝でもよい。
炭素数3〜30のシクロアルキル基としては、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等が挙げられる。
炭素数2〜30のアルケニル基としては、例えばエテニル基、プロペニル基、ブテニル基、ペンテニル基、ペンタジエニル基、ヘキセニル基、ヘキサジエニル基、ヘプテニル基、オクテニル基、オクタジエニル基、2−エチルヘキセニル基、デセニル基等が挙げられる。
炭素数2〜30のアルキニル基としては、例えばエチニル基、ブロピニル、フェニルエチニル基、2−チエニルエチニル基等が挙げられる。
炭素数1〜30のハロアルキル基としては、例えば、クロロメチル基、1−クロロエチル基、2−クロロエチル基、2−クロロイソブチル基、1,2−ジクロロエチル基、1,3−ジクロロイソプロピル基、2,3−ジクロロ−t−ブチル基、1,2,3−トリクロロプロピル基、ブロモメチル基、1−ブロモエチル基、2−ブロモエチル基、2−ブロモイソブチル基、1,2−ジブロモエチル基、1,3−ジブロモイソプロピル基、2,3−ジブロモ−t−ブチル基、1,2,3−トリブロモプロピル基、ヨードメチル基、1−ヨードエチル基、2−ヨードエチル基、2−ヨードイソブチル基、1,2−ジヨードエチル基、1,3−ジヨードイソプロピル基、2,3−ジヨード−t−ブチル基、1,2,3−トリヨードプロピル基、フルオロメチル基、1−フルオロエチル基、2−フルオロエチル基、2−フルオロイソブチル基、1,2−ジフルオロエチル基、ジフルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロイソプロピル基、パーフルオロブチル基、パーフルオロシクロヘキシル基等が挙げられる。
炭素数1〜30のアルコキシ基は、−OXで表される基であり、Xの例としては、上記アルキル基で説明したものと同様の例が挙げられる。
炭素数1〜30のハロアルコキシ基は、−OXで表される基であり、Xの例としては、上記ハロアルキル基で説明したものと同様の例が挙げられる。
炭素数1〜30のアルキルチオ基は、−SXで表される基であり、Xの例としては、上記アルキル基で説明したものと同様の例が挙げられる。
炭素数1〜30のハロアルキルチオ基は、−SXで表される基であり、Xの例としては、上記ハロアルキル基で説明したものと同様の例が挙げられる。
炭素数1〜30のアルキルアミノ基は、−NHXで表される基であり、炭素数2〜60のジアルキルアミノ基は、−NXで表される基であり、X及びXは、それぞれ前記アルキル基で説明したものと同様の例が挙げられる。
尚、炭素数2〜60のジアルキルアミノ基のアルキル基は互いに結合して窒素原子を含む環構造を形成してもよく、環構造としては、例えば、ピロリジン、ピペリジン等が挙げられる。
炭素数6〜60のアリールアミノ基としては、フェニルアミノ基、メチルフェニルアミノ基、ジフェニルアミノ基、トリルアミノ基、ジトリルアミノ基等が挙げられる。
炭素数6〜60の芳香族炭化水素基としては、例えばフェニル基、ナフチル基、アントリル基、フェナントリル基、フルオレニル基、クリセニル基、ピレニル基、ペリレニル基、テトラセニル基、ペンタセニル基、フルオランテニル基等が挙げられる。
炭素数3〜60の芳香族複素環基としては、例えばピリジル基、ピラジル基、インドリル基、アクリジニル基、ピロリル基、イミダゾリル基、ピラゾリル基、ナフチリジニル基、キノキサリル基、フェナジニル基、フェノリアジニル基、フェノキサジニル基、ジアザアントラセニル基、ピリドキノリル基、ピリミドキナゾリル基、ピラジノキノキサリル基、フェナントロリル基、チオフェニル基、ジチエノフェニル基、ベンゾフラニル基、ベンゾチオフェニル基、キノリニル基、カルバゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、ベンゾジチオフェニル基、[1]ベンゾチエノ[3,2−b]ベンゾチオフェニル基、チエノチオフェニル基、ジチエノチオフェニル基、ベンゾジフラニル基、チアゾリル基、ベンゾチアジアゾリル基、ジチアインダセニル基、ジチアインデノインデニル基、ジベンゾセレノフェニル基、ジデレナインダセニル基、ジセレナインデノインデニル基、ジベンゾシロリル基等が挙げられる。
炭素数3〜20のトリアルキルシリル基としては、−SiXで表される基であり、X、X及びXは、それぞれ上記アルキル基で説明したものと同様の例が挙げられる。例えばトリメチルシリル基等が挙げられる。
炭素数5〜60のアルキルシリルエチニル基としては、例えばトリメチルシリルエチニル基、トリエチルシリルエチニル基、トリイソプロピルシリルエチニル基、ジメチルt−ブチルシリルエチニル基等が挙げられる。
式(A)のR〜R11、式(B)のR〜R、R10〜R15がさらに有してもよい置換基としては、例えば上記アルキル基、芳香族炭化水素基、芳香族複素環基で説明したものと同様のものが挙げられる。
本発明の第1及び第2の芳香族ヘテロ環化合物の具体例を以下に示す。
Figure 2014019671
Figure 2014019671
Figure 2014019671
Figure 2014019671
Figure 2014019671
本発明の第1の芳香族ヘテロ環化合物は、例えば以下のように合成することができる。
Figure 2014019671
即ち、2−ハロゲノナフタレンを出発原料として用いる場合は、まずベンゾフェノンイミン等を用いてハロゲンをイミノ基に変換する(工程1)。この場合、実験操作が容易である、次の反応の反応性が高い等の理由から、ハロゲン基(X)としては塩素、臭素、ヨウ素が好ましい。また、原料の入手が容易であるという理由から臭素がさらに好ましい。反応はパラジウムやニッケル等を触媒とし、配位子としてホスフィン類を添加することが好ましい。金属触媒としては、高収率を与えるという面からパラジウムが好ましい。ホスフィン類としては、トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリt−ブチルホスフィン、1,3−ビス(ジフェニルホスフィノプロパン)(DPPP)、2,2’−ビス(ジフェニルホスフィノ)−1,1’−ビナフチル(BINAP)、2−(ジシクロヘキシルホスフィノ)ビフェニル(CyJohnPhos)、2,4,6−トリイソプロピル−2’−ジシクロヘキシルホスフィノビフェニル(XPhos)、2,6−ジメトキシ−2’−ジシクロヘキシルホスフィノビフェニル(SPhos)等を用いることができる。これらのうち、高収率を与えるという点からBINAP、XPhos、SPhos等が好ましい。また、反応を促進するため、塩基を用いる場合は、ナトリウムt−ブトキシド、カリウムt−ブトキシド、炭酸カリウム、炭酸セシウム等を用いることができる。これらのうち、高収率を与えるという点からナトリウムt−ブトキシドが好ましい。
次にイミノ基を加水分解してフリーのアミノ基に変換する(工程2)。この際、塩酸、臭化水素酸、硫酸、メタンスルホン酸等のプロトン酸類を用いることができる。これらのうち、安価で取り扱いが容易であるという点から塩酸が好ましい。
次に、アミノ基のオルト位に臭素を導入する反応(工程3)では、臭素、Nブロモスクシンイミド(NBS)等種々の臭素化剤を用いることができるが、取扱いが容易で高収率を与えるという点からNBSが好ましい。
アミノ基をきっかけにピロール環を構築する反応では(工程4)、2,5−ジメトキシテトラヒドロフランを用いるが、その際の酸触媒としては、塩酸や酢酸等を用いることができる。高収率を与えるという点から酢酸が好ましい。
次にハロゲン基をホルミル基に変換する工程では(工程5)、一旦ハロゲン基を有機金属化合物に変換したのち、ジメチルホルムアミド(DMF)、ホルミルピペリジン等のホルミル化剤を用いてホルミル基に変換する。ホルミル化剤としては安価なことからDMFが好ましい。またこの際の有機金属化合物としては、n−ブチルリチウムやt−ブチルリチウムを用いてリチオ体に変換するか、削り状金属マグネシウムを反応させるか、もしくはイソプロピルマグネシウムブロミド等とのGrignard交換反応を利用してGrignard試薬にすることができる。実験操作の容易さからn−ブチルリチウムを用いてリチオ体に変換する方法が好ましい。
次の工程でホルミル基をエノールエーテルに変換する場合(工程6)、一般的なWittig反応の条件を用いることができる。即ち、トリフェニルホスホニウム塩に塩基を作用させイリドを発生させたのち、ホルミル体を反応させてエノールエーテルを形成させる。この場合のホスホニウム塩としてはアルコキシメチルトリフェニルホスホニウムを用いるが、安価で入手しやすいという理由からメトキシメチルトリフェニルホスホニウムクロリドが好ましい。イリドを発生させるための塩基としては、n−ブチルリチウム、カリウムt−ブトキシド等を用いることができるが、取扱いが容易であるという理由からカリウムt−ブトキシドが好ましい。
最後にエノールエーテルを閉環させる反応(工程7)では、塩酸、硫酸、メタンスルホン酸、トルエンスルホン酸等のプロトン酸を用いることができる。これらのうち、高収率を与えるという理由からメタンスルホン酸が好ましい。
また、本発明の第1の芳香族ヘテロ環化合物の他の製造方法として、上記工程5で得られたホルミル体からエポキシドを生成させ閉環する方法も挙げられる。
Figure 2014019671
まずホルミル体に、トリメチルホスホニウム又はトリメチルホスホニウムオキシドから発生させた硫黄イリドを反応させエポキシドに変換し(工程8)、酸触媒下に閉環させ目的物を得ることができる(工程9)。中間体のエポキシドの安定性が良くないこと、硫黄イリドから副生するスルフィドの悪臭の問題等から、前述のエノールエーテル法(工程6,7)の方が好ましい。
本発明の第2の芳香族ヘテロ環化合物は、例えば以下のように合成することができる。
Figure 2014019671
本方法は、ベンズアルデヒド誘導体を出発原料とする。まず、ベンズアルデヒド誘導体において、アルデヒドのオルト位にフェニル基を導入し、ビフェニル誘導体を合成する(工程10)。この際に用いることのできる反応としては、鈴木・宮浦カップリング反応、Stilleカップリング反応、根岸カップリング反応、檜山カップリング反応等が挙げられるが、原料の入手しやすさ、反応の選択性、反応収率、試薬の毒性の低さ等から鈴木・宮浦カップリング反応が好ましい。
次にホルミル基をエノールエーテルに誘導するWittig反応は(工程11)、前述の工程6と同様にして実施することができる。エノールエーテルを閉環してフェナントレン誘導体に導く反応では(工程12)、前述の工程7と同様にして実施することができる。フェナントレン誘導体にイミン基を導入する工程では(工程13)、前述の工程1と同様にして実施することができる。
イミノ基を加水分解してアミノ基に変換する工程では(工程14)、前述の工程2と同様にして実施することができる。アミノ基のオルト位に臭素を導入する工程では(工程15)、前述の工程3と同様にして実施することができる。アミノ基からピロール環を構築する工程では(工程16)、前述の工程4と同様にして実施することができる。
ブロモ基をホルミル基に変換する工程では(工程17)、前述の工程5と同様にして実施することができる。ホルミル基をエノールエーテルに変換する工程では(工程18)、前述の工程6と同様にして実施することができる。エノールエーテルを閉環して第2の芳香族ヘテロ環化合物を合成する工程では(工程19)、前述の工程7と同様にして実施することができる。
尚、トランジスタ等の電子デバイスにおいては、純度の高い材料を用いることにより電界効果移動度やオン/オフ比を高めることができる。従って、必要に応じて、製造した本発明の第1又は第2の芳香族ヘテロ環化合物(以下、「本発明の化合物」と記載する場合がある。)を、カラムクロマトグラフィー、再結晶、蒸留、昇華等の手法により精製することが望ましい。好ましくはこれらの精製方法を繰り返し用いたり、複数の方法を組み合わせたりすることにより、本発明の化合物の純度を向上させる。
さらに精製の最終工程として昇華精製を少なくとも2回以上繰り返すことが望ましい。これらの手法を用いることにより、HPLC(高速液体クロマトグラフィー)で測定した純度を90%以上とした材料を用いることが好ましく、さらに好ましくは95%以上、特に好ましくは99%以上とした材料を用いることにより、有機薄膜トランジスタの電界効果移動度やオン/オフ比を高め、材料が本来持っている性能を引き出すことができる。
本発明の化合物は、有機薄膜トランジスタの有機半導体層材料として好適に用いることができる。特に、本発明の化合物は、有機溶媒に対して高い溶解性を有するので、有機薄膜トランジスタの製造の際に、下記の組成物とすることにより塗布法を適用することができる。また、本発明の化合物は酸化安定性に優れるので、本発明の化合物を用いた有機薄膜トランジスタは、そのトランジスタ特性の経時劣化を低減することができる。
また、本発明の化合物は、実施例1〜3に示すようにイオン化ポテンシャルが低いので、有機発光素子(有機エレクトロルミネッセンス素子)の正孔注入材料や正孔輸送材料、有機薄膜太陽電池のp層材料として用いることも可能である。
本発明の有機薄膜トランジスタ用組成物は、本発明の第1及び/又は第2の芳香族ヘテロ環化合物を含み、後述する他の成分を含んでもよく、通常、これらの成分を溶媒中に含む。
他の成分としては、ウンデセン酸、ドデセン酸等の脂肪族カルボン酸、ポリエチレン、ポリスチレン、ポリメチルメタクリレート等の汎用高分子、ポリヘキシルチオフェン、ポリジヘキシルフルオレン等の導電性高分子、他の低分子有機半導体材料等が挙げられる。これらのうち、高移動度を与えるという面から、導電性高分子、低分子有機半導体材料が好ましい。
溶媒としては、後述する塗布法における溶媒を用いることができる。
本発明の有機薄膜トランジスタ用組成物において、組成物全体に対する本発明の芳香族ヘテロ環化合物の含有割合は、好ましくは10〜99重量%であり、より好ましくは30〜95重量%であり、さらに好ましくは50〜90重量%である。
次に、本発明の有機薄膜トランジスタの素子構成について説明する。
本発明の有機薄膜トランジスタの素子構成は、少なくとも基板上にゲート電極、ソース電極及びドレイン電極の3端子、絶縁体層並びに有機半導体層が設けられ、ソース−ドレイン間電流をゲート電極に電圧を印加することによって制御する薄膜トランジスタである。本発明の有機薄膜トランジスタは、好ましくは有機半導体層が、本発明の化合物を含んでなる。
尚、トランジスタの構造は、特に限定されず、有機半導体層の成分以外が公知の素子構成を有するものであってもよい。
有機薄膜トランジスタの素子構成の具体例を、図を用いて説明する。
図1〜4は、本発明の有機薄膜トランジスタの素子構成の一例を示す図である。
図1の有機薄膜トランジスタ1は、基板10上に、相互に所定の間隔をあけて対向するように形成されたソース電極11及びドレイン電極12を有する。そして、ソース電極11、ドレイン電極12及びそれらの間の間隙を覆うように有機半導体層13が形成され、さらに、絶縁体層14が積層されている。絶縁体層14の上部であって、かつソース電極11及びドレイン電極12の間の間隙上にゲート電極15が形成されている。
図2の有機薄膜トランジスタ2は、基板10上に、ゲート電極15及び絶縁体層14をこの順に有し、絶縁体層14上に、所定の間隔をあけて形成された一対のソース電極11及びドレイン電極12を有し、その上に有機半導体層13が形成される。有機半導体層13がチャネル領域を成しており、ゲート電極15に印加される電圧でソース電極11とドレイン電極12の間に流れる電流が制御されることによってオン/オフ動作する。
図3の有機薄膜トランジスタ3は、基板10上に、ゲート電極15、絶縁体層14及び有機半導体層13をこの順に有し、有機半導体層13上に、所定の間隔をあけて形成された一対のソース電極11及びドレイン電極12を有する。
図4の有機薄膜トランジスタ4は、基板10上に有機半導体層13を有し、有機半導体層13上に、所定の間隔をあけて形成された一対のソース電極11及びドレイン電極12を有する。そして、さらに絶縁体層14及びゲート電極15をこの順に有している。
本発明の有機薄膜トランジスタは、電界効果トランジスタ(FET:Field Effect Transistor)構造を有している。上述したとおり、電極の位置、層の積層順等によりいくつかの構成がある。有機薄膜トランジスタは、有機半導体層(有機化合物層)と、相互に所定の間隔をあけて対向するように形成されたソース電極及びドレイン電極と、ソース電極、ドレイン電極からそれぞれ所定の距離をあけて形成されたゲート電極とを有し、ゲート電極に電圧を印加することによってソース−ドレイン電極間に流れる電流を制御する。ここで、ソース電極とドレイン電極の間隔は本発明の有機薄膜トランジスタを用いる用途によって決定され、通常は0.1μm〜1mm、好ましくは1μm〜100μm、さらに好ましくは5μm〜100μmである。
本発明の有機薄膜トランジスタは、上記の素子構成の他にも、種々の構成が提案されている。本発明の有機薄膜トランジスタは、ゲート電極に印加される電圧でソース電極とドレイン電極の間に流れる電流が制御されることによってオン/オフ動作や増幅等の効果が発現する仕組みを有すれば、上記素子構成に限定されるものではない。
例えば、産業技術総合研究所の吉田らにより第49回応用物理学関係連合講演会講演予稿集27a−M−3(2002年3月)において提案されたトップアンドボトムコンタクト型有機薄膜トランジスタ(図5参照)や、千葉大学の工藤らにより電気学会論文誌118−A(1998)1440頁において提案された縦形の有機薄膜トランジスタ(図6参照)のような素子構成を有するものであってもよい。
以下、有機薄膜トランジスタの構成部材について説明する。
(有機半導体層)
本発明の有機薄膜トランジスタにおける有機半導体層は、好ましくは本発明の化合物を含む。
有機半導体層は、本発明の化合物1種類からなってもよく、また、複数種からなってもよい。さらに、有機半導体層は、ペンタセン、チオフェンオリゴマー等の公知の半導体材料を含んでもよい。有機半導体層は、複数の化合物の混合物からなる薄膜又は積層体であってもよい。
有機半導体層の膜厚は、特に制限されることはないが、通常、0.5nm〜1μmであり、2nm〜250nmであると好ましい。
また、有機半導体層の形成方法は特に限定されることはなく公知の方法を適用でき、例えば、分子線蒸着法(MBE法)、真空蒸着法、化学蒸着、材料を溶媒に溶かした溶液のディッピング法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法、インクジェット法等の印刷、塗布法及びベーキング、エレクトロポリマライゼーション、分子ビーム蒸着、溶液からのセルフ・アセンブリ、及びこれらの組合せた方法を用いることができる。
好ましくは、塗布法を用いる。本発明の化合物は、加熱することなく、適する溶媒に溶解することができる。溶媒としては、例えば、クロロホルム、ジクロロエタン、トリクロロエタン等のハロゲン系溶媒、トルエン、キシレン、エチルベンゼン、テトラリン、クロロベンゼン、ジクロロベンゼン、ピリジン、キノリン等の芳香族溶媒、シクロヘキサン、デカリン、シクロオクタジエン等の炭化水素委溶媒、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン性溶媒、ジブチルエーテル、テトラヒドロフラン、アニソール、フェネトール、ジフェニルエーテル等のエーテル系溶媒、酢酸エチル、酢酸ブチル、酢酸アミル、ジブチルテレフタレート等のエステル系溶媒、ジメチルホルムアミド、ジメチルアセトエミド、N−メチルピロリジノン等のアミド系溶媒、アセトニトリル、ブチロニトリル、ベンゾニトリル等のニトリル系溶媒、二硫化炭素、ジメチルスルホキシド、スルホラン等の硫黄系溶媒等が挙げられる。
有機半導体層の結晶性を向上させることにより、電界効果移動度を向上させることができるので、成膜方法に関わらず成膜後にアニーリングを実施すると高性能デバイスが得られるため好ましい。アニーリングの温度は50〜200℃が好ましく、70〜200℃であるとさらに好ましく、時間は10分〜12時間が好ましく、1〜10時間であるとさらに好ましい。
(基板)
本発明の有機薄膜トランジスタにおける基板は、有機薄膜トランジスタの構造を支持する役目を担う。基板の材料としてはガラスの他、金属酸化物や窒化物等の無機化合物、プラスチックフィルム(PET,PES,PC)や金属基板又はこれら複合体や積層体等も用いることが可能である。また、基板以外の構成要素により有機薄膜トランジスタの構造を十分に支持し得る場合には、基板を使用しないことも可能である。基板の材料としてはシリコン(Si)ウエハが用いられることが多いが、Si自体をゲート電極兼基板として用いることができる。また、Siの表面を酸化し、SiOを形成して絶縁層として活用することも可能である。この場合、基板兼ゲート電極のSi基板にリード線接続用の電極として、Au等の金属層を成膜することもある。
(電極)
本発明の有機薄膜トランジスタにおける、ゲート電極、ソース電極及びドレイン電極の材料としては、導電性材料であれば特に限定されず、白金、金、銀、ニッケル、クロム、銅、鉄、錫、アンチモン、鉛、タンタル、インジウム、パラジウム、テルル、レニウム、イリジウム、アルミニウム、ルテニウム、ゲルマニウム、モリブデン、タングステン、酸化スズ・アンチモン、酸化インジウム・スズ(ITO)、フッ素ドープ酸化亜鉛、亜鉛、炭素、グラファイト、グラッシーカーボン、銀ペースト及びカーボンペースト、リチウム、ベリリウム、ナトリウム、マグネシウム、カリウム、カルシウム、スカンジウム、チタン、マンガン、ジルコニウム、ガリウム、ニオブ、ナトリウム、ナトリウム−カリウム合金、アルミニウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム混合物、リチウム/アルミニウム混合物等が用いられる。
前記電極の形成方法としては、例えば、蒸着、電子ビーム蒸着、スパッタリング、大気圧プラズマ法、イオンプレーティング、化学気相蒸着、電着、無電解メッキ、スピンコーティング、印刷又はインクジェット等が挙げられる。また、必要に応じて行うパターニングの方法としては、上記の方法を用いて形成した導電性薄膜を、公知のフォトリソグラフ法やリフトオフ法を用いて電極形成する方法、アルミニウムや銅等の金属箔上に熱転写、インクジェット等により、レジストを形成しエッチングする方法等がある。
このようにして形成された電極の膜厚は電流の導通さえあれば特に制限はないが、好ましくは0.2nm〜10μm、さらに好ましくは4nm〜300nmの範囲である。この好ましい範囲内であれば、膜厚が薄いことにより抵抗が高くなり電圧降下を生じることがない。また、上記膜厚の範囲は、厚すぎないため膜形成に時間がかからず、保護層や有機半導体層等他の層を積層する場合に、段差が生じることが無く積層膜が円滑にできる。
本発明の有機薄膜トランジスタにおいて、ソース電極、ドレイン電極、ゲート電極の他の形成方法としては、上記の導電性材料を含む、溶液、ペースト、インク、分散液等の流動性電極材料を用いて形成する、特に、導電性ポリマー、又は白金、金、銀、銅を含有する金属微粒子を含む流動性電極材料を用いて形成する方法が好ましい。
溶媒や分散媒体としては、有機半導体へのダメージを抑制するため、水を60質量%以上、好ましくは90質量%以上含有する溶媒又は分散媒体であることが好ましい。金属微粒子を含有する分散物としては、例えば、公知の導電性ペースト等を用いてもよいが、通常、粒子径が0.5nm〜50nm、1nm〜10nmの金属微粒子を含有する分散物であると好ましい。
金属微粒子の材料としては、例えば、白金、金、銀、ニッケル、クロム、銅、鉄、錫、アンチモン、鉛、タンタル、インジウム、パラジウム、テルル、レニウム、イリジウム、アルミニウム、ルテニウム、ゲルマニウム、モリブデン、タングステン、亜鉛等を用いることができる。これらの金属微粒子を、主に有機材料からなる分散安定剤を用いて、水や任意の有機溶剤である分散媒中に分散した分散物を用いて電極を形成するのが好ましい。
金属微粒子の分散物の製造方法としては、ガス中蒸発法、スパッタリング法、金属蒸気合成法等の物理的生成法や、コロイド法、共沈法等の、液相で金属イオンを還元して金属微粒子を生成する化学的生成法が挙げられ、好ましくは、特開平11−76800号公報、同11−80647号公報、同11−319538号公報、特開2000−239853号公報等に示されたコロイド法、特開2001−254185号公報、同2001−53028号公報、同2001−35255号公報、同2000−124157号公報、同2000−123634号公報等に記載されたガス中蒸発法により製造された金属微粒子の分散物である。
金属微粒子分散物を用いて直接インクジェット法によりパターニングしてもよく、塗工膜からリソグラフやレーザーアブレーション等により形成してもよい。また凸版、凹版、平版、スクリーン印刷等の印刷法でパターニングする方法も用いることができる。電極を成形し、溶媒を乾燥させた後、必要に応じて100℃〜300℃、好ましくは150℃〜200℃の範囲で形状様に加熱することにより、金属微粒子を熱融着させ、目的の形状を有する電極パターンを形成できる。
ゲート電極、ソース電極及びドレイン電極の他の材料として、ドーピング等で導電率を向上させた公知の導電性ポリマーを用いることも好ましい。例えば、導電性ポリアニリン、導電性ポリピロール、導電性ポリチオフェン(ポリエチレンジオキシチオフェンとポリスチレンスルホン酸の錯体等)、ポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)の錯体(PEDOT:PSS)等が好適に用いられる。これらの材料を用いることによりソース電極とドレイン電極の有機半導体層との接触抵抗を低減することができる。形成方法もインクジェット法によりパターニングしてもよく、塗工膜からリソグラフやレーザーアブレーション等により形成してもよい。また凸版、凹版、平版、スクリーン印刷等の印刷法でパターニングする方法も用いることができる。
特にソース電極及びドレイン電極を形成する材料は、前述した例の中でも有機半導体層との接触面において電気抵抗が少ないものが好ましい。この際の電気抵抗は、即ち電流制御デバイスを作製したとき電界効果移動度と対応しており、大きな移動度を得るためにはできるだけ抵抗が小さいことが必要である。これは一般に電極材料の仕事関数と有機半導体層のエネルギー準位との大小関係で決まる。
電極材料の仕事関数(W)をa、有機半導体層のイオン化ポテンシャルを(Ip)をb、有機半導体層の電子親和力(Af)をcとすると、以下の関係式を満たすことが好ましい。ここで、a、b及びcはいずれも真空準位を基準とする正の値である。
p型有機薄膜トランジスタの場合には、b−a<1.5eV(式(I))であることが好ましく、さらに好ましくはb−a<1.0eVである。有機半導体層との関係において上記関係が維持できれば高性能なデバイスを得ることができるが、特に電極材料の仕事関数はできるだけ大きいものを選ぶことが好ましく、仕事関数4.0eV以上であることが好ましく、さらに好ましくは仕事関数4.2eV以上である。
金属の仕事関数の値は、例えば化学便覧基礎編II−493頁(改訂3版 日本化学会編 丸善株式会社発行1983年)に記載されている4.0eV又はそれ以上の仕事関数をもつ有効金属の前記リストから選別すればよい。
高仕事関数金属は、主としてAg(4.26,4.52,4.64,4.74eV),Al(4.06,4.24,4.41eV),Au(5.1,5.37,5.47eV),Be(4.98eV),Bi(4.34eV),Cd(4.08eV),Co(5.0eV),Cu(4.65eV),Fe(4.5,4.67,4.81eV),Ga(4.3eV),Hg(4.4eV),Ir(5.42,5.76eV),Mn(4.1eV),Mo(4.53,4.55,4.95eV),Nb(4.02,4.36,4.87eV),Ni(5.04,5.22,5.35eV),Os(5.93eV),Pb(4.25eV),Pt(5.64eV),Pd(5.55eV),Re(4.72eV),Ru(4.71eV),Sb(4.55,4.7eV),Sn(4.42eV),Ta(4.0,4.15,4.8eV),Ti(4.33eV),V(4.3eV),W(4.47,4.63,5.25eV),Zr(4.05eV)等である。
これらの中でも、貴金属(Ag,Au,Cu,Pt),Ni,Co,Os,Fe,Ga,Ir,Mn,Mo,Pd,Re,Ru,V,Wが好ましい。金属以外では、ITO、ポリアニリンやPEDOT:PSSのような導電性ポリマー及び炭素が好ましい。電極材料としては、これら高仕事関数の物質を1種又は複数含んでいても、仕事関数が前記式(I)を満たせば特に制限を受けるものではない。
n型有機薄膜トランジスタの場合にはa−c<1.5eV(式(II))であることが好ましく、さらに好ましくはa−c<1.0eVである。有機半導体層との関係において上記関係が維持できれば高性能なデバイスを得ることができるが、特に電極材料の仕事関数はできるだけ小さいものを選ぶことが好ましく、仕事関数4.3eV以下であることが好ましく、さらに好ましくは仕事関数3.7eV以下である。
低仕事関数金属の具体例としては、例えば化学便覧基礎編II−493頁(改訂3版 日本化学会編 丸善株式会社発行1983年)に記載されている4.3eV又はそれ以下の仕事関数をもつ有効金属の前記リストから選別すればよく、Ag(4.26eV),Al(4.06,4.28eV),Ba(2.52eV),Ca(2.9eV),Ce(2.9eV),Cs(1.95eV),Er(2.97eV),Eu(2.5eV),Gd(3.1eV),Hf(3.9eV),In(4.09eV),K(2.28eV),La(3.5eV),Li(2.93eV),Mg(3.66eV),Na(2.36eV),Nd(3.2eV),Rb(4.25eV),Sc(3.5eV),Sm(2.7eV),Ta(4.0,4.15eV),Y(3.1eV),Yb(2.6eV),Zn(3.63eV)等が挙げられる。これらの中でも、Ba,Ca,Cs,Er,Eu,Gd,Hf,K,La,Li,Mg,Na,Nd,Rb,Y,Yb,Znが好ましい。
電極材料としては、これら低仕事関数の物質を1種又は複数含んでいても、仕事関数が前記式(II)を満たせば特に制限を受けるものではない。ただし、低仕事関数金属は、大気中の水分や酸素に触れると容易に劣化してしまうので、必要に応じてAgやAuのような空気中で安定な金属で被覆することが望ましい。被覆に必要な膜厚は10nm以上必要であり、膜厚が熱くなるほど酸素や水から保護することができるが、実用上、生産性を上げる等の理由から1μm以下にすることが望ましい。
本発明の有機薄膜トランジスタでは、例えば、注入効率を向上させる目的で、有機半導体層とソース電極及びドレイン電極との間に、バッファ層を設けてもよい。バッファ層としてはn型有機薄膜トランジスタに対しては有機ELの陰極に用いられるLiF、LiO、CsF、NaCO、KCl、MgF、CaCO等のアルカリ金属、アルカリ土類金属イオン結合を持つ化合物が望ましい。また、Alq(トリス(8−キシリノール)アルミニウム)等有機ELで電子注入層、電子輸送層として用いられる化合物を挿入してもよい。
p型有機薄膜トランジスタに対してはFeCl、TCNQ(テトラシアノキノジメタン)、F−TCNQ(テトラフルオロキノジメタン)、HAT(ヘキサシアノヘキサアザトリフェニレン)等のシアノ化合物、CFxやGeO、SiO、MoO、V、VO、V、MnO、Mn、ZrO、WO、TiO、In、ZnO、NiO、HfO、Ta、ReO、PbO等のアルカリ金属、アルカリ土類金属以外の金属酸化物、ZnS、ZnSe等の無機化合物が望ましい。
これら酸化物は多くの場合、酸素欠損を起こし、これが正孔注入に好適である。さらにはTPD(テトラフェニルジアミノジフェニル)やNPD(ジフェニルナフチルジアミン)等のアミン系化合物やCuPc(銅フタロシアニン)等の有機EL素子において正孔注入層、正孔輸送層として用いられる化合物でもよい。また、上記の化合物二種類以上からなる混合物が望ましい。
バッファ層は、キャリアの注入障壁を下げることにより閾値電圧を下げ、トランジスタを低電圧駆動させる効果があることが知られているが、本発明の化合物に対しては低電圧効果のみならず移動度を向上させる効果を有する。これは、有機半導体層と絶縁体層の界面にはキャリアトラップが存在し、ゲート電圧を印加してキャリア注入が起こると、最初に注入したキャリアはトラップを埋めるのに使われるが、バッファ層を挿入することにより、低電圧でトラップが埋められ移動度が向上するためである。
バッファ層は、電極と有機半導体層との間に薄く存在すればよく、その厚みは0.1nm〜30nm、好ましくは0.3nm〜20nmである。
(絶縁体層)
本発明の有機薄膜トランジスタにおける絶縁体層の材料としては、電気絶縁性を有し薄膜として形成できるものであれば特に限定されず、金属酸化物(珪素の酸化物を含む)、金属窒化物(珪素の窒化物を含む)、高分子、有機低分子等室温での電気抵抗率が10Ωcm以上の材料を用いることができ、特に、比誘電率の高い無機酸化物皮膜が好ましい。
無機酸化物としては、酸化ケイ素、酸化アルミニウム、酸化タンタル、酸化チタン、酸化スズ、酸化バナジウム、チタン酸バリウムストロンチウム、ジルコニウム酸チタン酸バリウム、ジルコニウム酸チタン酸鉛、チタン酸鉛ランタン、チタン酸ストロンチウム、チタン酸バリウム、フッ化バリウムマグネシウム、ランタン酸化物、フッ素酸化物、マグネシウム酸化物、ビスマス酸化物、チタン酸ビスマス、ニオブ酸化物,チタン酸ストロンチウムビスマス、タンタル酸ストロンチウムビスマス、五酸化タンタル、タンタル酸ニオブ酸ビスマス、トリオキサイドイットリウム及びこれらを組合せたもの等が挙げられ、酸化ケイ素、酸化アルミニウム、酸化タンタル、酸化チタンが好ましい。
また、窒化ケイ素(Si、SixNy、SiONx(x,y>0))、窒化アルミニウム等の無機窒化物も好適に用いることができる。
さらに、絶縁体層は、アルコキシド金属を含む前駆物質で形成されていてもよく、この前駆物質の溶液を、例えば基板に被覆し、これを熱処理を含む化学溶液処理をすることにより絶縁体層が形成される。
前記アルコキシド金属における金属としては、例えば、遷移金属、ランタノイド、又は主族元素から選択され、具体的には、バリウム(Ba)、ストロンチウム(Sr)、チタン(Ti)、ビスマス(Bi)、タンタル(Ta)、ジルコニウム(Zr)、鉄(Fe)、ニッケル(Ni)、マンガン(Mn)、鉛(Pb)、ランタン(La)、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、フランシウム(Fr)、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ニオブ(Nb)、タリウム(Tl)、水銀(Hg)、銅(Cu)、コバルト(Co)、ロジウム(Rh)、スカンジウム(Sc)及びイットリウム(Y)等が挙げられる。また、前記アルコキシド金属におけるアルコキシドとしては、例えば、メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノール、イソブチルアルコール等を含むアルコール類、メトキシエタノール、エトキシエタノール、プロポキシエタノール、ブトキシエタノール、ペントキシエタノール、ヘプトキシエタノール、メトキシプロパノール、エトキシプロパノール、プロポキシプロパノール、ブトキシプロパノール、ペントキシプロパノール、ヘプトキシプロパノールを含むアルコキシアルコール類等から誘導されるものが挙げられる。
本発明において、絶縁体層を上記したような材料で構成すると、絶縁体層中に分極が発生しやすくなり、トランジスタ動作のしきい電圧を低減することができる。また、上記材料の中でも、特に、Si、SixNy、SiONx(x,y>0)等の窒化ケイ素で絶縁体層を形成すると、空乏層がいっそう発生しやすくなり、トランジスタ動作のしきい電圧をさらに低減させることができる。
有機化合物を用いた絶縁体層としては、ポリイミド、ポリアミド、ポリエステル、ポリアクリレート、光ラジカル重合系、光カチオン重合系の光硬化性樹脂、アクリロニトリル成分を含有する共重合体、ポリビニルフェノール、ポリビニルアルコール、ノボラック樹脂、及びシアノエチルプルラン等を用いることもできる。
その他、ワックス、ポリエチレン、ポリクロロピレン、ポリエチレンテレフタレート、ポリオキシメチレン、ポリビニルクロライド、ポリフッ化ビニリデン、ポリメチルメタクリレート、ポリサルホン、ポリイミドシアノエチルプルラン、ポリ(ビニルフェノール)(PVP)、ポリ(メチルメタクレート)(PMMA)、ポリカーボネート(PC)、ポリスチレン(PS)、ポリオレフィン、ポリアクリルアミド、ポリ(アクリル酸)、ノボラック樹脂、レゾール樹脂、ポリイミド、ポリキシリレン、エポキシ樹脂に加え、プルラン等の高い誘電率を持つ高分子材料を使用することも可能である。
絶縁体層に用いる有機化合物材料、高分子材料として、特に好ましいのは撥水性を有する材料である。撥水性を有することにより絶縁体層と有機半導体層との相互作用を抑え、有機半導体が本来保有している凝集性を利用して有機半導体層の結晶性を高めデバイス性能を向上させることができる。このような例としては、YasudaらJpn.J.Appl.Phys.Vol.42(2003)pp.6614−6618に記載のポリパラキシリレン誘導体やJanos VeresらChem.Mater.,Vol.16(2004)pp.4543−4555に記載の材料が挙げられる。
また、図1及び図4に示すようなトップゲート構造を用いるときに、このような有機化合物を絶縁体層の材料として用いると、有機半導体層に与えるダメージを小さくして成膜することができるため有効な方法である。
前記絶縁体層は、前述したような無機又は有機化合物材料を複数用いた混合層であってもよく、これらの積層構造体であってもよい。この場合、必要に応じて誘電率の高い材料と撥水性を有する材料を混合したり、積層することによりデバイスの性能を制御することもできる。
前記絶縁体層は、陽極酸化膜であってもよく、又は陽極酸化膜を構成として含んでもよい。陽極酸化膜は封孔処理されることが好ましい。陽極酸化膜は、陽極酸化が可能な金属を公知の方法により陽極酸化することにより形成される。陽極酸化処理可能な金属としては、アルミニウム又はタンタルを挙げることができ、陽極酸化処理の方法には特に制限はなく、公知の方法を用いることができる。陽極酸化処理を行なうことにより、酸化被膜が形成される。陽極酸化処理に用いられる電解液としては、多孔質酸化皮膜を形成することができるものならばいかなるものでも使用でき、一般には、硫酸、燐酸、蓚酸、クロム酸、ホウ酸、スルファミン酸、ベンゼンスルホン酸等あるいはこれらを2種類以上組み合わせた混酸又はそれらの塩が用いられる。
陽極酸化の処理条件は使用する電解液により種々変化するので一概に特定し得ないが、一般的には、電解液の濃度が1〜80質量%、電解液の温度5〜70℃、電流密度0.5〜60A/cm、電圧1〜100ボルト、電解時間10秒〜5分の範囲が適当である。好ましい陽極酸化処理は、電解液として硫酸、リン酸又はホウ酸の水溶液を用い、直流電流で処理する方法であるが、交流電流を用いることもできる。これらの酸の濃度は5〜45質量%であることが好ましく、電解液の温度20〜50℃、電流密度0.5〜20A/cmで20〜250秒間電解処理するのが好ましい。
絶縁体層の厚さとしては、層の厚さが薄いと有機半導体に印加される実効電圧が大きくなるので、デバイス自体の駆動電圧、閾電圧を下げることができるが、逆にソース−ゲート間のリーク電流が大きくなるので、適切な膜厚を選ぶ必要があり、通常10nm〜5μm、好ましくは50nm〜2μm、さらに好ましくは100nm〜1μmである。
前記絶縁体層と有機半導体層の間に、任意の配向処理を施してもよい。
配向処理の好ましい例としては、絶縁体層表面に撥水化処理等を施し絶縁体層と有機半導体層との相互作用を低減させ有機半導体層の結晶性を向上させる方法であり、具体的には、シランカップリング剤、例えば、ヘキサメチルジシラザン、オクタデシルトリクロロシラン、トリクロロメチルシラザンや、アルカン燐酸、アルカンスルホン酸、アルカンカルボン酸等の自己組織化配向膜材料を、液相又は気相状態で、絶縁膜表面に接触させ自己組織化膜を形成後、適度に乾燥処理を施す方法が挙げられる。また、液晶の配向に用いられるように、絶縁膜表面にポリイミド等で構成された膜を設置し、その表面をラビング処理する方法も好ましい。
前記絶縁体層の形成方法としては、真空蒸着法、分子線エピタキシャル成長法、イオンクラスタービーム法、低エネルギーイオンビーム法、イオンプレーティング法、CVD法、スパッタリング法、特開平11−61406号公報、同11−133205号公報、特開2000−121804号公報、同2000−147209号公報、同2000−185362号公報に記載の大気圧プラズマ法等のドライプロセスや、スプレーコート法、スピンコート法、ブレードコート法、デイップコート法、キャスト法、ロールコート法、バーコート法、ダイコート法等の塗布による方法、印刷やインクジェット等のパターニングによる方法等のウェットプロセスが挙げられ、材料に応じて使用できる。ウェットプロセスは、無機酸化物の微粒子を、任意の有機溶剤又は水に必要に応じて界面活性剤等の分散補助剤を用いて分散した液を塗布、乾燥する方法や、酸化物前駆体、例えば、アルコキシド体の溶液を塗布、乾燥する、いわゆるゾルゲル法が用いられる。
本発明の有機薄膜トランジスタの形成方法としては、特に限定されず公知の方法によればよいが、所望の素子構成に従い、基板投入、ゲート電極形成、絶縁体層形成、有機半導体層形成、ソース電極形成、ドレイン電極形成までの一連の素子作製工程を全く大気に触れることなく形成すると、大気との接触による大気中の水分や酸素等による素子性能の阻害を防止できるため好ましい。やむをえず、一度大気に触れさせなければならないときは、有機半導体層成膜以後の工程は大気に全く触れさせない工程とし、有機半導体層成膜直前には、有機半導体層を積層する面(例えば図2の有機薄膜トランジスタ2の場合は絶縁層に一部ソース電極、ドレイン電極が積層された表面)を紫外線照射、紫外線/オゾン照射、酸素プラズマ、アルゴンプラズマ等で清浄化・活性化した後、有機半導体層を積層することが好ましい。また、p型TFT材料の中には一旦大気にふれさせ、酸素等を吸着させることにより性能が向上するものもあるので、材料によっては適宜大気にふれさせる。
大気中に含まれる酸素、水等の有機半導体層に対する影響を考慮し、有機トランジスタ素子の外周面の全面又は一部に、ガスバリア層を形成してもよい。ガスバリア層を形成する材料としては、この分野で常用されるものを使用でき、例えば、ポリビニルアルコール、エチレン−ビニルアルコール共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリクロロトリフロロエチレン等が挙げられる。さらに、前記絶縁体層で例示した、絶縁性を有する無機物も使用できる。
本発明では、ソース電極−ドレイン電極間を流れる電流を利用して発光し、ゲート電極に電圧を印加することによって発光を制御する有機薄膜発光トランジスタを提供することができる。即ち、有機薄膜トランジスタを発光素子(有機EL)として用いることができる。発光を制御するためのトランジスタと発光素子を統合できるため、ディスプレイの開口率向上や作製プロセスの簡易化によるコストダウンが可能となり実用上の大きなメリットを与える。有機発光トランジスタとして用いるときは、ソース電極、ドレイン電極の一方から正孔、もう一方から電子を注入する必要があり、発光性能を向上させるため以下の条件を満たすことが好ましい。
本発明の有機薄膜発光トランジスタでは、正孔の注入性を向上させるため、ソース電極及びドレイン電極の少なくとも一方は正孔注入性電極であることが好ましい。正孔注入電極とは上記仕事関数4.2eV以上の物質を含む電極である。
本発明の有機薄膜発光トランジスタは、電子の注入性を向上させるため、好ましくはソース電極及びドレイン電極の少なくとも一方は電子注入性電極であり、さらに好ましくは、一方が正孔注入性であり、且つ、もう一方が電子注入性である電極を備える有機薄膜発光トランジスタである。
尚、電子注入性電極とは上記仕事関数4.3eV以下の物質を含む電極である。
正孔の注入性を向上させるため、ソース電極及びドレイン電極の少なくとも一方の電極と有機半導体層の間に正孔注入層を挿入することが好ましい。正孔注入層には有機EL素子において、正孔注入材料、正孔輸送材料として用いられるアミン系材料が挙げられる。
電子の注入性を向上させるため、本発明の有機薄膜トランジスタは、好ましくはソース電極及びドレイン電極の少なくとも一方の電極と有機半導体層の間に電子注入性層を挿入し、さらに好ましくは一方の電極に正孔注入層を備え、且つ、もう一方の電極に電子注入層を挿入する。上述の正孔注入層と同じく、電子注入層には有機EL素子に用いられる電子注入材料を用いることができる。
実施例1[化合物Aの合成]
Figure 2014019671
[中間体A1の合成]
窒素雰囲気下、ベンゾフェノンイミン(6.8g,38mmol,1.2eq.)、2−ブロモ−6−オクチルナフタレン(10g,31mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0.14g,0.15mmol,1%Pd)、2,2’−ビス(ジフェニルホスフィノ)−1,1’−ビナフタレン(BINAP,0.3g,0.48mmol,1.6eq.to Pd)、ナトリウムt−ブトキシド(4.2g,44mmol,1.4eq.)を無水トルエン(120ml)に懸濁し、80℃で10時間撹拌した。反応混合物をろ別し、溶媒留去して濃褐色オイルを得た。これをカラムクロマトグラフィ(シリカゲル/ジクロロメタン+33%ヘキサン)で精製して黄色オイル(14.6g,定量的)を得た。H−NMRの測定結果を以下に示す。
H−NMR(CDCl,TMS)δ:0.87(3H,t,J=7Hz),1.27−1.33(10H,m),1.66(2H,m),2.69(2H,t,J=7Hz),6.88(1H,d,J=8Hz),7.12−7.23(6H,m),7.40−7.56(6H,m),7.77−7.82(3H,m)
[中間体A2の合成]
中間体A1(13g,31mmol)をテトラヒドロフラン(100ml)に溶かし、10%塩酸水溶液(10ml)を加え、室温で3時間撹拌した。反応混合物に10%水酸化ナトリウム水溶液(100ml)を加え、有機層を分取して酢酸エチル(50ml)で希釈した。これを飽和食塩水(30ml)で洗浄、無水硫酸マグネシウムで乾燥、溶媒留去して黄色オイルを得た。これをカラムクロマトグラフィ(中性シリカゲル/ヘキサン+50%ジクロロメタン、続いてジクロロメタン)で精製して白色固体(7.1g,90%)を得た。H−NMRの測定結果を以下に示す。
H−NMR(CDCl,TMS)δ:0.87(3H,t,J=7Hz),1.27−1.34(10H,m),1.66(2H,m),2.69(2H,t,J=7Hz),3.76(2H,bs),6.91(1H,dd,J=9Hz,2Hz),6.96(1H,d,J=2Hz),7.22(1H,dd,J=9Hz,2Hz),7.46(1H,s),7.51(1H,d,J=8Hz),7.59(1H,d,J=8Hz)
[中間体A3の合成]
窒素雰囲気下、中間体A2(7.1g,28mmol)を無水N,N−ジメチルホルムアミド(DMF,60ml)に溶かし、これにN−ブロモスクシンイミド(NBS,5.5g,31mmol,1.1eq.)の無水DMF溶液(20ml)を室温で徐々に滴下した。反応混合物を2時間撹拌したのち、一晩放置した。反応混合物に水(100ml)を加えて、ヘキサン(300ml)で抽出し、有機層を飽和食塩水(30ml)で洗浄、溶媒留去して濃赤色オイル(8.8g,94%)を得た。H−NMRの測定結果を以下に示す。
H−NMR(CDCl,TMS)δ:0.87(3H,t,J=7Hz),1.27−1.33(10H,m),1.67(2H,m),2.72(2H,t,J=7Hz),4.29(2H,bs),6.97(1H,d,J=8Hz),7.35(1H,dd,J=9Hz,2Hz),7.45(1H,s),7.55(1H,d,J=8Hz),7.94(1H,d,J=9Hz)
[中間体A4の合成]
中間体A3(8.8g,26mmol)を1,2−ジクロロエタン(50ml)に溶かし、酢酸(1.8ml,31mmol,1.2eq.)、水(28ml)を加えて80℃に加熱した。これに2,5−ジメトキシテトラヒドロフラン(3.6ml,28mmol,1.1eq.)を加えて80℃で9時間撹拌した。反応混合物をジクロロメタン(100ml)で希釈し、飽和食塩水(30ml)で洗浄、無水硫酸マグネシウムで乾燥、溶媒留去して濃褐色オイルを得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+17%ジクロロメタン)で精製して褐色オイル(8.3g,83%)を得た。H−NMRの測定結果を以下に示す。
H−NMR(CDCl,TMS)δ:0.88(3H,t,J=7Hz),1.27−1.53(10H,m),1.72(2H,m),2.81(2H,t,J=7Hz),6.38(2H,t,J=2Hz),6.94(2H,t,J=2Hz),7.39(1H,d,J=9Hz),7.51(1H,dd,J=9Hz,2Hz),7.64(1H,s),7.78(1H,d,J=9Hz),8.27(1H,d,J=9Hz)
[中間体A5の合成]
窒素雰囲気下、中間体A4(8.3g,22mmol)を無水THF(130ml)に溶かし、ドライアイス/アセトン浴で−68℃に冷却した。これにn−ブチルリチウム/ヘキサン溶液(1.59mol/l,16ml,25mmol,1.1eq.)を加え、−72℃で1時間撹拌した。続いて無水DMF(3.4ml,44mmol,2eq.)を加えて−72〜−55℃で1時間撹拌したのち、室温で1時間撹拌した。反応混合物に5%塩酸(80ml)を加えて失活させ、酢酸エチル(150ml)で抽出、飽和食塩水(30ml)で洗浄、無水硫酸マグネシウムで乾燥、溶媒留去して赤色オイルを得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+10%ジクロロメタン、続いてヘキサン+17%ジクロロメタン)で精製して赤色オイル(2.3g,31%)を得た。H−NMRの測定結果を以下に示す。
H−NMR(CDCl,TMS)δ:0.88(3H,t,J=7Hz),1.27−1.53(10H,m),1.72(2H,m),2.81(2H,t,J=7Hz),6.42(2H,t,J=2Hz),7.00(2H,t,J=2Hz),7.49(1H,d,J=9Hz),7.57(1H,dd,J=9Hz,2Hz),7.67(1H,s),8.05(1H,d,J=9Hz),9.12(1H,d,J=2Hz),9.90(1H,s)
[中間体A6の合成]
窒素雰囲気下、(メトキシメチル)トリフェニルホスホニウムクロリド(3.6g,10mmol,1.5eq.)を無水THF(40ml)に懸濁し、カリウムt−ブトキシド(1.3g,12mmol,1.1eq.)を加えて、室温で30分撹拌した。これに中間体A5(2.3g,6.9mmol)を加えて、室温で1時間撹拌して一晩放置した。反応混合物に水(50ml)を加えて失活させ、有機層を酢酸エチル(150ml)で抽出、飽和食塩水(30ml)で洗浄、無水硫酸マグネシウムで乾燥、溶媒留去して褐色オイルを得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+33%ジクロロメタン)で精製して淡黄色粘稠オイル(2.3g,92%)を得た。
H−NMR(CDCl,TMS)は、E:Z(=88:12)混合物のため複雑で帰属できなかった。
[化合物Aの合成]
窒素雰囲気下、中間体A6(2.3g,6.4mmol)を無水ジクロロメタン(70ml)に溶かし、氷浴で冷却した。これにメタンスルホン酸(0.4ml,6.2mmol)を滴下し、氷浴で1時間撹拌後、室温で4時間撹拌した。反応混合物を飽和炭酸水素ナトリウム水溶液(50ml)で洗浄し、飽和食塩水(30ml)で洗浄、無水硫酸マグネシウムで乾燥、溶媒留去して黄色固体を得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+5%ジクロロメタン)で精製して黄色板状晶(1.6g,76%)を得た。H−NMRの測定結果を以下に示す。
H−NMR(CDCl,TMS)δ:0.88(3H,t,J=7Hz),1.28−1.36(10H,m),1.73(2H,m),2.79(2H,t,J=7Hz),6.60(1H,t,J=2Hz),6.87(1H,d,J=2Hz),7.48(1H,dd,J=9Hz,2Hz),7.51(1H,d,J=9Hz),7.67(1H,s),7.80(1H,d,J=9Hz),7.85(1H,d,J=9Hz),7.92(1H,d,J=2Hz),7.99(1H,d,J=9Hz),8.38(1H,d,J=8Hz)
得られた固体(1.54g)を窒素気流下、240℃/1.5x10Paで昇華精製することにより黄色固体(1.48g)を得た。得られた黄色固体につき、下記の測定を行った。
FDMS:C2427Nとしての計算値329、実測値329(M,100).
HPLC:98.8%(UV254、面積%)(アセトニトリル:テトラヒドロフラン=85:15)
イオン化ポテンシャル:4.90eV(蒸着薄膜)
実施例2[化合物Bの合成]
Figure 2014019671
[中間体B1の合成]
窒素雰囲気下、ベンゾフェノンイミン(7.0g,38mmol,1.2eq.)、2−ブロモ−6−ドデシルナフタレン(12g,32mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0.15g,0.16mmol,1%Pd)、2,2’−ビス(ジフェニルホスフィノ)−1,1’−ビナフタレン(BINAP,0.32g,0.51mmol,1.6eq.to Pd)、ナトリウムt−ブトキシド(4.3g,48mmol,1.4eq.)を無水トルエン(120ml)に懸濁し、80℃で10時間撹拌した。反応混合物をろ別し、溶媒留去して濃褐色オイルを得た。これをカラムクロマトグラフィ(シリカゲル/ジクロロメタン+33%ヘキサン)で精製して黄色オイル(16.9g,定量的)を得た。H−NMRの測定結果を以下に示す。
H−NMR(CDCl,TMS)δ:0.88(3H,t,J=7Hz),1.25−1.32(18H,m),1.66(2H,m),2.69(2H,t,J=7Hz),6.88(1H,dd,J=9Hz,2Hz),7.12−7.23(6H,m),7.40−7.56(6H,m),7.76−7.79(3H,m)
[中間体B2の合成]
中間体B1(15.2g,32mmol)をテトラヒドロフラン(300ml)に溶かし、10%塩酸水溶液(10ml)を加え、室温で3時間撹拌した。反応混合物に10%水酸化ナトリウム水溶液(100ml)を加え、有機層を分取して酢酸エチル(50ml)で希釈した。これを飽和食塩水(30ml)で洗浄、無水硫酸マグネシウムで乾燥、溶媒留去して黄色オイルを得た。これをカラムクロマトグラフィ(中性シリカゲル/ヘキサン+50%ジクロロメタン、続いてジクロロメタン)で精製して白色固体(8.1g,81%)を得た。H−NMRの測定結果を以下に示す。
H−NMR(CDCl,TMS)δ:0.88(3H,t,J=7Hz),1.25−1.32(18H,m),1.66(2H,m),2.69(2H,t,J=7Hz),3.76(2H,bs),6.91(1H,dd,J=9Hz,2Hz),6.96(1H,d,J=2Hz),7.22(1H,dd,J=8Hz,2Hz),7.46(1H,s),7.51(1H,d,J=8Hz),7.59(1H,d,J=9Hz)
[中間体B3の合成]
窒素雰囲気下、中間体B2(8.1g,26mmol)を無水N,N−ジメチルホルムアミド(DMF,60ml)に溶かし、これにN−ブロモスクシンイミド(NBS,4.9g,28mmol,1.1eq.)の無水DMF溶液(15ml)を室温で徐々に滴下した。反応混合物を2時間撹拌したのち、一晩放置した。反応混合物に水(100ml)を加えて、ヘキサン(300ml)で抽出し、有機層を飽和食塩水(30ml)で洗浄、溶媒留去して濃赤色オイル(10.1g,99%)を得た。H−NMRの測定結果を以下に示す。
H−NMR(CDCl,TMS)δ:0.88(3H,t,J=7Hz),1.25−1.33(18H,m),1.66(2H,m),2.71(2H,t,J=7Hz),4.29(2H,bs),6.96(1H,d,J=9Hz),7.34(1H,dd,J=8Hz,2Hz),7.45(1H,s),7.54(1H,d,J=9Hz),7.94(1H,d,J=8Hz)
[中間体B4の合成]
中間体B3(10.1g,26mmol)を1,2−ジクロロエタン(50ml)に溶かし、酢酸(1.8ml,31mmol,1.2eq.)、水(28ml)を加えて80℃に加熱した。これに2,5−ジメトキシテトラヒドロフラン(3.6ml,28mmol,1.1eq.)を加えて80℃で9時間撹拌した。反応混合物をジクロロメタン(100ml)で希釈し、飽和食塩水(30ml)で洗浄、無水硫酸マグネシウムで乾燥、溶媒留去して濃褐色オイルを得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+17%ジクロロメタン)で精製して褐色オイル(9.8g,86%)を得た。H−NMRの測定結果を以下に示す。
H−NMR(CDCl,TMS)δ:0.88(3H,t,J=7Hz),1.26−1.34(18H,m),1.72(2H,m),2.81(2H, t,J=7Hz),6.38(2H,t,J=2Hz),6.94(2H,t,J=2Hz),7.39(1H,d,J=8Hz),7.50(1H,dd,J=9Hz,2Hz),7.64(1H,s),7.78(1H,d,J=9Hz),8.27(1H,d,J=9Hz)
[中間体B5の合成]
窒素雰囲気下、中間体B4(9.8g,22mmol)を無水THF(150ml)に溶かし、ドライアイス/アセトン浴で−72℃に冷却した。これにn−ブチルリチウム/ヘキサン溶液(1.59mol/l,17ml,27mmol,1.1eq.)を加え、−72℃で1時間撹拌した。続いて無水DMF(3.4ml,44mmol,2eq.)を加えて−73〜−40℃で1時間撹拌したのち、室温で1時間撹拌した。反応混合物に5%塩酸(80ml)を加えて失活させ、酢酸エチル(150ml)で抽出、飽和食塩水(30ml)で洗浄、無水硫酸マグネシウムで乾燥、溶媒留去して赤色オイルを得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+33%ジクロロメタン)で精製して淡褐色固体(2.9g,34%)を得た。H−NMRの測定結果を以下に示す。
H−NMR(CDCl,TMS)δ:0.88(3H,t,J=7Hz),1.26−1.34(18H,m),1.72(2H,m),2.80(2H,t,J=7Hz),6.42(2H,t,J=2Hz),7.00(2H,t,J=2Hz),7.49(1H,d,J=9Hz),7.57(1H,dd,J=9Hz,2Hz),7.67(1H,s),8.05(1H,d,J=9Hz),9.12(1H,d,J=2Hz),9.90(1H,s)
[中間体B6の合成]
窒素雰囲気下、(メトキシメチル)トリフェニルホスホニウムクロリド(3.8g,11mmol,1.5eq.)を無水THF(40ml)に懸濁し、カリウムt−ブトキシド(1.4g,13mmol,1.1eq.)を加えて、室温で30分撹拌した。これに中間体B5(2.9g,7.5mmol)の無水THF溶液(20ml)を加えて、室温で1時間撹拌して一晩放置した。反応混合物に水(50ml)を加えて失活させ、有機層を酢酸エチル(150ml)で抽出、飽和食塩水(30ml)で洗浄、無水硫酸マグネシウムで乾燥、溶媒留去して褐色オイルを得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+33%ジクロロメタン)で精製して淡黄色粘稠オイル(2.3g,92%)を得た。
H−NMR(CDCl,TMS)は、E:Z(=90:10)混合物のため複雑で帰属できなかった。
[化合物Bの合成]
窒素雰囲気下、中間体B6(2.7g,6.5mmol)を無水ジクロロメタン(80ml)に溶かし、氷浴で冷却した。これにメタンスルホン酸(0.4ml,6.2mmol)を滴下し、氷浴で1時間撹拌後、室温で3時間撹拌後、一晩放置した。反応混合物を飽和炭酸水素ナトリウム水溶液(50ml)で洗浄し、飽和食塩水(30ml)で洗浄、無水硫酸マグネシウムで乾燥、溶媒留去して黄色固体を得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+10%ジクロロメタン)で精製して黄色板状晶(1.5g,60%)を得た。H−NMRの測定結果を以下に示す。
H−NMR(CDCl,TMS)δ:0.88(3H,t,J=7Hz),1.26−1.39(18H,m),1.72(2H,m),2.91(2H,t,J=7Hz),6.60(1H,dd,J=4Hz,1Hz),6.88(1H,dd,J=4Hz,3Hz),7.50(1H,dd,J=9Hz,2Hz),7.53(1H,d,J=9Hz),7.69(1H,s),7.83(1H,d,J=9Hz),7.89(1H,d,J=9Hz),7.95(1H,s),8.03(1H,d,J=7Hz),8.41(1H,d,J=9Hz)
得られた固体(1.50g)を窒素気流下、240℃/1.7x10Paで昇華精製することにより黄色固体(1.40g)を得た。得られた黄色固体につき、下記の測定を行った。
FDMS:C2835Nとしての計算値385、実測値385(M,100)
HPLC:98.9%(UV254、面積%)(アセトニトリル:テトラヒドロフラン=85:15)
イオン化ポテンシャル:5.00eV(蒸着薄膜)
実施例3[化合物Cの合成]
Figure 2014019671
[中間体C1の合成]
窒素雰囲気下、2−ブロモ−5−クロロベンズアルデヒド(8.7g,37mmol)、4−オクチルフェニルボロン酸(8.1g,37mmol,1eq.)、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.9g,0.8mmol,2%Pd)を1,2−ジメトキシエタン(110ml)に溶かし、2M炭酸ナトリウム水溶液(12g,113mmol,3eq./57ml)を加えて10時間還流した。反応混合物を酢酸エチル(150ml)で抽出し、有機層を飽和食塩水(30ml)で洗浄、無水硫酸マグネシウムで乾燥、溶媒留去して淡黄色オイルを得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+17%ジクロロメタン、続いてヘキサン+33%ジクロロメタン)で精製して淡黄色オイル(10.5g,86%)を得た。H−NMRの測定結果を以下に示す。
H−NMR(CDCl,TMS)δ:0.87(3H,t,J=7Hz),1.28−1.36(10H,m),1.66(2H,m),2.67(2H,t,J=7Hz),7.25(2H,d,J=8Hz),7.29(2H,d, J=8Hz),7.40(1H,d,J=8Hz),7.58(1H,dd,J=8Hz,2Hz),7.97(1H,d,J=2Hz),9.93(1H,s)
[中間体C2の合成]
窒素雰囲気下、(メトキシメチル)トリフェニルホスホニウムクロリド(16.4g,48mmol,1.5eq.)を無水THF(180ml)に懸濁し、カリウムt−ブトキシド(5.9g,53mmol,1.1eq.)を加えて、室温で30分撹拌した。これに中間体C1(10.5g,32mmol)の無水THF溶液(20ml)を加えて、室温で1時間撹拌して一晩放置した。反応混合物に水(50ml)を加えて失活させ、有機層を酢酸エチル(150ml)で抽出、飽和食塩水(30ml)で洗浄、無水硫酸マグネシウムで乾燥、溶媒留去して淡黄色固体を得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+17%ジクロロメタン)で精製して無色オイル(10.4g,91%)を得た。
H−NMR(CDCl,TMS)は、E:Z(=65:35)混合物のため帰属できなかった。
[中間体C3の合成]
窒素雰囲気下、中間体C2(10.4g,29mmol)を無水ジクロロメタン(300ml)に溶かし、氷浴で冷却した。これにメタンスルホン酸(1.9ml,29mmol)を滴下し、氷浴で1時間撹拌後、室温で3時間撹拌後、一晩放置した。反応混合物を飽和炭酸水素ナトリウム水溶液(100ml)で洗浄し、飽和食塩水(30ml)で洗浄、無水硫酸マグネシウムで乾燥、溶媒留去して白色固体を得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+17%ジクロロメタン)で精製して白色板状晶(8.5g,90%)を得た。H−NMRの測定結果を以下に示す。
H−NMR(CDCl,TMS)δ:0.88(3H,t,J=7Hz),1.27−1.39(10H,m),1.73(2H,m),2.81(2H,t,J=7Hz),7.50(1H,dd,J=9Hz,2Hz),7.56(1H,dd,J=9Hz,2Hz),7.61(1H,d,J=9Hz),7.66(1H,s),7.71(1H,d,J=9Hz),7.84(1H,d,J=2Hz),7.52(1H,d,J=9Hz),7.56(1H,d,J=9Hz)
[中間体C4の合成]
窒素雰囲気下、ベンゾフェノンイミン(5.7g,31mmol,1.2eq.)、中間体C3(8.5g,26mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0.24g,0.26mmol,2%Pd)、2−(ジシクロヘキシルホスフィノ)ビフェニル(CyJohnPhos,0.36g,1.0mmol,2eq.to Pd)、ナトリウムt−ブトキシド(3.5g,36mmol,1.4eq.)を無水トルエン(50ml)に懸濁し、80℃で10時間撹拌した。反応混合物をセライトを通してろ別し、溶媒留去して褐色オイルを得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+67%ジクロロメタン)で精製して黄色オイル(12.8g,定量的)を得た。H−NMRの測定結果を以下に示す。
H−NMR(CDCl,TMS)δ:0.88(3H,t,J=7Hz),1.27−1.32(10H,m),1.70(2H,m),2.78(2H,t,J=7Hz),7.01(1H,dd,J=9Hz,3Hz),7.15−7.21(6H,m),7.41−7.45(3H,m),7.48−7.52(2H,m),7.58−7.60(2H,m),7.79−7.82(2H,m),8.39(1H,d,J=9Hz),8.43(1H,d,J=9Hz)
[中間体C5の合成]
中間体C4(12.2g,26mmol)をテトラヒドロフラン(200ml)に溶かし、10%塩酸水溶液(10ml)を加え、室温で3時間撹拌した。反応混合物に10%水酸化ナトリウム水溶液(100ml)を加え、有機層を分取して酢酸エチル(100ml)で希釈した。これを飽和食塩水(30ml)で洗浄、無水硫酸マグネシウムで乾燥、溶媒留去して黄色オイルを得た。これをカラムクロマトグラフィ(中性シリカゲル/ヘキサン+50%ジクロロメタン、続いてジクロロメタン)で精製して白色固体(7.1g,89%)を得た。H−NMRの測定結果を以下に示す。
H−NMR(CDCl,TMS)δ:0.88(3H,t,J=7Hz),1.27−1.38(10H,m),1.71(2H,m),2.77(2H,t,J=7Hz),3.86(2H,bs),7.04(1H,dd,J=8Hz,2Hz),7.05(1H,s),7.42(1H,dd,J=8Hz,2Hz),7.51(1H,d,J=9Hz),7.58(1H,s),7.59(1H,d,J=9Hz),8.42(1H,d,J=8Hz),8.43(1H,d,J=8Hz)
[中間体C6の合成]
窒素雰囲気下、中間体C5(7.1g,23mmol)を無水N,N−ジメチルホルムアミド(DMF,60ml)に溶かし、これにN−ブロモスクシンイミド(NBS,4.5g,25mmol,1.1eq.)の無水DMF溶液(20ml)を室温で徐々に滴下した。反応混合物を2時間撹拌したのち、一晩放置した。反応混合物に水(100ml)を加えて、生じた個体をろ別し、水、少量のメタノールで洗浄して淡褐色固体(8.8g,定量的)を得た。H−NMRの測定結果を以下に示す。
H−NMR(CDCl,TMS)δ:0.88(3H,t,J=7Hz),1.27−1.38(10H,m),172(2H,m),2.78(2H,t,J=7Hz),7.10(1H,d,J=9Hz),7.45(1H,dd,J=8Hz,2Hz),7.62(1H,d,J=2Hz),7.73(1H,d,J=9Hz),8.06(1H,d,J=9Hz),8.42(2H,d,J=9Hz)
[中間体C7の合成]
中間体C6(8.8g,23mmol)を1,2−ジクロロエタン(50ml)に溶かし、酢酸(1.6ml,28mmol,1.2eq.)、水(25ml)を加えて80℃に加熱した。これに2,5−ジメトキシテトラヒドロフラン(3.3ml,26mmol,1.1eq.)を加えて80℃で10時間撹拌した。反応混合物をジクロロメタン(200ml)で希釈し、飽和食塩水(30ml)で洗浄、無水硫酸マグネシウムで乾燥、溶媒留去して褐色固体を得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+17%ジクロロメタン)で精製して淡黄色固体(7.5g,75%)を得た。H−NMRの測定結果を以下に示す。
H−NMR(CDCl,TMS)δ:0.88(3H,t,J=7Hz),1.28−1.40(10H,m),1.75(2H,m),2.84(2H,t,J=7Hz),6.40(2H,t,J=2Hz),6.98(2H,t,J=2Hz),7.55(1H,d,J=9Hz),7.58(1H,d,J=9Hz),7.73(1H,s),7.86(1H,d,J=9Hz),8.30(1H,d,J=9Hz),8.58(1H,d,J=9Hz),8.67(1H,d,J=9Hz)
[中間体C8の合成]
窒素雰囲気下、中間体C7(7.5g,17mmol)を無水THF(100ml)に溶かし、ドライアイス/アセトン浴で−56℃に冷却した。これにn−ブチルリチウム/ヘキサン溶液(1.59mol/l,12ml,19mmol,1.1eq.)を加え、−66℃で1時間撹拌した。続いて無水DMF(2.6ml,34mmol,2eq.)を加えて−70℃で2時間撹拌したのち、室温で1時間撹拌した。反応混合物に1%塩酸(100ml)を加えて失活させ、酢酸エチル(150ml)で抽出、飽和食塩水(30ml)で洗浄、無水硫酸マグネシウムで乾燥、溶媒留去して褐色固体を得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+33%ジクロロメタン)で精製して淡褐色固体(0.9g,14%)を得た。H−NMRの測定結果を以下に示す。
H−NMR(CDCl,TMS)δ:0.88(3H,t,J=7Hz),1.28−1.34(10H,m),1.76(2H,m),2.85(2H,t,J=7Hz),6.45(2H,t,J=2Hz),7.04(2H,t,J=2Hz),7.57(1H,dd,J=9Hz,1Hz),7.57(1H,dd,J=9Hz,1Hz),7.68(1H,d,J=9Hz),7.68(1H,d,J=9Hz),7.94(1H,d,J=9Hz),8.60(1H,d,J=9Hz),8.97(1H,d,J=9Hz),9.06(1H,d,J=9Hz),9.95(1H,s)
[中間体C9の合成]
窒素雰囲気下、(メトキシメチル)トリフェニルホスホニウムクロリド(1.2g,3.5mmol,1.5eq.)を無水THF(20ml)に懸濁し、カリウムt−ブトキシド(0.43g,3.8mmol,1.1eq.)を加えて、室温で30分撹拌した。これに中間体C8(0.9g,2.3mmol)の無水THF溶液(10ml)を加えて、室温で1時間撹拌して一晩放置した。反応混合物に水(50ml)を加えて失活させ、有機層を酢酸エチル(150ml)で抽出、飽和食塩水(30ml)で洗浄、無水硫酸マグネシウムで乾燥、溶媒留去して褐色オイルを得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+33%ジクロロメタン)で精製して黄色粘稠オイル(0.6g,63%)を得た。
H−NMR(CDCl,TMS)は、E:Z(=85:15)混合物のため複雑で帰属できなかった。
[化合物Cの合成]
窒素雰囲気下、中間体C9(0.6g,1.5mmol)を無水ジクロロメタン(20ml)に溶かし、氷浴で冷却した。これにメタンスルホン酸(0.1ml,1.5mmol)を滴下し、氷浴で1時間撹拌後、室温で3時間撹拌後、一晩放置した。反応混合物をジクロロメタン(100ml)で希釈し、飽和炭酸水素ナトリウム水溶液(50ml)で洗浄し、飽和食塩水(30ml)で洗浄、無水硫酸マグネシウムで乾燥、溶媒留去して褐色固体を得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+33%ジクロロメタン)で精製して黄色板状晶(0.5g,88%)を得た。H−NMRの測定結果を以下に示す。
H−NMR(CDCl,TMS)δ:0.88(3H,t,J=7Hz),1.28−1.41(10H,m),1.76(2H,m),2.84(2H,t,J=7Hz),6.62(1H,dd,J=4Hz,1Hz),6.89(1H,dd,J=4Hz,3Hz),7.54−7.57(2H,m),7.73(1H,d,J=9Hz),7.91(2H,d,J=9Hz),8.01(1H,d,J=2Hz),8.20(1H,d,J=9Hz),8.45(1H,d,J=9Hz),8.64(1H,d,J=9Hz),8.81(1H,d,J=9Hz)
得られた固体(0.5g)を窒素気流下、260℃/1.9x10Paで昇華精製することにより黄色固体(0.43g)を得た。得られた黄色固体につき、下記の測定を行った。
FDMS:C2829Nとしての計算値379、実測値379(M,100)
HPLC:99.0%(UV254面積%)(アセトニトリル:テトラヒドロフラン=85:15)
イオン化ポテンシャル:5.62eV(蒸着薄膜)
実施例4[蒸着法による有機薄膜トランジスタの作製]
ガラス基板を中性洗剤、純水、アセトン及びエタノールで各30分超音波洗浄した後、スパッタ法にて金(Au)を40nm成膜してゲート電極を作製した。次いで、この基板を熱CVD装置の成膜部にセットした。一方、原料の蒸発部には、絶縁体層の原料のポリパラキシレン誘導体(ポリパラ塩化キシレン(Parylene))(商品名;diX−C,第三化成株式会社製)250mgをシャーレに入れて設置した。熱CVD装置を真空ポンプで真空に引き、5Paまで減圧した後、蒸発部を180℃、重合部を680℃まで加熱して2時間放置し、ゲート電極上に厚さ370nmの絶縁体層を形成した。
次に、上記基板を真空蒸着装置(ULVAC社製、EX−400)に設置し、絶縁体層上に化合物Aを0.05nm/sの蒸着速度で50nm膜厚の有機半導体層を成膜した。金属マスクを通して金を50nmの膜厚で成膜することにより、互いに接しないソース電極及びドレイン電極を、間隔(チャンネル長L)が250μmになるように形成した。このとき、ソース電極とドレイン電極の幅(チャンネル幅W)を5mmとし、図4に示す有機薄膜トランジスタを作製した。
得られた有機薄膜トランジスタのゲート電極に−25Vのゲート電圧Vを印加し、ソース−ドレイン間に電圧を印加して電流を流したところ、正孔が有機半導体層のチャンネル領域(ソース−ドレイン間)に誘起され、p型トランジスタとして動作した。このときの正孔の電界効果移動度μを下記式(1)より算出した。結果を表1に示す。
Figure 2014019671
(式中、Iはソース−ドレイン間電流、Wはチャンネル幅、Lはチャンネル長、Cはゲート絶縁体層の単位面積あたりの電気容量、Vはゲート閾値電圧、Vはゲート電圧である。)
実施例5
化合物Aの代わりに化合物Bを用いた以外は、実施例4と同様にして有機薄膜トランジスタを作製し、評価した。結果を表1に示す。
実施例6
化合物Aの代わりに化合物Cを用いた以外は、実施例4と同様にして有機薄膜トランジスタを作製し、評価した。結果を表1に示す。
比較例1
化合物Aの代わりに特開2010−118415に開示されている化合物Rを用いた以外は、実施例1と同様にして有機薄膜トランジスタを作製し、評価した。結果を表1に示す。
Figure 2014019671
Figure 2014019671
実施例7[塗布法による有機薄膜トランジスタの作製]
ガラス基板を中性洗剤、純水、アセトン及びエタノールで各30分超音波洗浄した後、スパッタ法にて金(Au)を40nm成膜してゲート電極を作製した。次いで、この基板を熱CVD装置の成膜部にセットした。一方、原料の蒸発部には、絶縁体層の原料のポリパラキシレン誘導体(ポリパラ塩化キシレン(Parylene))(商品名;diX−C,第三化成社製)250mgをシャーレに入れて設置した。熱CVD装置を真空ポンプで真空に引き、5Paまで減圧した後、蒸発部を180℃、重合部を680℃まで加熱して2時間放置し、ゲート電極上に厚さ330nmの絶縁体層を形成した。次いで化合物Aをクロロホルムに溶解させて0.5重量%クロロホルム溶液とし、絶縁体層まで成膜した基板の上にスピンコーター(ミカサ社製:1H−D7)で成膜し、窒素雰囲気下80℃にて乾燥させ有機半導体層とした。金属マスクを通して金を50nmの膜厚で成膜することにより、互いに接しないソース電極及びドレイン電極を、間隔(チャンネル長L)が250μmになるように形成した。このとき、ソース電極とドレイン電極の幅(チャンネル幅W)は5mmとし、有機薄膜トランジスタを作製した。
得られた有機薄膜トランジスタのゲート電極に−25Vのゲート電圧Vを印加し、p型駆動させた。ソース−ドレイン電極間の電流のオン/オフを測定し、正孔の電界効果移動度μを上記式(1)により算出した。結果を表2に示す。
実施例8
化合物Aの代わりに化合物Bを用いた以外は、実施例7と同様にして有機薄膜トランジスタを作製した。結果を表2に示す。
実施例9
化合物Aの代わりに化合物Cを用いた以外は、実施例7と同様にして有機薄膜トランジスタを作製し、評価した。結果を表2に示す。
比較例2
化合物Aの代わりに化合物Rを用いた以外は、実施例7と同様にして有機薄膜トランジスタを作製し、評価した。結果を表2に示す。
Figure 2014019671
本発明の化合物は、有機薄膜トランジスタの有機半導体層の材料として使用できる。
1,2,3,4 有機薄膜トランジスタ
10 基板
11 ソース電極
12 ドレイン電極
13 有機半導体層
14 絶縁体層
15 ゲート電極

Claims (13)

  1. 下記式(A)で表される芳香族ヘテロ環化合物。
    Figure 2014019671
    (式(A)中、R〜R11は同一でも異なっていてもよく、それぞれ水素原子、ハロゲン原子、炭素数1〜30のアルキル基、炭素数3〜30のシクロアルキル基、炭素数2〜30のアルケニル基、炭素数2〜30のアルキニル基、炭素数1〜30のハロアルキル基、炭素数1〜30のアルコキシ基、炭素数1〜30のハロアルコキシ基、炭素数1〜30のアルキルチオ基、炭素数1〜30のハロアルキルチオ基、炭素数1〜30のアルキルアミノ基、炭素数2〜60のジアルキルアミノ基、炭素数6〜60のアリールアミノ基、炭素数6〜60の芳香族炭化水素基、炭素数3〜60の芳香族複素環基、炭素数3〜20のトリアルキルシリル基、炭素数5〜60のアルキルシリルエチニル基又はシアノ基であり、これらの各基はさらに置換基を有していてもよい。RとRは互いに結合して芳香環を形成してもよい。)
  2. 下記式(B)で表される芳香族ヘテロ環化合物。
    Figure 2014019671
    (式(B)中、R〜R、R10〜R15は同一でも異なっていてもよく、それぞれ水素原子、ハロゲン原子、炭素数1〜30のアルキル基、炭素数3〜30のシクロアルキル基、炭素数2〜30のアルケニル基、炭素数2〜30のアルキニル基、炭素数1〜30のハロアルキル基、炭素数1〜30のアルコキシ基、炭素数1〜30のハロアルコキシ基、炭素数1〜30のアルキルチオ基、炭素数1〜30のハロアルキルチオ基、炭素数1〜30のアルキルアミノ基、炭素数2〜60のジアルキルアミノ基、炭素数6〜60のアリールアミノ基、炭素数6〜60の芳香族炭化水素基、炭素数3〜60の芳香族複素環基、炭素数3〜20のトリアルキルシリル基、炭素数5〜60のアルキルシリルエチニル基又はシアノ基であり、これら各基はさらに置換基を有していてもよい。)
  3. 前記式(A)のR、R〜R、R10及びR11が水素原子である請求項1に記載の芳香族ヘテロ環化合物。
  4. 前記式(A)のR,R及びR〜Rのうち、少なくとも1つが炭素数1〜30のアルキル基である請求項3に記載の芳香族ヘテロ環化合物。
  5. 前記式(A)のR〜R及びR〜R11が水素原子である請求項1に記載の芳香族ヘテロ環化合物。
  6. 前記式(A)のRが炭素数1〜30のアルキル基である請求項5に記載の芳香族ヘテロ環化合物。
  7. 前記式(B)のR、R〜R、R10、R11及びR15が水素原子である請求項2に記載の芳香族ヘテロ環化合物。
  8. 前記式(B)のR,R及びR12〜R14のうち、少なくとも1つが炭素数1〜30のアルキル基である請求項7に記載の芳香族ヘテロ環化合物。
  9. 前記式(B)のR〜R、R10〜R12、R14及びR15が水素原子である請求項2に記載の芳香族ヘテロ環化合物。
  10. 前記式(B)のR13が炭素数1〜30のアルキル基である請求項9に記載の芳香族ヘテロ環化合物。
  11. 請求項1〜10のいずれかに記載の化合物を含む有機薄膜トランジスタ用組成物。
  12. 請求項1〜10のいずれかに記載の化合物を含む有機薄膜トランジスタ。
  13. 少なくとも基板上にゲート電極、ソース電極及びドレイン電極の3端子、絶縁体層並びに有機半導体層が設けられ、ソース−ドレイン間電流をゲート電極に電圧を印加することによって制御する有機薄膜トランジスタにおいて、前記有機半導体層が請求項1〜10のいずれかに記載の化合物を含む有機薄膜トランジスタ。
JP2012161021A 2012-07-19 2012-07-19 芳香族ヘテロ環化合物及びそれを用いた有機薄膜トランジスタ Pending JP2014019671A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012161021A JP2014019671A (ja) 2012-07-19 2012-07-19 芳香族ヘテロ環化合物及びそれを用いた有機薄膜トランジスタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012161021A JP2014019671A (ja) 2012-07-19 2012-07-19 芳香族ヘテロ環化合物及びそれを用いた有機薄膜トランジスタ

Publications (1)

Publication Number Publication Date
JP2014019671A true JP2014019671A (ja) 2014-02-03

Family

ID=50194970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012161021A Pending JP2014019671A (ja) 2012-07-19 2012-07-19 芳香族ヘテロ環化合物及びそれを用いた有機薄膜トランジスタ

Country Status (1)

Country Link
JP (1) JP2014019671A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177144A1 (ja) * 2020-03-04 2021-09-10 国立大学法人東海国立大学機構 ナフチルシロール類の製造方法、並びに複素環式基を有するナフチルシロール類及び複素環式基を有するグラフェンナノリボン

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177144A1 (ja) * 2020-03-04 2021-09-10 国立大学法人東海国立大学機構 ナフチルシロール類の製造方法、並びに複素環式基を有するナフチルシロール類及び複素環式基を有するグラフェンナノリボン

Similar Documents

Publication Publication Date Title
JP5666474B2 (ja) 多環縮環化合物、及び、それを用いた有機薄膜トランジスタ
JP5490005B2 (ja) 有機薄膜トランジスタ用化合物及びそれを用いた有機薄膜トランジスタ
WO2011055529A1 (ja) 含ヘテロ環非対称性芳香族化合物、有機薄膜トランジスタ用化合物、及びそれを用いた有機薄膜トランジスタ
WO2010024388A1 (ja) 有機薄膜トランジスタ用化合物及びそれを用いた有機薄膜トランジスタ
WO2010016511A1 (ja) 有機薄膜トランジスタ用化合物及びそれを用いた有機薄膜トランジスタ
JPWO2008044695A1 (ja) 有機薄膜トランジスタ素子及び有機薄膜発光トランジスタ
JP5460599B2 (ja) 有機薄膜トランジスタ用化合物及びそれを用いた有機薄膜トランジスタ
WO2011074231A1 (ja) 多環縮環化合物及びそれを用いた有機薄膜トランジスタ
JPWO2008069061A1 (ja) 有機薄膜トランジスタ及び有機薄膜発光トランジスタ
JP2009057326A (ja) ベンゾジチオフェン誘導体並びにそれを用いた有機薄膜トランジスタ及び有機薄膜発光トランジスタ
JP5452476B2 (ja) 有機薄膜トランジスタ用化合物及び有機薄膜トランジスタ
JP2015109455A (ja) 有機薄膜トランジスタ
JP5308164B2 (ja) 有機薄膜トランジスタ及び有機薄膜発光トランジスタ
JP5452475B2 (ja) 有機薄膜トランジスタ用化合物及びそれを用いた有機薄膜トランジスタ
JP5329404B2 (ja) 有機薄膜トランジスタ及び有機薄膜発光トランジスタ
JP5528330B2 (ja) 有機薄膜トランジスタ用化合物及びそれを用いた有機薄膜トランジスタ
JP2014139143A (ja) ジチエノフェナントレン化合物、当該化合物を含む有機薄膜トランジスタ用組成物、及び有機薄膜トランジスタ
JP2013234151A (ja) 縮合多環芳香族化合物及びそれを用いた有機薄膜トランジスタ
JP2010275239A (ja) 新規な縮合芳香環化合物及びそれを用いた有機薄膜トランジスタ
JP2015048346A (ja) ジナフトチオフェン化合物、ジナフトチオフェン化合物を含む有機薄膜トランジスタ用組成物、及びそれを用いた有機薄膜トランジスタ
JP2014019671A (ja) 芳香族ヘテロ環化合物及びそれを用いた有機薄膜トランジスタ
JP5308162B2 (ja) 有機薄膜トランジスタ及び有機薄膜発光トランジスタ