JP2014018028A - Semiconductor power conversion equipment - Google Patents

Semiconductor power conversion equipment Download PDF

Info

Publication number
JP2014018028A
JP2014018028A JP2012155574A JP2012155574A JP2014018028A JP 2014018028 A JP2014018028 A JP 2014018028A JP 2012155574 A JP2012155574 A JP 2012155574A JP 2012155574 A JP2012155574 A JP 2012155574A JP 2014018028 A JP2014018028 A JP 2014018028A
Authority
JP
Japan
Prior art keywords
voltage
chopper
capacitor
power conversion
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012155574A
Other languages
Japanese (ja)
Other versions
JP6091781B2 (en
Inventor
Shunsuke Tamada
俊介 玉田
Masahiro Tsumenaga
正宏 爪長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012155574A priority Critical patent/JP6091781B2/en
Publication of JP2014018028A publication Critical patent/JP2014018028A/en
Application granted granted Critical
Publication of JP6091781B2 publication Critical patent/JP6091781B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To enable one-pulse operation of each semiconductor switching element in an MMC (Modular Multilevel Converter) circuit including cascade-connected chopper cells and achieve balance control of capacitor voltage in each chopper.SOLUTION: A power conversion equipment according to an embodiment comprises: power conversion means 2 including a plurality of series-connected chopper circuits 1; and control means 10 for controlling each chopper circuit. Each chopper circuit 1 includes series circuits SW1 and SW2 of first and second switching circuits in each of which a semiconductor switching element and a diode are connected in parallel with each other; and a capacitor Cp parallel-connected to the series circuits. The control means 10 compares voltage threshold values in number equal to the series number of the chopper circuits 1 with an output voltage command value of the power conversion means 2, and controls switching between semiconductor switching elements Q1 and Q2 which compose the chopper circuit corresponding to each voltage threshold value on the basis of the comparison result.

Description

実施形態は、チョッパセルを多段接続して出力交流電圧を発生する半導体電力変換装置に関する。   The embodiment relates to a semiconductor power conversion device that generates an output AC voltage by connecting chopper cells in multiple stages.

直流電力を交流電力へ変換する電力変換装置として、Modular Multilevel Converter(以下MMC)の回路構成及び制御法が開示されている。このような電力変換装置は、コンデンサ等のエネルギーバッファを直流部に持ち、IGBTやダイオードなどの半導体素子から構成されるチョッパセルを複数個用い、それらを各アームに多段接続することによって高耐圧化を実現し、交流電圧を出力する。各チョッパセルは、スイッチング素子とダイオードを逆並列接続した回路を2回路直列に接続し、この直列回路にコンデンサを並列に接続して構成される。   As a power converter for converting DC power into AC power, a circuit configuration and control method of Modular Multilevel Converter (hereinafter referred to as MMC) is disclosed. Such a power conversion device has an energy buffer such as a capacitor in the DC section, uses a plurality of chopper cells composed of semiconductor elements such as IGBTs and diodes, and connects them to each arm in multiple stages to increase the withstand voltage. Realize and output AC voltage. Each chopper cell is configured by connecting two circuits in which a switching element and a diode are connected in antiparallel in series, and connecting a capacitor in parallel to the series circuit.

チョッパセルを直列に接続して多段化することによって、それぞれのチョッパセルが負担する電圧を低く設定することができ、比較的耐圧が低くこれまで適用困難であった自己消弧素子の適用が可能となる。又従来素子では実現不可能だった高圧用途にも、チョッパセルの段数を増やすことで構成可能である。   By connecting the chopper cells in series and making them multistage, the voltage borne by each chopper cell can be set low, and it is possible to apply a self-extinguishing element that has a relatively low withstand voltage and has been difficult to apply until now. . Moreover, it can be configured by increasing the number of stages of chopper cells even for high-pressure applications that could not be realized with conventional elements.

特表2009−506736号公報JP-T 2009-506736

”New transformerless, scalable Modular Multilevel Converters for HVDC-transmission”, Allebrod, S.; Hamerski, R.; Marquardt, R.; Power Electronics Specialists Conference, 2008.“New transformerless, scalable Modular Multilevel Converters for HVDC-transmission”, Allebrod, S .; Hamerski, R .; Marquardt, R .; Power Electronics Specialists Conference, 2008. 萩原 誠、 前田 亮、 赤木 泰文: “二重スター・チョッパセル方式のモジュラー・マルチレベル・カスケード変換器(MMCC-DSCC)の理論解析と制御”、 電学論D、Vol.131、No.1、pp.84-92(2011).Makoto Sugawara, Ryo Maeda, Yasufumi Akagi: “Theoretical analysis and control of modular multi-level cascade converter (MMCC-DSCC) with double star chopper cell method”, D, Vol.131, No.1, pp.84-92 (2011).

MMCでは、各チョッパセルにコンデンサ等の蓄電要素があり、その電圧を利用して出力電圧を成形する。そのため、出力電圧を得るためには各チョッパセルの蓄電要素の電圧を保持する必要がある。そこで従来では、チョッパセルに接続されたコンデンサの電圧を保持する制御法が提案されている。   In the MMC, each chopper cell has a power storage element such as a capacitor, and an output voltage is formed using the voltage. Therefore, in order to obtain an output voltage, it is necessary to hold the voltage of the storage element of each chopper cell. Therefore, conventionally, a control method for holding the voltage of the capacitor connected to the chopper cell has been proposed.

MMCは、3相用の3つのレグを含み、各レグは上下アームを含む。各アームはチョッパセルを複数個多段化(直列接続)し負荷側にリアクトルが直列に接続される。上下アーム接続点(リアクトル相互接続点)が出力端となっている。このような回路構成のため電流経路としては、正負電源の直流端から出力端への電流経路、そして正負電源の直流端の間をレグを介して循環する循環電流の経路がある。   The MMC includes three legs for three phases, each leg including upper and lower arms. Each arm has a plurality of chopper cells (in series connection), and reactors are connected in series on the load side. The upper and lower arm connection point (reactor interconnection point) is the output end. Due to such a circuit configuration, the current path includes a current path from the DC terminal of the positive / negative power source to the output terminal, and a circulating current path circulating between the DC terminals of the positive / negative power source via the legs.

従来のMMCでは、各チョッパセルのコンデンサ電圧のレグ内平均値を演算し、その平均値とチョッパセルのコンデンサ電圧指令値の差分に応じた直流循環電流を流すことで、チョッパセルのコンデンサ電圧のレグ内平均値を一定値に制御している。又、レグ内コンデンサ電圧平均値と、各チョッパセルのコンデンサ電圧の差分に応じて各チョッパセルの出力電圧を操作することで、レグ内の各チョッパセルのコンデンサ電圧をバランス、すなわち入出力電荷量を一致させている。この平均値制御とバランス制御を併用することで、各チョッパセルのコンデンサ電圧を所定値に制御している。   In the conventional MMC, the average value in the leg of the capacitor voltage of each chopper cell is calculated, and the average value in the leg of the capacitor voltage of the chopper cell is passed by flowing a DC circulating current according to the difference between the average value and the capacitor voltage command value of the chopper cell. The value is controlled to a constant value. Also, by manipulating the output voltage of each chopper cell according to the difference between the capacitor voltage average value in the leg and the capacitor voltage of each chopper cell, the capacitor voltage of each chopper cell in the leg is balanced, that is, the input / output charge amount is matched. ing. By using this average value control and balance control together, the capacitor voltage of each chopper cell is controlled to a predetermined value.

しかしながらこの制御法では、各チョッパセルのコンデンサ電圧をバランスさせるために、コンデンサ電圧平均値と各チョッパセルのコンデンサ電圧の差分に応じた電圧を各チョッパセルが出力するように、各スイッチング素子を制御する。このため、チョッパセルの出力電圧の大きさを等価的に可変できるPWM制御を適用する必要がある。すなわち全てのチョッパセルがPWM制御される。PWM制御を適用する場合、各スイッチング素子のスイッチング周波数を出力電圧周波数よりも十分高く設定する必要があり、スイッチング損失が増大する課題が生じる。   However, in this control method, in order to balance the capacitor voltage of each chopper cell, each switching element is controlled so that each chopper cell outputs a voltage corresponding to the difference between the capacitor voltage average value and the capacitor voltage of each chopper cell. For this reason, it is necessary to apply PWM control that can equivalently vary the magnitude of the output voltage of the chopper cell. That is, all chopper cells are PWM controlled. When applying PWM control, it is necessary to set the switching frequency of each switching element sufficiently higher than the output voltage frequency, which causes a problem of increasing switching loss.

実施形態は上述した課題を解決するためになされたものであり、チョッパセルを多段接続したMMC回路において、各半導体スイッチング素子をワンパルス運転可能にするとともに、各チョッパのコンデンサ電圧のバランスを実現するものである。   The embodiment has been made to solve the above-described problem. In an MMC circuit in which chopper cells are connected in multiple stages, each semiconductor switching element can be operated in one pulse, and the capacitor voltage balance of each chopper can be realized. is there.

一実施形態に係る電力変換装置は、直列接続された複数のチョッパ回路を具備する電力変換手段と、各チョッパ回路を制御する制御手段とを具備し、各チョッパ回路は、半導体スイッチング素子とダイオードをそれぞれ並列接続した第1及び第2スイッチング回路の直列回路と、該直列回路に並列に接続されたコンデンサを具備し、前記制御手段は、チョッパ回路の直列数に等しい数の電圧閾値と、前記電力変換手段の出力電圧指令値とを比較し、当該比較結果に基づいて、各電圧闘値に対応するチョッパ回路を構成する半導体スイッチング素子をスイッチングする。   A power conversion device according to an embodiment includes power conversion means including a plurality of chopper circuits connected in series, and control means for controlling each chopper circuit. Each chopper circuit includes a semiconductor switching element and a diode. A series circuit of first and second switching circuits connected in parallel; and a capacitor connected in parallel to the series circuit, wherein the control means has a number of voltage thresholds equal to the number of series of chopper circuits, and the power The output voltage command value of the conversion means is compared, and based on the comparison result, the semiconductor switching elements constituting the chopper circuit corresponding to each voltage threshold value are switched.

第1実施形態に係る制御が適用される電力変換装置の構成を示す図である。It is a figure which shows the structure of the power converter device to which the control which concerns on 1st Embodiment is applied. 直列接続したチョッパセルの5回路で各アームを構成した場合の動作を示す図である。It is a figure which shows operation | movement at the time of comprising each arm with five circuits of the chopper cell connected in series. アームを構成する各チョッパ回路のコンデンサ電圧エネルギーの時間的変化を示す図である。It is a figure which shows the time change of the capacitor voltage energy of each chopper circuit which comprises an arm. 全てのチョッパがオフされる時刻ta付近で、チョッパCH1とチョッパCH3の閾値を切り替えた場合の動作を示す図である。It is a figure which shows operation | movement at the time of switching the threshold value of chopper CH1 and chopper CH3 around time ta when all the choppers are turned off.

以下、実施形態について図面を参照して説明する。   Hereinafter, embodiments will be described with reference to the drawings.

[第1実施形態]
先ず、第1実施形態について説明する。図1は第1実施形態に係る制御が適用される電力変換装置としてMMC回路の構成を示す図である。
[First embodiment]
First, the first embodiment will be described. FIG. 1 is a diagram illustrating a configuration of an MMC circuit as a power conversion device to which the control according to the first embodiment is applied.

この第1実施形態は、チョッパセルを多直列して構成された電力変換装置の各スイッチング素子のスイッチング動作をワンパルス化し、スイッチング素子のスイッチング周波数を電力変換装置の出力電圧周波数以下の周波数に低下してスイッチング素子を動作する。   In the first embodiment, the switching operation of each switching element of the power conversion device configured by connecting multiple chopper cells in one pulse is converted to one pulse, and the switching frequency of the switching element is reduced to a frequency equal to or lower than the output voltage frequency of the power conversion device. Operates the switching element.

MMC回路は図1のようにチョッパセル1を複数個多直列してレグ4を構成している。各チョッパセル1は、半導体スイッチング素子Q1とダイオードD1を逆並列接続した第1スイッチング回路SW1と、スイッチング素子Q2とダイオードD2を逆並列接続した第2スイッチング回路SW2との直列回路と、該直列回路に並列に接続されたコンデンサCpを含む。レグ4の構成はU相、V相、W相で同一である。レグ4は上アーム2と下アーム3を含む。上アーム2と下アーム3は、それぞれ負荷6側にリアクトルLが接続される。上アーム2と下アーム3の接続点が交流出力端として負荷6に接続される。制御部10は入力される出力電圧指令値Vout*、各コンデンサ電圧、各電流値等に基づいてゲートパルスを生成し、各スイッチング素子のゲートへ出力する。   In the MMC circuit, a plurality of chopper cells 1 are connected in series as shown in FIG. Each chopper cell 1 includes a series circuit of a first switching circuit SW1 in which the semiconductor switching element Q1 and the diode D1 are connected in antiparallel, and a second switching circuit SW2 in which the switching element Q2 and the diode D2 are connected in antiparallel, A capacitor Cp connected in parallel is included. The configuration of the leg 4 is the same for the U phase, the V phase, and the W phase. The leg 4 includes an upper arm 2 and a lower arm 3. The upper arm 2 and the lower arm 3 are each connected with a reactor L on the load 6 side. A connection point between the upper arm 2 and the lower arm 3 is connected to the load 6 as an AC output terminal. The control unit 10 generates a gate pulse based on the input output voltage command value Vout *, each capacitor voltage, each current value, etc., and outputs it to the gate of each switching element.

次に図1のMMC回路の動作を詳細に説明する。以下の説明では、3相の各相を特定せずに動作を説明するが、制御部10は、各相のレグを構成するチョッパセルを各相について同様に制御する。   Next, the operation of the MMC circuit of FIG. 1 will be described in detail. In the following description, the operation will be described without specifying each of the three phases, but the control unit 10 similarly controls the chopper cells constituting the legs of each phase for each phase.

各チョッパセル1の出力電圧は直流電圧であり、チョッパで構成されたアーム全体の出力電圧も直流電圧となるため、アーム4の出力電圧は次式で与えられるものとする。

Figure 2014018028
Since the output voltage of each chopper cell 1 is a DC voltage, and the output voltage of the entire arm composed of the chopper is also a DC voltage, the output voltage of the arm 4 is given by the following equation.
Figure 2014018028

ここで、Varm_Pは上アームの出力電圧指令、Varm_Nは下アームの出力電圧指令、VPNは図1に示すP−N間直流電圧である。 Here, V arm_P is an output voltage command for the upper arm, V arm_N is an output voltage command for the lower arm, and VPN is a DC voltage between PN shown in FIG.

(1)式で示された多直列したチョッパで構成されたアーム全体で出力する電圧、すなわち出力電圧指令Vout*に対して、各アーム内のチョッパ段数と等しい数の電圧閾値を設ける。図2は一例として、直列接続したチョッパセル5回路で各アームを構成した場合の動作を示している。図2(a)のように、出力電圧指令Vout*に対して、各閾値TH1−TH5が設定される。図2(b)は例えば上アームの各チョッパCH1−CH5の出力電圧(オン・オフ指令)波形を示す。図2(c)はアーム全体の出力電圧を示す。尚、下アームのオン・オフ指令の波形は、上アーム波形を例えば上下反転した波形となる。 A voltage threshold equal to the number of chopper stages in each arm is provided for the voltage output by the entire arm constituted by the multi-series choppers expressed by the equation (1), that is, the output voltage command V out *. FIG. 2 shows, as an example, the operation when each arm is constituted by five chopper cells connected in series. As shown in FIG. 2A, the thresholds TH1 to TH5 are set for the output voltage command V out *. FIG. 2B shows an output voltage (on / off command) waveform of each of the choppers CH1 to CH5 of the upper arm, for example. FIG. 2C shows the output voltage of the entire arm. The waveform of the lower arm on / off command is, for example, a vertically inverted waveform of the upper arm waveform.

図2(a)に示すように、電圧閾値TH1−TH5はそれぞれ一定の電位差を持っている。電圧閾値TH1−TH5は、それぞれチョッパCH1〜CH5に対応している。制御部10は、電圧閾値TH1−TH5とアーム出力電圧指令Vout*の振幅をそれぞれ比較し、電圧閾値よりアーム出力電圧指令値が大きい場合に比較結果を’1’、そうでない場合’0’を、対応するチョッパに出力する。制御部10は、比較結果が1の場合にチョッパの上側スイッチング素子を点弧、下側スイッチング素子を消弧、比較結果が0の場合にチョッパの上側スイッチング素子を消弧、下側スイッチング素子を点弧というように、各スイッチング素子にゲートパルスを出力する。 As shown in FIG. 2A, each of the voltage thresholds TH1-TH5 has a certain potential difference. Voltage thresholds TH1-TH5 correspond to choppers CH1-CH5, respectively. The control unit 10 compares the amplitudes of the voltage thresholds TH1 to TH5 and the arm output voltage command V out *, respectively, and if the arm output voltage command value is larger than the voltage threshold, the comparison result is “1”, otherwise “0”. Is output to the corresponding chopper. When the comparison result is 1, the control unit 10 fires the upper switching element of the chopper, extinguishes the lower switching element, and extinguishes the upper switching element of the chopper when the comparison result is 0, and turns off the lower switching element. A gate pulse is output to each switching element, such as firing.

このように、一定電圧の閾値と交流電圧である出力電圧指令を比較するため、閾値と電圧指令の大小関係が入れ替わるのは、図2(b)のように電圧指令一周期内で2回以下となる。従って、チョッパの各スイッチング素子のスイッチング周波数は必ず出力電圧周波数以下となり、チョッパ回路はワンパルス動作となる。又、それぞれ異なる電圧閾値と、出力電圧指令値との比較結果により得られるゲートパルスで駆動されたチョッパ回路の出力電圧は、それぞれ異なるパルス幅となる。チョッパの出力を直列して構成されたアームの出力電圧は、図2(c)のように各チョッパの出力を加算した階段上の波形となり、閾値と比較対象である出力電圧指令値と近似な波形が得られる。このように、各チョッパがワンパルス動作であっても良好な出力電圧が得られていることが分かる。   As described above, in order to compare the threshold value of the constant voltage and the output voltage command that is an AC voltage, the magnitude relationship between the threshold value and the voltage command is switched two times or less within one period of the voltage command as shown in FIG. It becomes. Therefore, the switching frequency of each switching element of the chopper is always equal to or lower than the output voltage frequency, and the chopper circuit operates in one pulse. Further, the output voltages of the chopper circuits driven by the gate pulse obtained from the comparison result between the different voltage threshold values and the output voltage command value have different pulse widths. The output voltage of the arm configured by serially connecting the outputs of the choppers is a waveform on the staircase obtained by adding the outputs of the respective choppers as shown in FIG. 2 (c), and approximates the threshold value and the output voltage command value to be compared. A waveform is obtained. Thus, it can be seen that a good output voltage is obtained even when each chopper is in a one-pulse operation.

[第2実施形態]
次に、第2実施形態について説明する。第1実施形態では、各チョッパをワンパルス化する手法について述べた。第2実施形態では第1実施形態において、図1のP−N間で循環する直流電流(循環電流icir)の制御法について述べる。
[Second Embodiment]
Next, a second embodiment will be described. In the first embodiment, the method of making each chopper into one pulse has been described. In the second embodiment, a control method of a direct current (circulating current i ir ) circulated between PN in FIG. 1 in the first embodiment will be described.

図1に示すようなMMC回路において、MMCを構成する各チョッパ1に接続されたコンデンサの電圧を一定に保持するために、先ずレグ4を構成する複数チョッパのレグ内でのコンデンサ電圧VCP1〜VCPn、VCN1〜VCNnの平均値を求める。次に該平均値とコンデンサ電圧指令値の差分に基づいて循環電流icirを制御し、レグ内のコンデンサ電圧平均値がコンデンサ電圧指令値に一致するよう各チョッパを制御する。このコンデンサ電圧指令値は、例えば直流端P−N間電圧VPNをアーム内チョッパ直列数(図では5)で割った値である。以下、ワンパルス制御において循環電流icirを制御する手法について説明する。 In the MMC circuit as shown in FIG. 1, in order to keep constant the voltage of the capacitors connected to the choppers 1 constituting the MMC, first, the capacitor voltages V CP1 to VCP1 in the legs of the plurality of choppers constituting the leg 4 The average value of V CPn and V CN1 to V CNn is obtained. Next, the circulating current i cir is controlled based on the difference between the average value and the capacitor voltage command value, and each chopper is controlled so that the capacitor voltage average value in the leg matches the capacitor voltage command value. This capacitor voltage command value is, for example, a value obtained by dividing the DC terminal P-N voltage VPN by the number of in-arm chopper series (5 in the figure). Hereinafter, a method for controlling the circulating current i cir in the one-pulse control will be described.

上下アームをそれぞれ構成するチョッパが出力する電圧の総和と電圧VPNの差分が、上下アームに挿入されたインダクタンスL1、L2に印加され、その差電圧に応じてP−N間に循環する電流icirが流れる。そのため操作可能な量である各チョッパが出力する直流電圧を制御することで循環電流制御を行う。そこで、各チョッパの直流出力電圧の制御法について述べる。 Current i the difference of the sum and the voltage V PN voltage chopper constituting the upper and lower arms respectively outputted is applied to the inductance L1, L2, which is inserted into the upper and lower arms, circulates between PN in accordance with the differential voltage cir flows. Therefore, circulating current control is performed by controlling the DC voltage output by each chopper, which is an operable amount. Therefore, a method for controlling the DC output voltage of each chopper will be described.

第1実施形態では、出力電圧指令値と、各アームのチョッパセル直列数と同数の電圧閾値とを比較して、各チョッパのスイッチング状態を決定した。第2実施形態では、そのスイッチング状態を決定する電圧閾値全てに、循環電流icirと循環電流指令値icir*の差分に応じた電圧を重畳する。そうすることで、多直列チョッパ全体で出力する直流電圧(コンデンサ電圧合計値)を操作でき、その結果循環電流を制御することが可能になる。 In the first embodiment, the switching state of each chopper is determined by comparing the output voltage command value with the same number of voltage thresholds as the number of chopper cells in series in each arm. In 2nd Embodiment, the voltage according to the difference of circulating current icir and circulating current command value icir * is superimposed on all the voltage threshold values which determine the switching state. By doing so, it is possible to operate the DC voltage (capacitor voltage total value) output by the entire multi-series chopper, and as a result, it becomes possible to control the circulating current.

循環電流icirは、インダクタンスL1、L2を図中下向きに流れる電流をIL1、IL2とすると、(IL1+IL2)/2で求めることができる。例えば、循環電流icirが図1のように上から下へ流れているとき、閾値を下げると充電電流が流れる時間が増加する(図2(b)のパルス幅が広がる)。その結果、コンデンサの充電時間が増加し、コンデンサ電圧は上昇する。逆に、循環電流icirが下から上に流れているとき、閾値を下げると放電電流が流れる時間が増加するので、コンデンサの放電時間が増加し、コンデンサ電圧は低下する。 The circulating current i cir can be obtained by (I L1 + I L2 ) / 2, where I L1 and I L2 are currents flowing downward through the inductances L1 and L2, respectively. For example, when the circulating current i cir is flowing from the top to the bottom as shown in FIG. 1, when the threshold value is lowered, the time during which the charging current flows is increased (the pulse width of FIG. 2B is widened). As a result, the capacitor charging time increases and the capacitor voltage rises. On the contrary, when the circulating current i cir is flowing from the bottom to the top, if the threshold value is lowered, the time for which the discharge current flows is increased, so the discharge time of the capacitor is increased and the capacitor voltage is decreased.

従って制御部10は、レグ内コンデンサの平均電圧がコンデンサ電圧指令値より小さい時、循環電流icirが図1のように上から下へ流れている場合は全閾値を下げ、コンデンサ電圧を上げる。逆に、レグ内コンデンサの平均電圧がコンデンサ電圧指令値より大きい時、循環電流icirが図1のように上から下へ流れている場合は、全閾値を上げてコンデンサ電圧を下げる。
以上のようにレグ内コンデンサの平均電圧とコンデンサ電圧指令値との比較、及び循環電流icirの流れる方向に応じて、各レグに設定された全ての閾値に同値の電圧操作量を重畳して直流電流を制御することで、レグ内コンデンサの平均電圧を、コンデンサ電圧指令値に一致させることができる。
Therefore, when the average voltage of the capacitors in the leg is smaller than the capacitor voltage command value, the control unit 10 decreases the total threshold value and increases the capacitor voltage when the circulating current i cir flows from the top to the bottom as shown in FIG. On the contrary, when the average voltage of the capacitors in the leg is larger than the capacitor voltage command value, when the circulating current i cir flows from the top to the bottom as shown in FIG. 1, the total threshold value is raised and the capacitor voltage is lowered.
As described above, according to the comparison between the average voltage of the capacitor in the leg and the capacitor voltage command value, and the direction in which the circulating current i cir flows, the voltage operation amount of the same value is superimposed on all threshold values set in each leg. By controlling the direct current, the average voltage of the capacitors in the leg can be matched with the capacitor voltage command value.

[第3実施形態]
次に、第3実施形態について説明する。第1実施形態では、電圧指令値と各アームのチョッパセル直列数と同数の電圧閾値とを比較して、各電圧閾値に対応するチョッパのスイッチング状態を決定していた。しかし図3に示すように、各チョッパが常に同じ電圧閾値によってスイッチング状態を決定されている場合、チョッパのコンデンサ電圧がそれぞれ一定にならず、電圧閾値の値によって上昇もしくは下降し続けるため運転継続が困難になる。図3は時刻t1のとき、各コンデンサ電圧が同一の値V1と仮定して、時間の経過と共に各コンデンサ電圧(図3では一例としてVCP1〜VCP5)がそれぞれ別々に変化していく様子を示している。そこで、第3実施形態では各チョッパのコンデンサ電圧を各々バランスする手法について述べる。
[Third embodiment]
Next, a third embodiment will be described. In the first embodiment, the voltage command value is compared with the same number of voltage thresholds as the number of chopper cells in series in each arm, and the switching state of the chopper corresponding to each voltage threshold is determined. However, as shown in FIG. 3, when the switching state is always determined by the same voltage threshold value, the chopper capacitor voltage is not constant, and continues to increase or decrease depending on the voltage threshold value. It becomes difficult. FIG. 3 shows that each capacitor voltage (V CP1 to V CP5 as an example in FIG. 3) changes separately with the passage of time, assuming that each capacitor voltage has the same value V1 at time t1. Show. Therefore, in the third embodiment, a method for balancing the capacitor voltages of the choppers will be described.

チョッパに設けられたコンデンサ電圧のレグ内平均値は、第2実施形態で述べたようにワンパルス制御においても一定値(コンデンサ電圧指令値)に制御される。そのため、レグを構成する各チョッパのコンデンサ電圧をそれぞれバランスさせる、つまり同一にすることで、個々のコンデンサ電圧をコンデンサ電圧指令値に制御することができる。第1実施形態ではチョッパのスイッチング状態を決定する電圧閾値と、それと対応するチョッパは常に固定されていた。しかし、コンデンサのエネルギー(電荷量)をレグ内のチョッパで一致させるために、チョッパで構成されたMMC回路の出力電圧指令値Vout*の各周期ごとに電圧閾値と対応するチョッパを変更する。各チョッパが、チョッパ段数あるすべての電圧閾値と対応するように、電圧閾値を順次切り替えを行うことで各コンデンサエネルギーをバランスさせる。この結果、各コンデンサ電圧が同一となるよう制御される。   The average value of the capacitor voltage provided in the chopper in the leg is controlled to a constant value (capacitor voltage command value) even in the one-pulse control as described in the second embodiment. Therefore, each capacitor voltage can be controlled to the capacitor voltage command value by balancing the capacitor voltages of the choppers constituting the legs, that is, by making them the same. In the first embodiment, the voltage threshold for determining the switching state of the chopper and the corresponding chopper are always fixed. However, to match the energy (charge amount) of the capacitor with the chopper in the leg, the chopper corresponding to the voltage threshold value is changed for each period of the output voltage command value Vout * of the MMC circuit constituted by the chopper. Each chopper balances each capacitor energy by sequentially switching the voltage thresholds so as to correspond to all voltage thresholds corresponding to the number of chopper stages. As a result, each capacitor voltage is controlled to be the same.

図4は、全てのチョッパがオフされる時刻ta付近で、チョッパCH1とチョッパCH3の閾値を切り替えた場合の実施形態を示す。このような閾値の切り替えは、全てのチョッパがオンされる時刻tbで行ってもよい。又、このような閾値の切り替えは、時刻taとtbの両方で行ってもよい。つまり閾値の切り替えは、出力電圧指令値Vout*の一周期に2回行ってもよい。   FIG. 4 shows an embodiment in which the threshold values of the chopper CH1 and the chopper CH3 are switched around time ta when all the choppers are turned off. Such threshold value switching may be performed at time tb when all the choppers are turned on. Such threshold value switching may be performed at both times ta and tb. That is, the threshold value may be switched twice in one cycle of the output voltage command value Vout *.

以上本実施形態によれば、各チョッパに対する電圧閾値の切り替え、すなわち電圧閾値とチョッパ回路の組み合わせの変更を、出力電圧交流指令値Vout*の一周期ごとに行うことで、各コンデンサ電圧を同一に制御することができる。   As described above, according to the present embodiment, the switching of the voltage threshold value for each chopper, that is, the change of the combination of the voltage threshold value and the chopper circuit is performed for each cycle of the output voltage AC command value Vout *, thereby making each capacitor voltage the same. Can be controlled.

[第4実施形態]
第1実施形態および第3実施形態においては、チョッパのスイッチング状態を決定する電圧閾値の値は基本的に不変であった。第4実施形態では各電圧閾値に対応するチョッパのコンデンサ電圧と、コンデンサ電圧のレグ内での平均値との差分に応じて、当該チョッパのスイッチング状態を決定する電圧閾値の大きさを変化させ、コンデンサ各々のエネルギーを調整する。
[Fourth embodiment]
In the first embodiment and the third embodiment, the value of the voltage threshold that determines the switching state of the chopper is basically unchanged. In the fourth embodiment, according to the difference between the capacitor voltage of the chopper corresponding to each voltage threshold and the average value within the leg of the capacitor voltage, the magnitude of the voltage threshold that determines the switching state of the chopper is changed, Adjust the energy of each capacitor.

すなわち本実施形態では、レグ内でのコンデンサ電圧平均値と、各チョッパのコンデンサ電圧との差分に応じて、当該電圧閾値を調整する。この場合、レグ全体として各電圧閾値調整に伴う出力電圧変化量が相殺されるため、MMCの出力電圧に干渉せずに個々のチョッパのエネルギーを調整できる。このように本実施形態によれば、各コンデンサ電圧が、レグ内コンデンサ電圧平均値に一致するよう個別に制御される。   That is, in the present embodiment, the voltage threshold is adjusted according to the difference between the capacitor voltage average value in the leg and the capacitor voltage of each chopper. In this case, since the output voltage change amount accompanying each voltage threshold adjustment is canceled as a whole leg, the energy of each chopper can be adjusted without interfering with the output voltage of the MMC. Thus, according to the present embodiment, each capacitor voltage is individually controlled so as to coincide with the average capacitor voltage value in the leg.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…チョッパセル、2…上アーム、3…下アーム、4…レグ、5…リアクトル、6…三相負荷、10…制御部。   DESCRIPTION OF SYMBOLS 1 ... Chopper cell, 2 ... Upper arm, 3 ... Lower arm, 4 ... Leg, 5 ... Reactor, 6 ... Three-phase load, 10 ... Control part.

Claims (5)

直列接続された複数のチョッパ回路を具備する電力変換手段と、各チョッパ回路を制御する制御手段とを具備し、
各チョッパ回路は、半導体スイッチング素子とダイオードをそれぞれ並列接続した第1及び第2スイッチング回路の直列回路と、該直列回路に並列に接続されたコンデンサを具備し、
前記制御手段は、チョッパ回路の直列数に等しい数の電圧閾値と、前記電力変換手段の出力電圧指令値とを比較し、当該比較結果に基づいて、各電圧闘値に対応するチョッパ回路を構成する半導体スイッチング素子のスイッチングを制御することを特徴とする電力変換装置。
Power conversion means comprising a plurality of chopper circuits connected in series, and control means for controlling each chopper circuit,
Each chopper circuit includes a series circuit of first and second switching circuits in which a semiconductor switching element and a diode are connected in parallel, and a capacitor connected in parallel to the series circuit,
The control means compares a number of voltage thresholds equal to the number of chopper circuits in series with the output voltage command value of the power conversion means, and configures a chopper circuit corresponding to each voltage threshold value based on the comparison result. A power converter for controlling switching of a semiconductor switching element.
前記制御手段は、前記電力変換手段内コンデンサの平均電圧とコンデンサ電圧指令値との比較に基づいて、全ての閾値に同値の電圧操作量を重畳して、前記電力変換手段の直流電流を制御することにより、前記平均電圧と前記コンデンサ電圧指令値とを一致させることを特徴とする請求項1記載の電力変換装置。   The control means controls the direct current of the power conversion means by superimposing the same amount of voltage operation on all thresholds based on the comparison between the average voltage of the capacitor in the power conversion means and the capacitor voltage command value. The power converter according to claim 1, wherein the average voltage and the capacitor voltage command value are matched with each other. 前記制御手段は更に、前記電力変換手段を流れる循環電流の方向に応じた極性で同値の電圧操作量を全ての閾値に重畳することにより、前記平均電圧と前記コンデンサ電圧指令値とを一致させることを特徴とする請求項2記載の電力変換装置。   The control means further causes the average voltage and the capacitor voltage command value to coincide with each other by superimposing a voltage operation amount of the same value with a polarity according to the direction of the circulating current flowing through the power conversion means on all threshold values. The power converter according to claim 2 characterized by things. 前記制御手段は、出力電圧交流指令値の毎周期ごとに、電圧閾値とチョッパ回路との組み合わせを変更して、前記半導体スイッチング素子のスイッチングを制御することを特徴とする請求項1乃至3のうち一項記載の電力変換装置。   The said control means controls the switching of the said semiconductor switching element by changing the combination of a voltage threshold value and a chopper circuit for every period of an output voltage alternating current command value. The power conversion device according to one item. 前記制御手段は、前記電力変換手段内コンデンサの平均電圧と、各チョッパのコンデンサ電圧との差分に応じて、前記電圧閾値を調整することを特徴とする請求項1乃至4のうち一項記載の電力変換装置。   The said control means adjusts the said voltage threshold value according to the difference of the average voltage of the capacitor | condenser in the said power conversion means, and the capacitor voltage of each chopper, The one of Claims 1 thru | or 4 characterized by the above-mentioned. Power conversion device.
JP2012155574A 2012-07-11 2012-07-11 Semiconductor power converter Active JP6091781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012155574A JP6091781B2 (en) 2012-07-11 2012-07-11 Semiconductor power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012155574A JP6091781B2 (en) 2012-07-11 2012-07-11 Semiconductor power converter

Publications (2)

Publication Number Publication Date
JP2014018028A true JP2014018028A (en) 2014-01-30
JP6091781B2 JP6091781B2 (en) 2017-03-08

Family

ID=50112219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012155574A Active JP6091781B2 (en) 2012-07-11 2012-07-11 Semiconductor power converter

Country Status (1)

Country Link
JP (1) JP6091781B2 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103792854A (en) * 2014-03-03 2014-05-14 上海科梁信息工程有限公司 Flexible direct current power transmission semi-physical simulation system based on modularization multi-level current converter
CN103812369A (en) * 2014-03-13 2014-05-21 华北电力大学 Modulation method and modulation controller for modular multi-level converter
CN103888003A (en) * 2014-03-24 2014-06-25 浙江大学 Sub-module layering voltage-sharing method of modularized multi-level current converter
CN103956928A (en) * 2014-04-08 2014-07-30 华南理工大学 Method for controlling voltage of direct current capacitors in double-output and three-switch-set MMC inverter
CN104158419A (en) * 2014-08-04 2014-11-19 浙江大学 Method for balancing capacitor voltage of modularization multilevel converter
CN104578869A (en) * 2014-12-23 2015-04-29 北京理工大学 Capacitance self-voltage-sharing three-phase multi-level converter circuit with direct-current bus
JP2015159687A (en) * 2014-02-25 2015-09-03 株式会社東芝 power converter
CN105006972A (en) * 2015-07-14 2015-10-28 国家电网公司 Voltage balancing method of high-voltage DC modular multilevel converter (MMC) in fundamental frequency modulation
WO2016029824A1 (en) * 2014-08-25 2016-03-03 国家电网公司 Direct current voltage conversion device and bridge arm control method therefor
US9374016B2 (en) 2014-06-24 2016-06-21 Fuji Electric Co., Ltd. AC-DC converter
CN106026736A (en) * 2016-05-13 2016-10-12 电子科技大学 Modular multilevel converter hierarchical control method
CN106160463A (en) * 2015-04-01 2016-11-23 国家电网公司 A kind of DC voltage conversion device and brachium pontis control method thereof
WO2017046909A1 (en) * 2015-09-17 2017-03-23 三菱電機株式会社 Power conversion device
WO2017046910A1 (en) * 2015-09-17 2017-03-23 三菱電機株式会社 Power conversion device
WO2017046908A1 (en) * 2015-09-17 2017-03-23 三菱電機株式会社 Power conversion device
US9608524B2 (en) 2014-08-26 2017-03-28 Fuji Electric Co., Ltd. DC power supply equipment
WO2017115953A1 (en) * 2015-12-31 2017-07-06 주식회사 효성 Redundancy control method of mmc for hvdc
US9742272B2 (en) 2014-06-24 2017-08-22 Fuji Electric Co., Ltd. AC-DC converter
CN107086803A (en) * 2017-06-19 2017-08-22 国家电网公司 A kind of capacitor voltage balance control strategy of modularization multi-level converter
US9812992B2 (en) 2014-01-09 2017-11-07 Mitsubishi Electric Corporation Power conversion system
CN107659192A (en) * 2017-09-26 2018-02-02 许继集团有限公司 A kind of current conversion station and its valve group, which are thrown, moves back process Neutron module pressure equalizing control method
CN107681886A (en) * 2017-10-12 2018-02-09 上海交通大学 Self-balancing non-isolation type modular multilevel DC DC converters
JP2018093663A (en) * 2016-12-06 2018-06-14 東芝三菱電機産業システム株式会社 Power conversion device
CN108594001A (en) * 2018-02-08 2018-09-28 东南大学 A kind of MMC multimode capacitance voltage measurement methods based on sampling instant classification
WO2018221907A1 (en) * 2017-06-02 2018-12-06 효성중공업 주식회사 Mmc converter and sub-modules thereof
CN109167522A (en) * 2018-08-03 2019-01-08 昆明理工大学 It is a kind of with the two-way MMC topological structure from equal pressure energy power
JP2019502355A (en) * 2016-01-14 2019-01-24 ジャビル インク Low voltage, low frequency, multi-level power converter
US10218285B2 (en) 2015-10-19 2019-02-26 Siemens Aktiengesellschaft Medium voltage hybrid multilevel converter and method for controlling a medium voltage hybrid multilevel converter
JP2019216509A (en) * 2018-06-11 2019-12-19 東芝三菱電機産業システム株式会社 Control device for multistage converter
CN111049399A (en) * 2019-12-31 2020-04-21 中国电建集团华东勘测设计研究院有限公司 Power balance controller, virtual impedance-based bipolar MMC converter station passive control strategy and flexible direct current transmission system
CN112994496A (en) * 2021-04-23 2021-06-18 武汉杭久电气有限公司 Modular multilevel converter with constant-speed and voltage-sharing functions under any active working condition
CN113300626A (en) * 2021-05-10 2021-08-24 华中科技大学 Control method and device of modular multilevel converter
KR20220109221A (en) * 2021-01-28 2022-08-04 부경대학교 산학협력단 Devices and Method for Controlling the DC-link Voltage Balancing for Modular Converters
JP7399159B2 (en) 2018-11-19 2023-12-15 マシイネンフアブリーク・ラインハウゼン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Modular multilevel converter operation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008301704A (en) * 2008-09-12 2008-12-11 Hitachi Ltd Power conversion apparatus
JP2009506736A (en) * 2005-08-26 2009-02-12 シーメンス アクチエンゲゼルシヤフト Power conversion circuit with distributed energy storage
JP2009509483A (en) * 2005-09-21 2009-03-05 シーメンス アクチエンゲゼルシヤフト Control method for redundancy use in the event of failure of multiphase power converter with distributed energy storage
US20100020577A1 (en) * 2006-12-08 2010-01-28 Siemens Aktiengesellschaft Production of a real power equilibrium of the phase modules of a converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009506736A (en) * 2005-08-26 2009-02-12 シーメンス アクチエンゲゼルシヤフト Power conversion circuit with distributed energy storage
JP2009509483A (en) * 2005-09-21 2009-03-05 シーメンス アクチエンゲゼルシヤフト Control method for redundancy use in the event of failure of multiphase power converter with distributed energy storage
US20100020577A1 (en) * 2006-12-08 2010-01-28 Siemens Aktiengesellschaft Production of a real power equilibrium of the phase modules of a converter
JP2008301704A (en) * 2008-09-12 2008-12-11 Hitachi Ltd Power conversion apparatus

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9812992B2 (en) 2014-01-09 2017-11-07 Mitsubishi Electric Corporation Power conversion system
JP2015159687A (en) * 2014-02-25 2015-09-03 株式会社東芝 power converter
CN103792854A (en) * 2014-03-03 2014-05-14 上海科梁信息工程有限公司 Flexible direct current power transmission semi-physical simulation system based on modularization multi-level current converter
CN103812369A (en) * 2014-03-13 2014-05-21 华北电力大学 Modulation method and modulation controller for modular multi-level converter
CN103812369B (en) * 2014-03-13 2016-01-13 华北电力大学 Modular multilevel converter modulator approach and modulation controller
CN103888003A (en) * 2014-03-24 2014-06-25 浙江大学 Sub-module layering voltage-sharing method of modularized multi-level current converter
CN103956928A (en) * 2014-04-08 2014-07-30 华南理工大学 Method for controlling voltage of direct current capacitors in double-output and three-switch-set MMC inverter
US9742272B2 (en) 2014-06-24 2017-08-22 Fuji Electric Co., Ltd. AC-DC converter
US9374016B2 (en) 2014-06-24 2016-06-21 Fuji Electric Co., Ltd. AC-DC converter
CN104158419A (en) * 2014-08-04 2014-11-19 浙江大学 Method for balancing capacitor voltage of modularization multilevel converter
CN104158419B (en) * 2014-08-04 2016-06-22 浙江大学 A kind of equalization methods of Modular multilevel converter capacitance voltage
WO2016029824A1 (en) * 2014-08-25 2016-03-03 国家电网公司 Direct current voltage conversion device and bridge arm control method therefor
US9608524B2 (en) 2014-08-26 2017-03-28 Fuji Electric Co., Ltd. DC power supply equipment
CN104578869B (en) * 2014-12-23 2017-06-13 北京理工大学 A kind of electric capacity for having dc bus presses three-phase multi-level converter circuit certainly
CN104578869A (en) * 2014-12-23 2015-04-29 北京理工大学 Capacitance self-voltage-sharing three-phase multi-level converter circuit with direct-current bus
CN106160463A (en) * 2015-04-01 2016-11-23 国家电网公司 A kind of DC voltage conversion device and brachium pontis control method thereof
CN106160463B (en) * 2015-04-01 2019-09-06 国家电网公司 A kind of DC voltage conversion device and its bridge arm control method
CN105006972A (en) * 2015-07-14 2015-10-28 国家电网公司 Voltage balancing method of high-voltage DC modular multilevel converter (MMC) in fundamental frequency modulation
JPWO2017046909A1 (en) * 2015-09-17 2018-06-21 三菱電機株式会社 Power converter
WO2017046910A1 (en) * 2015-09-17 2017-03-23 三菱電機株式会社 Power conversion device
WO2017046908A1 (en) * 2015-09-17 2017-03-23 三菱電機株式会社 Power conversion device
WO2017046909A1 (en) * 2015-09-17 2017-03-23 三菱電機株式会社 Power conversion device
JPWO2017046910A1 (en) * 2015-09-17 2018-06-28 三菱電機株式会社 Power converter
JPWO2017046908A1 (en) * 2015-09-17 2018-06-28 三菱電機株式会社 Power converter
US10218285B2 (en) 2015-10-19 2019-02-26 Siemens Aktiengesellschaft Medium voltage hybrid multilevel converter and method for controlling a medium voltage hybrid multilevel converter
US10461630B2 (en) 2015-12-31 2019-10-29 Hyosung Heavy Industries Corporation Redundancy control method of MMC for HVDC
WO2017115953A1 (en) * 2015-12-31 2017-07-06 주식회사 효성 Redundancy control method of mmc for hvdc
JP2022046761A (en) * 2016-01-14 2022-03-23 ジャビル インク Low voltage, low frequency, multi-level power converter
JP2019502355A (en) * 2016-01-14 2019-01-24 ジャビル インク Low voltage, low frequency, multi-level power converter
CN106026736B (en) * 2016-05-13 2019-01-22 电子科技大学 A kind of hierarchical control method of modular multi-level converter
CN106026736A (en) * 2016-05-13 2016-10-12 电子科技大学 Modular multilevel converter hierarchical control method
JP2018093663A (en) * 2016-12-06 2018-06-14 東芝三菱電機産業システム株式会社 Power conversion device
US11011911B2 (en) 2017-06-02 2021-05-18 Hyosung Heavy Industries Corporation MMC converter and sub-modules thereof
WO2018221907A1 (en) * 2017-06-02 2018-12-06 효성중공업 주식회사 Mmc converter and sub-modules thereof
CN107086803A (en) * 2017-06-19 2017-08-22 国家电网公司 A kind of capacitor voltage balance control strategy of modularization multi-level converter
CN107086803B (en) * 2017-06-19 2019-04-09 国家电网公司 A kind of capacitor voltage balance control strategy of modularization multi-level converter
CN107659192B (en) * 2017-09-26 2019-08-06 许继集团有限公司 Process Neutron module pressure equalizing control method is moved back in a kind of converter station and its valve group throwing
CN107659192A (en) * 2017-09-26 2018-02-02 许继集团有限公司 A kind of current conversion station and its valve group, which are thrown, moves back process Neutron module pressure equalizing control method
CN107681886A (en) * 2017-10-12 2018-02-09 上海交通大学 Self-balancing non-isolation type modular multilevel DC DC converters
CN108594001A (en) * 2018-02-08 2018-09-28 东南大学 A kind of MMC multimode capacitance voltage measurement methods based on sampling instant classification
JP2019216509A (en) * 2018-06-11 2019-12-19 東芝三菱電機産業システム株式会社 Control device for multistage converter
CN109167522A (en) * 2018-08-03 2019-01-08 昆明理工大学 It is a kind of with the two-way MMC topological structure from equal pressure energy power
JP7399159B2 (en) 2018-11-19 2023-12-15 マシイネンフアブリーク・ラインハウゼン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Modular multilevel converter operation
CN111049399A (en) * 2019-12-31 2020-04-21 中国电建集团华东勘测设计研究院有限公司 Power balance controller, virtual impedance-based bipolar MMC converter station passive control strategy and flexible direct current transmission system
KR20220109221A (en) * 2021-01-28 2022-08-04 부경대학교 산학협력단 Devices and Method for Controlling the DC-link Voltage Balancing for Modular Converters
KR102549613B1 (en) 2021-01-28 2023-06-29 부경대학교 산학협력단 Devices and Method for Controlling the DC-link Voltage Balancing for Modular Converters
CN112994496A (en) * 2021-04-23 2021-06-18 武汉杭久电气有限公司 Modular multilevel converter with constant-speed and voltage-sharing functions under any active working condition
CN113300626A (en) * 2021-05-10 2021-08-24 华中科技大学 Control method and device of modular multilevel converter

Also Published As

Publication number Publication date
JP6091781B2 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
JP6091781B2 (en) Semiconductor power converter
US9325252B2 (en) Multilevel converter systems and sinusoidal pulse width modulation methods
US10044294B2 (en) Apparatus and method for controlling asymmetric modular multilevel converter
Nami et al. Multi-output DC–DC converters based on diode-clamped converters configuration: topology and control strategy
Boora et al. Voltage-sharing converter to supply single-phase asymmetrical four-level diode-clamped inverter with high power factor loads
JP6123219B2 (en) Multi-level power converter
BR102014011275B1 (en) multilevel power converter, and power conversion system
WO2015144644A1 (en) Voltage source converter and control thereof
US9099937B2 (en) Power converter capable of outputting a plurality of different levels of voltages
Husev et al. CCM operation analysis of the single-phase three-level quasi-Z-source inverter
CN104638961B (en) System and method for balancing a multi-stage power converter
Deng et al. Space vector modulation method for modular multilevel converters
Chen et al. Multiloop interleaved control for three-level switch-mode rectifier in AC/DC applications
US20140292089A1 (en) Power converter capable of outputting a plurality of different levels of voltages
JP5362657B2 (en) Power converter
JP5734083B2 (en) Power converter
US9515574B2 (en) Modular embedded multi-level converter with midpoint balancing
US10630204B2 (en) Network feedback unit to feed energy into a three-phase network and electrical drive system
JP2013172530A (en) Power conversion device
US9843272B2 (en) Power converter capable of outputting a plurality of different levels of voltages
CN108604797B (en) Multilevel power converter and method for controlling multilevel power converter
JP4365171B2 (en) Power converter and power conditioner using the same
JP6946041B2 (en) Power converter
Reddy et al. Constant overlap-time based sms capacitor voltage balancing scheme for alternate arm converter
AU2012331406B2 (en) Voltage converter having a first parallel circuit

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170208

R151 Written notification of patent or utility model registration

Ref document number: 6091781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151