JP2014017199A - Electrode for lithium secondary battery and method for manufacturing the same, and lithium secondary battery and method for manufacturing the same - Google Patents

Electrode for lithium secondary battery and method for manufacturing the same, and lithium secondary battery and method for manufacturing the same Download PDF

Info

Publication number
JP2014017199A
JP2014017199A JP2012155577A JP2012155577A JP2014017199A JP 2014017199 A JP2014017199 A JP 2014017199A JP 2012155577 A JP2012155577 A JP 2012155577A JP 2012155577 A JP2012155577 A JP 2012155577A JP 2014017199 A JP2014017199 A JP 2014017199A
Authority
JP
Japan
Prior art keywords
active material
carbon
secondary battery
electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012155577A
Other languages
Japanese (ja)
Inventor
Toshitsugu Sueki
俊次 末木
Motoaki Nishijima
主明 西島
Tomohisa Yoshie
智寿 吉江
Shogo Ezaki
正悟 江▲崎▼
Yuichi Uemura
雄一 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2012155577A priority Critical patent/JP2014017199A/en
Priority to PCT/JP2013/068211 priority patent/WO2014010476A1/en
Publication of JP2014017199A publication Critical patent/JP2014017199A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an electrode for a lithium secondary battery, capable of reducing internal resistance of a battery and improving charge/discharge cycle characteristics.SOLUTION: An electrode for a lithium secondary battery includes a metal collector including a conductive layer made of metal or carbon, and an active material layer formed on a surface of the conductive layer, and the active material layer contains an active material comprising a carbon-coated lithium composite metal oxide particle. Therefore, not only interface resistance between the metal collector and the active material layer, but bulk resistance of the active material layer can be also reduced. Accordingly, internal resistance of the battery can be reduced. Further, charge/discharge cycle characteristics can be improved as compared with a case where a conductive layer is simply provided in a metal collector.

Description

本発明は、リチウム二次電池用電極およびその製造方法並びにリチウム二次電池およびその製造方法に関する。   The present invention relates to an electrode for a lithium secondary battery and a manufacturing method thereof, and a lithium secondary battery and a manufacturing method thereof.

非水電解質二次電池として、リチウム二次電池が実用化されており、広く普及している。更に近年、リチウム二次電池は、ポータブル電子機器用の小型のものだけでなく、車載用、あるいは太陽光発電システム用や夜間電力貯蔵用等の電力貯蔵用の大容量のデバイスとしても注目されている。   As a non-aqueous electrolyte secondary battery, a lithium secondary battery has been put into practical use and is widely used. Furthermore, in recent years, lithium secondary batteries are attracting attention not only as small-sized batteries for portable electronic devices but also as large-capacity devices for power storage such as in-vehicle use, solar power generation systems and nighttime power storage. Yes.

二次電池の電極(正極および負極)は、活物質とバインダーを含むペーストを長尺状の金属箔等の集電体上に片面もしくは両面に塗布することにより塗膜を形成し、該塗膜を乾燥し、次いで乾燥した該塗膜をプレスして巻き取った後、必要に応じて所定幅あるいは所定長さに切断することにより製造されている。製造された電極はセパレータを介して積層され、短冊状または巻回状の積層体とされた後、電池容器の中に挿入されている。また、ペーストには、必要に応じて導電材が添加されている。   The electrode (positive electrode and negative electrode) of the secondary battery forms a coating film by applying a paste containing an active material and a binder onto a current collector such as a long metal foil on one or both sides. Is dried, and then the dried coating film is pressed and wound, and then cut into a predetermined width or a predetermined length as necessary. The manufactured electrode is laminated via a separator to form a strip-like or wound laminate, and then inserted into the battery container. Moreover, the electrically conductive material is added to the paste as needed.

大容量のデバイスとして用いるためには、優れたレート特性が要求され、そのため内部抵抗の一層の低減と充放電サイクル特性の一層の向上が必要とされている。   In order to use as a large-capacity device, excellent rate characteristics are required, and therefore further reduction of internal resistance and further improvement of charge / discharge cycle characteristics are required.

電池の内部抵抗の低減のため、金属箔集電体の表面にカーボンコート層を形成することが提案されている(例えば、特許文献1および2)。これらによれば、金属箔集電体の表面に不動態被膜が形成されて内部抵抗が増大するのを防止できることが記載されている。   In order to reduce the internal resistance of the battery, it has been proposed to form a carbon coat layer on the surface of the metal foil current collector (for example, Patent Documents 1 and 2). According to these documents, it is described that it is possible to prevent the internal resistance from being increased due to the formation of a passive film on the surface of the metal foil current collector.

特開2002−298853号公報Japanese Patent Laid-Open No. 2002-298753 特開2010−212167号公報JP 2010-212167 A

しかしながら、本発明者らの知見によれば、金属箔集電体の表面にカーボンコート層を形成しても、充放電サイクル特性の向上については十分な効果は認められなかった。   However, according to the knowledge of the present inventors, even if a carbon coat layer is formed on the surface of the metal foil current collector, a sufficient effect for improving the charge / discharge cycle characteristics was not recognized.

そこで、本発明者らは、電池の内部抵抗を低減できるとともに、充放電サイクル特性を向上させることの可能なリチウム二次電池用電極およびその製造方法並びにその電極を用いたリチウム二次電池を提供することを目的とした。   Therefore, the present inventors provide a lithium secondary battery electrode capable of reducing the internal resistance of the battery and improving the charge / discharge cycle characteristics, a method for manufacturing the same, and a lithium secondary battery using the electrode. Aimed to do.

上記課題を解決するため、本発明のリチウム二次電池用電極は、導電層を有する金属集電体と、該導電層の表面に形成された活物質層を有し、該活物質層が炭素被覆されたリチウム複合金属酸化物粒子からなる活物質を含有することを特徴とする。   In order to solve the above problems, an electrode for a lithium secondary battery of the present invention has a metal current collector having a conductive layer and an active material layer formed on the surface of the conductive layer, and the active material layer is made of carbon. It contains an active material composed of coated lithium composite metal oxide particles.

また、本発明のリチウム二次電池用電極の製造方法は、リチウム複合金属酸化物の原料粉末と炭素源とを溶媒に溶解し、該溶媒を除去して得られた混合物を焼成して、炭化した炭素源で炭素被覆されたリチウム複合金属酸化物を製造し、該炭素被覆されたリチウム複合金属酸化物と、導電材と、バインダーと、増粘材とを溶媒に分散させた電極ペーストを金属集電体の導電層の表面に塗布することを特徴とする。   The method for producing an electrode for a lithium secondary battery according to the present invention comprises dissolving a raw material powder of a lithium composite metal oxide and a carbon source in a solvent, firing the mixture obtained by removing the solvent, and carbonizing the mixture. A lithium composite metal oxide coated with carbon with a carbon source is manufactured, and an electrode paste obtained by dispersing the carbon-coated lithium composite metal oxide, a conductive material, a binder, and a thickener in a solvent is made into a metal. It is characterized by being applied to the surface of the conductive layer of the current collector.

また、本発明のリチウム二次電池は、本発明のリチウム二次電池用電極を正極および/または負極に用いることを特徴とする。   The lithium secondary battery of the present invention is characterized by using the electrode for a lithium secondary battery of the present invention as a positive electrode and / or a negative electrode.

また、本発明のリチウム二次電池の製造方法は、本発明のリチウム二次電池用電極を正極および/または負極に用いるリチウム二次電池の製造方法であって、リチウム複合金属酸化物の原料粉末と炭素源とを溶媒に溶解し、該溶媒を除去して得られた混合物を焼成して、炭化した炭素源で炭素被覆されたリチウム複合金属酸化物を製造し、該炭素被覆されたリチウム複合金属酸化物と、導電材と、バインダーと、増粘材を溶媒に分散させた電極ペーストを金属集電体の導電層の表面に塗布して正極および/または負極を製造することを特徴とする。   The method for producing a lithium secondary battery of the present invention is a method for producing a lithium secondary battery in which the electrode for a lithium secondary battery of the present invention is used as a positive electrode and / or a negative electrode. And the carbon source are dissolved in a solvent, and the mixture obtained by removing the solvent is baked to produce a carbon-coated lithium composite metal oxide with the carbonized carbon source, and the carbon-coated lithium composite A positive electrode and / or a negative electrode are manufactured by applying an electrode paste in which a metal oxide, a conductive material, a binder, and a thickener are dispersed in a solvent to the surface of a conductive layer of a metal current collector. .

本発明によれば、リチウム二次電池の内部抵抗を低減できるとともに、充放電サイクル特性を向上させることが可能となる。なお、本発明では、特に断らない限り、充放電サイクル特性とは、初期電池容量に対する所定の充放電サイクル後の電池容量の比率をいい、この比率が高いほど充放電の繰り返しに伴う容量低下が少ないことを意味する。   ADVANTAGE OF THE INVENTION According to this invention, while being able to reduce the internal resistance of a lithium secondary battery, it becomes possible to improve charging / discharging cycling characteristics. In the present invention, unless otherwise specified, the charge / discharge cycle characteristics refer to the ratio of the battery capacity after a predetermined charge / discharge cycle to the initial battery capacity, and the higher this ratio, the lower the capacity due to repeated charge / discharge. It means less.

以下、本発明の実施の形態について詳細に説明する。
実施の形態1
本実施の形態に係るリチウム二次電池用電極は正極であり、導電層を有する金属集電体と、該導電層の表面に形成された正極活物質層を有し、該正極活物質層が炭素被覆されたリチウム複合金属酸化物粒子からなる正極活物質を含有することを特徴とするものである。
Hereinafter, embodiments of the present invention will be described in detail.
Embodiment 1
The electrode for a lithium secondary battery according to the present embodiment is a positive electrode, has a metal current collector having a conductive layer, and a positive electrode active material layer formed on the surface of the conductive layer, and the positive electrode active material layer is It contains a positive electrode active material composed of carbon-coated lithium composite metal oxide particles.

(正極)
正極活物質にはリチウム複合金属酸化物を用いる。具体例としては、LiCoO、LiNiO、LiFeO、LiMnO、LiMn、LiMnO、LiCoPO、LiNiPO、LiMnPO、LiFePO(リン酸鉄リチウム)を挙げることができる。好ましくは、LiFePOである。安全性が高く、低コストであるからである。なお、リン酸鉄リチウムには、鉄サイトとリンサイトを異種元素で置換した化合物も含まれる。鉄サイトの置換元素としては、Zr、Sn、YおよびAlからなる群から選択される少なくとも1種の金属元素を挙げることができ、またリンサイトの置換元素としてはSiを挙げることができる。
(Positive electrode)
A lithium composite metal oxide is used for the positive electrode active material. Specific examples include LiCoO 2 , LiNiO 2 , LiFeO 2 , LiMnO 2 , LiMn 2 O 4 , Li 2 MnO 3 , LiCoPO 4 , LiNiPO 4 , LiMnPO 4 , LiFePO 4 (lithium iron phosphate). LiFePO 4 is preferable. This is because the safety is high and the cost is low. Note that the lithium iron phosphate includes a compound in which the iron site and the phosphorus site are substituted with different elements. Examples of the iron site substitution element include at least one metal element selected from the group consisting of Zr, Sn, Y, and Al, and examples of the phosphorus site substitution element include Si.

正極活物質は、出発原料として、各元素の炭酸塩、水酸化物、塩化物、硫酸塩、酢酸塩、酸化物、シュウ酸塩、硝酸塩等任意の組合せを用いることにより製造することができる。これらの中でも、焼成中に合成に影響を与えうる気体を発生しにくいという観点では、炭酸塩、水酸化物、酢酸塩、酸化物、シュウ酸塩が好ましく、その中でも低温で分解する(つまり低温合成可能な)炭酸塩、水酸化物塩、酢酸塩、シュウ酸塩がさらに好ましい。   The positive electrode active material can be produced by using any combination of carbonates, hydroxides, chlorides, sulfates, acetates, oxides, oxalates, nitrates, and the like as starting materials. Among these, carbonates, hydroxides, acetates, oxides, and oxalates are preferable from the viewpoint of hardly generating a gas that can affect the synthesis during firing. More preferred are carbonates, hydroxides, acetates and oxalates, which can be synthesized.

また液相法の際に大気雰囲気下で均一な溶液を作製しやすい、安価であるという観点から弱酸塩(炭酸塩、酢酸塩、シュウ酸塩)または強酸塩(硝酸塩、塩化物)が好ましく、その中でも酢酸塩または硝酸塩がより好ましい。   In addition, weak acid salts (carbonates, acetates, oxalates) or strong acid salts (nitrates, chlorides) are preferred from the viewpoint of being easy to produce a uniform solution in the air atmosphere during the liquid phase method and inexpensive. Among these, acetate or nitrate is more preferable.

上記の正極活物質の製造方法としては、固相法、ゾルゲル法、溶融急冷法、メカノケミカル法、共沈法、水熱法、噴霧熱分解法等の方法を用いることができる。単相合成のためには焼成前の混合状態が均一であること、および粒子径が小さいことが重要であることから、液相法であるゾルゲル法、共沈法、水熱法、噴霧熱分解法が好ましい。収量の観点からはゾルゲル法、共沈法、水熱法がより好ましい。さらに好ましくはゾルゲル法である。   As a method for producing the positive electrode active material, methods such as a solid phase method, a sol-gel method, a melt quench method, a mechanochemical method, a coprecipitation method, a hydrothermal method, and a spray pyrolysis method can be used. For single-phase synthesis, it is important that the mixed state before firing is uniform and that the particle size is small, so the sol-gel method, coprecipitation method, hydrothermal method, spray pyrolysis, which are liquid phase methods The method is preferred. From the viewpoint of yield, a sol-gel method, a coprecipitation method, and a hydrothermal method are more preferable. The sol-gel method is more preferable.

また、本発明では、リチウム複合金属酸化物粒子からなる正極活物質は炭素被覆されている。正極活物質を炭素被覆することにより、正極活物質の電子導電性を向上できるとともに、炭素が正極活物質粒子の凝集を抑制できるという効果も有する。炭素による被覆は、全面でもよく、一部でもよいが、良好な電極特性を得るためには、全面が均一に被覆されているのが好ましい。ここで「均一」とは、正極活物質上の被覆炭素の厚みが一定である状態を意味する。この状態は、透過型電子顕微鏡により確認できる。正極活物質を炭素被覆する方法は、リチウム複合金属酸化物の原料粉末を溶解した溶媒に炭素源を添加し、溶媒を除去した後、得られた混合物を不活性雰囲気または還元性雰囲気で焼成する方法を用いることができる。炭素源は焼成時に炭化して、正極活物質粒子の表面に付着して炭素被膜を形成する。炭素源には、アルキレンオキサイド、糖類、ポリエーテル類を用いることができる。アルキレンオキサイドとしては、エチレンオキサイドやプロピレンオキサイドを挙げることができる。また、糖類としては、スクロースやフルクトースを挙げることができる。また、ポリエーテル類としては、ポリエチレングリコールやポリプロピレングリコールを挙げることができる。焼成は、400〜700℃、好ましくは400〜600℃の温度範囲で1〜24時間かけて行う。焼成時の雰囲気は、不活性雰囲気(アルゴン、窒素、真空等)または還元性雰囲気(水素含有不活性ガス等)を用いることができる。   In the present invention, the positive electrode active material made of lithium composite metal oxide particles is coated with carbon. By coating the positive electrode active material with carbon, the electronic conductivity of the positive electrode active material can be improved, and carbon can also suppress the aggregation of the positive electrode active material particles. The coating with carbon may be the entire surface or a part thereof, but it is preferable that the entire surface is uniformly coated in order to obtain good electrode characteristics. Here, “uniform” means a state where the thickness of the coating carbon on the positive electrode active material is constant. This state can be confirmed with a transmission electron microscope. The method of coating the positive electrode active material with carbon is to add a carbon source to a solvent in which the raw material powder of the lithium composite metal oxide is dissolved, remove the solvent, and then fire the resulting mixture in an inert atmosphere or a reducing atmosphere. The method can be used. The carbon source is carbonized during firing and adheres to the surface of the positive electrode active material particles to form a carbon film. As the carbon source, alkylene oxides, saccharides, and polyethers can be used. Examples of the alkylene oxide include ethylene oxide and propylene oxide. Moreover, sucrose and fructose can be mentioned as saccharides. Examples of polyethers include polyethylene glycol and polypropylene glycol. Firing is performed at 400 to 700 ° C., preferably 400 to 600 ° C., for 1 to 24 hours. As an atmosphere during firing, an inert atmosphere (argon, nitrogen, vacuum, etc.) or a reducing atmosphere (hydrogen-containing inert gas, etc.) can be used.

正極活物質粒子の表面に付着した炭素の量は、正極活物質に対して0.5〜10重量%、好ましくは1〜5重量%である。0.5重量%より少ないとサイクル特性が向上せず、10重量%より多いと容量が低下するからである。
なお、炭素量は、秤量した正極活物質粒子を酸素雰囲気中で燃焼させ、生成した気体成分中の炭素含有ガス量を測定することにより算出する。測定装置の例としては、株式会社堀場製作所製の炭素・硫黄分析装置EMIA−320V2を挙げることができる。
The amount of carbon attached to the surface of the positive electrode active material particles is 0.5 to 10% by weight, preferably 1 to 5% by weight, based on the positive electrode active material. This is because if it is less than 0.5% by weight, the cycle characteristics are not improved, and if it is more than 10% by weight, the capacity decreases.
The amount of carbon is calculated by burning the weighed positive electrode active material particles in an oxygen atmosphere and measuring the amount of carbon-containing gas in the generated gas component. As an example of a measuring apparatus, the carbon and sulfur analyzer EMIA-320V2 by Horiba, Ltd. can be mentioned.

(正極の製造方法)
正極は、少なくとも、正極活物質と導電材とバインダーと増粘材とを溶媒を用いて混練分散してペーストを得、該ペーストを集電体の片面あるいは両面に塗布し、乾燥することによって作製する。溶媒には、有機溶剤としては、N−メチル−2−ピロリドン、トルエン、シクロヘキサン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等を用いることができる。バインダーに水溶性のものを使用する場合は溶媒として水を用いることもできる。溶媒に水を用いる場合、ペーストのpHは5以上、好ましくはpHが8以上である。pHが5より小さい場合、得られた正極を用いた電池はサイクル特性が向上しないからである。
(Production method of positive electrode)
The positive electrode is prepared by kneading and dispersing at least a positive electrode active material, a conductive material, a binder, and a thickener using a solvent to obtain a paste, applying the paste to one or both sides of a current collector, and drying the paste. To do. Examples of the organic solvent include N-methyl-2-pyrrolidone, toluene, cyclohexane, dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, methyl acrylate, diethyltriamine, N, N-dimethylaminopropylamine, ethylene oxide, Tetrahydrofuran or the like can be used. When a water-soluble binder is used, water can be used as a solvent. When water is used as the solvent, the pH of the paste is 5 or higher, preferably 8 or higher. This is because when the pH is less than 5, the battery using the obtained positive electrode does not improve the cycle characteristics.

導電材としては、アセチレンブラック、カーボンブラック、天然黒鉛、人造黒鉛等を1種または2種以上混合して用いることができる。   As the conductive material, acetylene black, carbon black, natural graphite, artificial graphite or the like can be used alone or in combination.

また、塗膜中に含まれる正極活物質と導電材の割合は、正極活物質100重量部に対して、導電材が2〜20重量部、好ましくは4〜10重量部である。導電材が2重量部よりも少ないと、正極活物質と集電体の間の接触抵抗が大きくなり好ましくない。また、導電材を20重量部よりも多くしても添加量に見合う接触抵抗低減の効果が得られず、またコストが増加するので好ましくない。   Moreover, the ratio of the positive electrode active material and the conductive material contained in the coating film is 2 to 20 parts by weight, preferably 4 to 10 parts by weight of the conductive material with respect to 100 parts by weight of the positive electrode active material. If the conductive material is less than 2 parts by weight, the contact resistance between the positive electrode active material and the current collector is increased, which is not preferable. Further, even if the amount of the conductive material is more than 20 parts by weight, the effect of reducing contact resistance commensurate with the amount added cannot be obtained, and the cost increases.

また、バインダーには、ポリテトラフルオロエチレン、ポリビニリデンフルオライド、ポリビニルクロライド、エチレンプロピレンジエンポリマー、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース、スチレンーブタジエンゴム等、あるいは水系バインダーエマルジョンとして、フッ素変性スチレンーブタジエンゴム、オレフィン系共重合体、酸変性オレフィン系共重合体などを挙げることができる。水系バインダーエマルジョンを用いる場合、必要に応じてカルボキシメチルセルロース(以下CMCと略す。)、ポリビニルアルコール、ポリビニルピロリドン等の増粘材を使用することもできる。   The binder includes polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, ethylene propylene diene polymer, styrene-butadiene rubber, acrylonitrile-butadiene rubber, fluorine rubber, polyvinyl acetate, polymethyl methacrylate, polyethylene, nitrocellulose, Examples of the styrene-butadiene rubber or the water-based binder emulsion include a fluorine-modified styrene-butadiene rubber, an olefin copolymer, and an acid-modified olefin copolymer. When the aqueous binder emulsion is used, a thickener such as carboxymethyl cellulose (hereinafter abbreviated as CMC), polyvinyl alcohol, polyvinyl pyrrolidone and the like can be used as necessary.

金属集電体としては、連続孔を持つ発泡(多孔質)金属、ハニカム状に形成された金属、焼結金属、エキスパンドメタル、金属箔等を用いることができる。また、材質としては、アルミニウム、ニッケル、クロムおよびそれらの合金を用いることができるが、アルミニウムが好ましい。   As the metal current collector, a foamed (porous) metal having continuous pores, a metal formed in a honeycomb shape, a sintered metal, an expanded metal, a metal foil, or the like can be used. Moreover, as a material, aluminum, nickel, chromium, and alloys thereof can be used, but aluminum is preferable.

本発明では、導電層を有する金属集電体を用いるが、導電層には金属層または炭素被膜層を用いることができる。金属層には、白金、金などを用いることができ、これらの金属はメッキ法により金属集電体に付着させることができる。また、炭素被膜層を用いる場合には、特許文献1または2に記載された方法で炭素被膜層を形成できる。例えば、微粒炭素を含有するカーボンペーストを金属集電体の表面に塗布して乾燥することにより作製することができる。金属層または炭素被膜層を有する金属集電体では、金属集電体の表面に不動態被膜が形成されて内部抵抗が増大するのを防止できる。さらに、金属集電体に金属箔等の平滑表面を有するものを用いた場合には、活物質と集電体の接触面積が大きくなり、接着力が増大する。その結果、集電体からの活物質の剥奪が抑制され、電池としての寿命が向上する効果も得られる。   In the present invention, a metal current collector having a conductive layer is used, and a metal layer or a carbon coating layer can be used for the conductive layer. Platinum, gold, or the like can be used for the metal layer, and these metals can be attached to the metal current collector by a plating method. Moreover, when using a carbon film layer, a carbon film layer can be formed by the method described in Patent Document 1 or 2. For example, it can be produced by applying a carbon paste containing fine carbon to the surface of a metal current collector and drying. In a metal current collector having a metal layer or a carbon film layer, it is possible to prevent an internal resistance from increasing due to the formation of a passive film on the surface of the metal current collector. Further, when a metal current collector having a smooth surface such as a metal foil is used, the contact area between the active material and the current collector is increased, and the adhesive force is increased. As a result, the stripping of the active material from the current collector is suppressed, and an effect of improving the lifetime of the battery can be obtained.

(負極)
負極活物質としては公知の材料を用いることができる。高エネルギー密度電池を構成するためには、リチウムの挿入/脱離する電位が金属リチウムの析出/溶解電位に近いものが好ましい。その典型例は、粒子状(鱗片状、塊状、繊維状、ウィスカー状、球状、粉砕粒子状等)の天然もしくは人造黒鉛のような炭素材料である。
(Negative electrode)
A known material can be used as the negative electrode active material. In order to constitute a high energy density battery, it is preferable that the potential at which lithium is inserted / desorbed is close to the deposition / dissolution potential of metallic lithium. A typical example is a carbon material such as natural or artificial graphite in the form of particles (scale-like, lump-like, fibrous, whisker-like, spherical, pulverized particles, etc.).

人造黒鉛としては、メソカーボンマイクロビーズ、メソフェーズピッチ粉末、等方性ピッチ粉末等を黒鉛化して得られる黒鉛を挙げることができる。また、非晶質炭素を表面に付着させた黒鉛粒子も使用できる。これらの中で、天然黒鉛は、安価でかつリチウムの酸化還元電位に近く、高エネルギー密度電池が構成できるため好ましい。   Examples of the artificial graphite include graphite obtained by graphitizing mesocarbon microbeads, mesophase pitch powder, isotropic pitch powder, and the like. Also, graphite particles having amorphous carbon attached to the surface can be used. Among these, natural graphite is preferable because it is inexpensive and close to the redox potential of lithium and can constitute a high energy density battery.

また、リチウム遷移金属酸化物、リチウム遷移金属窒化物、遷移金属酸化物、酸化シリコン等も負極活物質として使用可能である。これらの中では、LiTi12は電位の平坦性が高く、かつ充放電による体積変化が小さいため好ましい。 Further, lithium transition metal oxide, lithium transition metal nitride, transition metal oxide, silicon oxide, and the like can be used as the negative electrode active material. Among these, Li 4 Ti 5 O 12 is preferable because it has high potential flatness and a small volume change due to charge and discharge.

(負極の製造方法)
負極は公知の方法により作製できる。例えば、負極活物質とバインダーと導電材とを混合し、得られた混合粉末をシート状に成形し、得られた成形体を集電体、例えばステンレスまたは銅製のメッシュ状集電体に圧着して作製できる。また、正極の場合と同様に溶媒に水を用いて作製することができ、その場合、少なくとも、負極活物質と導電材とバインダーとを水を用いて混練分散してペーストを得、該ペーストを集電体に塗布することによって作製できる。必要に応じて、導電材を添加してもよい。
(Method for producing negative electrode)
The negative electrode can be produced by a known method. For example, a negative electrode active material, a binder, and a conductive material are mixed, the obtained mixed powder is formed into a sheet shape, and the obtained molded body is pressure-bonded to a current collector, for example, a mesh current collector made of stainless steel or copper. Can be produced. Further, as in the case of the positive electrode, it can be prepared using water as a solvent. In that case, at least the negative electrode active material, the conductive material, and the binder are kneaded and dispersed using water to obtain a paste. It can be produced by applying to a current collector. A conductive material may be added as necessary.

(非水電解質)
非水電解質としては、例えば、有機電解液、ゲル状電解質、高分子固体電解質、無機固体電解質、溶融塩等を用いることができる。
(Nonaqueous electrolyte)
As the non-aqueous electrolyte, for example, an organic electrolyte, a gel electrolyte, a polymer solid electrolyte, an inorganic solid electrolyte, a molten salt, or the like can be used.

有機電解液を構成する有機溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート類、γ−ブチロラクトン(GBL)、γ−バレロラクトン等のラクトン類、テトラヒドロフラン、2−メチルテトラヒドロフラン等のフラン類、ジエチルエーテル、1,2−ジメトキシエタン、1,2−ジエトキシエタン、エトキシメトキシエタン、ジオキサン等のエーテル類、ジメチルスルホキシド、スルホラン、メチルスルホラン、アセトニトリル、ギ酸メチル、酢酸メチル等を挙げることができ、これらの1種以上を混合して用いることができる。   Examples of the organic solvent constituting the organic electrolyte include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), and butylene carbonate, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate, and dipropyl carbonate. Chain carbonates such as γ-butyrolactone (GBL), lactones such as γ-valerolactone, furans such as tetrahydrofuran and 2-methyltetrahydrofuran, diethyl ether, 1,2-dimethoxyethane, 1,2-diethoxy Examples include ethers such as ethane, ethoxymethoxyethane, dioxane, dimethyl sulfoxide, sulfolane, methyl sulfolane, acetonitrile, methyl formate, methyl acetate, and the like. Can.

また、PC、EC及びブチレンカーボネート等の環状カーボネート類は高沸点溶媒であるため、GBLと混合する溶媒として好適である。   Moreover, since cyclic carbonates such as PC, EC and butylene carbonate are high-boiling solvents, they are suitable as solvents to be mixed with GBL.

有機電解液を構成する電解質塩としては、ホウフッ化リチウム(LiBF)、六フッ化リン酸リチウム(LiPF)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、トリフルオロ酢酸リチウム(LiCFCOO)、リチウムビス(トリフルオロメタンスルホン)イミド(LiN(CFSO)等のリチウム塩を挙げることができ、これらの1種以上を混合して用いることができる。電解液の塩濃度は、0.5〜3mol/Lが好適である。 Examples of the electrolyte salt constituting the organic electrolyte include lithium borofluoride (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium trifluoroacetate (LiCF 3 COO) ), Lithium salts such as lithium bis (trifluoromethanesulfone) imide (LiN (CF 3 SO 2 ) 2 ), and a mixture of one or more of these can be used. The salt concentration of the electrolytic solution is preferably 0.5 to 3 mol / L.

(セパレータ)
セパレータとしては、多孔質材料や不織布等の公知の材料を用いることができる。セパレータの材質としては、電解液中の有機溶媒に対して溶解したり膨潤したりしないものが好ましい。具体的には、ポリエステル系ポリマー、ポリオレフィン系ポリマー(例えば、ポリエチレン、ポリプロピレン)、エーテル系ポリマー、ガラス繊維等を挙げることができる。
(Separator)
As a separator, well-known materials, such as a porous material and a nonwoven fabric, can be used. As a material for the separator, a material that does not dissolve or swell in the organic solvent in the electrolytic solution is preferable. Specific examples include polyester polymers, polyolefin polymers (for example, polyethylene and polypropylene), ether polymers, and glass fibers.

(他の部材)
電池容器のような他の部材についても公知の各種材料を使用でき、特に制限はない。
(Other parts)
Various other known materials can be used for other members such as a battery container, and there is no particular limitation.

(二次電池の製造方法)
二次電池は、例えば、正極と負極と、それらの間に挟まれたセパレータとからなる積層体を備えている。積層体は、例えば短冊状の平面形状を有していてもよい。また、円筒型や扁平型の電池を作製する場合は、積層体を巻き取って巻回体としてもよい。
(Method for manufacturing secondary battery)
The secondary battery includes, for example, a laminate including a positive electrode, a negative electrode, and a separator sandwiched between them. The laminate may have, for example, a strip-like planar shape. In the case of producing a cylindrical or flat battery, the laminate may be wound to form a wound body.

積層体は、その1つ又は複数が電池容器の内部に挿入される。通常、正極及び負極は電池の外部導電端子に接続される。その後に、正極、負極及びセパレータを外気より遮断するために電池容器を密閉する。   One or more of the laminates are inserted into the battery container. Usually, the positive electrode and the negative electrode are connected to the external conductive terminal of the battery. Thereafter, the battery container is sealed to block the positive electrode, the negative electrode, and the separator from the outside air.

密封の方法は、円筒電池の場合、電池容器の開口部に樹脂製のパッキンを有する蓋をはめ込み、電池容器と蓋とをかしめる方法や、電池容器の開口部と蓋とをレーザー溶接等で溶接する方法が一般的である。また、角型電池の場合、金属性の封口板と呼ばれる蓋を開口部に取りつけ、溶接を行う方法を使用できる。これらの方法以外に、結着剤で密封する方法、ガスケットを介してボルトで固定する方法も使用できる。更に、金属箔に熱可塑性樹脂を貼り付けたラミネート膜で密封する方法も使用できる。なお、密封時に電解質注入用の開口部を設けてもよい。有機電解液を用いる場合、その開口部から有機電解液を注入し、その後でその開口部を封止する。封止の前に通電し発生したガスを取り除いてもよい。また、1個の電池当たりの容量が20Ah以上500Ah以下のような大型電池を作製する場合、電解液注入用の開口部を複数設けても良く、例えば、1つの開口部は電解液注入用とし、他方はガスを取り除くために用いることが良い。容量が20Ah未満であると、蓄電池システムとしての低コスト化が困難となり好ましくなく、容量が500Ahを超えると、正極活物質としてリン酸鉄リチウムを用いても安全性が低くなるため好ましくない。   In the case of a cylindrical battery, the sealing method is such that a lid having a resin packing is fitted into the opening of the battery container and the battery container and the lid are caulked, or the opening and lid of the battery container are laser welded or the like. A welding method is common. In the case of a square battery, a method of attaching a lid called a metallic sealing plate to the opening and performing welding can be used. In addition to these methods, a method of sealing with a binder and a method of fixing with a bolt via a gasket can also be used. Furthermore, a method of sealing with a laminate film in which a thermoplastic resin is attached to a metal foil can also be used. An opening for electrolyte injection may be provided at the time of sealing. When using an organic electrolyte, the organic electrolyte is injected from the opening, and then the opening is sealed. Gas generated by energization before sealing may be removed. When a large battery having a capacity per battery of 20 Ah or more and 500 Ah or less is manufactured, a plurality of openings for injecting electrolyte may be provided. For example, one opening is for injecting electrolyte. The other is preferably used for removing gas. When the capacity is less than 20 Ah, it is not preferable because it is difficult to reduce the cost as a storage battery system, and when the capacity exceeds 500 Ah, even if lithium iron phosphate is used as the positive electrode active material, safety is lowered, which is not preferable.

また、電池容器を密封後、製造した電池に対し、満充電に対して50%以上、好ましくは70%以上充電した状態で、40〜60℃、好ましくは45〜55℃に少なくとも24時間、好ましくは少なくとも72時間保持すること(以下、エージング処理という)が好ましい。エージング処理を行うことにより、サイクル特性をさらに向上させることができる。   Also, after sealing the battery container, the manufactured battery is charged at 50% or more, preferably 70% or more with respect to full charge, preferably at 40 to 60 ° C., preferably 45 to 55 ° C. for at least 24 hours, preferably Is preferably maintained for at least 72 hours (hereinafter referred to as aging treatment). By performing the aging process, the cycle characteristics can be further improved.

本実施の形態によれば、金属集電体の導電層の表面に炭素被覆されたリチウム複合金属酸化物粒子からなる正極活物質を含有する正極活物質層を設けたので、金属集電体と活物質層の界面抵抗だけでなく、活物質層のバルク抵抗も低減できる。これにより電池の内部抵抗を低減することが可能となる。さらに、金属集電体に導電層を設けただけの場合に比し、充放電サイクル特性を向上させることが可能となる。   According to the present embodiment, since the positive electrode active material layer containing the positive electrode active material composed of the lithium composite metal oxide particles coated with carbon is provided on the surface of the conductive layer of the metal current collector, the metal current collector and Not only the interface resistance of the active material layer but also the bulk resistance of the active material layer can be reduced. As a result, the internal resistance of the battery can be reduced. Furthermore, the charge / discharge cycle characteristics can be improved as compared with the case where a conductive layer is simply provided on the metal current collector.

また、本実施の形態は、従来に比し正極活物質層の厚さを大きくした場合であっても、正極活物質層の金属集電体からの剥離を防止できるとともに、電池の内部抵抗の増加を抑制できるという優れた効果を有する。正極活物質層の厚さを塗布量を用いて表すと、金属集電体の片面の単位面積当たりの塗布量が15mg/cm以上、より好ましくは15〜38mg/cmである。なお、両面塗布の場合、塗布量は片面塗布の場合の2倍であり、金属集電体の両面の単位面積当たりでは、30mg/cm以上、より好ましくは30〜76mg/cmである。本実施の形態によれば、正極活物質層の厚さを厚くして活物質量を増やせば、より少ない積層数あるいは巻回数で積層体を製造することができ、集電体やセパレータの数量を削減できるので、製造コストの低減を図ることもできる。 In addition, this embodiment can prevent peeling of the positive electrode active material layer from the metal current collector and increase the internal resistance of the battery even when the thickness of the positive electrode active material layer is increased compared to the conventional case. It has the outstanding effect that an increase can be suppressed. Denoting the thickness of the positive electrode active material layer with a coating amount, the coating amount per unit area of one surface of the metal current collector is 15 mg / cm 2 or more, more preferably 15~38mg / cm 2. In the case of double-sided coating, the coating amount is twice that of the single-side coating, the surfaces of unit area per metal current collector, 30 mg / cm 2 or more, more preferably 30~76mg / cm 2. According to the present embodiment, if the amount of the active material is increased by increasing the thickness of the positive electrode active material layer, a laminate can be manufactured with a smaller number of stacks or turns, and the number of current collectors and separators Therefore, the manufacturing cost can be reduced.

実施の形態2
本実施の形態に係るリチウム二次電池用電極は負極であり、導電層を有する金属集電体と、該導電層の表面に形成された負極活物質層を有し、該負極活物質層が炭素被覆されたリチウム複合金属酸化物粒子からなる負極活物質を含有することを特徴とするものである。
Embodiment 2
The electrode for a lithium secondary battery according to the present embodiment is a negative electrode, and has a metal current collector having a conductive layer and a negative electrode active material layer formed on the surface of the conductive layer, and the negative electrode active material layer is It contains a negative electrode active material composed of carbon-coated lithium composite metal oxide particles.

(負極)
負極活物質にはリチウム複合金属酸化物を用いる。具体例としては、ケイ素の低級酸化物LiSiO(x≧0,2>y>0)および錫の低級酸化物LiSnO、LiTi12を挙げることができる。好ましくは、LiTi12である。LiTi12は電位の平坦性が高く、かつ充放電による体積変化が小さいからである。
(Negative electrode)
A lithium composite metal oxide is used for the negative electrode active material. Specific examples include lower oxides of silicon Li x SiO y (x ≧ 0, 2>y> 0) and lower oxides of tin Li x SnO y and Li 4 Ti 5 O 12 . Li 4 Ti 5 O 12 is preferable. This is because Li 4 Ti 5 O 12 has high potential flatness and a small volume change due to charge and discharge.

(負極の製造方法)
負極は、上記の負極活物質を用い、実施の形態1の場合と同様にして製造できる。すなわち、負極活物質とバインダーと導電材とを混合し、得られた混合粉末をシート状に成形し、得られた成形体を集電体、例えばステンレスまたは銅製のメッシュ状集電体に圧着して作製できる。また、正極の場合と同様に溶媒に水を用いて作製することができ、その場合、少なくとも、負極活物質と導電材とバインダーとを水を用いて混練分散してペーストを得、該ペーストを集電体に塗布することによって作製できる。必要に応じて、導電材を添加してもよい。
(Method for producing negative electrode)
The negative electrode can be produced in the same manner as in Embodiment 1 using the above negative electrode active material. That is, a negative electrode active material, a binder, and a conductive material are mixed, the obtained mixed powder is formed into a sheet shape, and the obtained molded body is pressure-bonded to a current collector, for example, a mesh current collector made of stainless steel or copper. Can be produced. Further, as in the case of the positive electrode, it can be prepared using water as a solvent. In that case, at least the negative electrode active material, the conductive material, and the binder are kneaded and dispersed using water to obtain a paste. It can be produced by applying to a current collector. A conductive material may be added as necessary.

(正極)
正極活物質にはリチウム複合金属酸化物を用いることができる。具体例としては、LiCoO、LiNiO、LiFeO、LiMnO、LiMn、LiMnO、LiCoPO、LiNiPO、LiMnPO、LiFePOを挙げることができる。好ましくは、LiFePO(リン酸鉄リチウム)である。安全性が高く、低コストであるからである。なお、リン酸鉄リチウムには、鉄サイトとリンサイトを異種元素で置換した化合物も含まれる。鉄サイトの置換元素としては、Zr、Sn、YおよびAlからなる群から選択される少なくとも1種の金属元素を挙げることができ、またリンサイトの置換元素としてはSiを挙げることができる。
(Positive electrode)
A lithium composite metal oxide can be used for the positive electrode active material. Specific examples include LiCoO 2 , LiNiO 2 , LiFeO 2 , LiMnO 2 , LiMn 2 O 4 , Li 2 MnO 3 , LiCoPO 4 , LiNiPO 4 , LiMnPO 4 , and LiFePO 4 . LiFePO 4 (lithium iron phosphate) is preferable. This is because the safety is high and the cost is low. Note that the lithium iron phosphate includes a compound in which the iron site and the phosphorus site are substituted with different elements. Examples of the iron site substitution element include at least one metal element selected from the group consisting of Zr, Sn, Y, and Al, and examples of the phosphorus site substitution element include Si.

(正極の製造方法)
正極は、実施の形態1と同様にして製造できる。すなわち、少なくとも、正極活物質と導電材とバインダーと増粘材とを溶媒を用いて混練分散してペーストを得、該ペーストを集電体の片面あるいは両面に塗布し、乾燥することによって作製する。
(Production method of positive electrode)
The positive electrode can be manufactured in the same manner as in the first embodiment. That is, at least a positive electrode active material, a conductive material, a binder, and a thickener are kneaded and dispersed using a solvent to obtain a paste, and the paste is applied to one or both sides of a current collector and dried. .

(二次電池の製造方法)
二次電池は、実施の形態1と同様にして製造できる。
(Method for manufacturing secondary battery)
The secondary battery can be manufactured in the same manner as in the first embodiment.

本実施の形態によれば、金属集電体の導電層の表面に炭素被覆されたリチウム複合金属酸化物粒子からなる負極活物質を含有する負極活物質層を設けたので、金属集電体と活物質層の界面抵抗だけでなく、活物質層のバルク抵抗も低減できる。これにより電池の内部抵抗を低減することが可能となる。さらに、金属集電体に導電層を設けただけの場合に比し、充放電サイクル特性を向上させることが可能となる。また、負極活物質層の厚さを厚くして活物質量を増やせば、より少ない積層数あるいは巻回数で積層体を製造することができ、集電体やセパレータの数量を削減できるので、製造コストの低減を図ることもできる。   According to this embodiment, since the negative electrode active material layer containing the negative electrode active material made of carbon-coated lithium composite metal oxide particles is provided on the surface of the conductive layer of the metal current collector, the metal current collector and Not only the interface resistance of the active material layer but also the bulk resistance of the active material layer can be reduced. As a result, the internal resistance of the battery can be reduced. Furthermore, the charge / discharge cycle characteristics can be improved as compared with the case where a conductive layer is simply provided on the metal current collector. In addition, if the thickness of the negative electrode active material layer is increased to increase the amount of active material, a laminate can be produced with a smaller number of laminations or windings, and the number of current collectors and separators can be reduced. Cost can also be reduced.

実施の形態3
本実施の形態に係るリチウム二次電池用電極は正極と負極であり、正極および負極が、導電層を有する金属集電体と、該導電層の表面に形成された活物質層を有し、該活物質層が炭素被覆されたリチウム複合金属酸化物粒子からなる活物質を含有することを特徴とするものである。
Embodiment 3
The electrode for a lithium secondary battery according to the present embodiment is a positive electrode and a negative electrode, and the positive electrode and the negative electrode have a metal current collector having a conductive layer, and an active material layer formed on the surface of the conductive layer, The active material layer contains an active material made of carbon-coated lithium composite metal oxide particles.

本実施の形態では、正極に実施の形態1に記載された正極を用い、負極に実施の形態2に記載された負極を用いた以外は、実施の形態1と同様にして二次電池を製造することができる。   In this embodiment, a secondary battery is manufactured in the same manner as in Embodiment 1 except that the positive electrode described in Embodiment 1 is used as the positive electrode and the negative electrode described in Embodiment 2 is used as the negative electrode. can do.

本実施の形態によれば、電池の内部抵抗をさらに低減することが可能となるとともに、金属集電体に導電層を設けただけの場合に比し、充放電サイクル特性をさらに向上させることが可能となる。また、正極活物質層および負極活物質層の厚さを厚くして活物質量を増やせば、より少ない積層数あるいは巻回数で積層体を製造することができ、集電体やセパレータの数量を削減できるので、製造コストの低減を図ることもできる。   According to the present embodiment, the internal resistance of the battery can be further reduced, and the charge / discharge cycle characteristics can be further improved as compared with the case where a conductive layer is simply provided on the metal current collector. It becomes possible. In addition, if the amount of the active material is increased by increasing the thickness of the positive electrode active material layer and the negative electrode active material layer, a laminate can be manufactured with a smaller number of layers or windings, and the number of current collectors and separators can be reduced. Since it can be reduced, the manufacturing cost can also be reduced.

以下、実施例を用いて本発明をさらに詳しく説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in more detail using an Example, this invention is not limited to a following example.

実施例1
(正極活物質の合成)
本実施例では、正極活物質にLiFePOを用いた。
サンプル瓶に溶媒としてエタノール、鉄源としてFe(NO3・9HOを15mmol、リチウム源としてLiCHCOOを15mmol、リン源としてHPO(85%)を15mmol量りとり、溶媒中に完全に溶解して均一になるまで撹拌した。試料のモル比として、Li:Fe:P=1:1:1とした。その後、炭素源としてプロピレンオキシド 3mlを溶液に加えると溶液は流動性を失いゲル化した。
Example 1
(Synthesis of positive electrode active material)
In this example, LiFePO 4 was used as the positive electrode active material.
In a sample bottle, weigh out ethanol as a solvent, 15 mmol of Fe (NO 3 ) 3 .9H 2 O as an iron source, 15 mmol of LiCH 3 COO as a lithium source, and 15 mmol of H 3 PO 4 (85%) as a phosphorus source. The solution was stirred until it was completely dissolved and uniform. The molar ratio of the sample was Li: Fe: P = 1: 1: 1. Thereafter, when 3 ml of propylene oxide as a carbon source was added to the solution, the solution lost fluidity and gelled.

次いで、温度60℃の大気雰囲気下に24時間放置して溶媒を蒸発させ、その後、窒素雰囲気中、温度600℃で12時間焼成し、LiFePOを得た。 Next, the solvent was evaporated by leaving it in an air atmosphere at a temperature of 60 ° C. for 24 hours, and then baked at a temperature of 600 ° C. for 12 hours in a nitrogen atmosphere to obtain LiFePO 4 .

得られた正極活物質粒子の一部を秤量し、酸素雰囲気中で燃焼させ、生成した気体成分中の炭素含有ガス量を測定することにより炭素量を算出した。測定装置には、株式会社堀場製作所製の炭素・硫黄分析装置EMIA−320V2を用いた。その結果、正極活物質の表面には、3重量%の炭素が付着していることを確認した。   A part of the obtained positive electrode active material particles was weighed, burned in an oxygen atmosphere, and the amount of carbon was calculated by measuring the amount of carbon-containing gas in the generated gas component. A carbon / sulfur analyzer EMIA-320V2 manufactured by HORIBA, Ltd. was used as the measuring device. As a result, it was confirmed that 3% by weight of carbon adhered to the surface of the positive electrode active material.

(正極の作製)
所定量の正極活物質粉末と、導電材粉末(アセチレンブラック)と、バインダーと、増粘剤(CMC)水溶液と、イオン交換水とをフィルミクス80−50型(プライミクス製)を用いて室温下で攪拌混合して電極ペーストを得た。ここで、LiFePO:アセチレンブラック:バインダー:CMC=100:5:5:1(重量比)とした。なお、電極ペーストのpHを測定したところpHは9であった。
(Preparation of positive electrode)
A predetermined amount of a positive electrode active material powder, a conductive material powder (acetylene black), a binder, a thickener (CMC) aqueous solution, and ion-exchanged water are used at room temperature using filmics 80-50 (manufactured by Primex). The mixture was stirred and mixed to obtain an electrode paste. Here, LiFePO 4 : acetylene black: binder: CMC = 100: 5: 5: 1 (weight ratio). The pH of the electrode paste was measured and found to be 9.

この電極ペーストを、炭素被覆された圧延アルミニウム箔(厚さ:20μm)(昭和電工パッケージング社製)上にダイコーターを用いて両面に塗布し、空気中100℃で30分間乾燥し、プレス加工して正極板(塗工面サイズ:30cm(縦)×15cm(横))を得た。金属集電体の片面の単位面積当たりの塗布量は22mg/cmであった。
なお、電極の作製条件を表1に示す。
This electrode paste was applied to both sides using a die coater on a carbon-coated rolled aluminum foil (thickness: 20 μm) (manufactured by Showa Denko Packaging Co., Ltd.), dried in air at 100 ° C. for 30 minutes, and pressed. Thus, a positive electrode plate (coating surface size: 30 cm (vertical) × 15 cm (horizontal)) was obtained. The coating amount per unit area on one side of the metal current collector was 22 mg / cm 2 .
Table 1 shows the electrode manufacturing conditions.

(負極の作製)
負極活物質粉末(天然黒鉛)と、バインダーと、CMC水溶液と、イオン交換水とを2軸遊星プラネタリミキサー(プライミクス製)を用いて室温下で攪拌混練して電極ペーストを得た。ここで、天然黒鉛:バインダー:CMC=98:1:1(重量比)とした。
(Preparation of negative electrode)
A negative electrode active material powder (natural graphite), a binder, a CMC aqueous solution, and ion-exchanged water were stirred and kneaded at room temperature using a biaxial planetary mixer (manufactured by Primex) to obtain an electrode paste. Here, natural graphite: binder: CMC = 98: 1: 1 (weight ratio).

この電極ペーストを、圧延銅箔(厚さ:10μm)上にダイコーターを用いて両面に塗布し、空気中100℃で30分間乾燥し、プレス加工して負極板(塗工面サイズ:30.4cm(縦)×15.4cm(横))を得た。   This electrode paste was applied to both sides using a die coater on a rolled copper foil (thickness: 10 μm), dried in air at 100 ° C. for 30 minutes, and pressed to form a negative electrode plate (coating surface size: 30.4 cm). (Vertical) × 15.4 cm (Horizontal)) was obtained.

(電池の作製)
作製した正極及び負極を130℃で24hr減圧乾燥し、Ar雰囲気下のグローブボックス中に入れた。以下の電池組み立ては全てそのグローブボックス内、室温下で行った。
負極の上に、ポリエチレン(PE)微多孔膜(30.4cm(縦)×15・4cm(横)×25μm(厚)、空隙率:55%)を載置し、その上に正極を重ね、またPE微多孔膜を重ねる作業を繰り返して、負極6枚と正極5枚とそれぞれの極間にPE微多孔膜を10枚挟んだ積層体を作製した。負極6枚にNiリードを超音波溶接し、正極5枚からAlリードを超音波溶接し、Alラミネート袋へ挿入し、3辺を熱融着した。エチレンカーボネート(EC)とジエチルカーボネート(DEC)を、体積比1:2で混合した溶媒に1mol/lになるようにLiPFを溶解させた電解液をセルへ注液し、それぞれのリードを取り出しつつ、Alラミネート袋の最後の1辺を熱融着して電池を得た。
(Production of battery)
The produced positive electrode and negative electrode were dried under reduced pressure at 130 ° C. for 24 hours, and placed in a glove box under an Ar atmosphere. The following battery assembly was all performed in the glove box at room temperature.
A polyethylene (PE) microporous film (30.4 cm (vertical) × 15.4 cm (horizontal) × 25 μm (thickness), porosity: 55%) is placed on the negative electrode, and the positive electrode is stacked thereon, Moreover, the operation | work which piles up PE microporous film was repeated, and the laminated body which pinched | interposed 10 PE microporous films between each electrode of 6 negative electrodes and 5 positive electrodes was produced. Ni leads were ultrasonically welded to six negative electrodes, Al leads were ultrasonically welded from five positive electrodes, inserted into an Al laminated bag, and three sides were heat-sealed. An electrolyte solution in which LiPF 6 was dissolved in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 1: 2 to 1 mol / l was poured into the cell, and each lead was taken out. Meanwhile, the last side of the Al laminate bag was heat-sealed to obtain a battery.

(電池のサイクル特性評価)
電池は30%充電後にガス抜きを行い、さらに追加で50%の充電を行い、計80%充電された状態で45℃1週間保持し、その後、0.1Cにて、2回充放電試験を行い初期電池容量を求めた。その後、0.1C充放電1回、1C充放電199回の繰り返し充放電サイクル試験を行った。容量維持率は、初回サイクル電池容量に対する200回サイクル後の電池容量の比率から求めた。測定結果を表3に示す。
(Evaluation of battery cycle characteristics)
The battery is degassed after 30% charge, and additionally 50% charged. The battery is charged at a total of 80% and held at 45 ° C for 1 week, and then charged and discharged twice at 0.1C. The initial battery capacity was determined. Thereafter, a repeated charge / discharge cycle test of 0.1C charge / discharge once and 1C charge / discharge 199 times was performed. The capacity retention rate was determined from the ratio of the battery capacity after 200 cycles to the initial cycle battery capacity. Table 3 shows the measurement results.

実施例2
正極作製に際し、炭素源であるプロピレンオキシドの量を7mlに増やした以外は、実施例1と同様の方法で、電池を作製し、サイクル特性を評価した。LiFePOに対する炭素被覆量は、7重量%であった。なお、正極の金属集電体の片面の単位面積当たりの塗布量は22mg/cmであった。電極の作製条件を表1、電池の評価結果を表3に示す。
Example 2
A battery was produced in the same manner as in Example 1 except that the amount of propylene oxide serving as the carbon source was increased to 7 ml during the production of the positive electrode, and the cycle characteristics were evaluated. The carbon coating amount for LiFePO 4 was 7% by weight. The coating amount per unit area on one side of the positive electrode metal current collector was 22 mg / cm 2 . The electrode fabrication conditions are shown in Table 1, and the battery evaluation results are shown in Table 3.

実施例3
正極作製に際し、バインダーにPVDF、溶媒にN−メチル−2−ピロリドンを用い、CMCを用いなかった以外は、実施例1と同様の方法で、電池を作製し、サイクル特性を評価した。LiFePOに対する炭素被覆量は、3重量%であった。なお、正極の金属集電体の片面の単位面積当たりの塗布量は22mg/cmであった。電極の作製条件を表1、電池の評価結果を表3に示す。
Example 3
A battery was produced in the same manner as in Example 1 except that PVDF was used as the binder, N-methyl-2-pyrrolidone was used as the solvent, and CMC was not used. The carbon coating amount for LiFePO 4 was 3% by weight. The coating amount per unit area on one side of the positive electrode metal current collector was 22 mg / cm 2 . The electrode fabrication conditions are shown in Table 1, and the battery evaluation results are shown in Table 3.

実施例4
(正極活物質の合成)
本実施例では、正極活物質に、LiCoOを用いた。
メノウ乳鉢に、リチウム源としてLiCOを15mmol、コバルト源としてCo(OH)を15mmol量りとり、均一になるまで粉砕した。試料のモル比をLi:Co=1:1とした。更に、生成予測されるLiCoO2の重量に対して炭素源として10重量%のスクロースを加え、均一になるまで原料を混合粉砕した。次いで、得られた粉末を窒素雰囲気中、温度700℃で12時間焼成し、LiCoOを得た。
Example 4
(Synthesis of positive electrode active material)
In this example, LiCoO 2 was used as the positive electrode active material.
In an agate mortar, 15 mmol of Li 2 CO 3 as a lithium source and 15 mmol of Co (OH) 2 as a cobalt source were weighed and ground until uniform. The molar ratio of the sample was Li: Co = 1: 1. Furthermore, 10% by weight of sucrose as a carbon source was added to the weight of LiCoO 2 predicted to be produced, and the raw materials were mixed and pulverized until uniform. Next, the obtained powder was baked in a nitrogen atmosphere at a temperature of 700 ° C. for 12 hours to obtain LiCoO 2 .

LiCoOに対する炭素被覆量は、1.3重量%であった。 The carbon coating amount for LiCoO 2 was 1.3% by weight.

実施例1と同様の方法で、正極、負極、そして電池を作製し、サイクル特性を評価した。なお、正極の金属集電体の片面の単位面積当たりの塗布量は22mg/cmであった。電極の作製条件を表1、電池の評価結果を表3に示す。 In the same manner as in Example 1, a positive electrode, a negative electrode, and a battery were produced, and cycle characteristics were evaluated. The coating amount per unit area on one side of the positive electrode metal current collector was 22 mg / cm 2 . The electrode fabrication conditions are shown in Table 1, and the battery evaluation results are shown in Table 3.

実施例5
(正極活物質の合成)
本実施例では、正極活物質に、LiMn2を用いた。
メノウ乳鉢に、リチウム源としてLiCOを5mmol、マンガン源としてMnCOを20mmol量りとり、均一になるまで粉砕した。試料のモル比をLi:Mn=1:2とした。更に、生成予測されるLiMn2の重量に対して炭素源として10重量%のスクロースを加え、均一になるまで原料を混合粉砕した。次いで、得られた粉末を大気雰囲気中、温度700℃で12時間焼成し、LiMn2を得た。
Example 5
(Synthesis of positive electrode active material)
In this example, LiMn 2 O 4 was used as the positive electrode active material.
In an agate mortar, 5 mmol of Li 2 CO 3 as a lithium source and 20 mmol of MnCO 3 as a manganese source were weighed and ground until uniform. The molar ratio of the sample was Li: Mn = 1: 2. Furthermore, 10% by weight of sucrose was added as a carbon source to the weight of LiMn 2 O 4 predicted to be produced, and the raw materials were mixed and pulverized until uniform. Next, the obtained powder was baked in an air atmosphere at a temperature of 700 ° C. for 12 hours to obtain LiMn 2 O 4 .

LiMn2に対する炭素被覆量は、1.5重量%であった。 The carbon coating amount with respect to LiMn 2 O 4 was 1.5% by weight.

実施例1と同様の方法で、電池を作製し、サイクル特性を評価した。なお、正極の金属集電体の片面の単位面積当たりの塗布量は22mg/cmであった。電極の作製条件を表1、電池の評価結果を表3に示す。 A battery was produced in the same manner as in Example 1, and the cycle characteristics were evaluated. The coating amount per unit area on one side of the positive electrode metal current collector was 22 mg / cm 2 . The electrode fabrication conditions are shown in Table 1, and the battery evaluation results are shown in Table 3.

実施例6
正極作製に際し、電極ペーストに酢酸を添加してpHを6にした以外は、実施例1と同様の方法で、電池を作製し、サイクル特性を評価した。なお、正極の金属集電体の片面の単位面積当たりの塗布量は22mg/cmであった。電極の作製条件を表1、電池の評価結果を表3に示す。
Example 6
A battery was produced in the same manner as in Example 1 except that acetic acid was added to the electrode paste to adjust the pH to 6 when producing the positive electrode, and the cycle characteristics were evaluated. The coating amount per unit area on one side of the positive electrode metal current collector was 22 mg / cm 2 . The electrode fabrication conditions are shown in Table 1, and the battery evaluation results are shown in Table 3.

実施例7
(負極活物質の合成)
本実施例では、負極活物質にLiTi12を用いた。
メノウ乳鉢に、リチウム源としてCHCOOLiを15mmol、チタン源としてTiO(anatase)を18.75mmol量りとり、均一になるまで粉砕した。試料のモル比をLi:Ti=4:5とした。更に、生成予測されるLiTi12の重量に対して炭素源として10重量%のスクロースを加え、均一になるまで原料を混合粉砕した。次いで、得られた粉末を窒素雰囲気中、温度800℃で12時間焼成し、LiTi12を得た。
Example 7
(Synthesis of negative electrode active material)
In this example, Li 4 Ti 5 O 12 was used as the negative electrode active material.
In an agate mortar, 15 mmol of CH 3 COOLi as a lithium source and 18.75 mmol of TiO 2 (anatase) as a titanium source were weighed and ground until uniform. The molar ratio of the sample was Li: Ti = 4: 5. Furthermore, 10% by weight of sucrose as a carbon source was added to the weight of Li 4 Ti 5 O 12 predicted to be produced, and the raw materials were mixed and pulverized until uniform. Subsequently, the obtained powder was baked at a temperature of 800 ° C. for 12 hours in a nitrogen atmosphere to obtain Li 4 Ti 5 O 12 .

LiTi12に対する炭素被覆量は、1.5重量%であった。 The carbon coating amount with respect to Li 4 Ti 5 O 12 was 1.5% by weight.

(負極の作製)
負極活物質粉末と、バインダーと、CMC水溶液と、イオン交換水とを2軸遊星プラネタリミキサー(プライミクス製)を用いて室温下で攪拌混練して電極ペーストを得た。ここで、LiTi12:アセチレンブラック:SBR:CMC = 100:5:5:1(重量比)とした。電極ペーストのpHを測定したところpHは10であった。
(Preparation of negative electrode)
A negative electrode active material powder, a binder, a CMC aqueous solution, and ion-exchanged water were stirred and kneaded at room temperature using a biaxial planetary mixer (manufactured by Primex) to obtain an electrode paste. Here, Li 4 Ti 5 O 12 : acetylene black: SBR: CMC = 100: 5: 5: 1 (weight ratio). When the pH of the electrode paste was measured, the pH was 10.

この電極ペーストを、炭素被覆された圧延銅箔(厚さ:10μm)(昭和電工パッケージング社製)上にダイコーターを用いて両面に塗布し、空気中100℃で30分間乾燥し、プレス加工して負極板(塗工面サイズ:30.4cm(縦)×15.4cm(横))を得た。なお、負極の金属集電体の片面の単位面積当たりの塗布量は22mg/cmであった。 This electrode paste was applied to both sides using a die coater on a carbon-coated rolled copper foil (thickness: 10 μm) (manufactured by Showa Denko Packaging Co., Ltd.), dried in air at 100 ° C. for 30 minutes, and pressed. As a result, a negative electrode plate (coating surface size: 30.4 cm (vertical) × 15.4 cm (horizontal)) was obtained. The coating amount per unit area of one surface of the negative electrode metal current collector was 22 mg / cm 2 .

実施例1の正極を用い、実施例1と同様の方法で、電池を作製し、サイクル特性を評価した。電極の作製条件を表2、電池の評価結果を表3に示す。   Using the positive electrode of Example 1, a battery was produced in the same manner as in Example 1, and the cycle characteristics were evaluated. The electrode fabrication conditions are shown in Table 2, and the battery evaluation results are shown in Table 3.

比較例1
正極活物質の合成に際し炭素源を加えなかったこと、焼成雰囲気をN+H(3%)ガスにしたこと以外は実施例1と同様の方法で、電池を作製し、サイクル特性を評価した。なお、正極の金属集電体の片面の単位面積当たりの塗布量は22mg/cmであった。電極の作製条件を表1、電池の評価結果を表3に示す。
Comparative Example 1
A battery was produced in the same manner as in Example 1 except that no carbon source was added during the synthesis of the positive electrode active material and the firing atmosphere was changed to N 2 + H 2 (3%) gas, and the cycle characteristics were evaluated. . The coating amount per unit area on one side of the positive electrode metal current collector was 22 mg / cm 2 . The electrode fabrication conditions are shown in Table 1, and the battery evaluation results are shown in Table 3.

比較例2
正極活物質の合成に際し炭素源を加えなかったこと以外は実施例4と同様の方法で、電池を作製し、サイクル特性を評価した。なお、正極の金属集電体の片面の単位面積当たりの塗布量は22mg/cmであった。電極の作製条件を表1、電池の評価結果を表3に示す。
Comparative Example 2
A battery was produced in the same manner as in Example 4 except that no carbon source was added during the synthesis of the positive electrode active material, and the cycle characteristics were evaluated. The coating amount per unit area on one side of the positive electrode metal current collector was 22 mg / cm 2 . The electrode fabrication conditions are shown in Table 1, and the battery evaluation results are shown in Table 3.

比較例3
正極活物質の合成に際し炭素源を加えず、かつエージングをしなかったこと以外は実施例4と同様の方法で、電池を作製し、サイクル特性を評価した。なお、正極の金属集電体の片面の単位面積当たりの塗布量は22mg/cmであった。電極の作製条件を表1、電池の評価結果を表3に示す。
Comparative Example 3
A battery was produced in the same manner as in Example 4 except that no carbon source was added and aging was not performed in the synthesis of the positive electrode active material, and the cycle characteristics were evaluated. The coating amount per unit area on one side of the positive electrode metal current collector was 22 mg / cm 2 . The electrode fabrication conditions are shown in Table 1, and the battery evaluation results are shown in Table 3.

比較例4
正極活物質の合成に際し炭素源を加えなかったこと以外は実施例5と同様の方法で、電池を作製し、サイクル特性を評価した。なお、正極の金属集電体の片面の単位面積当たりの塗布量は22mg/cmであった。電極の作製条件を表1、電池の評価結果を表3に示す。
Comparative Example 4
A battery was prepared in the same manner as in Example 5 except that no carbon source was added during the synthesis of the positive electrode active material, and the cycle characteristics were evaluated. The coating amount per unit area on one side of the positive electrode metal current collector was 22 mg / cm 2 . The electrode fabrication conditions are shown in Table 1, and the battery evaluation results are shown in Table 3.

比較例5
正極の金属集電体に炭素被覆されていない圧延アルミニウム箔を用いた以外は、実施例1と同様の方法で、電池を作製し、サイクル特性を評価した。なお、正極の金属集電体の片面の単位面積当たりの塗布量は22mg/cmであった。電極の作製条件を表1、電池の評価結果を表3に示す。
Comparative Example 5
A battery was prepared in the same manner as in Example 1 except that a rolled aluminum foil not coated with carbon was used for the positive electrode current collector, and the cycle characteristics were evaluated. The coating amount per unit area on one side of the positive electrode metal current collector was 22 mg / cm 2 . The electrode fabrication conditions are shown in Table 1, and the battery evaluation results are shown in Table 3.

比較例6
正極活物質および負極活物質の合成に際し炭素源を加えなかったこと以外は実施例7と同様の方法で、電池を作製し、サイクル特性を評価した。なお、正極の金属集電体の片面の単位面積当たりの塗布量は22mg/cm、負極の金属集電体の片面の単位面積当たりの塗布量は22mg/cmであった。電極の作製条件を表2、電池の評価結果を表3に示す。
Comparative Example 6
A battery was produced in the same manner as in Example 7 except that no carbon source was added in the synthesis of the positive electrode active material and the negative electrode active material, and the cycle characteristics were evaluated. The coating amount per unit area on one side of the positive electrode metal current collector was 22 mg / cm 2 , and the coating amount per unit area on one side of the negative electrode metal current collector was 22 mg / cm 2 . The electrode fabrication conditions are shown in Table 2, and the battery evaluation results are shown in Table 3.

Figure 2014017199
Figure 2014017199

Figure 2014017199
Figure 2014017199

Figure 2014017199
Figure 2014017199

(結果)
実施例1〜3、6は、本発明を正極に適用し、正極活物質に、LiFePOを用いた例を示している。比較例1,5との比較から、炭素被覆アルミニウム箔と炭素被覆活物質の両方を用いることで、サイクル特性が向上したことがわかる。
(result)
Examples 1 to 3 and 6 show examples in which the present invention is applied to the positive electrode and LiFePO 4 is used as the positive electrode active material. Comparison with Comparative Examples 1 and 5 shows that the cycle characteristics were improved by using both the carbon-coated aluminum foil and the carbon-coated active material.

また、実施例4は、本発明を正極に適用し、正極活物質に、LiCoOを用いた例を示している。比較例2,3との比較から、炭素被覆アルミニウム箔と炭素被覆活物質の両方を用いることで、サイクル特性が向上したことがわかる。 In Example 4, the present invention is applied to the positive electrode, and LiCoO 2 is used as the positive electrode active material. Comparison with Comparative Examples 2 and 3 shows that the cycle characteristics were improved by using both the carbon-coated aluminum foil and the carbon-coated active material.

また、実施例5は、本発明を正極に適用し、正極活物質に、LiMn2を用いた例を示している。比較例4との比較から、炭素被覆アルミニウム箔と炭素被覆活物質の両方を用いることで、サイクル特性が向上したことがわかる。 In Example 5, the present invention is applied to the positive electrode, and LiMn 2 O 4 is used as the positive electrode active material. Comparison with Comparative Example 4 shows that the cycle characteristics were improved by using both the carbon-coated aluminum foil and the carbon-coated active material.

また、実施例7は、本発明を正極および負極に適用し、正極活物質にLiFePOを用い、負極活物質にLiTi12を用いた例を示している。比較例6との比較から、炭素被覆銅箔と炭素被覆活物質の両方を用いることで、サイクル特性が向上したことがわかる。 Example 7 shows an example in which the present invention is applied to the positive electrode and the negative electrode, LiFePO 4 is used as the positive electrode active material, and Li 4 Ti 5 O 12 is used as the negative electrode active material. Comparison with Comparative Example 6 shows that the cycle characteristics were improved by using both the carbon-coated copper foil and the carbon-coated active material.

Claims (8)

導電層を有する金属集電体と、該導電層の表面に形成された活物質層を有し、該活物質層が炭素被覆されたリチウム複合金属酸化物粒子からなる活物質を含有するリチウム二次電池用電極。   A lithium collector containing a metal current collector having a conductive layer and an active material layer made of lithium composite metal oxide particles having an active material layer formed on the surface of the conductive layer, the active material layer being carbon-coated. Secondary battery electrode. 上記導電層が炭素被覆層である請求項1記載のリチウム二次電池用電極。   The electrode for a lithium secondary battery according to claim 1, wherein the conductive layer is a carbon coating layer. 上記の炭素被覆されたリチウム複合金属酸化物粒子の炭素の割合がリチウム複合金属酸化物粒子の質量に対し0.5〜10重量%である請求項1記載のリチウム二次電池用電極。   2. The electrode for a lithium secondary battery according to claim 1, wherein a carbon ratio of the carbon-coated lithium composite metal oxide particles is 0.5 to 10 wt% with respect to a mass of the lithium composite metal oxide particles. 請求項1記載のリチウム二次電池用電極の製造方法であって、
リチウム複合金属酸化物の原料粉末と炭素源とを溶媒に溶解し、該溶媒を除去して得られた混合物を焼成して、炭化した炭素源で炭素被覆されたリチウム複合金属酸化物を製造し、
該炭素被覆されたリチウム複合金属酸化物と、導電材と、バインダーと、増粘材を溶媒に分散させた電極ペーストを金属集電体の導電層の表面に塗布する、リチウム二次電池用電極の製造方法。
A method for producing an electrode for a lithium secondary battery according to claim 1,
A lithium composite metal oxide raw material powder and a carbon source are dissolved in a solvent, and the mixture obtained by removing the solvent is baked to produce a carbon composite lithium composite metal oxide coated with a carbonized carbon source. ,
An electrode for a lithium secondary battery, wherein an electrode paste in which the carbon-coated lithium composite metal oxide, a conductive material, a binder, and a thickener are dispersed in a solvent is applied to the surface of the conductive layer of the metal current collector. Manufacturing method.
上記の溶媒が水であり、電極ペーストのpHが5以上である請求項4記載のリチウム二次電池用電極の製造方法。   The method for producing an electrode for a lithium secondary battery according to claim 4, wherein the solvent is water and the pH of the electrode paste is 5 or more. 請求項1のリチウム二次電池用電極を正極および/または負極に用いるリチウム二次電池。   The lithium secondary battery which uses the electrode for lithium secondary batteries of Claim 1 for a positive electrode and / or a negative electrode. 請求項1のリチウム二次電池用電極を正極および/または負極に用いるリチウム二次電池の製造方法であって、
リチウム複合金属酸化物の原料粉末と炭素源とを溶媒に溶解し、該溶媒を除去して得られた混合物を焼成して、炭化した炭素源で炭素被覆されたリチウム複合金属酸化物を製造し、
該炭素被覆されたリチウム複合金属酸化物と、導電材と、バインダーと、増粘材を溶媒に分散させた電極ペーストを金属集電体の導電層の表面に塗布して正極および/または負極を製造するリチウム二次電池の製造方法。
A method for producing a lithium secondary battery using the electrode for a lithium secondary battery according to claim 1 as a positive electrode and / or a negative electrode,
A lithium composite metal oxide raw material powder and a carbon source are dissolved in a solvent, and the mixture obtained by removing the solvent is baked to produce a carbon composite lithium composite metal oxide coated with a carbonized carbon source. ,
An electrode paste in which the carbon-coated lithium composite metal oxide, a conductive material, a binder, and a thickener are dispersed in a solvent is applied to the surface of the conductive layer of the metal current collector to form a positive electrode and / or a negative electrode. A method for producing a lithium secondary battery to be produced.
正極、負極および電解質を電池容器に収容し、該電池容器を密封した後、満充電に対して50%以上充電した状態で、40〜60℃の温度で少なくとも24時間保持する請求項7記載のリチウム二次電池の製造方法。   The positive electrode, the negative electrode and the electrolyte are accommodated in a battery container, and after the battery container is sealed, the battery container is kept at a temperature of 40 to 60 ° C. for at least 24 hours in a state of being charged at 50% or more with respect to full charge. A method for producing a lithium secondary battery.
JP2012155577A 2012-07-11 2012-07-11 Electrode for lithium secondary battery and method for manufacturing the same, and lithium secondary battery and method for manufacturing the same Pending JP2014017199A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012155577A JP2014017199A (en) 2012-07-11 2012-07-11 Electrode for lithium secondary battery and method for manufacturing the same, and lithium secondary battery and method for manufacturing the same
PCT/JP2013/068211 WO2014010476A1 (en) 2012-07-11 2013-07-03 Electrode for lithium secondary cell, method for manufacturing same, lithium secondary cell, and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012155577A JP2014017199A (en) 2012-07-11 2012-07-11 Electrode for lithium secondary battery and method for manufacturing the same, and lithium secondary battery and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2014017199A true JP2014017199A (en) 2014-01-30

Family

ID=49915937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012155577A Pending JP2014017199A (en) 2012-07-11 2012-07-11 Electrode for lithium secondary battery and method for manufacturing the same, and lithium secondary battery and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JP2014017199A (en)
WO (1) WO2014010476A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015170550A (en) * 2014-03-10 2015-09-28 トヨタ自動車株式会社 Manufacturing method of positive electrode for lithium secondary battery, positive electrode for lithium secondary battery, and agglomerated material
JP2016066522A (en) * 2014-09-25 2016-04-28 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
US10326141B2 (en) 2015-09-16 2019-06-18 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery and battery pack
KR20200096870A (en) 2019-02-06 2020-08-14 도요타 지도샤(주) All solid state battery and method for producing same
WO2021132500A1 (en) * 2019-12-27 2021-07-01 株式会社村田製作所 Solid-state battery
WO2022196831A1 (en) 2021-03-19 2022-09-22 Sekisui Chemical Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system using the same
WO2022196829A2 (en) 2021-03-19 2022-09-22 Sekisui Chemical Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system using the same
JP7194299B1 (en) 2022-03-15 2022-12-21 積水化学工業株式会社 Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
WO2023176929A1 (en) * 2022-03-16 2023-09-21 積水化学工業株式会社 Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using same
WO2024009988A1 (en) * 2022-07-04 2024-01-11 積水化学工業株式会社 Positive electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery, battery module, and battery system using same, and method for producing positive electrode for nonaqueous electrolyte secondary batteries
WO2024048784A1 (en) * 2022-09-02 2024-03-07 積水化学工業株式会社 Non-aqueous electrolyte secondary-battery positive electrode, non-aqueous electrolyte secondary battery using the same, battery module, and battery system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113454811B (en) * 2019-02-27 2023-11-07 日本碍子株式会社 Lithium secondary battery
JP2021111553A (en) * 2020-01-14 2021-08-02 トヨタ自動車株式会社 Positive electrode collector member

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298853A (en) * 2001-03-28 2002-10-11 Tagawa Kazuo Lithium secondary battery and electric doublelayer capacitor
JP5094027B2 (en) * 2006-03-15 2012-12-12 三洋電機株式会社 Method for producing non-aqueous electrolyte secondary battery
JP5608990B2 (en) * 2009-03-12 2014-10-22 トヨタ自動車株式会社 Current collector foil, battery, vehicle, battery-operated device, and current collector foil manufacturing method
FR2949907B1 (en) * 2009-09-09 2011-11-25 Batscap Sa PROCESS FOR THE PREPARATION OF A COMPOSITE MATERIAL FOR POSITIVE ELECTRODE BY EXTRUSION IN THE PRESENCE OF AQUEOUS SOLVENT, POSITIVE ELECTRODE OBTAINED BY THE PROCESS AND APPLICATIONS
JP5674357B2 (en) * 2010-07-01 2015-02-25 エナックス株式会社 Lithium ion secondary battery
JP5698951B2 (en) * 2010-10-19 2015-04-08 シャープ株式会社 Positive electrode active material and method for producing the same, positive electrode and non-aqueous electrolyte secondary battery
JP5660539B2 (en) * 2011-08-12 2015-01-28 独立行政法人産業技術総合研究所 Lithium ion secondary battery electrode, lithium ion secondary battery, and electrical equipment
JP5329006B1 (en) * 2011-09-29 2013-10-30 昭和電工株式会社 Positive electrode active material for lithium secondary battery and method for producing the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015170550A (en) * 2014-03-10 2015-09-28 トヨタ自動車株式会社 Manufacturing method of positive electrode for lithium secondary battery, positive electrode for lithium secondary battery, and agglomerated material
JP2016066522A (en) * 2014-09-25 2016-04-28 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
US10326141B2 (en) 2015-09-16 2019-06-18 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery and battery pack
KR20200096870A (en) 2019-02-06 2020-08-14 도요타 지도샤(주) All solid state battery and method for producing same
KR20220018538A (en) 2019-02-06 2022-02-15 도요타 지도샤(주) All solid state battery and method for producing same
US11616222B2 (en) 2019-02-06 2023-03-28 Toyota Jidosha Kabushiki Kaisha All solid state battery and method for producing same
WO2021132500A1 (en) * 2019-12-27 2021-07-01 株式会社村田製作所 Solid-state battery
EP4170744A1 (en) 2021-03-19 2023-04-26 Sekisui Chemical Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system using the same
WO2022196831A1 (en) 2021-03-19 2022-09-22 Sekisui Chemical Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system using the same
WO2022196829A2 (en) 2021-03-19 2022-09-22 Sekisui Chemical Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system using the same
JP7194299B1 (en) 2022-03-15 2022-12-21 積水化学工業株式会社 Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
WO2023176895A1 (en) * 2022-03-15 2023-09-21 積水化学工業株式会社 Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using same, battery module, and battery system
JP2023135364A (en) * 2022-03-15 2023-09-28 積水化学工業株式会社 Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, battery module, and battery system
WO2023176929A1 (en) * 2022-03-16 2023-09-21 積水化学工業株式会社 Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using same
WO2024009988A1 (en) * 2022-07-04 2024-01-11 積水化学工業株式会社 Positive electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery, battery module, and battery system using same, and method for producing positive electrode for nonaqueous electrolyte secondary batteries
WO2024048784A1 (en) * 2022-09-02 2024-03-07 積水化学工業株式会社 Non-aqueous electrolyte secondary-battery positive electrode, non-aqueous electrolyte secondary battery using the same, battery module, and battery system

Also Published As

Publication number Publication date
WO2014010476A1 (en) 2014-01-16

Similar Documents

Publication Publication Date Title
JP2014017199A (en) Electrode for lithium secondary battery and method for manufacturing the same, and lithium secondary battery and method for manufacturing the same
EP3595056B1 (en) Battery
JP2015167065A (en) Nonaqueous electrolyte secondary battery
JP5370937B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
KR20180019569A (en) Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for manufacturing negative electrode material for non-aqueous electrolyte secondary battery
JP5897971B2 (en) Electrode active material, electrode for non-aqueous secondary battery, non-aqueous secondary battery and method for producing electrode for non-aqueous secondary battery
JP5271975B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
JPWO2016121322A1 (en) Non-aqueous electrolyte secondary battery negative electrode plate and non-aqueous electrolyte secondary battery using the negative electrode plate
CN111771300A (en) Multi-layer anode comprising silicon-based compound and lithium secondary battery comprising the same
JP2014010977A (en) Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery including the same
JPWO2014058068A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6448462B2 (en) Anode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing anode active material for nonaqueous electrolyte secondary battery
JPWO2013124950A1 (en) Lithium ion battery
KR20160036577A (en) Lithium secondary battery and electrolyte solution for lithium secondary batteries
JP5564872B2 (en) Nonaqueous electrolyte secondary battery
JP5463208B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
JP5464652B2 (en) Non-aqueous secondary battery positive electrode, non-aqueous secondary battery, and device having the non-aqueous secondary battery
WO2020065832A1 (en) Electrically conductive substance, positive electrode, and secondary battery
JP6068819B2 (en) Method for producing positive electrode for non-aqueous electrolyte secondary battery
JPWO2019065196A1 (en) Non-aqueous electrolyte secondary battery
JP5463222B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
WO2015019851A1 (en) Positive electrode active material, positive electrode and lithium ion secondary battery
WO2014175350A1 (en) Lithium ion secondary battery
JP2015060691A (en) Positive electrode for lithium ion secondary battery, lithium ion secondary battery and lithium ion secondary battery system
JP2014086382A (en) Method for manufacturing nonaqueous electrolyte secondary battery, and battery manufactured by the method