WO2021132500A1 - Solid-state battery - Google Patents

Solid-state battery Download PDF

Info

Publication number
WO2021132500A1
WO2021132500A1 PCT/JP2020/048532 JP2020048532W WO2021132500A1 WO 2021132500 A1 WO2021132500 A1 WO 2021132500A1 JP 2020048532 W JP2020048532 W JP 2020048532W WO 2021132500 A1 WO2021132500 A1 WO 2021132500A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
solid
electrode layer
layer
state battery
Prior art date
Application number
PCT/JP2020/048532
Other languages
French (fr)
Japanese (ja)
Inventor
克明 東
馬場 彰
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2021132500A1 publication Critical patent/WO2021132500A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a solid state battery.
  • a secondary battery may be used as a power source for electronic devices such as smartphones and notebook computers.
  • a liquid electrolyte is generally used as a medium for ion transfer that contributes to charging and discharging. That is, a so-called electrolytic solution is used in the secondary battery.
  • electrolytic solution is used in the secondary battery.
  • safety is generally required in terms of preventing leakage of the electrolytic solution.
  • organic solvent and the like used in the electrolytic solution are flammable substances, safety is also required in that respect as well.
  • Patent Document 1 Japanese Patent Document 1
  • the inventors of the present invention have found a new problem that short-circuit defects and / or charging defects occur when charging and discharging are repeated under a high charging voltage (for example, 4.2 V) using a conventional solid-state battery. .. It is considered that such a problem occurs because the electric field is excessively concentrated on the unevenness (particularly the convex portion) of the positive electrode layer in the conventional solid-state battery.
  • An object of the present invention is to provide a solid-state battery that is sufficiently suppressed.
  • the present invention A solid-state battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer.
  • the present invention relates to a solid-state battery in which the unevenness of the surface of the positive electrode layer in contact with the solid electrolyte layer is 1.0 ⁇ m or less in a cross-sectional view of the solid-state battery.
  • a preferred embodiment of the present invention is A positive electrode layer, a negative electrode layer, a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer, and a positive electrode current collector layer arranged on a surface of the positive electrode layer opposite to the surface in contact with the solid electrolyte layer.
  • a solid-state battery containing The positive electrode layer contains at least a lithium transition metal composite oxide and contains.
  • the negative electrode layer and the positive electrode current collector layer contain at least a carbon material and contain at least a carbon material.
  • the present invention relates to a solid-state battery in which the unevenness of the surface of the positive electrode layer in contact with the solid electrolyte layer is 1.0 ⁇ m or less in a cross-sectional view of the solid-state battery.
  • the solid-state battery according to the present invention more sufficiently suppresses short-circuit defects and charging defects even when charging and discharging are repeated under a high charging voltage (for example, 4.2 V).
  • FIG. 1 is an external perspective view schematically showing a solid-state battery according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the solid-state battery of FIG. 1 when viewed in the direction of an arrow.
  • FIG. 3 is a photomicrograph of a solid-state battery according to an embodiment of the present invention, which is a plane parallel to the stacking direction L and the width direction W and passes through a central point in the plan view shape of the solid-state battery.
  • FIG. 4 is a photomicrograph of a cross section of a solid-state battery for explaining the “distance from the reference line to the positive electrode active material particles of the positive electrode layer” measured due to the “unevenness of the surface of the positive electrode layer” defined in the present invention.
  • FIG. 5 is a photomicrograph of a cross section of a solid-state battery for explaining the “distance from the reference line to the positive electrode active material particles of the positive electrode layer” measured due to the “unevenness of the surface of the positive electrode layer” defined in the present invention.
  • it is a photomicrograph for explaining the end point of the distance.
  • Solid-state battery Solid-state battery
  • the contents shown are merely schematic and exemplary for the purpose of understanding the present invention, and the appearance, dimensional ratio, and the like may differ from the actual product.
  • the “solid-state battery” as used in the present invention refers to a battery whose components are composed of solids in a broad sense, and in a narrow sense, its components (particularly preferably all components) are composed of solids. Refers to an all-solid-state battery.
  • the solid-state battery in the present invention is a laminated solid-state battery in which the layers forming the battery building unit are laminated to each other, and preferably such layers are made of a sintered body.
  • the "solid-state battery” includes not only a so-called “secondary battery” capable of repeating charging and discharging, but also a "primary battery” capable of only discharging.
  • the "solid-state battery” is a secondary battery.
  • the “secondary battery” is not overly bound by its name and may also include an electrochemical device such as a "storage device”.
  • the "plan view” referred to in the present specification is based on a form in which an object is viewed from above or below along a thickness direction based on a stacking direction of each layer constituting a solid-state battery, and is a plan view (top view). ( Figure and bottom view).
  • the “cross-sectional view” referred to in the present specification is a form when viewed from a direction substantially perpendicular to the thickness direction based on the stacking direction of each layer constituting the solid-state battery (in short, parallel to the thickness direction). It is based on the form when cut out on a flat surface) and includes a cross-sectional view.
  • the "cross-sectional view” may be based on a surface parallel to the thickness direction based on the stacking direction of each layer constituting the solid-state battery, and may be based on a form cut off at a surface passing through the positive electrode terminal and the negative electrode terminal.
  • the "vertical direction” and “horizontal direction” used directly or indirectly in the present specification correspond to the vertical direction and the horizontal direction in the drawings, respectively. Unless otherwise specified, the same reference numerals or symbols shall indicate the same members / parts or the same meanings. In one preferred embodiment, it can be considered that the vertical downward direction (that is, the direction in which gravity acts) corresponds to the "downward direction” and the opposite direction corresponds to the "upward direction”.
  • the solid-state battery 200 according to the present invention includes, for example, a positive electrode layer 10A, a negative electrode layer 10B, and a solid electrolyte layer 20 interposed between them, as shown in FIGS. 1, 2 and 3, for example.
  • the solid-state battery 200 according to the present invention is usually A solid-state battery laminate 100 including at least one battery structural unit including a positive electrode layer 10A, a negative electrode layer 10B, and a solid electrolyte layer 20 interposed between them along the stacking direction L; Positive electrode terminals 40A and negative electrode terminals 40B provided on opposite side surfaces of the solid-state battery laminate 100, respectively. Consists of having.
  • FIG. 1 is an external perspective view schematically showing a solid-state battery according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the solid-state battery of FIG. 1 when viewed in the direction of an arrow.
  • FIG. 3 is a photomicrograph of a solid-state battery according to an embodiment of the present invention, which is a plane parallel to the stacking direction L and the width direction W and passes through a central point in the plan view shape of the solid-state battery.
  • the positive electrode layer 10A, the negative electrode layer 10B, the solid electrolyte layer 20, and the like form a sintered layer.
  • the positive electrode layer 10A, the negative electrode layer 10B, and the solid electrolyte layer 20 are integrally fired with each other, and therefore the battery constituent units form an integrally sintered body.
  • the positive electrode layer 10A is an electrode layer 10 including at least a positive electrode active material.
  • the positive electrode layer 10A may further contain a solid electrolyte and / or a conductive material.
  • the positive electrode layer is composed of a sintered body containing at least a positive electrode active material and a solid electrolyte. As shown in FIGS. 2 and 3, the positive electrode layer 10A may or may not have the positive electrode current collecting layer 11.
  • the unevenness of the surface of the positive electrode layer 10A in contact with the solid electrolyte layer 20 is 1.0 ⁇ m or less in the cross-sectional view of the solid-state battery.
  • the unevenness exceeds 1.0 ⁇ m, the electric field concentration on the unevenness (particularly the convex portion) of the positive electrode layer at the boundary between the positive electrode layer and the solid electrolyte layer cannot be sufficiently suppressed, and the operating rate of the solid-state battery decreases. To do.
  • the lower limit of the unevenness on the surface of the positive electrode layer in contact with the solid electrolyte layer 20 is not particularly limited, and the unevenness is usually 0.1 ⁇ m or more, particularly 0.5 ⁇ m or more.
  • the unevenness of the surface of the positive electrode layer in contact with the solid electrolyte layer 20 is preferably 0.65 ⁇ m or more and 0.95 ⁇ m or less, more preferably 0.70 ⁇ m or more, from the viewpoint of more sufficiently suppressing the concentration of the electric field on the unevenness of the positive electrode layer. It is 0.82 ⁇ m or less.
  • the unevenness of the surface of the positive electrode layer in contact with the solid electrolyte layer is usually larger than the unevenness of the surface of the negative electrode layer in contact with the solid electrolyte layer, and smaller than the unevenness of the surface of the positive electrode layer in contact with the positive electrode current collector layer.
  • the unevenness of the surface of the positive electrode layer 10A in contact with the solid electrolyte layer 20 is such that the negative electrode layer 10B and the solid electrolyte are formed in the solid electrolyte layer 20 arranged between the positive electrode layer 10A and the negative electrode layer 10B.
  • the interface with the layer 20 is set as the reference line 15, and the distances (arrows in FIG. 4) from the reference line 15 to the positive electrode active material particles of the positive electrode layer 10A are measured at 1 ⁇ m intervals. It is a value expressed by the standard deviation. That is, the standard deviation (that is, variation) with respect to a plurality of measured values of the distance from the reference line 15 to the positive electrode active material particles (arrows in FIG.
  • the reference line 15 is a line that defines the interface between the negative electrode layer 10B and the solid electrolyte layer 20 in a cross-sectional view, and is usually shown in a linear shape.
  • FIG. 4 is a photomicrograph of a cross section of a solid-state battery for explaining the “distance from the reference line to the positive electrode active material particles of the positive electrode layer” measured due to the “unevenness of the surface of the positive electrode layer” defined in the present invention. In particular, it is a micrograph for explaining the reference line (starting point) of the distance.
  • FIG. 5 is a photomicrograph of a cross section of a solid-state battery for explaining the “distance from the reference line to the positive electrode active material particles of the positive electrode layer” measured due to the “unevenness of the surface of the positive electrode layer” defined in the present invention. In particular, it is a photomicrograph for explaining the end point of the distance.
  • the distance from the reference line 15 to the positive electrode active material particles of the positive electrode layer 10A is determined by drawing a vertical line starting from the reference line 15 toward the positive electrode layer 10A and first contacting the positive electrode active material.
  • the distance to the particles (positive electrode layer 10A) (end point).
  • such distances are measured at 1 ⁇ m intervals, and the standard deviations of those measured values are obtained.
  • some distances are measured relatively long as shown by arrow 16B, and some distances are measured relatively short as shown by arrow 16A.
  • the perpendicular line starting from the reference line 15 is a line perpendicular to the surface where the positive electrode layer 10A and the solid electrolyte layer 20 are in contact with each other, and is usually perpendicular to the surface where the negative electrode layer 10B and the solid electrolyte layer 20 are in contact with each other. It may be a line and / or a line parallel to the stacking direction L.
  • the distance from the reference line 15 to the positive electrode active material particles of the positive electrode layer 10A (hereinafter, may be referred to as “distance A”) is measured in the central portion of the obtained solid-state battery 200.
  • the central portion means a central portion in a plan view, and is a central portion in the width direction W and the depth direction P.
  • the width direction W is a direction that defines the shortest distance between the positive electrode terminal 40A and the negative electrode terminal 40B, and particularly in a direction that defines the shortest distance between the positive electrode terminal 40A and the negative electrode terminal 40B when the solid-state battery 200 has a rectangular shape. It is a parallel direction and is a direction perpendicular to the stacking direction L.
  • the rectangular parallelepiped shape includes a so-called cubic shape.
  • the depth direction P is a direction parallel to the positive electrode terminal 40A and the negative electrode terminal 40B, and particularly when the solid-state battery 200 has a rectangular parallelepiped shape, it is a direction perpendicular to both the stacking direction L and the width direction W. Is.
  • a cross-sectional photograph for example, FIG.
  • the center point means the center of gravity of the solid-state battery in the plan view shape when the solid-state battery is viewed in a two-dimensional plane from the stacking direction L.
  • the center of gravity is the point when a homogeneous material (for example, paper) is cut out by the contour of the plan view shape of the solid-state battery and supported by points in a balanced manner.
  • the vicinity of the central portion of the solid electrolyte layer 20 arranged between the positive electrode layer 10A and the negative electrode layer 10B is enlarged so as to have a magnification of 3000 times.
  • the distance A described above was measured at 1 ⁇ m intervals of 20 ⁇ m width from the center line to the right and left to obtain a total of 41 measured values, and the standard deviation of these values was calculated.
  • the center line is the axis of the solid-state battery, more specifically, a line parallel to the stacking direction L and a line passing through the above-mentioned center point in the plan view shape of the solid-state battery.
  • the unevenness of the surface of the positive electrode layer in contact with the solid electrolyte layer described above is arranged in the center in the stacking direction L among all the solid electrolyte layers 20 arranged between the positive electrode layer 10A and the negative electrode layer 10B. It suffices if it is filled between one solid electrolyte layer 20 and the positive electrode layer 10A in contact with the solid electrolyte layer.
  • the one solid electrolyte layer 20 arranged in the center in the stacking direction L is the k + 1th solid from the bottom. It is an electrolyte layer.
  • the total number of the solid electrolyte layers 20 included in the solid battery is 1, one solid electrolyte layer 20 arranged at the center in the stacking direction L is the one solid electrolyte layer.
  • the irregularities on the surface of the positive electrode layer in contact with the solid electrolyte layer described above are all arranged between the positive electrode layer 10A and the negative electrode layer 10B in the solid-state battery from the viewpoint of more sufficiently suppressing the electric field concentration on the irregularities of the positive electrode layer. It is preferable that the solid electrolyte layer 20 is filled between the solid electrolyte layer 20 and the positive electrode layer 10A in contact with the solid electrolyte layer.
  • the unevenness of the surface of the positive electrode layer in contact with the solid electrolyte layer can be controlled during the production of the positive electrode layer by adjusting the mixing conditions and the like when preparing the paste for producing the positive electrode layer, as will be described in detail later. it can.
  • the average primary particle size of the positive electrode active material is not particularly limited, and is usually 1.0 ⁇ m or more and 20 ⁇ m or less, and is preferably 1 from the viewpoint of achieving the unevenness of the surface of the positive electrode layer in contact with the solid electrolyte layer described above. It is 5.5 ⁇ m or more and 6 ⁇ m or less.
  • the average primary particle size of the positive electrode active material in the positive electrode layer 10A the average value calculated from the measured values of any 100 positive electrode active material particles is used in the cross-sectional photograph.
  • the positive electrode active material contained in the positive electrode layer 10A is a substance involved in the transfer of electrons in a solid-state battery. Charging and discharging are performed by the movement (conduction) of ions between the positive electrode layer and the negative electrode layer via the solid electrolyte and the transfer of electrons between the positive electrode layer and the negative electrode layer via an external circuit.
  • the positive electrode layer is particularly preferably a layer capable of occluding and releasing lithium ions or sodium ions. That is, the solid-state battery of the present invention is preferably an all-solid-state secondary battery in which lithium ions or sodium ions move between the positive electrode layer and the negative electrode layer via a solid electrolyte to charge and discharge the battery. ..
  • the constituent material of the positive electrode active material is not particularly limited, and is, for example, a lithium-containing compound.
  • the type of the lithium-containing compound is not particularly limited, and is, for example, a lithium transition metal composite oxide and a lithium transition metal phosphoric acid compound.
  • Lithium transition metal composite oxide is a general term for oxides containing lithium and one or more types of transition metal elements as constituent elements.
  • Lithium transition metal phosphoric acid compound is a general term for phosphoric acid compounds containing lithium and one or more kinds of transition metal elements as constituent elements.
  • the type of transition metal element is not particularly limited, and is, for example, cobalt (Co), nickel (Ni), manganese (Mn), iron (Fe), and the like.
  • the lithium transition metal composite oxide is, for example, a compound represented by Li x M1O 2 and Li y M2O 4, respectively.
  • Lithium transition metal phosphate compound for example, a compound represented by Li z M3PO 4, and the like.
  • each of M1, M2 and M3 is one kind or two or more kinds of transition metal elements.
  • the respective values of x, y and z are arbitrary.
  • the lithium transition metal composite oxide is, for example, LiCoO 2 (that is, lithium cobalt oxide), LiNiO 2 , LiVO 2 , LiCrO 2 , LiMn 2 O 4 (that is, lithium manganate), LiCo 1/3 Ni 1 / 3 Mn 1/3 O 2 and LiNi 0.5 Mn 1.5 O 4 and the like.
  • the lithium transition metal phosphoric acid compound is, for example, LiFePO 4 , LiCoPO 4, LiMnPO 4, or the like.
  • the positive electrode active material capable of occluding and releasing sodium ions a sodium-containing phosphoric acid compound having a pearcon-type structure, a sodium-containing phosphoric acid compound having an olivine-type structure, a sodium-containing layered oxide, and a sodium-containing material having a spinel-type structure are contained. At least one selected from the group consisting of oxides and the like can be mentioned.
  • the positive electrode active material is preferably a lithium transition metal composite oxide (particularly lithium cobalt oxide or lithium manganate), and more preferably lithium cobalt oxide, from the viewpoint of more sufficiently suppressing electric field concentration on the unevenness of the positive electrode layer.
  • the content of the positive electrode active material in the positive electrode layer 10A is usually 50% by mass or more (that is, 50% by mass or more and 99% by mass or less) with respect to the total amount of the positive electrode layer, which is more sufficient for the electric field concentration on the unevenness of the positive electrode layer. From the viewpoint of sufficient suppression, it is preferably 60% by mass or more and 90% by mass or less, and more preferably 60% by mass or more and 80% by mass or less.
  • the positive electrode layer may contain two or more kinds of positive electrode active materials, and in that case, the total content thereof may be within the above range.
  • the solid electrolyte that may be contained in the positive electrode layer 10A may be selected from, for example, the same materials as the solid electrolyte that can be contained in the solid electrolyte layer described later.
  • the positive electrode layer 10A may contain a glass-ceramic solid electrolyte as the solid electrolyte.
  • the content of the solid electrolyte in the positive electrode layer 10A is not particularly limited, and is usually 1 to 50% by mass, particularly 10 to 40% by mass, based on the total amount of the positive electrode layer.
  • the positive electrode layer may contain two or more kinds of solid electrolytes, in which case the total content thereof may be within the above range.
  • the positive electrode layer 10A may further contain a sintering aid.
  • a sintering aid at least one selected from the group consisting of lithium oxide, sodium oxide, potassium oxide, boron oxide, silicon oxide, bismuth oxide and phosphorus oxide can be mentioned.
  • the thickness of the positive electrode layer 10A is not particularly limited, and may be, for example, 1 ⁇ m or more and 100 ⁇ m or less, particularly 5 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the positive electrode layer 10A is per one side of the positive electrode current collecting layer 11. The thickness.
  • the positive electrode layer 10A may or may not have the positive electrode current collector layer 11. From the viewpoint of the current collecting efficiency of the positive electrode layer, the positive electrode layer preferably has a positive electrode current collecting layer.
  • the positive electrode layer 10A may be formed on both sides of the positive electrode current collecting layer 11 or may be formed on one side as shown in FIG. In this case, the positive electrode layer 10A is preferably formed on both sides of the positive electrode current collector layer 11 as shown in FIG. 2 from the viewpoint of improving the battery capacity.
  • the positive electrode current collector layer 11 is usually arranged on the surface of the positive electrode layer opposite to the surface in contact with the solid electrolyte layer.
  • the positive electrode current collecting layer 11 is a connecting layer that achieves an electrical connection between the positive electrode layer 10A and the positive electrode terminal 40A, and includes at least a conductive material.
  • the positive electrode current collector layer 11 may further contain a solid electrolyte.
  • the positive electrode current collector layer is composed of a sintered body containing at least a conductive material and a solid electrolyte.
  • the conductive material that may be contained in the positive electrode current collector layer 11 is usually a material having a relatively high conductivity, and is composed of, for example, a carbon material, silver, palladium, gold, platinum, aluminum, copper and nickel. At least one selected may be used.
  • the positive electrode current collecting layer 11 preferably contains a carbon material (particularly graphite) from the viewpoint of more sufficiently suppressing the concentration of the electric field on the unevenness of the positive electrode layer. Examples of the carbon material include graphite, graphitizable carbon, non-graphitizable carbon, mesocarbon microbeads (MCMB) and highly oriented graphite (HOPG).
  • the positive electrode current collector layer 11 contains a carbon material (particularly graphite) and is solid.
  • the unevenness of the surface of the positive electrode layer in contact with the electrolyte layer 20 can be absorbed on the positive electrode current collecting layer side. Therefore, the unevenness of the surface of the positive electrode layer in contact with the solid electrolyte layer 20 can be controlled more easily within the above range.
  • the content of the conductive material (particularly carbon material) in the positive electrode current collector layer 11 is usually 50% by mass or more (for example, 50 to 99% by mass), particularly 60 to 90% by mass, based on the total amount of the positive electrode current collector layer. is there.
  • the positive electrode current collector layer may contain two or more kinds of conductive materials, and in that case, the total content thereof may be within the above range.
  • the solid electrolyte that may be contained in the positive electrode current collector layer 11 may be selected from, for example, the same materials as the solid electrolyte that can be contained in the solid electrolyte layer described later.
  • the positive electrode current collector layer 11 may contain a glass-ceramic solid electrolyte as the solid electrolyte.
  • the content of the solid electrolyte in the positive electrode current collector layer 11 is not particularly limited, and is usually 1 to 50% by mass, particularly 10 to 40% by mass, based on the total amount of the positive electrode current collector layer.
  • the positive electrode current collector layer may contain two or more kinds of solid electrolytes, in which case the total content thereof may be within the above range.
  • the positive electrode current collector layer 11 may further contain a sintering aid.
  • the sintering agent contained in the positive electrode current collector layer may be selected from, for example, the same materials as the sintering aid that can be contained in the positive electrode layer.
  • the thickness of the positive electrode current collector layer 11 is not particularly limited, and may be, for example, 1 ⁇ m or more and 100 ⁇ m or less, particularly 3 ⁇ m or more and 20 ⁇ m or less.
  • the negative electrode layer 10B is an electrode layer including at least a negative electrode active material.
  • the negative electrode layer 10B may further contain a solid electrolyte.
  • the negative electrode layer is composed of a sintered body containing at least a negative electrode active material and a solid electrolyte.
  • the negative electrode active material contained in the negative electrode layer 10B is a substance involved in the transfer of electrons in a solid-state battery. Charging and discharging are performed by the movement (conduction) of ions between the positive electrode layer and the negative electrode layer via the solid electrolyte and the transfer of electrons between the positive electrode layer and the negative electrode layer via an external circuit.
  • the negative electrode layer is particularly preferably a layer capable of occluding and releasing lithium ions.
  • Examples of the negative electrode active material include carbon materials, metal-based materials, lithium alloys, and lithium-containing compounds.
  • the negative electrode active material preferably contains a carbon material from the viewpoint of more sufficiently suppressing the concentration of the electric field on the unevenness of the positive electrode layer.
  • the carbon material is, for example, graphite, graphitizable carbon, non-graphitizable carbon, mesocarbon microbeads (MCMB), highly oriented graphite (HOPG), and the like.
  • Metallic material is a general term for materials containing one or more of metal elements and metalloid elements capable of forming alloys with lithium as constituent elements.
  • This metallic material may be a simple substance, an alloy, or a compound. Since the purity of the simple substance described here is not necessarily limited to 100%, the simple substance may contain a trace amount of impurities.
  • Metal elements and semi-metal elements include, for example, silicon (Si), tin (Sn), aluminum (Al), indium (In), magnesium (Mg), boron (B), gallium (Ga), germanium (Ge). , Lead (Pb), Bismus (Bi), Cadmium (Cd), Titanium (Ti), Chromium (Cr), Iron (Fe), Niobium (Nb), Molybdenum (Mo), Silver (Ag), Zinc (Zn) , Hafnium (Hf), zirconium (Zr), ittrium (Y), palladium (Pd) and platinum (Pt).
  • the metal-based materials include, for example, Si, Sn, SiB 4 , TiSi 2 , SiC, Si 3 N 4 , SiO v (0 ⁇ v ⁇ 2), LiSiO, SnO w (0 ⁇ w ⁇ 2). , SnSiO 3 , LiSnO, Mg 2 Sn, and the like.
  • the lithium-containing compound is, for example, a lithium transition metal composite oxide.
  • the definition of the lithium transition metal composite oxide is as described above.
  • the lithium transition metal double oxides are, for example, Li 3 V 2 (PO 4 ) 3 , Li 3 Fe 2 (PO 4 ) 3 , Li 4 Ti 5 O 12 , LiTi 2 (PO 4 ) 3 , And LiCuPO 4 and the like.
  • the negative electrode active material capable of occluding and releasing sodium ions is a group consisting of a sodium-containing phosphoric acid compound having a pearcon-type structure, a sodium-containing phosphoric acid compound having an olivine-type structure, a sodium-containing oxide having a spinel-type structure, and the like. At least one selected from is mentioned.
  • the interface between the negative electrode layer 10B and the solid electrolyte layer 20 can usually be represented in a sufficiently linear shape in a cross-sectional photograph (cross-sectional view) at a magnification of 1000 times. ..
  • the interface between the negative electrode layer 10B and the solid electrolyte layer 20 can be further represented in a sufficiently linear shape. If it is difficult to represent the interface between the negative electrode layer 10B and the solid electrolyte layer 20 in a linear shape, the reference line 15 is the center line on the most solid electrolyte layer 20 side of the negative electrode layer 10B in cross-sectional view.
  • It may be a line passing through a point in contact with (or intersecting with) the negative electrode active material and defining a surface perpendicular to the stacking direction L. If the interface between the negative electrode layer and the solid electrolyte layer is smooth, it becomes easier to accept ions (for example, lithium ions), and by using soft graphite powder for the current collecting layer, the unevenness of the positive electrode active material (for example, LCO) is collected. It can be absorbed on the layer side to improve the operating rate.
  • ions for example, lithium ions
  • the content of the negative electrode active material (particularly carbon material) in the negative electrode layer 10B is usually 50 to 99% by mass, particularly 60 to 90% by mass, based on the total amount of the negative electrode layer.
  • the negative electrode layer may contain two or more kinds of negative electrode active materials, and in that case, the total content thereof may be within the above range.
  • the solid electrolyte that may be contained in the negative electrode layer 10B may be selected from, for example, the same materials as the solid electrolyte that can be contained in the solid electrolyte layer described later.
  • the negative electrode layer 10B may contain a glass-ceramic solid electrolyte as the solid electrolyte.
  • the content of the solid electrolyte in the negative electrode layer 10B is not particularly limited, and is usually 1 to 50% by mass, particularly 10 to 40% by mass, based on the total amount of the negative electrode layer.
  • the negative electrode layer may contain two or more kinds of solid electrolytes, in which case the total content thereof may be within the above range.
  • the negative electrode layer 10B may further contain a sintering aid.
  • a sintering aid include materials similar to those of the sintering aid that may be contained in the positive electrode layer 10A.
  • the thickness of the negative electrode layer 10B is not particularly limited, and may be, for example, 1 ⁇ m or more and 100 ⁇ m or less.
  • the negative electrode layer 10B may not have the negative electrode current collector layer as shown in FIG. 2, or may have the negative electrode current collector layer (not shown). From the viewpoint of the current collecting efficiency of the negative electrode layer, it is preferable that the negative electrode layer does not have the negative electrode current collecting layer.
  • the negative electrode layer 10B may be formed on both sides of the negative electrode current collecting layer or may be formed on one side.
  • the negative electrode current collector layer is a connecting layer that achieves electrical connection between the negative electrode layer 10B and the negative electrode terminal 40B, and includes at least a conductive material.
  • the negative electrode current collector layer may further contain a solid electrolyte.
  • the negative electrode current collector layer is composed of a sintered body containing at least a conductive material and a solid electrolyte.
  • the negative electrode current collector layer may be composed of the same constituent materials as the above-mentioned positive electrode current collector layer 11 in the same ratio.
  • the solid electrolyte layer 20 is a layer containing at least a solid electrolyte.
  • the solid electrolyte layer is composed of a sintered body containing at least the solid electrolyte.
  • the solid electrolyte constituting the solid electrolyte layer 20 is a material capable of conducting lithium ions or sodium ions.
  • the solid electrolyte forms a layer in which lithium ions or sodium ions can be conducted, particularly between the positive electrode layer and the negative electrode layer.
  • the solid electrolyte may be provided at least between the positive electrode layer and the negative electrode layer. That is, the solid electrolyte may also be present around the positive electrode layer and / or the negative electrode layer so as to protrude from between the positive electrode layer and the negative electrode layer.
  • Specific solid electrolytes include, for example, any one or more of crystalline solid electrolytes and glass-ceramic solid electrolytes.
  • the solid electrolyte layer 20 may contain a glass-ceramic solid electrolyte as the solid electrolyte.
  • the crystalline solid electrolyte is a crystalline electrolyte.
  • the crystalline solid electrolyte capable of conducting lithium ions is, for example, an inorganic material and a polymer material
  • the inorganic material is, for example, a sulfide and an oxide.
  • Sulfides include, for example, Li 2 SP 2 S 5 , Li 2 S-SiS 2 -Li 3 PO 4 , Li 7 P 3 S 11 , Li 3.25 Ge 0.25 P 0.75 S and Li 10 GeP 2 S 12 and the like.
  • Oxides for example, Li x M y (PO 4 ) 3 (1 ⁇ x ⁇ 2,1 ⁇ y ⁇ 2, M is at least one selected from the group consisting of Ti, Ge, Al, Ga and Zr) , Li 7 La 3 Zr 2 O 12 , Li 6.75 La 3 Zr 1.75 Nb 0.25 O 12 , Li 6 BaLa 2 Ta 2 O 12 , Li 1 + x Al x Ti 2-x (PO 4 ) 3 , La 2 / 3- x Li 3x TiO 3 , Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3, La 0.55 Li 0.35 TiO 3 and Li 7 La 3 Zr 2 O 12 etc. is there.
  • the polymeric material is, for example, polyethylene oxide (PEO).
  • the glass-ceramic solid electrolyte is an electrolyte in which amorphous and crystalline are mixed.
  • This glass-ceramic solid electrolyte is, for example, an oxide containing lithium (Li), silicon (Si) and boron (B) as constituent elements, and more specifically, lithium oxide (Li 2 O) and oxidation. It contains silicon (SiO 2 ), boron oxide (B 2 O 3 ) and the like.
  • the ratio of the content of lithium oxide to the total content of lithium oxide, silicon oxide and boron oxide is not particularly limited, but is, for example, 40 mol% or more and 73 mol% or less.
  • the ratio of the content of silicon oxide to the total content of lithium oxide, silicon oxide and boron oxide is not particularly limited, but is, for example, 8 mol% or more and 40 mol% or less.
  • the ratio of the content of boron oxide to the total content of lithium oxide, silicon oxide and boron oxide is not particularly limited, but is, for example, 10 mol% or more and 50 mol% or less.
  • ICP-AES inductively coupled plasma emission spectrometry
  • ICP-AES inductively coupled plasma emission spectrometry
  • Examples of the solid electrolyte in which sodium ions can be conducted include sodium-containing phosphoric acid compounds having a pearcon structure, oxides having a perovskite structure, oxides having a garnet type or a garnet type similar structure, and the like.
  • the sodium-containing phosphate compound having a NASICON structure, Na x M y (PO 4 ) 3 (1 ⁇ x ⁇ 2,1 ⁇ y ⁇ 2, M is, Ti, Ge, Al, from the group consisting of Ga and Zr At least one selected).
  • the solid electrolyte layer 20 may further contain a sintering aid.
  • a sintering aid include materials similar to those of the sintering aid that may be contained in the positive electrode layer 10A.
  • the thickness of the solid electrolyte layer is not particularly limited, and may be, for example, 1 ⁇ m or more and 50 ⁇ m or less, particularly 1 ⁇ m or more and 5 ⁇ m or less.
  • the solid-state battery 200 of the present invention usually further has an electrode separation portion (also referred to as a "margin layer” or “margin portion”) 30 (30A, 30B).
  • an electrode separation portion also referred to as a "margin layer” or “margin portion” 30 (30A, 30B).
  • the electrode separating portion 30A (positive electrode separating portion) is arranged around the positive electrode layer 10A to separate the positive electrode layer 10A from the negative electrode terminal 40B.
  • the electrode separating portion 30B (negative electrode separating portion) is also arranged around the negative electrode layer 10B to separate the negative electrode layer 10B from the positive electrode terminal 40A.
  • the electrode separating portion 30 may be composed of one or more materials selected from the group consisting of, for example, a solid electrolyte, an insulating material, a mixture thereof, and the like.
  • the insulating material that can form the electrode separating portion 30 may be a material that does not conduct electricity, that is, a non-conductive material.
  • the insulating material may be, for example, a glass material, a ceramic material, or the like.
  • a glass material may be selected. The glass material is not particularly limited, but the glass material is soda lime glass, potash glass, borate glass, borosilicate glass, barium borate glass, subhydrate borate glass, barium borate glass, etc.
  • the ceramic material includes aluminum oxide (Al 2 O 3 ), boron nitride (BN), silicon dioxide (SiO 2 ), silicon nitride (Si 3 N 4 ), and zirconium oxide (ZrO). 2 )
  • At least one selected from the group consisting of aluminum nitride (AlN), silicon carbide (SiC) and barium titanate (BaTIO 3) can be mentioned.
  • the solid-state battery 200 of the present invention is generally provided with terminals (external terminals) 40 (40A, 40B).
  • positive and negative electrode terminals 40A and 40B are provided on the side surface of the solid-state battery so as to form a pair.
  • the positive electrode side terminal 40A connected to the positive electrode layer 10A and the negative electrode side terminal 40B connected to the negative electrode layer 10B are provided so as to form a pair.
  • the material of the terminal 40 is not particularly limited, and examples thereof include at least one conductive material selected from the group consisting of silver, gold, platinum, aluminum, copper, tin, and nickel.
  • Terminal 40 may further contain a sintering aid.
  • the sintering aid include materials similar to those of the sintering aid that may be contained in the positive electrode layer 10A.
  • Terminal 40 (40A, 40B) is, in one preferred embodiment, composed of a sintered body containing at least a conductive material and a sintering aid.
  • the solid-state battery 200 of the present invention usually further includes an outer layer material 60.
  • the outer layer material 60 can generally be formed on the outermost side of the solid-state battery and is for electrical, physical and / or chemical protection.
  • the material constituting the outer layer material 60 is preferably excellent in insulation, durability and / or moisture resistance, and is environmentally safe.
  • glass, ceramics, thermosetting resins, photocurable resins, and mixtures thereof may be used.
  • the same material as the glass material that can form the electrode separation portion can be used.
  • the ceramic material that can form the outer layer material the same material as the ceramic material that can form the electrode separation portion can be used.
  • the solid-state battery of the present invention can be produced by a printing method such as a screen printing method, a green sheet method using a green sheet, or a composite method thereof.
  • a printing method such as a screen printing method, a green sheet method using a green sheet, or a composite method thereof.
  • the printing method and the green sheet method are adopted for understanding the present invention will be described in detail, but the present invention is not limited to this method.
  • Forming process of solid-state battery laminated precursor there are several types of pastes such as positive electrode layer paste, negative electrode layer paste, solid electrolyte layer paste, positive electrode current collector layer paste, negative electrode current collector layer paste, electrode separation part paste, and outer layer material paste.
  • Use paste as ink That is, a solid-state battery laminated precursor having a predetermined structure is formed on the support substrate by applying and drying the paste by a printing method.
  • a solid-state battery lamination precursor corresponding to a predetermined solid-state battery structure can be formed on a substrate by sequentially laminating print layers having a predetermined thickness and pattern shape.
  • the type of the pattern forming method is not particularly limited as long as it is a method capable of forming a predetermined pattern, and is, for example, any one or more of the screen printing method and the gravure printing method.
  • the paste is an appropriately selected layer from the group consisting of positive electrode active material particles, negative electrode active material particles, conductive material, solid electrolyte material, current collector layer material, insulating material, and sintering aid, and other materials described above. It can be produced by wet-mixing a predetermined constituent material and an organic vehicle in which an organic material is dissolved in a solvent.
  • the positive electrode layer paste contains, for example, positive electrode active material particles, solid electrolyte materials, organic materials and solvents, and optionally a sintering aid.
  • the negative electrode layer paste contains, for example, negative electrode active material particles, solid electrolyte materials, organic materials and solvents, and optionally a sintering aid.
  • the solid electrolyte layer paste contains, for example, solid electrolyte materials, organic materials and solvents, and optionally sintering aids.
  • the paste for the positive electrode current collector contains, for example, a conductive material, an organic material and a solvent, and optionally a sintering aid.
  • the paste for the negative electrode current collector contains, for example, a conductive material, an organic material and a solvent, and optionally a sintering aid.
  • the electrode separation paste contains, for example, a solid electrolyte material, an insulating material, an organic material and a solvent, and optionally a sintering aid.
  • the outer layer paste contains, for example, an insulating material, an organic material and a solvent, and optionally a sintering aid.
  • the organic material contained in the paste is not particularly limited, but at least one polymer material selected from the group consisting of polyvinyl acetal resin, cellulose resin, polyacrylic resin, polyurethane resin, polyvinyl acetate resin, polyvinyl alcohol resin and the like can be used. Can be used.
  • the type of solvent is not particularly limited as long as it dissolves the organic material, and for example, one or two of organic solvents such as butyl acetate, N-methyl-pyrrolidone, toluene, terpineol and N-methyl-pyrrolidone. That is all.
  • any mixed dispersion method may be adopted for the preparation of the paste for the negative electrode layer, the paste for the solid electrolyte layer, the paste for the positive electrode current collector layer, the paste for the negative electrode current collector layer, the paste for the electrode separation portion, and the paste for the outer layer material. .. Specifically, a mixture containing a predetermined material is wet-mixed. For example, in wet mixing, a medium can be used, and specifically, a bead mill method, a ball mill method, a sand mill method, a visco mill method, or the like can be used. Further, for example, a wet mixing method that does not use media may be used, and a three-roll mill sand mill method, a high-pressure homogenizer method, a kneader dispersion method, or the like can be used.
  • the paste for the positive electrode layer is, for example, a combination of at least a "wet mixing method using media", preferably a "wet mixing method using media” and a “wet mixing method using media” (particularly, a planetary mixer dispersion method).
  • a mixture containing a predetermined material is mixed by a wet mixing method that does not use media, and then a paste for a positive electrode layer obtained by mixing by a wet mixing method that uses media is used.
  • the wet mixing method without using a medium is a mixing method in which a shearing force is applied to a mixture (for example, an object to be crushed), for example, a planetary stirring mixer such as a planetary mixer or a rotation / revolution mixer, and a three-roll mill.
  • a shearing force is applied to a mixture (for example, an object to be crushed), for example, a planetary stirring mixer such as a planetary mixer or a rotation / revolution mixer, and a three-roll mill.
  • a disperser that does not use media such as a high-pressure homogenizer and kneader.
  • the planetary mixer exerts a strong shearing force mainly by the precise spacing between the blades and between the blades and the inner surface of the tank by the planetary motion (eg planetary motion) of a plurality of (for example, two) frame-shaped blades. It is a mixing device.
  • the wet mixing method using media is a mixing method in which an impact force is applied to a mixture to be mixed (for example, an object to be crushed), and for example, a disperser using media such as a bead mill, a ball mill, a sand mill, or a visco mill is used.
  • a bead mill is a mixing device in which an impact force is mainly applied by beads energized by centrifugal force generated by high-speed rotation of a stirring mechanism (disk).
  • the constituent material of the beads is not particularly limited, and examples thereof include zirconia, alumina, steel, and glass.
  • the particle size of the beads is as described below.
  • the mixture containing a predetermined material is mixed with a planetary mixer and then dispersed by a bead mill, and the paste for producing a positive electrode layer is used to bring the mixture into contact with the above-mentioned solid electrolyte layer.
  • the unevenness of the surface of the positive electrode layer can be achieved.
  • the unevenness of the surface of the positive electrode layer can be controlled by, for example, adjusting the dispersion time and rotation speed of the bead mill and the diameter of the beads used in the bead mill. For example, the longer the dispersion time by the bead mill, the smaller the unevenness on the surface of the positive electrode layer.
  • the shorter the dispersion time the larger the unevenness on the surface of the positive electrode layer.
  • the higher the rotation speed of the bead mill the smaller the unevenness on the surface of the positive electrode layer.
  • the lower the rotation speed the larger the unevenness on the surface of the positive electrode layer.
  • the smaller the diameter of the beads used in the bead mill the smaller the unevenness on the surface of the positive electrode layer.
  • the larger the diameter the larger the unevenness on the surface of the positive electrode layer.
  • the support substrate is not particularly limited as long as it is a support capable of supporting each paste layer, but is, for example, a release film having a release treatment on one surface.
  • a substrate made of a polymer material such as polyethylene terephthalate can be used.
  • a substrate that exhibits heat resistance to the firing temperature may be used.
  • each green sheet can be formed from each of the above-mentioned pastes, and the obtained green sheets can be laminated to prepare a solid-state battery laminated precursor.
  • a positive electrode layer green sheet having a predetermined shape and thickness on each support substrate (for example, PET film) by heating the green sheet of each paste formed on the support substrate to 80 ° C. or higher and 150 ° C. or lower.
  • a negative electrode layer green sheet, a solid electrolyte layer green sheet, a positive electrode current collector layer green sheet, a negative electrode current collector layer green sheet, an electrode separation portion green sheet and / or an outer layer material green sheet are formed, respectively.
  • each green sheet is peeled off from the substrate.
  • the green sheet of each component is laminated in order along the lamination direction to form a solid-state battery lamination precursor.
  • a solid electrolyte layer, an insulating layer and / or a protective layer and the like may be provided on the side region of the electrode green sheet by screen printing.
  • the solid-state battery laminated precursor is subjected to firing.
  • the firing is carried out after removing the organic material by heating in a nitrogen gas atmosphere containing oxygen gas or in the atmosphere, for example, at 200 ° C. or higher and 600 ° C. or lower for 3 hours or more and 48 hours or less. It is carried out by heating in a nitrogen gas atmosphere or in the atmosphere, for example, at 300 ° C. or higher and 500 ° C. or lower for 10 to 120 minutes.
  • the firing may be performed while pressurizing the solid-state battery laminated precursor in the laminating direction and the direction perpendicular to the laminating direction.
  • Forming process of positive electrode terminal and negative electrode terminal For example, a conductive adhesive is used to bond the positive electrode terminals to the solid-state battery laminate, and a conductive adhesive is used to bond the negative electrode terminals to the solid-state battery laminate. As a result, each of the positive electrode terminal and the negative electrode terminal is attached to the solid-state battery laminate, so that the solid-state battery is completed.
  • the positive electrode terminal and the negative electrode terminal can be formed by adhering or applying the positive electrode terminal paste and the negative electrode terminal paste to the side surfaces of the solid-state battery laminate and sintering them.
  • the side surface of the solid-state battery laminate to which the paste for the positive electrode terminal is attached or applied is, for example, the side surface where the positive electrode current collector layer is exposed.
  • the side surface of the solid-state battery laminate to which the paste for the negative electrode terminal is attached or applied is, for example, the side surface where the negative electrode current collector layer is exposed.
  • Sintering can be carried out by heating in a nitrogen gas atmosphere or in the air, for example, at 150 ° C. or higher and 300 ° C. or lower for 10 minutes or longer and 120 minutes or shorter.
  • the positive electrode terminal paste and the negative electrode terminal paste contain a conductive material, an organic material and a solvent, and optionally a sintering aid.
  • the obtained mixture was dispersed in a bead mill using zirconia beads having a diameter of 5 mm for 30 minutes to obtain a paste for preparing a positive electrode layer. Subsequently, this paste was printed on a green sheet for producing a solid electrolyte layer and dried at 150 ° C. for 10 minutes to prepare a green sheet for producing a positive electrode layer as a precursor of the positive electrode layer.
  • terpineol was mixed so that the solid content became 30% by mass.
  • the obtained mixture was dispersed by a three-roll mill to obtain a paste for producing a main surface exterior material.
  • this paste was printed on a green sheet for producing a solid electrolyte layer and dried at 150 ° C. for 10 minutes to prepare a green sheet for producing an outer layer material as a precursor of the main surface outer layer material.
  • each green sheet was processed into the shapes shown in FIGS. 1 and 2, and then released from the release film. Subsequently, the green sheets were sequentially laminated so as to correspond to the configurations of the battery elements shown in FIGS. 1 and 2, and then thermocompression bonded at 100 ° C. for 10 minutes. As a result, a laminated body as a battery element precursor was obtained.
  • the center point means the center of gravity of the solid-state battery in the plan view shape when the solid-state battery is viewed in a two-dimensional plane from the stacking direction L.
  • the center of gravity is the point when a homogeneous material (for example, paper) is cut out by the contour of the plan view shape of the solid-state battery and supported by points in a balanced manner.
  • a homogeneous material for example, paper
  • the distance A is the distance from the reference line 15 to the positive electrode active material particles of the positive electrode layer 10A.
  • the center line is the axis of the solid-state battery, more specifically, a line parallel to the stacking direction L and a line passing through the above-mentioned center point in the plan view shape of the solid-state battery.
  • a charge / discharge test was performed on 18 solid-state batteries, and the ratio of solid-state batteries (non-defective products) in which short-circuit defects and charging defects did not occur was determined as the operating rate.
  • the charge / discharge test was performed in a temperature environment of 23 ° C. Specifically, the rated capacity of the battery is set to 1C, and the battery is charged with a constant current of 0.1C until it reaches 4.2V, and after reaching 4.2V, it is charged in the constant voltage mode until the current is reduced to 0.01C. (Constant current constant voltage charging). Then, the discharge was carried out at a constant current of 0.1 C until it reached 3.0 V (constant current discharge).
  • Short-circuit failure and charge failure were judged by the shape of the charge / discharge curve in the above charge / discharge test. More specifically, a short circuit failure is when the voltage hardly rises even after the start of the charge / discharge test, and a charge failure is when the voltage drops when the voltage exceeds a certain voltage and does not rise to 4.2V. Certified. ⁇ ; Operation rate was 90% or more (best); ⁇ ; The operation rate was 80% or more and less than 90% (good); ⁇ ; The operating rate was 70% or more and less than 80% (no problem in practical use); X; The operating rate was less than 70%.
  • the cross section of the positive electrode layer is observed with an optical microscope or an electron microscope, the cross section of 100 randomly selected particles is measured, and the average primary particle size is calculated. A line is drawn from one end of the cross section to the other, and the distance between two points, which is the maximum length, is defined as the particle size.
  • Example 2 In the step of producing the green sheet for producing the positive electrode layer, the solid-state battery was produced and evaluated by the same method as in Example 1 except that the dispersion time by the bead mill was doubled.
  • Example 3 In the step of producing the green sheet for producing the positive electrode layer, the solid-state battery was produced and evaluated by the same method as in Example 1 except that the dispersion time by the bead mill was quadrupled.
  • Example 4 A solid-state battery was produced and evaluated by the same method as in Example 1 except that lithium manganate (LiMnO4) (average particle size 5 ⁇ m) was used as the positive electrode active material in the process of producing the green sheet for producing the positive electrode layer. It was.
  • lithium manganate LiMnO4 (average particle size 5 ⁇ m)
  • LiMnO4 lithium manganate (average particle size 5 ⁇ m) was used as the positive electrode active material, and instead of the dispersion by the bead mill, the dispersion was performed twice by the three-roll ceramics roll mill. Except for the above, the solid-state battery was manufactured and evaluated by the same method as in Example 1.
  • Each solid-state battery of Examples 1 to 4 had the following relationship in cross-sectional view: The unevenness of the surface of the positive electrode layer in contact with the solid electrolyte layer is larger than the unevenness of the surface of the negative electrode layer in contact with the solid electrolyte layer; It is smaller than the unevenness of.
  • the solid-state battery of the present invention can be used in various fields where battery use or storage is expected. Although merely an example, the solid-state battery of the present invention can be used in the field of electronics mounting.
  • the solid-state battery of the present invention also includes electric / information / communication fields (for example, mobile phones, smartphones, laptop computers and digital cameras, activity meters, arm computers, electronic papers, wearable devices, RFID tags) in which mobile devices and the like are used.
  • Card-type electronic money, electrical / electronic equipment field including small electronic devices such as smart watches or mobile equipment field), household / small industrial applications (for example, electric tools, golf carts, household / nursing / industrial robots) Fields), large industrial applications (eg, forklifts, elevators, bay port cranes), transportation systems (eg, hybrid vehicles, electric vehicles, buses, trains, electrically assisted bicycles, electric motorcycles, etc.), power systems Applications (for example, various power generation, road conditioners, smart grids, general household installation type power storage systems, etc.), medical applications (medical equipment fields such as earphone hearing aids), pharmaceutical applications (fields such as dose management systems), and It can be used in the IoT field, space / deep sea applications (for example, fields such as space explorers and submersible research vessels).
  • household / small industrial applications for example, electric tools, golf carts, household / nursing / industrial robots) Fields
  • large industrial applications eg, forklifts, elevators, bay port cranes
  • transportation systems e

Abstract

The present invention provides a solid-state battery in which the concentration of electric field on peaks and valleys (in particular, peaks) of a positive electrode layer is suppressed, and as a result, short-circuit defects and charging defects are further suppressed even if charging and discharging are repeated under a high charging voltage (for example, 4.2 V). The present invention relates to a solid-state battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer, wherein in a cross-sectional view of the solid battery, an unevenness on the surface of the positive electrode in contact with the solid electrolyte layer is 1.0 μm or less, the unevenness being a value represented by a standard deviation of a plurality of measured values obtained by measuring the distance from a reference line to a positive electrode active material particle of the positive electrode layer, the reference line being the interface between the negative electrode layer and the solid electrolyte layer.

Description

固体電池Solid state battery
 本発明は、固体電池に関する。 The present invention relates to a solid state battery.
 従前より、繰り返しの充放電が可能な二次電池が様々な用途に用いられている。例えば、二次電池は、スマートフォンおよびノートパソコン等の電子機器の電源として用いられたりする。 Conventionally, secondary batteries that can be repeatedly charged and discharged have been used for various purposes. For example, a secondary battery may be used as a power source for electronic devices such as smartphones and notebook computers.
 二次電池においては、充放電に寄与するイオン移動のための媒体として液体の電解質が一般に使用されている。つまり、いわゆる電解液が二次電池に用いられている。しかしながら、そのような二次電池においては、電解液の漏出防止の点で安全性が一般に求められる。また、電解液に用いられる有機溶媒等は可燃性物質ゆえ、その点でも安全性が求められる。 In secondary batteries, a liquid electrolyte is generally used as a medium for ion transfer that contributes to charging and discharging. That is, a so-called electrolytic solution is used in the secondary battery. However, in such a secondary battery, safety is generally required in terms of preventing leakage of the electrolytic solution. Further, since the organic solvent and the like used in the electrolytic solution are flammable substances, safety is also required in that respect as well.
 そこで、電解液に代えて、固体電解質を用いた固体電池について研究が進められている(例えば、特許文献1)。 Therefore, research is underway on a solid-state battery that uses a solid electrolyte instead of the electrolytic solution (for example, Patent Document 1).
特開2016-035867号公報Japanese Unexamined Patent Publication No. 2016-035867
 本発明の発明者等は、従来の固体電池を用いて、高充電電圧(例えば4.2V)下で充放電を繰り返すと、ショート不良および/または充電不良が発生するという新たな問題を見い出した。このような問題は、従来の固体電池において、正極層の凹凸(特に凸部)に電界が過度に集中するために生じるものと考えられる。 The inventors of the present invention have found a new problem that short-circuit defects and / or charging defects occur when charging and discharging are repeated under a high charging voltage (for example, 4.2 V) using a conventional solid-state battery. .. It is considered that such a problem occurs because the electric field is excessively concentrated on the unevenness (particularly the convex portion) of the positive electrode layer in the conventional solid-state battery.
 本発明は、高充電電圧(例えば4.2V)下で充放電を繰り返しても、正極層の凹凸(特に凸部)への電界集中を十分に抑制し、結果としてショート不良および充電不良をより十分に抑制する固体電池を提供することを目的とする。 According to the present invention, even if charging and discharging are repeated under a high charging voltage (for example, 4.2V), the electric field concentration on the unevenness (particularly the convex portion) of the positive electrode layer is sufficiently suppressed, and as a result, short-circuit defects and charging defects are further suppressed. An object of the present invention is to provide a solid-state battery that is sufficiently suppressed.
 本発明は、
 正極層、負極層、および該正極層と該負極層との間に介在する固体電解質層を含む固体電池であって、
 前記固体電池の断面視において、前記固体電解質層に接する前記正極層表面の凹凸は1.0μm以下である、固体電池に関する。
The present invention
A solid-state battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer.
The present invention relates to a solid-state battery in which the unevenness of the surface of the positive electrode layer in contact with the solid electrolyte layer is 1.0 μm or less in a cross-sectional view of the solid-state battery.
 本発明の好ましい実施態様は、
 正極層、負極層、および該正極層と該負極層との間に介在する固体電解質層、ならびに該正極層の前記固体電解質層と接触する面と反対側の面に配置される正極集電層を含む固体電池であって、
 前記正極層は少なくともリチウム遷移金属複合酸化物を含み、
 前記負極層と前記正極集電層は少なくとも炭素材料を含み、
 前記固体電池の断面視において、前記固体電解質層に接する前記正極層表面の凹凸は1.0μm以下である、固体電池に関する。
A preferred embodiment of the present invention is
A positive electrode layer, a negative electrode layer, a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer, and a positive electrode current collector layer arranged on a surface of the positive electrode layer opposite to the surface in contact with the solid electrolyte layer. Is a solid-state battery containing
The positive electrode layer contains at least a lithium transition metal composite oxide and contains.
The negative electrode layer and the positive electrode current collector layer contain at least a carbon material and contain at least a carbon material.
The present invention relates to a solid-state battery in which the unevenness of the surface of the positive electrode layer in contact with the solid electrolyte layer is 1.0 μm or less in a cross-sectional view of the solid-state battery.
 本発明に係る固体電池は、高充電電圧(例えば4.2V)下で充放電を繰り返しても、ショート不良および充電不良をより十分に抑制する。 The solid-state battery according to the present invention more sufficiently suppresses short-circuit defects and charging defects even when charging and discharging are repeated under a high charging voltage (for example, 4.2 V).
図1は、本発明の一実施形態に係る固体電池を模式的に示した外観斜視図である。FIG. 1 is an external perspective view schematically showing a solid-state battery according to an embodiment of the present invention. 図2は、図1の固体電池のA-A断面を矢印方向で見たときの模式的断面図である。FIG. 2 is a schematic cross-sectional view of the solid-state battery of FIG. 1 when viewed in the direction of an arrow. 図3は、本発明の一実施態様に係る固体電池において、積層方向Lおよび幅方向Wに平行な面であって、当該固体電池の平面視形状における中央点を通る断面の顕微鏡写真である。FIG. 3 is a photomicrograph of a solid-state battery according to an embodiment of the present invention, which is a plane parallel to the stacking direction L and the width direction W and passes through a central point in the plan view shape of the solid-state battery. 図4は、本発明で規定する「正極層表面の凹凸」のために測定される「基準線から正極層の正極活物質粒子までの距離」を説明するための、固体電池の断面の顕微鏡写真であって、特に当該距離の基準線(起点)を説明するための顕微鏡写真である。FIG. 4 is a photomicrograph of a cross section of a solid-state battery for explaining the “distance from the reference line to the positive electrode active material particles of the positive electrode layer” measured due to the “unevenness of the surface of the positive electrode layer” defined in the present invention. In particular, it is a micrograph for explaining the reference line (starting point) of the distance. 図5は、本発明で規定する「正極層表面の凹凸」のために測定される「基準線から正極層の正極活物質粒子までの距離」を説明するための、固体電池の断面の顕微鏡写真であって、特に当該距離の終点を説明するための顕微鏡写真である。FIG. 5 is a photomicrograph of a cross section of a solid-state battery for explaining the “distance from the reference line to the positive electrode active material particles of the positive electrode layer” measured due to the “unevenness of the surface of the positive electrode layer” defined in the present invention. In particular, it is a photomicrograph for explaining the end point of the distance.
[固体電池]
 以下、本発明の「固体電池」を詳細に説明する。必要に応じて図面を参照して説明を行うものの、図示する内容は、本発明の理解のために模式的かつ例示的に示したにすぎず、外観や寸法比などは実物と異なり得る。
[Solid-state battery]
Hereinafter, the "solid-state battery" of the present invention will be described in detail. Although the description will be given with reference to the drawings as necessary, the contents shown are merely schematic and exemplary for the purpose of understanding the present invention, and the appearance, dimensional ratio, and the like may differ from the actual product.
 本発明でいう「固体電池」とは、広義にはその構成要素が固体から構成されている電池を指し、狭義にはその構成要素(特に好ましくは全ての構成要素)が固体から構成されている全固体電池を指す。ある好適な態様では、本発明における固体電池は、電池構成単位を成す各層が互いに積層するように構成された積層型固体電池であり、好ましくはそのような各層が焼結体から成っている。なお、「固体電池」は、充電および放電の繰り返しが可能な、いわゆる「二次電池」のみならず、放電のみが可能な「一次電池」をも包含する。本発明のある好適な態様では「固体電池」は二次電池である。「二次電池」は、その名称に過度に拘泥されるものではなく、例えば、「蓄電デバイス」などの電気化学デバイスも包含し得る。 The "solid-state battery" as used in the present invention refers to a battery whose components are composed of solids in a broad sense, and in a narrow sense, its components (particularly preferably all components) are composed of solids. Refers to an all-solid-state battery. In one preferred embodiment, the solid-state battery in the present invention is a laminated solid-state battery in which the layers forming the battery building unit are laminated to each other, and preferably such layers are made of a sintered body. The "solid-state battery" includes not only a so-called "secondary battery" capable of repeating charging and discharging, but also a "primary battery" capable of only discharging. In one preferred embodiment of the invention, the "solid-state battery" is a secondary battery. The "secondary battery" is not overly bound by its name and may also include an electrochemical device such as a "storage device".
 本明細書でいう「平面視」とは、固体電池を構成する各層の積層方向に基づく厚み方向に沿って対象物を上側または下側から捉えた場合の形態に基づいており、平面図(上面図および下面図)を包含する。また、本明細書でいう「断面視」とは、固体電池を構成する各層の積層方向に基づく厚み方向に対して略垂直な方向から捉えた場合の形態(端的にいえば、厚み方向に平行な面で切り取った場合の形態)に基づいており、断面図を包含する。特に「断面視」は、固体電池を構成する各層の積層方向に基づく厚み方向に平行な面であって、正極端子および負極端子を通る面で切り取った場合の形態に基づいていてもよい。本明細書で直接的または間接的に用いる“上下方向”および“左右方向”は、それぞれ図中における上下方向および左右方向に相当する。特記しない限り、同じ符号または記号は、同じ部材・部位または同じ意味内容を示すものとする。ある好適な態様では、鉛直方向下向き(すなわち、重力が働く方向)が「下方向」に相当し、その逆向きが「上方向」に相当すると捉えることができる。 The "plan view" referred to in the present specification is based on a form in which an object is viewed from above or below along a thickness direction based on a stacking direction of each layer constituting a solid-state battery, and is a plan view (top view). (Figure and bottom view). Further, the “cross-sectional view” referred to in the present specification is a form when viewed from a direction substantially perpendicular to the thickness direction based on the stacking direction of each layer constituting the solid-state battery (in short, parallel to the thickness direction). It is based on the form when cut out on a flat surface) and includes a cross-sectional view. In particular, the "cross-sectional view" may be based on a surface parallel to the thickness direction based on the stacking direction of each layer constituting the solid-state battery, and may be based on a form cut off at a surface passing through the positive electrode terminal and the negative electrode terminal. The "vertical direction" and "horizontal direction" used directly or indirectly in the present specification correspond to the vertical direction and the horizontal direction in the drawings, respectively. Unless otherwise specified, the same reference numerals or symbols shall indicate the same members / parts or the same meanings. In one preferred embodiment, it can be considered that the vertical downward direction (that is, the direction in which gravity acts) corresponds to the "downward direction" and the opposite direction corresponds to the "upward direction".
 本発明に係る固体電池200は、例えば、図1、図2および図3に示すように、正極層10A、負極層10B、およびそれらの間に介在する固体電解質層20を含む。本発明に係る固体電池200は通常、
 正極層10A、負極層10B、およびそれらの間に介在する固体電解質層20から成る電池構成単位を積層方向Lに沿って少なくとも1つ備える固体電池積層体100;
 固体電池積層体100の対向する側面にそれぞれ設けられた正極端子40Aおよび負極端子40B
を有して成る。固体電池積層体100において、正極層10Aおよび負極層10Bは固体電解質層20を介して交互に積層されている。図1は、本発明の一実施形態に係る固体電池を模式的に示した外観斜視図である。図2は、図1の固体電池のA-A断面を矢印方向で見たときの模式的断面図である。図3は、本発明の一実施態様に係る固体電池において、積層方向Lおよび幅方向Wに平行な面であって、当該固体電池の平面視形状における中央点を通る断面の顕微鏡写真である。
The solid-state battery 200 according to the present invention includes, for example, a positive electrode layer 10A, a negative electrode layer 10B, and a solid electrolyte layer 20 interposed between them, as shown in FIGS. 1, 2 and 3, for example. The solid-state battery 200 according to the present invention is usually
A solid-state battery laminate 100 including at least one battery structural unit including a positive electrode layer 10A, a negative electrode layer 10B, and a solid electrolyte layer 20 interposed between them along the stacking direction L;
Positive electrode terminals 40A and negative electrode terminals 40B provided on opposite side surfaces of the solid-state battery laminate 100, respectively.
Consists of having. In the solid-state battery laminate 100, the positive electrode layer 10A and the negative electrode layer 10B are alternately laminated via the solid electrolyte layer 20. FIG. 1 is an external perspective view schematically showing a solid-state battery according to an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of the solid-state battery of FIG. 1 when viewed in the direction of an arrow. FIG. 3 is a photomicrograph of a solid-state battery according to an embodiment of the present invention, which is a plane parallel to the stacking direction L and the width direction W and passes through a central point in the plan view shape of the solid-state battery.
 固体電池200は、それを構成する各層が焼成によって形成されるところ、正極層10A、負極層10Bおよび固体電解質層20などが焼結層を成している。好ましくは、正極層10A、負極層10Bおよび固体電解質層20は、それぞれが互いに一体焼成されており、それゆえ電池構成単位が一体焼結体を成している。 In the solid-state battery 200, where each layer constituting the solid-state battery 200 is formed by firing, the positive electrode layer 10A, the negative electrode layer 10B, the solid electrolyte layer 20, and the like form a sintered layer. Preferably, the positive electrode layer 10A, the negative electrode layer 10B, and the solid electrolyte layer 20 are integrally fired with each other, and therefore the battery constituent units form an integrally sintered body.
(正極層)
 正極層10Aは、少なくとも正極活物質を含んで成る電極層10である。正極層10Aは、更に固体電解質および/または導電性材料を含んで成っていてよい。ある好適な態様では、正極層は、正極活物質および固体電解質を少なくとも含む焼結体から構成されている。正極層10Aは、図2および図3に示すように、正極集電層11を有していてもよいし、または有さなくてもよい。
(Positive electrode layer)
The positive electrode layer 10A is an electrode layer 10 including at least a positive electrode active material. The positive electrode layer 10A may further contain a solid electrolyte and / or a conductive material. In one preferred embodiment, the positive electrode layer is composed of a sintered body containing at least a positive electrode active material and a solid electrolyte. As shown in FIGS. 2 and 3, the positive electrode layer 10A may or may not have the positive electrode current collecting layer 11.
 正極層10Aにおいて固体電解質層20に接する表面の凹凸は、固体電池の断面視において、1.0μm以下である。固体電解質層20に接する正極層表面の凹凸を上記範囲内とすることにより、正極層10Aと固体電解質層20との境界部における正極層10Aの凹凸(特に凸部)への電界集中をより十分に抑えることができ、その結果、固体電池の動作率を有意に向上させることができる。当該凹凸が1.0μmを超えると、正極層と固体電解質層との境界部における正極層の凹凸(特に凸部)への電界集中を十分に抑えることができず、固体電池の動作率が低下する。 The unevenness of the surface of the positive electrode layer 10A in contact with the solid electrolyte layer 20 is 1.0 μm or less in the cross-sectional view of the solid-state battery. By setting the unevenness of the surface of the positive electrode layer in contact with the solid electrolyte layer 20 within the above range, the electric field concentration on the unevenness (particularly the convex portion) of the positive electrode layer 10A at the boundary between the positive electrode layer 10A and the solid electrolyte layer 20 is more sufficient. As a result, the operating rate of the solid-state battery can be significantly improved. If the unevenness exceeds 1.0 μm, the electric field concentration on the unevenness (particularly the convex portion) of the positive electrode layer at the boundary between the positive electrode layer and the solid electrolyte layer cannot be sufficiently suppressed, and the operating rate of the solid-state battery decreases. To do.
 固体電解質層20に接する正極層表面の凹凸の下限値は特に限定されず、当該凹凸は通常は0.1μm以上、特に0.5μm以上である。 The lower limit of the unevenness on the surface of the positive electrode layer in contact with the solid electrolyte layer 20 is not particularly limited, and the unevenness is usually 0.1 μm or more, particularly 0.5 μm or more.
 固体電解質層20に接する正極層表面の凹凸は、正極層の凹凸への電界集中のより十分な抑制の観点から、好ましくは0.65μm以上0.95μm以下であり、より好ましくは0.70μm以上0.82μm以下である。固体電解質層に接する正極層表面の凹凸は通常、固体電解質層に接する負極層表面の凹凸よりも大きく、かつ正極集電層に接する正極層表面の凹凸よりも小さい。 The unevenness of the surface of the positive electrode layer in contact with the solid electrolyte layer 20 is preferably 0.65 μm or more and 0.95 μm or less, more preferably 0.70 μm or more, from the viewpoint of more sufficiently suppressing the concentration of the electric field on the unevenness of the positive electrode layer. It is 0.82 μm or less. The unevenness of the surface of the positive electrode layer in contact with the solid electrolyte layer is usually larger than the unevenness of the surface of the negative electrode layer in contact with the solid electrolyte layer, and smaller than the unevenness of the surface of the positive electrode layer in contact with the positive electrode current collector layer.
 固体電解質層20に接する正極層10A表面の凹凸は、図4および図5に示すように、正極層10Aと負極層10Bとの間に配置される固体電解質層20において、負極層10Bと固体電解質層20との界面を基準線15とし、当該基準線15から正極層10Aの正極活物質粒子までの距離(図4中の矢印)を1μm間隔で測定したときの、それらの複数の測定値の標準偏差で表される値である。すなわち、基準線15から正極活物質粒子までの距離(図4中の矢印)の複数の測定値に関する標準偏差(すなわちバラツキ)を正極層10A表面の凹凸を表すパラメータとして用いている。例えば、当該距離の複数の測定値に関する標準偏差(バラツキ)が小さいほど、正極層表面の凹凸は小さい。また例えば、当該標準偏差(バラツキ)が大きいほど、正極層表面の凹凸は大きい。基準線15は、断面視において負極層10Bと固体電解質層20との界面を規定する線であり、通常は直線形状で示される。図4は、本発明で規定する「正極層表面の凹凸」のために測定される「基準線から正極層の正極活物質粒子までの距離」を説明するための、固体電池の断面の顕微鏡写真であって、特に当該距離の基準線(起点)を説明するための顕微鏡写真である。図5は、本発明で規定する「正極層表面の凹凸」のために測定される「基準線から正極層の正極活物質粒子までの距離」を説明するための、固体電池の断面の顕微鏡写真であって、特に当該距離の終点を説明するための顕微鏡写真である。 As shown in FIGS. 4 and 5, the unevenness of the surface of the positive electrode layer 10A in contact with the solid electrolyte layer 20 is such that the negative electrode layer 10B and the solid electrolyte are formed in the solid electrolyte layer 20 arranged between the positive electrode layer 10A and the negative electrode layer 10B. The interface with the layer 20 is set as the reference line 15, and the distances (arrows in FIG. 4) from the reference line 15 to the positive electrode active material particles of the positive electrode layer 10A are measured at 1 μm intervals. It is a value expressed by the standard deviation. That is, the standard deviation (that is, variation) with respect to a plurality of measured values of the distance from the reference line 15 to the positive electrode active material particles (arrows in FIG. 4) is used as a parameter representing the unevenness of the surface of the positive electrode layer 10A. For example, the smaller the standard deviation (variation) with respect to a plurality of measured values of the distance, the smaller the unevenness on the surface of the positive electrode layer. Further, for example, the larger the standard deviation (variation), the larger the unevenness on the surface of the positive electrode layer. The reference line 15 is a line that defines the interface between the negative electrode layer 10B and the solid electrolyte layer 20 in a cross-sectional view, and is usually shown in a linear shape. FIG. 4 is a photomicrograph of a cross section of a solid-state battery for explaining the “distance from the reference line to the positive electrode active material particles of the positive electrode layer” measured due to the “unevenness of the surface of the positive electrode layer” defined in the present invention. In particular, it is a micrograph for explaining the reference line (starting point) of the distance. FIG. 5 is a photomicrograph of a cross section of a solid-state battery for explaining the “distance from the reference line to the positive electrode active material particles of the positive electrode layer” measured due to the “unevenness of the surface of the positive electrode layer” defined in the present invention. In particular, it is a photomicrograph for explaining the end point of the distance.
 詳しくは、基準線15から正極層10Aの正極活物質粒子までの距離(図4中の矢印)は、基準線15を起点とした垂線を正極層10Aに向けて引き、最初に接する正極活物質粒子(正極層10A)(終点)までの距離である。このような距離を、図5に示すように、1μm間隔で測定し、それらの測定値の標準偏差を求める。当該距離の測定に際しては、図5において、矢印16Bで示されるように比較的長く測定される距離もあれば、矢印16Aで示されるように比較的短く測定される距離も存在する。基準線15を起点とした垂線は、正極層10Aと固体電解質層20とが接する面に対して垂直な線であり、通常は負極層10Bと固体電解質層20とが接する面に対して垂直な線であってもよいし、かつ/または積層方向Lに平行な線であってもよい。 Specifically, the distance from the reference line 15 to the positive electrode active material particles of the positive electrode layer 10A (arrows in FIG. 4) is determined by drawing a vertical line starting from the reference line 15 toward the positive electrode layer 10A and first contacting the positive electrode active material. The distance to the particles (positive electrode layer 10A) (end point). As shown in FIG. 5, such distances are measured at 1 μm intervals, and the standard deviations of those measured values are obtained. In measuring the distance, in FIG. 5, some distances are measured relatively long as shown by arrow 16B, and some distances are measured relatively short as shown by arrow 16A. The perpendicular line starting from the reference line 15 is a line perpendicular to the surface where the positive electrode layer 10A and the solid electrolyte layer 20 are in contact with each other, and is usually perpendicular to the surface where the negative electrode layer 10B and the solid electrolyte layer 20 are in contact with each other. It may be a line and / or a line parallel to the stacking direction L.
 より詳しくは、基準線15から正極層10Aの正極活物質粒子までの距離(以下、「距離A」ということがある)の測定は、得られた固体電池200の中央部において行う。中央部とは平面視における中央部という意味であり、幅方向Wおよび奥行方向Pにおける中央部のことである。幅方向Wは、正極端子40Aと負極端子40Bとの最短距離を規定する方向であり、特に固体電池200が直方体形状を有する場合、正極端子40Aと負極端子40Bとの最短距離を規定する方向に平行な方向であって、積層方向Lに対して垂直な方向のことである。直方体形状は、いわゆる立方体形状を包含する。奥行方向Pは、正極端子40Aおよび負極端子40Bに平行な方向であり、特に固体電池200が直方体形状を有する場合、積層方向Lに対しても、幅方向Wに対しても垂直な方向のことである。 More specifically, the distance from the reference line 15 to the positive electrode active material particles of the positive electrode layer 10A (hereinafter, may be referred to as “distance A”) is measured in the central portion of the obtained solid-state battery 200. The central portion means a central portion in a plan view, and is a central portion in the width direction W and the depth direction P. The width direction W is a direction that defines the shortest distance between the positive electrode terminal 40A and the negative electrode terminal 40B, and particularly in a direction that defines the shortest distance between the positive electrode terminal 40A and the negative electrode terminal 40B when the solid-state battery 200 has a rectangular shape. It is a parallel direction and is a direction perpendicular to the stacking direction L. The rectangular parallelepiped shape includes a so-called cubic shape. The depth direction P is a direction parallel to the positive electrode terminal 40A and the negative electrode terminal 40B, and particularly when the solid-state battery 200 has a rectangular parallelepiped shape, it is a direction perpendicular to both the stacking direction L and the width direction W. Is.
 さらに詳しくは、距離Aの測定に際しては、固体電池200において、積層方向Lおよび幅方向Wに平行な面であって、固体電池200の平面視形状における中央点を通る面の断面写真(例えば図3)を撮影する。中央点とは固体電池を積層方向Lから二次元の平面でとらえたときの当該固体電池の平面視形状における重心を意味する。重心は、等質の材料(例えば、紙)を当該固体電池の平面視形状の輪郭で切り取り、均衡をとって点で支えたときの当該点である。この断面写真において、倍率3000倍となるように、正極層10Aと負極層10Bとの間に配置される固体電解質層20の中央部近傍を拡大する。当該拡大断面写真(例えば図5)において、中央線から右方向および左方向に20μm幅ずつ1μm間隔で前記した距離Aを測定し、合計41個の測定値を得、これらの値の標準偏差を求める。中央線とは、固体電池の軸線のことであり、詳しくは積層方向Lに平行な線であって、かつ固体電池の平面視形状における上記した中央点を通る線である。 More specifically, when measuring the distance A, a cross-sectional photograph (for example, FIG.) of a surface of the solid-state battery 200 that is parallel to the stacking direction L and the width direction W and passes through the center point in the plan view shape of the solid-state battery 200. 3) is photographed. The center point means the center of gravity of the solid-state battery in the plan view shape when the solid-state battery is viewed in a two-dimensional plane from the stacking direction L. The center of gravity is the point when a homogeneous material (for example, paper) is cut out by the contour of the plan view shape of the solid-state battery and supported by points in a balanced manner. In this cross-sectional photograph, the vicinity of the central portion of the solid electrolyte layer 20 arranged between the positive electrode layer 10A and the negative electrode layer 10B is enlarged so as to have a magnification of 3000 times. In the enlarged cross-sectional photograph (for example, FIG. 5), the distance A described above was measured at 1 μm intervals of 20 μm width from the center line to the right and left to obtain a total of 41 measured values, and the standard deviation of these values was calculated. Ask. The center line is the axis of the solid-state battery, more specifically, a line parallel to the stacking direction L and a line passing through the above-mentioned center point in the plan view shape of the solid-state battery.
 本発明においては、上記した固体電解質層に接する正極層表面の凹凸は、正極層10Aと負極層10Bとの間に配置される全ての固体電解質層20のうち、積層方向Lについて中央に配置される1つの固体電解質層20と当該固体電解質層に接する正極層10Aとの間で満たされていればよい。 In the present invention, the unevenness of the surface of the positive electrode layer in contact with the solid electrolyte layer described above is arranged in the center in the stacking direction L among all the solid electrolyte layers 20 arranged between the positive electrode layer 10A and the negative electrode layer 10B. It suffices if it is filled between one solid electrolyte layer 20 and the positive electrode layer 10A in contact with the solid electrolyte layer.
 積層方向Lについて中央に配置される1つの固体電解質層20とは、例えば、固体電池において積層方向Lで積層される固体電解質層20の合計数が2k(kは任意の自然数)のとき、下からk+1番目の固体電解質層のことである。具体的には、図2の固体電池(合計数=2)においては、2つの固体電解質層20のうち、上位の固体電解質層20と当該固体電解質層のすぐ下位の正極層10Aとの間で上記した固体電解質層に接する正極層表面の凹凸が満たされていればよい。
 また例えば、固体電池が有する固体電解質層20の合計数が2k+1(kは任意の自然数)のとき、積層方向Lについて中央に配置される1つの固体電解質層20とは、下からk+1番目の固体電解質層のことである。
 また例えば、固体電池が有する固体電解質層20の合計数が1のとき、積層方向Lについて中央に配置される1つの固体電解質層20とは、当該1つの固体電解質層のことである。
The one solid electrolyte layer 20 arranged in the center with respect to the stacking direction L is, for example, lower when the total number of the solid electrolyte layers 20 laminated in the stacking direction L in the solid-state battery is 2k (k is an arbitrary natural number). It is the k + 1st solid electrolyte layer from. Specifically, in the solid-state battery of FIG. 2 (total number = 2), among the two solid electrolyte layers 20, between the upper solid electrolyte layer 20 and the positive electrode layer 10A immediately below the solid electrolyte layer. It suffices if the unevenness of the surface of the positive electrode layer in contact with the solid electrolyte layer described above is satisfied.
Further, for example, when the total number of the solid electrolyte layers 20 contained in the solid battery is 2k + 1 (k is an arbitrary natural number), the one solid electrolyte layer 20 arranged in the center in the stacking direction L is the k + 1th solid from the bottom. It is an electrolyte layer.
Further, for example, when the total number of the solid electrolyte layers 20 included in the solid battery is 1, one solid electrolyte layer 20 arranged at the center in the stacking direction L is the one solid electrolyte layer.
 上記した固体電解質層に接する正極層表面の凹凸は、正極層の凹凸への電界集中のより十分な抑制の観点から、固体電池において、正極層10Aと負極層10Bとの間に配置される全ての固体電解質層20と当該固体電解質層に接する正極層10Aとの間で満たされていることが好ましい。 The irregularities on the surface of the positive electrode layer in contact with the solid electrolyte layer described above are all arranged between the positive electrode layer 10A and the negative electrode layer 10B in the solid-state battery from the viewpoint of more sufficiently suppressing the electric field concentration on the irregularities of the positive electrode layer. It is preferable that the solid electrolyte layer 20 is filled between the solid electrolyte layer 20 and the positive electrode layer 10A in contact with the solid electrolyte layer.
 固体電解質層に接する正極層表面の凹凸は、正極層の製造時において、後で詳述するように、正極層作製用ペーストを調製する際の混合条件等を調整することにより、制御することができる。 The unevenness of the surface of the positive electrode layer in contact with the solid electrolyte layer can be controlled during the production of the positive electrode layer by adjusting the mixing conditions and the like when preparing the paste for producing the positive electrode layer, as will be described in detail later. it can.
 正極層10Aにおいて正極活物質の平均一次粒径は特に限定されず、通常は1.0μm以上20μm以下であり、上記した固体電解質層に接する正極層表面の凹凸を達成する観点から、好ましくは1.5μm以上6μm以下である。 In the positive electrode layer 10A, the average primary particle size of the positive electrode active material is not particularly limited, and is usually 1.0 μm or more and 20 μm or less, and is preferably 1 from the viewpoint of achieving the unevenness of the surface of the positive electrode layer in contact with the solid electrolyte layer described above. It is 5.5 μm or more and 6 μm or less.
 正極層10Aにおける正極活物質の平均一次粒径は、断面写真において、任意の100個の正極活物質粒子の測定値から算出された平均値を用いている。 For the average primary particle size of the positive electrode active material in the positive electrode layer 10A, the average value calculated from the measured values of any 100 positive electrode active material particles is used in the cross-sectional photograph.
 正極層10Aに含まれる正極活物質は、固体電池において電子の受け渡しに関与する物質である。固体電解質を介した正極層と負極層との間におけるイオンの移動(伝導)と、外部回路を介した正極層と負極層との間における電子の受け渡しが行われることで充放電がなされる。正極層は特にリチウムイオンまたはナトリウムイオンを吸蔵放出可能な層であることが好ましい。つまり、本発明の固体電池は、固体電解質を介してリチウムイオンまたはナトリウムイオンが正極層と負極層との間で移動して電池の充放電が行われる全固体型二次電池であることが好ましい。 The positive electrode active material contained in the positive electrode layer 10A is a substance involved in the transfer of electrons in a solid-state battery. Charging and discharging are performed by the movement (conduction) of ions between the positive electrode layer and the negative electrode layer via the solid electrolyte and the transfer of electrons between the positive electrode layer and the negative electrode layer via an external circuit. The positive electrode layer is particularly preferably a layer capable of occluding and releasing lithium ions or sodium ions. That is, the solid-state battery of the present invention is preferably an all-solid-state secondary battery in which lithium ions or sodium ions move between the positive electrode layer and the negative electrode layer via a solid electrolyte to charge and discharge the battery. ..
 正極活物質の構成材料は、特に限定されず、例えば、リチウム含有化合物である。リチウム含有化合物の種類は、特に限定されないが、例えば、リチウム遷移金属複合酸化物およびリチウム遷移金属リン酸化合物である。リチウム遷移金属複合酸化物は、リチウムと1種類または2種類以上の遷移金属元素とを構成元素として含む酸化物の総称である。リチウム遷移金属リン酸化合物は、リチウムと1種類または2種類以上の遷移金属元素とを構成元素として含むリン酸化合物の総称である。遷移金属元素の種類は、特に限定されないが、例えば、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)および鉄(Fe)などである。 The constituent material of the positive electrode active material is not particularly limited, and is, for example, a lithium-containing compound. The type of the lithium-containing compound is not particularly limited, and is, for example, a lithium transition metal composite oxide and a lithium transition metal phosphoric acid compound. Lithium transition metal composite oxide is a general term for oxides containing lithium and one or more types of transition metal elements as constituent elements. Lithium transition metal phosphoric acid compound is a general term for phosphoric acid compounds containing lithium and one or more kinds of transition metal elements as constituent elements. The type of transition metal element is not particularly limited, and is, for example, cobalt (Co), nickel (Ni), manganese (Mn), iron (Fe), and the like.
 リチウム遷移金属複合酸化物は、例えば、LiM1OおよびLiM2Oのそれぞれで表される化合物などである。リチウム遷移金属リン酸化合物は、例えば、LiM3POで表される化合物などである。ただし、M1、M2およびM3のそれぞれは、1種類または2種類以上の遷移金属元素である。x、yおよびzのそれぞれの値は、任意である。 The lithium transition metal composite oxide is, for example, a compound represented by Li x M1O 2 and Li y M2O 4, respectively. Lithium transition metal phosphate compound, for example, a compound represented by Li z M3PO 4, and the like. However, each of M1, M2 and M3 is one kind or two or more kinds of transition metal elements. The respective values of x, y and z are arbitrary.
 具体的には、リチウム遷移金属複合酸化物は、例えば、LiCoO(すなわちコバルト酸リチウム)、LiNiO、LiVO、LiCrO、LiMn(すなわちマンガン酸リチウム)、LiCo1/3Ni1/3Mn1/3、およびLiNi0.5Mn1.5などである。また、リチウム遷移金属リン酸化合物は、例えば、LiFePO、LiCoPOおよびLiMnPOなどである。 Specifically, the lithium transition metal composite oxide is, for example, LiCoO 2 (that is, lithium cobalt oxide), LiNiO 2 , LiVO 2 , LiCrO 2 , LiMn 2 O 4 (that is, lithium manganate), LiCo 1/3 Ni 1 / 3 Mn 1/3 O 2 and LiNi 0.5 Mn 1.5 O 4 and the like. Further, the lithium transition metal phosphoric acid compound is, for example, LiFePO 4 , LiCoPO 4, LiMnPO 4, or the like.
 また、ナトリウムイオンを吸蔵放出可能な正極活物質としては、ナシコン型構造を有するナトリウム含有リン酸化合物、オリビン型構造を有するナトリウム含有リン酸化合物、ナトリウム含有層状酸化物およびスピネル型構造を有するナトリウム含有酸化物等から成る群から選択される少なくとも1種が挙げられる。 Further, as the positive electrode active material capable of occluding and releasing sodium ions, a sodium-containing phosphoric acid compound having a pearcon-type structure, a sodium-containing phosphoric acid compound having an olivine-type structure, a sodium-containing layered oxide, and a sodium-containing material having a spinel-type structure are contained. At least one selected from the group consisting of oxides and the like can be mentioned.
 正極活物質は、正極層の凹凸への電界集中のより十分な抑制の観点から、好ましくはリチウム遷移金属複合酸化物(特にコバルト酸リチウム、マンガン酸リチウム)、より好ましくはコバルト酸リチウムである。 The positive electrode active material is preferably a lithium transition metal composite oxide (particularly lithium cobalt oxide or lithium manganate), and more preferably lithium cobalt oxide, from the viewpoint of more sufficiently suppressing electric field concentration on the unevenness of the positive electrode layer.
 正極層10Aにおける正極活物質の含有量は通常、正極層の全量に対して、50質量%以上(すなわち50質量%以上99質量%以下)であり、正極層の凹凸への電界集中のより十分な抑制の観点から、好ましくは60質量%以上90質量%以下であり、より好ましくは60質量%以上80質量%以下である。正極層は2種以上の正極活物質を含んでもよく、その場合、それらの合計含有量が上記範囲内であればよい。 The content of the positive electrode active material in the positive electrode layer 10A is usually 50% by mass or more (that is, 50% by mass or more and 99% by mass or less) with respect to the total amount of the positive electrode layer, which is more sufficient for the electric field concentration on the unevenness of the positive electrode layer. From the viewpoint of sufficient suppression, it is preferably 60% by mass or more and 90% by mass or less, and more preferably 60% by mass or more and 80% by mass or less. The positive electrode layer may contain two or more kinds of positive electrode active materials, and in that case, the total content thereof may be within the above range.
 正極層10Aに含まれてもよい固体電解質は、例えば、後述の固体電解質層に含まれ得る固体電解質と同様の材料から選択されてよい。正極層10Aは固体電解質としてガラスセラミックス系固体電解質を含んでもよい。 The solid electrolyte that may be contained in the positive electrode layer 10A may be selected from, for example, the same materials as the solid electrolyte that can be contained in the solid electrolyte layer described later. The positive electrode layer 10A may contain a glass-ceramic solid electrolyte as the solid electrolyte.
 正極層10Aにおける固体電解質の含有量は、特に限定されず、通常は、正極層の全量に対して、1~50質量%、特に10~40質量%である。正極層は2種以上の固体電解質を含んでもよく、その場合、それらの合計含有量が上記範囲内であればよい。 The content of the solid electrolyte in the positive electrode layer 10A is not particularly limited, and is usually 1 to 50% by mass, particularly 10 to 40% by mass, based on the total amount of the positive electrode layer. The positive electrode layer may contain two or more kinds of solid electrolytes, in which case the total content thereof may be within the above range.
 正極層10Aはさらに焼結助剤を含んでいてもよい。焼結助剤としては、リチウム酸化物、ナトリウム酸化物、カリウム酸化物、酸化ホウ素、酸化ケイ素、酸化ビスマスおよび酸化リンから成る群から選択される少なくとも1種を挙げることができる。 The positive electrode layer 10A may further contain a sintering aid. As the sintering aid, at least one selected from the group consisting of lithium oxide, sodium oxide, potassium oxide, boron oxide, silicon oxide, bismuth oxide and phosphorus oxide can be mentioned.
 正極層10Aの厚みは特に限定されず、例えば、1μm以上100μm以下、特に5μm以上50μm以下であってもよい。正極層10Aが正極集電層11を有し、かつ、正極層10Aが正極集電層11の両面または片面に形成さる場合、正極層10Aの上記厚みは、正極集電層11の片面あたりの厚みである。 The thickness of the positive electrode layer 10A is not particularly limited, and may be, for example, 1 μm or more and 100 μm or less, particularly 5 μm or more and 50 μm or less. When the positive electrode layer 10A has the positive electrode current collecting layer 11 and the positive electrode layer 10A is formed on both sides or one side of the positive electrode current collecting layer 11, the thickness of the positive electrode layer 10A is per one side of the positive electrode current collecting layer 11. The thickness.
 正極層10Aは、図2に示すように、正極集電層11を有していてもよいし、または正極集電層11を有さなくてもよい。正極層の集電効率の観点から、正極層は正極集電層を有することが好ましい。正極層10Aが正極集電層11を有する場合、正極層10Aは、図2に示すように、正極集電層11の両面に形成されてもよいし、または片面に形成されてもよい。この場合、正極層10Aは、電池容量の向上の観点から、図2に示すように、正極集電層11の両面に形成されていることが好ましい。なお、正極集電層11は通常、正極層の固体電解質層と接触する面と反対側の面に配置されている。 As shown in FIG. 2, the positive electrode layer 10A may or may not have the positive electrode current collector layer 11. From the viewpoint of the current collecting efficiency of the positive electrode layer, the positive electrode layer preferably has a positive electrode current collecting layer. When the positive electrode layer 10A has the positive electrode current collecting layer 11, the positive electrode layer 10A may be formed on both sides of the positive electrode current collecting layer 11 or may be formed on one side as shown in FIG. In this case, the positive electrode layer 10A is preferably formed on both sides of the positive electrode current collector layer 11 as shown in FIG. 2 from the viewpoint of improving the battery capacity. The positive electrode current collector layer 11 is usually arranged on the surface of the positive electrode layer opposite to the surface in contact with the solid electrolyte layer.
 正極集電層11は、正極層10Aと正極端子40Aとの電気的接続を達成する連結層であって、少なくとも導電性材料を含んで成る。正極集電層11は、更に固体電解質を含んで成っていてよい。ある好適な態様では、正極集電層は、導電性材料および固体電解質を少なくとも含む焼結体から構成されている。 The positive electrode current collecting layer 11 is a connecting layer that achieves an electrical connection between the positive electrode layer 10A and the positive electrode terminal 40A, and includes at least a conductive material. The positive electrode current collector layer 11 may further contain a solid electrolyte. In one preferred embodiment, the positive electrode current collector layer is composed of a sintered body containing at least a conductive material and a solid electrolyte.
 正極集電層11に含まれてもよい導電性材料は通常、導電率が比較的大きい材料が用いられ、例えば、炭素材料、銀、パラジウム、金、プラチナ、アルミニウム、銅およびニッケルから成る群から選択される少なくとも1種を用いてもよい。正極集電層11は、正極層の凹凸への電界集中のより十分な抑制の観点から、炭素材料(特に黒鉛)を含むことが好ましい。炭素材料としては、例えば、黒鉛、易黒鉛化性炭素、難黒鉛化性炭素、メソカーボンマイクロビーズ(MCMB)および高配向性グラファイト(HOPG)などが挙げられる。炭素材料(特に黒鉛)は一般的に正極層の正極活物質および固体電解質層の固体電解質よりも軟質な材料であるため、正極集電層11が炭素材料(特に黒鉛)を含むことで、固体電解質層20に接する正極層表面の凹凸を正極集電層側で吸収できるようになる。このため、固体電解質層20に接する正極層表面の凹凸を上記範囲内により簡便に制御することができる。 The conductive material that may be contained in the positive electrode current collector layer 11 is usually a material having a relatively high conductivity, and is composed of, for example, a carbon material, silver, palladium, gold, platinum, aluminum, copper and nickel. At least one selected may be used. The positive electrode current collecting layer 11 preferably contains a carbon material (particularly graphite) from the viewpoint of more sufficiently suppressing the concentration of the electric field on the unevenness of the positive electrode layer. Examples of the carbon material include graphite, graphitizable carbon, non-graphitizable carbon, mesocarbon microbeads (MCMB) and highly oriented graphite (HOPG). Since the carbon material (particularly graphite) is generally softer than the positive electrode active material of the positive electrode layer and the solid electrolyte of the solid electrolyte layer, the positive electrode current collector layer 11 contains a carbon material (particularly graphite) and is solid. The unevenness of the surface of the positive electrode layer in contact with the electrolyte layer 20 can be absorbed on the positive electrode current collecting layer side. Therefore, the unevenness of the surface of the positive electrode layer in contact with the solid electrolyte layer 20 can be controlled more easily within the above range.
 正極集電層11における導電性材料(特に炭素材料)の含有量は通常、正極集電層の全量に対して、50質量%以上(例えば50~99質量%)、特に60~90質量%である。正極集電層は2種以上の導電性材料を含んでもよく、その場合、それらの合計含有量が上記範囲内であればよい。 The content of the conductive material (particularly carbon material) in the positive electrode current collector layer 11 is usually 50% by mass or more (for example, 50 to 99% by mass), particularly 60 to 90% by mass, based on the total amount of the positive electrode current collector layer. is there. The positive electrode current collector layer may contain two or more kinds of conductive materials, and in that case, the total content thereof may be within the above range.
 正極集電層11に含まれてもよい固体電解質は、例えば、後述の固体電解質層に含まれ得る固体電解質と同様の材料から選択されてよい。正極集電層11は固体電解質としてガラスセラミックス系固体電解質を含んでもよい。 The solid electrolyte that may be contained in the positive electrode current collector layer 11 may be selected from, for example, the same materials as the solid electrolyte that can be contained in the solid electrolyte layer described later. The positive electrode current collector layer 11 may contain a glass-ceramic solid electrolyte as the solid electrolyte.
 正極集電層11における固体電解質の含有量は、特に限定されず、通常は、正極集電層の全量に対して、1~50質量%、特に10~40質量%である。正極集電層は2種以上の固体電解質を含んでもよく、その場合、それらの合計含有量が上記範囲内であればよい。 The content of the solid electrolyte in the positive electrode current collector layer 11 is not particularly limited, and is usually 1 to 50% by mass, particularly 10 to 40% by mass, based on the total amount of the positive electrode current collector layer. The positive electrode current collector layer may contain two or more kinds of solid electrolytes, in which case the total content thereof may be within the above range.
 正極集電層が焼結体の形態を有する場合、正極集電層11はさらに焼結助剤を含んでいてもよい。正極集電層に含まれる焼結剤は、例えば、正極層に含まれ得る焼結助剤と同様の材料から選択されてもよい。 When the positive electrode current collector layer has the form of a sintered body, the positive electrode current collector layer 11 may further contain a sintering aid. The sintering agent contained in the positive electrode current collector layer may be selected from, for example, the same materials as the sintering aid that can be contained in the positive electrode layer.
 正極集電層11の厚みは特に限定されず、例えば、1μm以上100μm以下、特に3μm以上20μm以下であってもよい。 The thickness of the positive electrode current collector layer 11 is not particularly limited, and may be, for example, 1 μm or more and 100 μm or less, particularly 3 μm or more and 20 μm or less.
(負極層)
 負極層10Bは、少なくとも負極活物質を含んで成る電極層である。負極層10Bは、更に固体電解質を含んで成っていてよい。ある好適な態様では、負極層は、負極活物質および固体電解質を少なくとも含む焼結体から構成されている。
(Negative electrode layer)
The negative electrode layer 10B is an electrode layer including at least a negative electrode active material. The negative electrode layer 10B may further contain a solid electrolyte. In one preferred embodiment, the negative electrode layer is composed of a sintered body containing at least a negative electrode active material and a solid electrolyte.
 負極層10Bに含まれる負極活物質は、固体電池において電子の受け渡しに関与する物質である。固体電解質を介した正極層と負極層との間におけるイオンの移動(伝導)と、外部回路を介した正極層と負極層との間における電子の受け渡しが行われることで充放電がなされる。負極層は特にリチウムイオンを吸蔵放出可能な層であることが好ましい。 The negative electrode active material contained in the negative electrode layer 10B is a substance involved in the transfer of electrons in a solid-state battery. Charging and discharging are performed by the movement (conduction) of ions between the positive electrode layer and the negative electrode layer via the solid electrolyte and the transfer of electrons between the positive electrode layer and the negative electrode layer via an external circuit. The negative electrode layer is particularly preferably a layer capable of occluding and releasing lithium ions.
 負極活物質としては、例えば、炭素材料、金属系材料、リチウム合金およびリチウム含有化合物などである。負極活物質は、正極層の凹凸への電界集中のより十分な抑制の観点から、炭素材料を含むことが好ましい。 Examples of the negative electrode active material include carbon materials, metal-based materials, lithium alloys, and lithium-containing compounds. The negative electrode active material preferably contains a carbon material from the viewpoint of more sufficiently suppressing the concentration of the electric field on the unevenness of the positive electrode layer.
 具体的には、炭素材料は、例えば、黒鉛、易黒鉛化性炭素、難黒鉛化性炭素、メソカーボンマイクロビーズ(MCMB)および高配向性グラファイト(HOPG)などである。 Specifically, the carbon material is, for example, graphite, graphitizable carbon, non-graphitizable carbon, mesocarbon microbeads (MCMB), highly oriented graphite (HOPG), and the like.
 金属系材料は、リチウムと合金を形成可能である金属元素および半金属元素のうちのいずれか1種類または2種類以上を構成元素として含む材料の総称である。この金属系材料は、単体でもよいし、合金でもよいし、化合物でもよい。ここで説明する単体の純度は、必ずしも100%に限られないため、その単体は、微量の不純物を含んでいてもよい。 Metallic material is a general term for materials containing one or more of metal elements and metalloid elements capable of forming alloys with lithium as constituent elements. This metallic material may be a simple substance, an alloy, or a compound. Since the purity of the simple substance described here is not necessarily limited to 100%, the simple substance may contain a trace amount of impurities.
 金属元素および半金族元素は、例えば、ケイ素(Si)、スズ(Sn)、アルミニウム(Al)、インジウム(In)、マグネシウム(Mg)、ホウ素(B)、ガリウム(Ga)、ゲルマニウム(Ge)、鉛(Pb)、ビスマス(Bi)、カドミウム(Cd)、チタン(Ti)、クロム(Cr)、鉄(Fe)、ニオブ(Nb)、モリブデン(Mo)、銀(Ag)、亜鉛(Zn)、ハフニウム(Hf)、ジルコニウム(Zr)、イットリウム(Y)、パラジウム(Pd)および白金(Pt)などである。 Metal elements and semi-metal elements include, for example, silicon (Si), tin (Sn), aluminum (Al), indium (In), magnesium (Mg), boron (B), gallium (Ga), germanium (Ge). , Lead (Pb), Bismus (Bi), Cadmium (Cd), Titanium (Ti), Chromium (Cr), Iron (Fe), Niobium (Nb), Molybdenum (Mo), Silver (Ag), Zinc (Zn) , Hafnium (Hf), zirconium (Zr), ittrium (Y), palladium (Pd) and platinum (Pt).
 具体的には、金属系材料は、例えば、Si、Sn、SiB、TiSi、SiC、Si、SiO(0<v≦2)、LiSiO、SnO(0<w≦2)、SnSiO、LiSnOおよびMgSnなどである。 Specifically, the metal-based materials include, for example, Si, Sn, SiB 4 , TiSi 2 , SiC, Si 3 N 4 , SiO v (0 <v ≦ 2), LiSiO, SnO w (0 <w ≦ 2). , SnSiO 3 , LiSnO, Mg 2 Sn, and the like.
 リチウム含有化合物は、例えば、リチウム遷移金属複合酸化物などである。リチウム遷移金属複合酸化物に関する定義は、上記した通りである。具体的には、リチウム遷移金属複酸化物は、例えば、Li(PO、LiFe(PO、LiTi12、LiTi(PO、およびLiCuPO等である。 The lithium-containing compound is, for example, a lithium transition metal composite oxide. The definition of the lithium transition metal composite oxide is as described above. Specifically, the lithium transition metal double oxides are, for example, Li 3 V 2 (PO 4 ) 3 , Li 3 Fe 2 (PO 4 ) 3 , Li 4 Ti 5 O 12 , LiTi 2 (PO 4 ) 3 , And LiCuPO 4 and the like.
 また、ナトリウムイオンを吸蔵放出可能な負極活物質としては、ナシコン型構造を有するナトリウム含有リン酸化合物、オリビン型構造を有するナトリウム含有リン酸化合物およびスピネル型構造を有するナトリウム含有酸化物等から成る群から選択される少なくとも1種が挙げられる。 The negative electrode active material capable of occluding and releasing sodium ions is a group consisting of a sodium-containing phosphoric acid compound having a pearcon-type structure, a sodium-containing phosphoric acid compound having an olivine-type structure, a sodium-containing oxide having a spinel-type structure, and the like. At least one selected from is mentioned.
 負極活物質が上記した物質である場合、負極層10Bと固体電解質層20との界面(すなわち基準線15)は通常、倍率1000倍の断面写真(断面視)において十分に直線形状で表され得る。負極活物質が特に扁平状の粉末の場合、負極層10Bと固体電解質層20との界面はより一層、十分に直線形状で表され得る。仮に、負極層10Bと固体電解質層20との界面を直線形状で表すことが困難である場合、基準線15は、断面視において、前記した中央線が負極層10Bにおける最も固体電解質層20側で負極活物質と接する(または交わる)点を通る面であって、積層方向Lに対して垂直な面を規定する線であってもよい。負極層/固体電解質層界面が平滑であると、イオン(例えばリチウムイオン)を受け入れやすくなり、また集電層に柔らかい黒鉛粉末を使用することで、正極活物質(例えばLCO)の凹凸を集電層側で吸収して動作率を向上することができる。 When the negative electrode active material is the above-mentioned substance, the interface between the negative electrode layer 10B and the solid electrolyte layer 20 (that is, the reference line 15) can usually be represented in a sufficiently linear shape in a cross-sectional photograph (cross-sectional view) at a magnification of 1000 times. .. When the negative electrode active material is a particularly flat powder, the interface between the negative electrode layer 10B and the solid electrolyte layer 20 can be further represented in a sufficiently linear shape. If it is difficult to represent the interface between the negative electrode layer 10B and the solid electrolyte layer 20 in a linear shape, the reference line 15 is the center line on the most solid electrolyte layer 20 side of the negative electrode layer 10B in cross-sectional view. It may be a line passing through a point in contact with (or intersecting with) the negative electrode active material and defining a surface perpendicular to the stacking direction L. If the interface between the negative electrode layer and the solid electrolyte layer is smooth, it becomes easier to accept ions (for example, lithium ions), and by using soft graphite powder for the current collecting layer, the unevenness of the positive electrode active material (for example, LCO) is collected. It can be absorbed on the layer side to improve the operating rate.
 負極層10Bにおける負極活物質(特に炭素材料)の含有量は通常、負極層の全量に対して、50~99質量%、特に60~90質量%である。負極層は2種以上の負極活物質を含んでもよく、その場合、それらの合計含有量が上記範囲内であればよい。 The content of the negative electrode active material (particularly carbon material) in the negative electrode layer 10B is usually 50 to 99% by mass, particularly 60 to 90% by mass, based on the total amount of the negative electrode layer. The negative electrode layer may contain two or more kinds of negative electrode active materials, and in that case, the total content thereof may be within the above range.
 負極層10Bに含まれてもよい固体電解質は、例えば、後述の固体電解質層に含まれ得る固体電解質と同様の材料から選択されてよい。負極層10Bは固体電解質としてガラスセラミックス系固体電解質を含んでもよい。 The solid electrolyte that may be contained in the negative electrode layer 10B may be selected from, for example, the same materials as the solid electrolyte that can be contained in the solid electrolyte layer described later. The negative electrode layer 10B may contain a glass-ceramic solid electrolyte as the solid electrolyte.
 負極層10Bにおける固体電解質の含有量は、特に限定されず、通常は、負極層の全量に対して、1~50質量%、特に10~40質量%である。負極層は2種以上の固体電解質を含んでもよく、その場合、それらの合計含有量が上記範囲内であればよい。 The content of the solid electrolyte in the negative electrode layer 10B is not particularly limited, and is usually 1 to 50% by mass, particularly 10 to 40% by mass, based on the total amount of the negative electrode layer. The negative electrode layer may contain two or more kinds of solid electrolytes, in which case the total content thereof may be within the above range.
 負極層10Bはさらに焼結助剤を含んでいてもよい。焼結助剤としては、正極層10Aに含まれてもよい焼結助剤と同様の材料を挙げることができる。 The negative electrode layer 10B may further contain a sintering aid. Examples of the sintering aid include materials similar to those of the sintering aid that may be contained in the positive electrode layer 10A.
 負極層10Bの厚みは特に限定されず、例えば、1μm以上100μm以下であってもよい。 The thickness of the negative electrode layer 10B is not particularly limited, and may be, for example, 1 μm or more and 100 μm or less.
 負極層10Bは、図2に示すように負極集電層を有さなくてもよいし、または負極集電層(図示せず)を有していてもよい。負極層の集電効率の観点から、負極層は負極集電層を有していないことが好ましい。負極層10Bが負極集電層を有する場合、負極層10Bは、負極集電層の両面に形成されてもよいし、または片面に形成されてもよい。 The negative electrode layer 10B may not have the negative electrode current collector layer as shown in FIG. 2, or may have the negative electrode current collector layer (not shown). From the viewpoint of the current collecting efficiency of the negative electrode layer, it is preferable that the negative electrode layer does not have the negative electrode current collecting layer. When the negative electrode layer 10B has a negative electrode current collecting layer, the negative electrode layer 10B may be formed on both sides of the negative electrode current collecting layer or may be formed on one side.
 負極集電層は、負極層10Bと負極端子40Bとの電気的接続を達成する連結層であって、少なくとも導電性材料を含んで成る。負極集電層は、更に固体電解質を含んで成っていてよい。ある好適な態様では、負極集電層は、導電性材料および固体電解質を少なくとも含む焼結体から構成されている。 The negative electrode current collector layer is a connecting layer that achieves electrical connection between the negative electrode layer 10B and the negative electrode terminal 40B, and includes at least a conductive material. The negative electrode current collector layer may further contain a solid electrolyte. In one preferred embodiment, the negative electrode current collector layer is composed of a sintered body containing at least a conductive material and a solid electrolyte.
 負極層10Bが負極集電層を有する場合、負極集電層は、上記した正極集電層11と同様の構成材料から同様の比率で構成されていてもよい。 When the negative electrode layer 10B has the negative electrode current collector layer, the negative electrode current collector layer may be composed of the same constituent materials as the above-mentioned positive electrode current collector layer 11 in the same ratio.
(固体電解質層)
 固体電解質層20は、少なくとも固体電解質を含んで成る層である。ある好適な態様では、固体電解質層は、固体電解質を少なくとも含む焼結体から構成されている。
(Solid electrolyte layer)
The solid electrolyte layer 20 is a layer containing at least a solid electrolyte. In one preferred embodiment, the solid electrolyte layer is composed of a sintered body containing at least the solid electrolyte.
 固体電解質層20を構成する固体電解質は、リチウムイオンまたはナトリウムイオンが伝導可能な材質である。固体電解質は特に正極層と負極層との間においてリチウムイオンまたはナトリウムイオンが伝導可能な層を成している。なお、固体電解質は、正極層と負極層との間に少なくとも設けられていればよい。つまり、固体電解質は、正極層と負極層との間からはみ出すように当該正極層および/または負極層の周囲においても存在していてもよい。具体的な固体電解質としては、例えば、結晶性固体電解質およびガラスセラミックス系固体電解質などのうちのいずれか1種類または2種類以上を含んでいる。固体電解質層20は固体電解質としてガラスセラミックス系固体電解質を含んでもよい。 The solid electrolyte constituting the solid electrolyte layer 20 is a material capable of conducting lithium ions or sodium ions. The solid electrolyte forms a layer in which lithium ions or sodium ions can be conducted, particularly between the positive electrode layer and the negative electrode layer. The solid electrolyte may be provided at least between the positive electrode layer and the negative electrode layer. That is, the solid electrolyte may also be present around the positive electrode layer and / or the negative electrode layer so as to protrude from between the positive electrode layer and the negative electrode layer. Specific solid electrolytes include, for example, any one or more of crystalline solid electrolytes and glass-ceramic solid electrolytes. The solid electrolyte layer 20 may contain a glass-ceramic solid electrolyte as the solid electrolyte.
 結晶性固体電解質は、結晶性の電解質である。具体的には、リチウムイオンが伝導可能な結晶性固体電解質は、例えば、無機材料および高分子材料などであり、その無機材料は、例えば、硫化物および酸化物などである。硫化物は、例えば、LiS-P、LiS-SiS-LiPO、Li11、Li3.25Ge0.250.75SおよびLi10GeP12などである。酸化物は、例えば、Li(PO(1≦x≦2、1≦y≦2、Mは、Ti、Ge、Al、GaおよびZrから成る群より選ばれた少なくとも一種)、LiLaZr12、Li6.75LaZr1.75Nb0.2512、LiBaLaTa12、Li1+xAlTi2-x(PO、La2/3Li3xTiO、Li1.2Al0.2Ti1.8(PO3、La0.55Li0.35TiOおよびLiLaZr12等である。高分子材料は、例えば、ポリエチレンオキシド(PEO)などである。 The crystalline solid electrolyte is a crystalline electrolyte. Specifically, the crystalline solid electrolyte capable of conducting lithium ions is, for example, an inorganic material and a polymer material, and the inorganic material is, for example, a sulfide and an oxide. Sulfides include, for example, Li 2 SP 2 S 5 , Li 2 S-SiS 2 -Li 3 PO 4 , Li 7 P 3 S 11 , Li 3.25 Ge 0.25 P 0.75 S and Li 10 GeP 2 S 12 and the like. Oxides, for example, Li x M y (PO 4 ) 3 (1 ≦ x ≦ 2,1 ≦ y ≦ 2, M is at least one selected from the group consisting of Ti, Ge, Al, Ga and Zr) , Li 7 La 3 Zr 2 O 12 , Li 6.75 La 3 Zr 1.75 Nb 0.25 O 12 , Li 6 BaLa 2 Ta 2 O 12 , Li 1 + x Al x Ti 2-x (PO 4 ) 3 , La 2 / 3- x Li 3x TiO 3 , Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3, La 0.55 Li 0.35 TiO 3 and Li 7 La 3 Zr 2 O 12 etc. is there. The polymeric material is, for example, polyethylene oxide (PEO).
 ガラスセラミックス系固体電解質は、アモルファスと結晶とが混在した状態の電解質である。このガラスセラミックス系固体電解質は、例えば、リチウム(Li)、ケイ素(Si)およびホウ素(B)を構成元素として含む酸化物などであり、より具体的には、酸化リチウム(LiO)、酸化ケイ素(SiO)および酸化ホウ素(B)などを含んでいる。酸化リチウム、酸化ケイ素および酸化ホウ素の総含有量に対する酸化リチウムの含有量の割合は、特に限定されないが、例えば、40mol%以上73mol%以下である。酸化リチウム、酸化ケイ素および酸化ホウ素の総含有量に対する酸化ケイ素の含有量の割合は、特に限定されないが、例えば、8mol%以上40mol%以下である。酸化リチウム、酸化ケイ素および酸化ホウ素の総含有量に対する酸化ホウ素の含有量の割合は、特に限定されないが、例えば、10mol%以上50mol%以下である。酸化リチウム、酸化ケイ素および酸化ホウ素のそれぞれの含有量を測定するためには、例えば、誘導結合プラズマ発光分光分析法(ICP-AES)などを用いてガラスセラミックス系固体電解質を分析する。 The glass-ceramic solid electrolyte is an electrolyte in which amorphous and crystalline are mixed. This glass-ceramic solid electrolyte is, for example, an oxide containing lithium (Li), silicon (Si) and boron (B) as constituent elements, and more specifically, lithium oxide (Li 2 O) and oxidation. It contains silicon (SiO 2 ), boron oxide (B 2 O 3 ) and the like. The ratio of the content of lithium oxide to the total content of lithium oxide, silicon oxide and boron oxide is not particularly limited, but is, for example, 40 mol% or more and 73 mol% or less. The ratio of the content of silicon oxide to the total content of lithium oxide, silicon oxide and boron oxide is not particularly limited, but is, for example, 8 mol% or more and 40 mol% or less. The ratio of the content of boron oxide to the total content of lithium oxide, silicon oxide and boron oxide is not particularly limited, but is, for example, 10 mol% or more and 50 mol% or less. In order to measure the respective contents of lithium oxide, silicon oxide and boron oxide, for example, inductively coupled plasma emission spectrometry (ICP-AES) or the like is used to analyze the glass-ceramic solid electrolyte.
 また、ナトリウムイオンが伝導可能な固体電解質としては、例えば、ナシコン構造を有するナトリウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物等が挙げられる。ナシコン構造を有するナトリウム含有リン酸化合物としては、Na(PO(1≦x≦2、1≦y≦2、Mは、Ti、Ge、Al、GaおよびZrから成る群より選ばれた少なくとも一種)が挙げられる。 Examples of the solid electrolyte in which sodium ions can be conducted include sodium-containing phosphoric acid compounds having a pearcon structure, oxides having a perovskite structure, oxides having a garnet type or a garnet type similar structure, and the like. The sodium-containing phosphate compound having a NASICON structure, Na x M y (PO 4 ) 3 (1 ≦ x ≦ 2,1 ≦ y ≦ 2, M is, Ti, Ge, Al, from the group consisting of Ga and Zr At least one selected).
 固体電解質層20はさらに焼結助剤を含んでいてもよい。焼結助剤としては、正極層10Aに含まれてもよい焼結助剤と同様の材料を挙げることができる。 The solid electrolyte layer 20 may further contain a sintering aid. Examples of the sintering aid include materials similar to those of the sintering aid that may be contained in the positive electrode layer 10A.
 固体電解質層の厚みは特に限定されず、例えば、1μm以上50μm以下、特に1μm以上5μm以下であってもよい。 The thickness of the solid electrolyte layer is not particularly limited, and may be, for example, 1 μm or more and 50 μm or less, particularly 1 μm or more and 5 μm or less.
(電極分離部)
 本発明の固体電池200は通常、電極分離部(「余白層」または「余白部」とも称される)30(30A、30B)をさらに有している。
(Electrode separation part)
The solid-state battery 200 of the present invention usually further has an electrode separation portion (also referred to as a "margin layer" or "margin portion") 30 (30A, 30B).
 電極分離部30A(正極分離部)は、正極層10Aの周囲に配置されることにより、かかる正極層10Aを負極端子40Bから離間させる。電極分離部30B(負極分離部)はまた、負極層10Bの周囲に配置されることにより、かかる負極層10Bを正極端子40Aから離間させる。特に限定されるものではないが、当該電極分離部30は、例えば固体電解質、絶縁材およびそれらの混合物等からなる群から選択される1種以上の材料から構成されてもよい。 The electrode separating portion 30A (positive electrode separating portion) is arranged around the positive electrode layer 10A to separate the positive electrode layer 10A from the negative electrode terminal 40B. The electrode separating portion 30B (negative electrode separating portion) is also arranged around the negative electrode layer 10B to separate the negative electrode layer 10B from the positive electrode terminal 40A. Although not particularly limited, the electrode separating portion 30 may be composed of one or more materials selected from the group consisting of, for example, a solid electrolyte, an insulating material, a mixture thereof, and the like.
 電極分離部30を構成し得る固体電解質は、固体電解質層を構成し得る固体電解質と同様の材料が使用可能である。
 電極分離部30を構成し得る絶縁材は、電気を通さない材質、すなわち非導電性材であってもよい。特に限定されるものではないが、当該絶縁材は、例えばガラス材、セラミック材等であってもよい。当該絶縁材として、例えばガラス材が選択されてよい。特に限定されるものではないが、ガラス材は、ソーダ石灰ガラス、カリガラス、ホウ酸塩系ガラス、ホウケイ酸塩系ガラス、ホウケイ酸バリウム系ガラス、ホウ酸亜塩系ガラス、ホウ酸バリウム系ガラス、ホウケイ酸ビスマス塩系ガラス、ホウ酸ビスマス亜鉛系ガラス、ビスマスケイ酸塩系ガラス、リン酸塩系ガラス、アルミノリン酸塩系ガラス、および、リン酸亜塩系ガラスからなる群より選択される少なくとも一種を挙げることができる。また、特に限定されるものではないが、セラミック材は、酸化アルミニウム(Al)、窒化ホウ素(BN)、二酸化ケイ素(SiO)、窒化ケイ素(Si)、酸化ジルコニウム(ZrO)、窒化アルミニウム(AlN)、炭化ケイ素(SiC)およびチタン酸バリウム(BaTiO)からなる群より選択される少なくとも一種を挙げることができる。
As the solid electrolyte that can form the electrode separation portion 30, the same material as the solid electrolyte that can form the solid electrolyte layer can be used.
The insulating material that can form the electrode separating portion 30 may be a material that does not conduct electricity, that is, a non-conductive material. Although not particularly limited, the insulating material may be, for example, a glass material, a ceramic material, or the like. As the insulating material, for example, a glass material may be selected. The glass material is not particularly limited, but the glass material is soda lime glass, potash glass, borate glass, borosilicate glass, barium borate glass, subhydrate borate glass, barium borate glass, etc. At least one selected from the group consisting of bismuth borosilicate glass, bismuth zinc borate glass, bismuth silicate glass, phosphate glass, aluminophosphate glass, and phosphate subsalt glass. Can be mentioned. Further, although not particularly limited, the ceramic material includes aluminum oxide (Al 2 O 3 ), boron nitride (BN), silicon dioxide (SiO 2 ), silicon nitride (Si 3 N 4 ), and zirconium oxide (ZrO). 2 ) At least one selected from the group consisting of aluminum nitride (AlN), silicon carbide (SiC) and barium titanate (BaTIO 3) can be mentioned.
(端子)
 本発明の固体電池200には、一般に端子(外部端子)40(40A、40B)が設けられている。特に、固体電池の側面に正負極の端子40A、40Bが対を成すように設けられている。より具体的には、正極層10Aと接続された正極側の端子40Aと、負極層10Bと接続された負極側の端子40Bとが対を成すように設けられている。そのような端子40(40A、40B)は、導電率が大きい材料を用いることが好ましい。端子40の材質としては、特に制限するわけではないが、銀、金、プラチナ、アルミニウム、銅、スズおよびニッケルから成る群から選択される少なくとも一種の導電性材料を挙げることができる。
(Terminal)
The solid-state battery 200 of the present invention is generally provided with terminals (external terminals) 40 (40A, 40B). In particular, positive and negative electrode terminals 40A and 40B are provided on the side surface of the solid-state battery so as to form a pair. More specifically, the positive electrode side terminal 40A connected to the positive electrode layer 10A and the negative electrode side terminal 40B connected to the negative electrode layer 10B are provided so as to form a pair. For such terminals 40 (40A, 40B), it is preferable to use a material having a high conductivity. The material of the terminal 40 is not particularly limited, and examples thereof include at least one conductive material selected from the group consisting of silver, gold, platinum, aluminum, copper, tin, and nickel.
 端子40(40A、40B)はさらに焼結助剤を含んでいてもよい。焼結助剤としては、正極層10Aに含まれてもよい焼結助剤と同様の材料を挙げることができる。 Terminal 40 (40A, 40B) may further contain a sintering aid. Examples of the sintering aid include materials similar to those of the sintering aid that may be contained in the positive electrode layer 10A.
 端子40(40A、40B)は、ある好適な態様では、導電性材料および焼結助剤を少なくとも含む焼結体から構成されている。 Terminal 40 (40A, 40B) is, in one preferred embodiment, composed of a sintered body containing at least a conductive material and a sintering aid.
(外層材)
 本発明の固体電池200は通常、外層材60をさらに有している。
 外層材60は、一般に固体電池の最外側に形成され得るもので、電気的、物理的および/または化学的に保護するためのものである。外層材60を構成する材料としては絶縁性、耐久性および/または耐湿性に優れ、環境的に安全であることが好ましい。例えば、ガラス、セラミックス、熱硬化性樹脂、光硬化性樹脂、およびそれらの混合物等を用いてもよい。
(Outer layer material)
The solid-state battery 200 of the present invention usually further includes an outer layer material 60.
The outer layer material 60 can generally be formed on the outermost side of the solid-state battery and is for electrical, physical and / or chemical protection. The material constituting the outer layer material 60 is preferably excellent in insulation, durability and / or moisture resistance, and is environmentally safe. For example, glass, ceramics, thermosetting resins, photocurable resins, and mixtures thereof may be used.
 外層材を構成し得るガラスは、電極分離部を構成し得るガラス材と同様の材料が使用可能である。
 外層材を構成し得るセラミック材は、電極分離部を構成し得るセラミック材と同様の材料が使用可能である。
As the glass that can form the outer layer material, the same material as the glass material that can form the electrode separation portion can be used.
As the ceramic material that can form the outer layer material, the same material as the ceramic material that can form the electrode separation portion can be used.
[固体電池の製造方法]
 本発明の固体電池は、スクリーン印刷法等の印刷法、グリーンシートを用いるグリーンシート法、またはそれらの複合法により製造することができる。以下、本発明の理解のために印刷法およびグリーンシート法を採用する場合について詳述するが、本発明は当該方法に限定されない。
[Manufacturing method of solid-state battery]
The solid-state battery of the present invention can be produced by a printing method such as a screen printing method, a green sheet method using a green sheet, or a composite method thereof. Hereinafter, the case where the printing method and the green sheet method are adopted for understanding the present invention will be described in detail, but the present invention is not limited to this method.
(固体電池積層前駆体の形成工程)
 本工程では、例えば、正極層用ペースト、負極層用ペースト、固体電解質層用ペースト、正極集電層用ペースト、負極集電層用ペースト、電極分離部用ペーストおよび外層材用ペースト等の数種類のペーストをインクとして用いる。つまり、ペーストを印刷法で塗布および乾燥することを通じて支持基体上に所定構造の固体電池積層前駆体を形成する。
(Forming process of solid-state battery laminated precursor)
In this step, for example, there are several types of pastes such as positive electrode layer paste, negative electrode layer paste, solid electrolyte layer paste, positive electrode current collector layer paste, negative electrode current collector layer paste, electrode separation part paste, and outer layer material paste. Use paste as ink. That is, a solid-state battery laminated precursor having a predetermined structure is formed on the support substrate by applying and drying the paste by a printing method.
 印刷に際しては、所定の厚みおよびパターン形状で印刷層を順次、積層することによって、所定の固体電池の構造に対応する固体電池積層前駆体を基体上に形成することができる。パターン形成方法の種類は、所定のパターンを形成可能な方法であれば、特に限定されないが、例えば、スクリーン印刷法およびグラビア印刷法などのうちのいずれか1種類または2種類以上である。 At the time of printing, a solid-state battery lamination precursor corresponding to a predetermined solid-state battery structure can be formed on a substrate by sequentially laminating print layers having a predetermined thickness and pattern shape. The type of the pattern forming method is not particularly limited as long as it is a method capable of forming a predetermined pattern, and is, for example, any one or more of the screen printing method and the gravure printing method.
 ペーストは、正極活物質粒子、負極活物質粒子、導電性材料、固体電解質材料、集電層材料、絶縁材、および焼結助剤、ならびにその他の上記材料から成る群から適宜選択される各層の所定の構成材料と、有機材料を溶媒に溶解した有機ビヒクルとを湿式混合することによって作製することができる。
 正極層用ペーストは、例えば、正極活物質粒子、固体電解質材料、有機材料および溶媒、ならびに所望により焼結助剤を含む。
 負極層用ペーストは、例えば、負極活物質粒子、固体電解質材料、有機材料および溶媒、ならびに所望により焼結助剤を含む。
 固体電解質層用ペーストは、例えば、固体電解質材料、有機材料および溶媒、ならびに所望により焼結助剤を含む。
 正極集電層用ペーストは、例えば、導電性材料、有機材料および溶媒、ならびに所望により焼結助剤を含む。
 負極集電層用ペーストは、例えば、導電性材料、有機材料および溶媒、ならびに所望により焼結助剤を含む。
 電極分離部用ペーストは、例えば、固体電解質材料、絶縁材、有機材料および溶媒、ならびに所望により焼結助剤を含む。
 外層材用ペーストは、例えば、絶縁材、有機材料および溶媒、ならびに所望により焼結助剤を含む。
The paste is an appropriately selected layer from the group consisting of positive electrode active material particles, negative electrode active material particles, conductive material, solid electrolyte material, current collector layer material, insulating material, and sintering aid, and other materials described above. It can be produced by wet-mixing a predetermined constituent material and an organic vehicle in which an organic material is dissolved in a solvent.
The positive electrode layer paste contains, for example, positive electrode active material particles, solid electrolyte materials, organic materials and solvents, and optionally a sintering aid.
The negative electrode layer paste contains, for example, negative electrode active material particles, solid electrolyte materials, organic materials and solvents, and optionally a sintering aid.
The solid electrolyte layer paste contains, for example, solid electrolyte materials, organic materials and solvents, and optionally sintering aids.
The paste for the positive electrode current collector contains, for example, a conductive material, an organic material and a solvent, and optionally a sintering aid.
The paste for the negative electrode current collector contains, for example, a conductive material, an organic material and a solvent, and optionally a sintering aid.
The electrode separation paste contains, for example, a solid electrolyte material, an insulating material, an organic material and a solvent, and optionally a sintering aid.
The outer layer paste contains, for example, an insulating material, an organic material and a solvent, and optionally a sintering aid.
 ペーストに含まれる有機材料は特に限定されないが、ポリビニルアセタール樹脂、セルロース樹脂、ポリアクリル樹脂、ポリウレタン樹脂、ポリ酢酸ビニル樹脂およびポリビニルアルコール樹脂などから成る群から選択される少なくとも1種の高分子材料を用いることができる。
 溶媒の種類は、有機材料を溶解する限り特に限定されないが、例えば、酢酸ブチル、N-メチル-ピロリドン、トルエン、テルピネオールおよびN-メチル-ピロリドン等の有機溶媒のうちのいずれか1種類または2種類以上である。
The organic material contained in the paste is not particularly limited, but at least one polymer material selected from the group consisting of polyvinyl acetal resin, cellulose resin, polyacrylic resin, polyurethane resin, polyvinyl acetate resin, polyvinyl alcohol resin and the like can be used. Can be used.
The type of solvent is not particularly limited as long as it dissolves the organic material, and for example, one or two of organic solvents such as butyl acetate, N-methyl-pyrrolidone, toluene, terpineol and N-methyl-pyrrolidone. That is all.
 負極層用ペースト、固体電解質層用ペースト、正極集電層用ペースト、負極集電層用ペースト、電極分離部用ペーストおよび外層材用ペーストの調製に際しては、あらゆる混合分散方法を採用してもよい。詳しくは、所定の材料を含む混合物を湿式混合する。例えば、湿式混合ではメディアを用いることができ、具体的には、ビーズミル法、ボールミル法、サンドミル法、またはビスコミル法等を用いることができる。また例えば、メディアを用いない湿式混合方法を用いてもよく、3本ロールミルサンドミル法、高圧ホモジナイザー法またはニーダー分散法等を用いることができる。 Any mixed dispersion method may be adopted for the preparation of the paste for the negative electrode layer, the paste for the solid electrolyte layer, the paste for the positive electrode current collector layer, the paste for the negative electrode current collector layer, the paste for the electrode separation portion, and the paste for the outer layer material. .. Specifically, a mixture containing a predetermined material is wet-mixed. For example, in wet mixing, a medium can be used, and specifically, a bead mill method, a ball mill method, a sand mill method, a visco mill method, or the like can be used. Further, for example, a wet mixing method that does not use media may be used, and a three-roll mill sand mill method, a high-pressure homogenizer method, a kneader dispersion method, or the like can be used.
 正極層用ペーストは、例えば、少なくとも「メディアを用いる湿式混合方法」により、好ましくは「メディアを用いない湿式混合方法」と「メディアを用いる湿式混合方法」との組み合わせ(特にプラネタリーミキサー分散法とビーズミル法との組み合わせ)により調製することで、得られる固体電池において前記した固体電解質層に接する正極層表面の凹凸を達成することができる。詳しくは、まず所定の材料を含む混合物を、メディアを用いない湿式混合方法で混合した後、メディアを用いる湿式混合方法で混合して得られた正極層用ペーストを用いる。 The paste for the positive electrode layer is, for example, a combination of at least a "wet mixing method using media", preferably a "wet mixing method using media" and a "wet mixing method using media" (particularly, a planetary mixer dispersion method). By preparing by the bead mill method), it is possible to achieve the unevenness of the surface of the positive electrode layer in contact with the solid electrolyte layer described above in the obtained solid-state battery. Specifically, first, a mixture containing a predetermined material is mixed by a wet mixing method that does not use media, and then a paste for a positive electrode layer obtained by mixing by a wet mixing method that uses media is used.
 メディアを用いない湿式混合方法は、被混合物(例えば被粉砕物)に対して剪断力を付与する混合方法であり、例えば、プラネタリーミキサー、自転公転ミキサーなどの遊星型攪拌混合機、3本ロールミル、高圧ホモジナイザー、ニーダーなどのメディアを用いない分散機を用いる。プラネタリーミキサーは、複数(例えば2本)の枠型ブレードのプラネタリー運動(例えば遊星運動)によりブレード相互間およびブレードとタンク内面との間の精密な間隔によって、主として強力な剪断力を作用させる混合装置である。 The wet mixing method without using a medium is a mixing method in which a shearing force is applied to a mixture (for example, an object to be crushed), for example, a planetary stirring mixer such as a planetary mixer or a rotation / revolution mixer, and a three-roll mill. , Use a disperser that does not use media such as a high-pressure homogenizer and kneader. The planetary mixer exerts a strong shearing force mainly by the precise spacing between the blades and between the blades and the inner surface of the tank by the planetary motion (eg planetary motion) of a plurality of (for example, two) frame-shaped blades. It is a mixing device.
 メディアを用いる湿式混合方法は、被混合物(例えば被粉砕物)に対して衝撃力を付与する混合方法であり、例えば、ビーズミル、ボールミル、サンドミル、またはビスコミルなどのメディアを用いる分散機を用いる。ビーズミルは、撹拌機構(ディスク)の高速回転で発生した遠心力によりエネルギーを与えられたビーズによって、主として衝撃力を作用させる混合装置である。ビーズの構成材料は特に限定されず、例えば、ジルコニア、アルミナ、スチール、ガラス等が挙げられる。ビーズの粒径は後述の通りである。 The wet mixing method using media is a mixing method in which an impact force is applied to a mixture to be mixed (for example, an object to be crushed), and for example, a disperser using media such as a bead mill, a ball mill, a sand mill, or a visco mill is used. A bead mill is a mixing device in which an impact force is mainly applied by beads energized by centrifugal force generated by high-speed rotation of a stirring mechanism (disk). The constituent material of the beads is not particularly limited, and examples thereof include zirconia, alumina, steel, and glass. The particle size of the beads is as described below.
 例えば、メディアを用いない湿式混合方法を単独で用いても、前記した固体電解質層に接する正極層表面の凹凸を達成することは困難である。 For example, even if the wet mixing method without using media is used alone, it is difficult to achieve the unevenness of the surface of the positive electrode layer in contact with the solid electrolyte layer described above.
 正極層の形成に際し、詳しくは、所定の材料を含む混合物を、プラネタリーミキサーにより混合した後、ビーズミルにより分散して得られた正極層作製用ペーストを用いることで、前記した固体電解質層に接する正極層表面の凹凸を達成することができる。
 このとき、例えば、ビーズミルによる分散時間および回転速度、ならびにビーズミルで使用されるビーズの直径を調整することにより、正極層表面の凹凸を制御することができる。
 例えば、ビーズミルによる分散時間をより長くするほど、正極層表面の凹凸はより小さくなる。他方、当該分散時間をより短くするほど、正極層表面の凹凸はより大きくなる。
 また例えば、ビーズミルの回転速度をより高くするほど、正極層表面の凹凸はより小さくなる。他方、当該回転速度をより低くするほど、正極層表面の凹凸はより大きくなる。
 また例えば、ビーズミルで使用されるビーズの直径をより小さくするほど、正極層表面の凹凸はより小さくなる。他方、当該直径をより大きくするほど、正極層表面の凹凸はより大きくなる。
In forming the positive electrode layer, more specifically, the mixture containing a predetermined material is mixed with a planetary mixer and then dispersed by a bead mill, and the paste for producing a positive electrode layer is used to bring the mixture into contact with the above-mentioned solid electrolyte layer. The unevenness of the surface of the positive electrode layer can be achieved.
At this time, the unevenness of the surface of the positive electrode layer can be controlled by, for example, adjusting the dispersion time and rotation speed of the bead mill and the diameter of the beads used in the bead mill.
For example, the longer the dispersion time by the bead mill, the smaller the unevenness on the surface of the positive electrode layer. On the other hand, the shorter the dispersion time, the larger the unevenness on the surface of the positive electrode layer.
Further, for example, the higher the rotation speed of the bead mill, the smaller the unevenness on the surface of the positive electrode layer. On the other hand, the lower the rotation speed, the larger the unevenness on the surface of the positive electrode layer.
Further, for example, the smaller the diameter of the beads used in the bead mill, the smaller the unevenness on the surface of the positive electrode layer. On the other hand, the larger the diameter, the larger the unevenness on the surface of the positive electrode layer.
 支持基体は、各ペースト層を支持可能な支持体であれば、特に限定されないが、例えば、一面に離型処理が施された離型フィルムなどである。具体的には、ポリエチレンテレフタレート等の高分子材料から成る基体を用いることができる。ペースト層を基体上に保持したまま焼成工程に供する場合には、基体は焼成温度に対して耐熱性を呈するものを使用してよい。 The support substrate is not particularly limited as long as it is a support capable of supporting each paste layer, but is, for example, a release film having a release treatment on one surface. Specifically, a substrate made of a polymer material such as polyethylene terephthalate can be used. When the paste layer is held on the substrate and subjected to the firing step, a substrate that exhibits heat resistance to the firing temperature may be used.
 別法として、上記した各ペーストから各グリーンシートを形成し、得られたグリーンシートを積層して固体電池積層前駆体を作製することもできる。 Alternatively, each green sheet can be formed from each of the above-mentioned pastes, and the obtained green sheets can be laminated to prepare a solid-state battery laminated precursor.
 詳しくは、支持基体上に形成した各ペーストのグリーンシートを、80℃以上150℃以下に加熱することで、各支持基体(例えばPETフィルム)上に所定の形状、厚みを有する正極層グリーンシート、負極層グリーンシート、固体電解質層グリーンシート、正極集電層グリーンシート、負極集電層グリーンシート、電極分離部グリーンシートおよび/または外層材グリーンシート等をそれぞれ形成する。 Specifically, a positive electrode layer green sheet having a predetermined shape and thickness on each support substrate (for example, PET film) by heating the green sheet of each paste formed on the support substrate to 80 ° C. or higher and 150 ° C. or lower. A negative electrode layer green sheet, a solid electrolyte layer green sheet, a positive electrode current collector layer green sheet, a negative electrode current collector layer green sheet, an electrode separation portion green sheet and / or an outer layer material green sheet are formed, respectively.
 次に、各グリーンシートを基体から剥離する。剥離後、積層方向に沿って、各構成要素のグリーンシートを順に積層することで固体電池積層前駆体を形成する。積層後、電極グリーンシートの側部領域にスクリーン印刷により固体電解質層、絶縁層および/または保護層等を供してもよい。 Next, each green sheet is peeled off from the substrate. After peeling, the green sheet of each component is laminated in order along the lamination direction to form a solid-state battery lamination precursor. After laminating, a solid electrolyte layer, an insulating layer and / or a protective layer and the like may be provided on the side region of the electrode green sheet by screen printing.
(焼成工程)
 焼成工程では、固体電池積層前駆体を焼成に付す。あくまでも例示にすぎないが、焼成は、酸素ガスを含む窒素ガス雰囲気中または大気中で、例えば200℃以上600℃以下にて3時間以上48時間以下で加熱することにより有機材料を除去した後、窒素ガス雰囲気中または大気中で例えば300℃以上500℃以下にて10分~120分間加熱することで実施する。焼成は、積層方向および当該積層方向に対する垂直方向で固体電池積層前駆体を加圧しながら行ってよい。
(Baking process)
In the firing step, the solid-state battery laminated precursor is subjected to firing. Although it is merely an example, the firing is carried out after removing the organic material by heating in a nitrogen gas atmosphere containing oxygen gas or in the atmosphere, for example, at 200 ° C. or higher and 600 ° C. or lower for 3 hours or more and 48 hours or less. It is carried out by heating in a nitrogen gas atmosphere or in the atmosphere, for example, at 300 ° C. or higher and 500 ° C. or lower for 10 to 120 minutes. The firing may be performed while pressurizing the solid-state battery laminated precursor in the laminating direction and the direction perpendicular to the laminating direction.
 そのような焼成を経ることによって、固体電池積層体が形成され、最終的には所望の固体電池が得られることになる。 By undergoing such firing, a solid-state battery laminate is formed, and finally a desired solid-state battery can be obtained.
(正極端子および負極端子の形成工程)
 例えば、導電性接着剤を用いて固体電池積層体に正極端子を接着させると共に、導電性接着剤を用いて固体電池積層体に負極端子を接着させる。これにより、正極端子および負極端子のそれぞれが固体電池積層体に取り付けられるため、固体電池が完成する。
(Forming process of positive electrode terminal and negative electrode terminal)
For example, a conductive adhesive is used to bond the positive electrode terminals to the solid-state battery laminate, and a conductive adhesive is used to bond the negative electrode terminals to the solid-state battery laminate. As a result, each of the positive electrode terminal and the negative electrode terminal is attached to the solid-state battery laminate, so that the solid-state battery is completed.
 別法として、正極端子用ペーストおよび負極端子用ペーストを固体電池積層体の側面に付着または塗布し、焼結することにより正極端子および負極端子を形成することもできる。正極端子用ペーストを付着または塗布する固体電池積層体の側面は、例えば、正極集電層が露出した側面である。負極端子用ペーストを付着または塗布する固体電池積層体の側面は、例えば、負極集電層が露出した側面である。焼結は、窒素ガス雰囲気中または大気中で例えば150℃以上300℃以下にて10分間以上120分以下で加熱することで実施することができる。 Alternatively, the positive electrode terminal and the negative electrode terminal can be formed by adhering or applying the positive electrode terminal paste and the negative electrode terminal paste to the side surfaces of the solid-state battery laminate and sintering them. The side surface of the solid-state battery laminate to which the paste for the positive electrode terminal is attached or applied is, for example, the side surface where the positive electrode current collector layer is exposed. The side surface of the solid-state battery laminate to which the paste for the negative electrode terminal is attached or applied is, for example, the side surface where the negative electrode current collector layer is exposed. Sintering can be carried out by heating in a nitrogen gas atmosphere or in the air, for example, at 150 ° C. or higher and 300 ° C. or lower for 10 minutes or longer and 120 minutes or shorter.
 正極端子用ペーストおよび負極端子用ペーストは、導電性材料、有機材料および溶媒、ならびに所望により焼結助剤を含む。 The positive electrode terminal paste and the negative electrode terminal paste contain a conductive material, an organic material and a solvent, and optionally a sintering aid.
 以上、本発明の実施形態について説明してきたが、あくまでも典型例を例示したに過ぎない。従って、本発明はこれに限定されず、本発明の要旨を変更しない範囲において種々の態様が考えられることを当業者は容易に理解されよう。 Although the embodiments of the present invention have been described above, they are merely examples of typical examples. Therefore, those skilled in the art will easily understand that the present invention is not limited to this, and various aspects can be considered without changing the gist of the present invention.
<実施例1>
(固体電解質層作製用グリーンシートの作製工程)
 まず、固体電解質としてリチウム含有酸化物ガラスとアクリルバインダとを、リチウム含有酸化物ガラス:アクリルバインダ=70:30の質量比で混合した。次に、得られた混合物を酢酸ブチルに固形分が30質量%になるように混合したのち、これを直径5mmのジルコニアビーズとともに、4時間攪拌することにより、固体電解質層作製用スラリーを得た。続いて、このスラリーを離形フィルム上に塗布し、80℃で10分乾燥させることにより、固体電解質層前駆体として固体電解質層作製用グリーンシートを作製した。
<Example 1>
(Making process of green sheet for making solid electrolyte layer)
First, lithium-containing oxide glass and an acrylic binder were mixed as a solid electrolyte at a mass ratio of lithium-containing oxide glass: acrylic binder = 70:30. Next, the obtained mixture was mixed with butyl acetate so as to have a solid content of 30% by mass, and this was stirred together with zirconia beads having a diameter of 5 mm for 4 hours to obtain a slurry for preparing a solid electrolyte layer. .. Subsequently, this slurry was applied onto a release film and dried at 80 ° C. for 10 minutes to prepare a green sheet for producing a solid electrolyte layer as a precursor of the solid electrolyte layer.
(正極層作製用グリーンシートの作製工程)
 まず、プラネタリーミキサーのタンクに、正極活物質としてコバルト酸リチウム(LiCoO2)(平均粒径5μm)と、固体電解質としてリチウム含有酸化物ガラスを、コバルト酸リチウム:リチウム含有酸化物ガラス=70:30の質量比で調合した後、それら混合物との比率が(コバルト酸リチウム+リチウム含有酸化物ガラス):アクリルバインダ=70:30の質量比になるようアクリルバインダを混合した。さらに固形分が30質量%になるようテルピネオールを混合した後、プラネタリーミキサーで30分間混合した。そして得られた混合物を、直径5mmのジルコニアビーズを用いたビーズミルで30分間分散することにより、正極層作製用ペーストを得た。続いて、このペーストを固体電解質層作製用グリーンシート上に印刷し、150℃で10分間乾燥させることにより、正極層前駆体としての正極層作製用グリーンシートを作製した。
(Making process of green sheet for making positive electrode layer)
First, in the tank of the planetary mixer, lithium cobalt oxide (LiCoO2) (average particle size 5 μm) as the positive electrode active material, lithium-containing oxide glass as the solid electrolyte, and lithium cobalt oxide: lithium-containing oxide glass = 70:30. After blending in the mass ratio of, the acrylic binder was mixed so that the ratio with the mixture was (lithium cobalt oxide + lithium-containing oxide glass): acrylic binder = 70:30. Further, terpineol was mixed so that the solid content became 30% by mass, and then mixed with a planetary mixer for 30 minutes. Then, the obtained mixture was dispersed in a bead mill using zirconia beads having a diameter of 5 mm for 30 minutes to obtain a paste for preparing a positive electrode layer. Subsequently, this paste was printed on a green sheet for producing a solid electrolyte layer and dried at 150 ° C. for 10 minutes to prepare a green sheet for producing a positive electrode layer as a precursor of the positive electrode layer.
(負極層作製用グリーンシートの作製工程)
 まず、プラネタリーミキサーのタンクに、負極活物質として黒鉛と、固体電解質としてリチウム含有酸化物ガラスとを、黒鉛:リチウム含有酸化物ガラス=70:30の質量比で調合した後、それら混合物との比率が(黒鉛+リチウム含有酸化物ガラス):アクリルバインダ=70:30の質量比になるようアクリルバインダを混合した。さらに固形分が30質量%になるようにテルピネオールを混合した後、プラネタリーミキサーで30分間混合した。そして、得られた混合物を3本ロールミルで分散し、負極層作製用ペーストを得た。続いて、このペーストを固体電解質層作製用グリーンシート上に印刷し、150℃で10分間乾燥させることにより、負極層前駆体として負極層作製用グリーンシートを作製した。
(Making process of green sheet for making negative electrode layer)
First, graphite as a negative electrode active material and lithium-containing oxide glass as a solid electrolyte are mixed in a tank of a planetary mixer at a mass ratio of graphite: lithium-containing oxide glass = 70:30, and then mixed with the mixture. Acrylic binders were mixed so that the ratio was (graphite + lithium-containing oxide glass): acrylic binder = 70:30 by mass ratio. Further, terpineol was mixed so that the solid content became 30% by mass, and then mixed with a planetary mixer for 30 minutes. Then, the obtained mixture was dispersed by a three-roll mill to obtain a paste for producing a negative electrode layer. Subsequently, this paste was printed on a green sheet for producing a solid electrolyte layer and dried at 150 ° C. for 10 minutes to prepare a green sheet for producing a negative electrode layer as a precursor of the negative electrode layer.
(正極集電層作製用グリーンシートの作製工程)
 まず、プラネタリーミキサーのタンクに、導電材料として炭素粉末と、固体電解質としてリチウム含有酸化物ガラスとを、炭素粉末:リチウム含有酸化物ガラス=70:30の質量比で調合した後、それら混合物との比率が(炭素粉末+リチウム含有酸化物ガラス):アクリルバインダ=70:30の質量比になるようアクリルバインダを混合した。さらにテルピネオールを固形分が30質量%になるように混合した後、プラネタリーミキサーで30分間混合した。そして、得られた混合物を3本ロールミルで分散し、正極集電層作製用ペーストを得た。続いて、このペーストを固体電解質層作製用グリーンシート上に印刷し、150℃で10分間乾燥させることにより、正極集電層前駆体として正極集電層作製用グリーンシートを作製した。
(Making process of green sheet for making positive electrode current collector layer)
First, carbon powder as a conductive material and lithium-containing oxide glass as a solid electrolyte are mixed in a tank of a planetary mixer at a mass ratio of carbon powder: lithium-containing oxide glass = 70:30, and then mixed with the mixture. The acrylic binder was mixed so that the ratio of (carbon powder + lithium-containing oxide glass): acrylic binder = 70:30 was obtained. Further, terpineol was mixed so as to have a solid content of 30% by mass, and then mixed with a planetary mixer for 30 minutes. Then, the obtained mixture was dispersed by a three-roll mill to obtain a paste for producing a positive electrode current collector layer. Subsequently, this paste was printed on a green sheet for producing a solid electrolyte layer and dried at 150 ° C. for 10 minutes to prepare a green sheet for producing a positive electrode current collector layer as a precursor of the positive electrode current collector layer.
(外層材作製用グリーンシートの作製工程)
 まず、プラネタリーミキサーのタンクに、アルミナ粒子粉末(平均粒径1μm)と、固体電解質としてリチウム含有酸化物ガラスとを、アルミナ粒子粉末:リチウム含有酸化物ガラス=50:50の質量比で調合した後、それら混合物との比率が(アルミナ粒子粉末+リチウム含有酸化物ガラス):アクリルバインダ=70:30の質量比になるようアクリルバインダを混合した。さらに固形分が30質量%になるようにテルピネオールを混合した。そして、得られた混合物を3本ロールミルで分散し、主面外装材作製用ペーストを得た。続いて、このペーストを固体電解質層作製用グリーンシート上に印刷し、150℃で10分間乾燥させることにより、主面外層材前駆体として外層材作製用グリーンシートを作製した。
(Making process of green sheet for making outer layer material)
First, alumina particle powder (average particle size 1 μm) and lithium-containing oxide glass as a solid electrolyte were mixed in a tank of a planetary mixer at a mass ratio of alumina particle powder: lithium-containing oxide glass = 50:50. After that, the acrylic binder was mixed so that the ratio with the mixture was (alumina particle powder + lithium-containing oxide glass): acrylic binder = 70:30. Further, terpineol was mixed so that the solid content became 30% by mass. Then, the obtained mixture was dispersed by a three-roll mill to obtain a paste for producing a main surface exterior material. Subsequently, this paste was printed on a green sheet for producing a solid electrolyte layer and dried at 150 ° C. for 10 minutes to prepare a green sheet for producing an outer layer material as a precursor of the main surface outer layer material.
(電極分離部作製用グリーンシートの作製工程)
 上述の“外層材作製用グリーンシートの作製工程”と同様にして、電極分離部前駆体として電極分離部作製用グリーンシートを作製した。
(Making process of green sheet for making electrode separation part)
In the same manner as the above-mentioned "process for producing a green sheet for producing an outer layer material", a green sheet for producing an electrode separation portion was produced as a precursor for the electrode separation portion.
(積層体の作製工程)
 上述のようにして得られた各グリーンシートを用いて、図1および図2に示す構成を有する積層体を以下のようにして作製した。まず、各グリーンシートを図1および図2に示した形状に加工したのち、離型フィルムから離型した。続いて、各グリーンシートを、図1および図2に示す電池素子の構成に対応するようにして順序積層したのち、100℃で10分間熱圧着した。これにより、電池素子前駆体としての積層体が得られた。
(Production process of laminated body)
Using each of the green sheets obtained as described above, a laminate having the configurations shown in FIGS. 1 and 2 was produced as follows. First, each green sheet was processed into the shapes shown in FIGS. 1 and 2, and then released from the release film. Subsequently, the green sheets were sequentially laminated so as to correspond to the configurations of the battery elements shown in FIGS. 1 and 2, and then thermocompression bonded at 100 ° C. for 10 minutes. As a result, a laminated body as a battery element precursor was obtained.
(積層体の焼結工程)
 得られた積層体を300℃で10時間加熱することで、各グリーンシートに含まれるアクリルバインダを除去したのちに、400℃で30分加熱することで、各グリーンシートに含まれる酸化物ガラスを焼結させた。
(Sintering process of laminated body)
The obtained laminate was heated at 300 ° C. for 10 hours to remove the acrylic binder contained in each green sheet, and then heated at 400 ° C. for 30 minutes to remove the oxide glass contained in each green sheet. Sintered.
(端子の作製工程)
 まず、導電性粒子粉末としてAg粉末を含有したエポキシ樹脂系導電性接着剤XA-874(藤倉化成)を離形フィルム上に塗布したのち、正極集電層、負極集電層がそれぞれ露出した積層体の第1、第2の端面(または側面)に導電性ペーストを付着させ、150℃で1時間焼結することにより、正極、負極端子を形成した。これにより、目的とする電池が得られた。
(Terminal manufacturing process)
First, an epoxy resin-based conductive adhesive XA-874 (Fujikura Kasei) containing Ag powder as a conductive particle powder is applied onto a release film, and then the positive electrode current collector layer and the negative electrode current collector layer are exposed. Positive electrode and negative electrode terminals were formed by adhering a conductive paste to the first and second end faces (or side surfaces) of the body and sintering at 150 ° C. for 1 hour. As a result, the target battery was obtained.
(正極層の表面凹凸の標準偏差)
 正極層10Aと負極層10Bとの間に配置される2つの固体電解質層20の各層について、固体電解質層に接する正極層表面の凹凸を測定した。詳しくは、固体電池200において、積層方向Lおよび幅方向Wに平行な面であって、固体電池200の平面視形状における中央点を通る面の断面写真(例えば図3)を、走査電子顕微鏡FlexSEM1000(日立ハイテクノロジーズ社製)により撮影した。走査電子顕微鏡の撮影条件は、加速電圧15kV、観察倍率1000倍であった。中央点とは固体電池を積層方向Lから二次元の平面でとらえたときの当該固体電池の平面視形状における重心を意味する。重心は、等質の材料(例えば、紙)を当該固体電池の平面視形状の輪郭で切り取り、均衡をとって点で支えたときの当該点である。この断面写真において、倍率3000倍となるように、正極層10Aと負極層10Bとの間に配置される固体電解質層20の中央部近傍を拡大した。当該拡大断面写真(例えば図5)において、中央線から右方向および左方向に20μm幅ずつ1μm間隔で距離Aを測定し、合計41個の測定値を得、これらの値の標準偏差を求めた。2つの固体電解質層20の各層について、標準偏差を求めたところ、これらの値は同値であった。距離Aとは、基準線15から正極層10Aの正極活物質粒子までの距離のことである。中央線とは、固体電池の軸線のことであり、詳しくは積層方向Lに平行な線であって、かつ固体電池の平面視形状における上記した中央点を通る線である。
(Standard deviation of surface unevenness of positive electrode layer)
The unevenness of the surface of the positive electrode layer in contact with the solid electrolyte layer was measured for each layer of the two solid electrolyte layers 20 arranged between the positive electrode layer 10A and the negative electrode layer 10B. Specifically, in the solid-state battery 200, a cross-sectional photograph (for example, FIG. 3) of a surface parallel to the stacking direction L and the width direction W and passing through the center point in the plan view shape of the solid-state battery 200 is taken with a scanning electron microscope FlexSEM1000. Taken by (Hitachi High Technologies America). The imaging conditions of the scanning electron microscope were an acceleration voltage of 15 kV and an observation magnification of 1000 times. The center point means the center of gravity of the solid-state battery in the plan view shape when the solid-state battery is viewed in a two-dimensional plane from the stacking direction L. The center of gravity is the point when a homogeneous material (for example, paper) is cut out by the contour of the plan view shape of the solid-state battery and supported by points in a balanced manner. In this cross-sectional photograph, the vicinity of the central portion of the solid electrolyte layer 20 arranged between the positive electrode layer 10A and the negative electrode layer 10B is enlarged so as to have a magnification of 3000 times. In the enlarged cross-sectional photograph (for example, FIG. 5), the distance A was measured at 1 μm intervals of 20 μm width from the center line to the right and left, and a total of 41 measured values were obtained, and the standard deviations of these values were obtained. .. When the standard deviation was calculated for each layer of the two solid electrolyte layers 20, these values were the same. The distance A is the distance from the reference line 15 to the positive electrode active material particles of the positive electrode layer 10A. The center line is the axis of the solid-state battery, more specifically, a line parallel to the stacking direction L and a line passing through the above-mentioned center point in the plan view shape of the solid-state battery.
(動作率)
 18個の固体電池において、充放電試験を行い、ショート不良および充電不良が発生しなかった固体電池(良品)の割合を動作率として求めた。
 充放電試験は23℃の温度環境下で行った。詳しくは、電池の定格容量を1Cとし、0.1Cの定電流で4.2Vに到達するまで充電し、4.2Vに到達した後は、定電圧モードで0.01Cまで電流が絞れるまで充電を行った(定電流定電圧充電)。その後、放電を0.1Cの定電流で3.0Vに到達するまで行った(定電流放電)。
 ショート不良および充電不良は、上記の充放電試験における充放電曲線の形状により判断した。より詳しくは、充放電試験開始してもほとんど電圧が上がらないものをショート不良、充電の過程で、ある電圧を超えたところで電圧が降下し、4.2Vまで電圧が上がらないものを充電不良と認定した。
◎;動作率が90%以上であった(最良);
○;動作率が80%以上90%未満であった(良);
△;動作率が70%以上80%未満であった(実用上問題なし);
×;動作率が70%未満であった。
(Operating rate)
A charge / discharge test was performed on 18 solid-state batteries, and the ratio of solid-state batteries (non-defective products) in which short-circuit defects and charging defects did not occur was determined as the operating rate.
The charge / discharge test was performed in a temperature environment of 23 ° C. Specifically, the rated capacity of the battery is set to 1C, and the battery is charged with a constant current of 0.1C until it reaches 4.2V, and after reaching 4.2V, it is charged in the constant voltage mode until the current is reduced to 0.01C. (Constant current constant voltage charging). Then, the discharge was carried out at a constant current of 0.1 C until it reached 3.0 V (constant current discharge).
Short-circuit failure and charge failure were judged by the shape of the charge / discharge curve in the above charge / discharge test. More specifically, a short circuit failure is when the voltage hardly rises even after the start of the charge / discharge test, and a charge failure is when the voltage drops when the voltage exceeds a certain voltage and does not rise to 4.2V. Certified.
⊚; Operation rate was 90% or more (best);
◯; The operation rate was 80% or more and less than 90% (good);
Δ; The operating rate was 70% or more and less than 80% (no problem in practical use);
X; The operating rate was less than 70%.
(平均粒径の測定)
 正極層の断面を光学顕微鏡もしくは電子顕微鏡で観察し、無作為に選んだ100個の粒子の断面を測長し、平均一次粒径を算出する。断面の端部から端部に線を引き、最大長さとなる2点間の距離を粒子径と定義する。
(Measurement of average particle size)
The cross section of the positive electrode layer is observed with an optical microscope or an electron microscope, the cross section of 100 randomly selected particles is measured, and the average primary particle size is calculated. A line is drawn from one end of the cross section to the other, and the distance between two points, which is the maximum length, is defined as the particle size.
<実施例2>
 正極層作製用グリーンシートの作製工程において、ビーズミルによる分散時間を2倍にしたこと以外、実施例1と同様の方法により、固体電池の製造および評価を行った。
<Example 2>
In the step of producing the green sheet for producing the positive electrode layer, the solid-state battery was produced and evaluated by the same method as in Example 1 except that the dispersion time by the bead mill was doubled.
<実施例3>
 正極層作製用グリーンシートの作製工程において、ビーズミルによる分散時間を4倍にしたこと以外、実施例1と同様の方法により、固体電池の製造および評価を行った。
<Example 3>
In the step of producing the green sheet for producing the positive electrode layer, the solid-state battery was produced and evaluated by the same method as in Example 1 except that the dispersion time by the bead mill was quadrupled.
<実施例4>
 正極層作製用グリーンシートの作製工程において、正極活物質としてマンガン酸リチウム(LiMnO4)(平均粒径5μm)を用いたこと以外、実施例1と同様の方法により、固体電池の製造および評価を行った。
<Example 4>
A solid-state battery was produced and evaluated by the same method as in Example 1 except that lithium manganate (LiMnO4) (average particle size 5 μm) was used as the positive electrode active material in the process of producing the green sheet for producing the positive electrode layer. It was.
<比較例1>
 正極層作製用グリーンシートの作製工程において、ビーズミルによる分散の代わりに、セラミックス3本ロールミルによる分散を1回行ったこと以外、実施例1と同様の方法により、固体電池の製造および評価を行った。
<Comparative example 1>
In the step of producing the green sheet for producing the positive electrode layer, the solid-state battery was produced and evaluated by the same method as in Example 1 except that the dispersion was performed once by the three-roll ceramics roll mill instead of the dispersion by the bead mill. ..
<比較例2>
 正極層作製用グリーンシートの作製工程において、ビーズミルによる分散の代わりに、セラミックス3本ロールミルによる分散を2回行ったこと以外、実施例1と同様の方法により、固体電池の製造および評価を行った。
<Comparative example 2>
In the step of producing the green sheet for producing the positive electrode layer, the solid-state battery was produced and evaluated by the same method as in Example 1 except that the dispersion was performed twice by the three-roll ceramics roll mill instead of the dispersion by the bead mill. ..
<比較例3>
 正極層作製用グリーンシートの作製工程において、正極活物質としてマンガン酸リチウム(LiMnO4)(平均粒径5μm)を用いたこと、およびビーズミルによる分散の代わりに、セラミックス3本ロールミルによる分散を2回行ったこと以外、実施例1と同様の方法により、固体電池の製造および評価を行った。
<Comparative example 3>
In the process of producing the green sheet for producing the positive electrode layer, lithium manganate (LiMnO4) (average particle size 5 μm) was used as the positive electrode active material, and instead of the dispersion by the bead mill, the dispersion was performed twice by the three-roll ceramics roll mill. Except for the above, the solid-state battery was manufactured and evaluated by the same method as in Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~4の各々の固体電池は、その断面視において、以下の関係を有していた:
・固体電解質層に接する正極層表面の凹凸は、固体電解質層に接する負極層表面の凹凸よりも大きい;および
・固体電解質層に接する正極層表面の凹凸は、正極集電層に接する正極層表面の凹凸よりも小さい。
Each solid-state battery of Examples 1 to 4 had the following relationship in cross-sectional view:
The unevenness of the surface of the positive electrode layer in contact with the solid electrolyte layer is larger than the unevenness of the surface of the negative electrode layer in contact with the solid electrolyte layer; It is smaller than the unevenness of.
 本発明の固体電池は、電池使用または蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、本発明の固体電池は、エレクトロニクス実装分野で用いることができる。本発明の固体電池はまた、モバイル機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、ノートパソコンおよびデジタルカメラ、活動量計、アームコンピューター、電子ペーパー、ウェアラブルデバイス、RFIDタグ、カード型電子マネー、スマートウォッチなどの小型電子機などを含む電気・電子機器分野あるいはモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、医療用途(イヤホン補聴器などの医療用機器分野)、医薬用途(服用管理システムなどの分野)、ならびに、IoT分野、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)などに利用することができる。 The solid-state battery of the present invention can be used in various fields where battery use or storage is expected. Although merely an example, the solid-state battery of the present invention can be used in the field of electronics mounting. The solid-state battery of the present invention also includes electric / information / communication fields (for example, mobile phones, smartphones, laptop computers and digital cameras, activity meters, arm computers, electronic papers, wearable devices, RFID tags) in which mobile devices and the like are used. , Card-type electronic money, electrical / electronic equipment field including small electronic devices such as smart watches or mobile equipment field), household / small industrial applications (for example, electric tools, golf carts, household / nursing / industrial robots) Fields), large industrial applications (eg, forklifts, elevators, bay port cranes), transportation systems (eg, hybrid vehicles, electric vehicles, buses, trains, electrically assisted bicycles, electric motorcycles, etc.), power systems Applications (for example, various power generation, road conditioners, smart grids, general household installation type power storage systems, etc.), medical applications (medical equipment fields such as earphone hearing aids), pharmaceutical applications (fields such as dose management systems), and It can be used in the IoT field, space / deep sea applications (for example, fields such as space explorers and submersible research vessels).
 10:電極層
 10A:正極層
 10B:負極層
 11:正極集電層
 20:固体電解質層
 30:電極分離部
 30A:正極分離部
 30B:負極分離部
 40:端子
 40A:正極端子
 40B:負極端子
 60:外層材
 100:固体電池積層体
 200:固体電池
10: Electrode layer 10A: Positive electrode layer 10B: Negative electrode layer 11: Positive electrode current collector layer 20: Solid electrolyte layer 30: Electrode separation part 30A: Positive electrode separation part 30B: Negative electrode separation part 40: Terminal 40A: Positive electrode terminal 40B: Negative electrode terminal 60 : Outer layer material 100: Solid-state battery laminate 200: Solid-state battery

Claims (8)

  1.  正極層、負極層、および該正極層と該負極層との間に介在する固体電解質層を含む固体電池であって、
     前記固体電池の断面視において、前記固体電解質層に接する前記正極層表面の凹凸は1.0μm以下であり、
     前記凹凸は、前記負極層と前記固体電解質層との界面を基準線とし、該基準線から前記正極層の正極活物質粒子までの距離を測定したとき、該複数の測定値の標準偏差で表される値である、固体電池。
    A solid-state battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer.
    In a cross-sectional view of the solid-state battery, the unevenness of the surface of the positive electrode layer in contact with the solid electrolyte layer is 1.0 μm or less.
    The unevenness is represented by the standard deviation of the plurality of measured values when the distance from the reference line to the positive electrode active material particles of the positive electrode layer is measured with the interface between the negative electrode layer and the solid electrolyte layer as a reference line. A solid-state battery that is the value to be.
  2.  前記正極層はリチウム遷移金属複合酸化物を含み、
     前記負極層は炭素材料を含む、請求項1に記載の固体電池。
    The positive electrode layer contains a lithium transition metal composite oxide and contains.
    The solid-state battery according to claim 1, wherein the negative electrode layer contains a carbon material.
  3.  前記固体電池は、前記正極層の前記固体電解質層と接触する面と反対側の面に配置される正極集電層を含む、請求項1または2に記載の固体電池。 The solid-state battery according to claim 1 or 2, wherein the solid-state battery includes a positive electrode current collector layer arranged on a surface of the positive electrode layer opposite to a surface in contact with the solid electrolyte layer.
  4.  前記正極集電層は炭素材料を含む、請求項3に記載の固体電池。 The solid-state battery according to claim 3, wherein the positive electrode current collector layer contains a carbon material.
  5.  前記凹凸は0.70μm以上0.82μm以下である、請求項1~4のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 1 to 4, wherein the unevenness is 0.70 μm or more and 0.82 μm or less.
  6.  正極活物質粒子、固体電解質材料、有機材料および溶媒を含む混合物を、メディアを用いる湿式混合方法で混合して正極層用ペーストを調製する、固体電池の製造方法。 A method for producing a solid-state battery, in which a mixture containing positive electrode active material particles, a solid electrolyte material, an organic material and a solvent is mixed by a wet mixing method using a medium to prepare a paste for the positive electrode layer.
  7.  前記メディアを用いる湿式混合方法はビーズミルを用いる混合方法である、請求項6に記載の固体電池の製造方法。 The method for manufacturing a solid-state battery according to claim 6, wherein the wet mixing method using the media is a mixing method using a bead mill.
  8.  請求項1~5のいずれかに記載の固体電池を製造する、請求項6または7に記載の固体電池の製造方法。 The method for manufacturing a solid-state battery according to claim 6 or 7, wherein the solid-state battery according to any one of claims 1 to 5 is manufactured.
PCT/JP2020/048532 2019-12-27 2020-12-24 Solid-state battery WO2021132500A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019239097 2019-12-27
JP2019-239097 2019-12-27

Publications (1)

Publication Number Publication Date
WO2021132500A1 true WO2021132500A1 (en) 2021-07-01

Family

ID=76575997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048532 WO2021132500A1 (en) 2019-12-27 2020-12-24 Solid-state battery

Country Status (1)

Country Link
WO (1) WO2021132500A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070051A1 (en) * 2022-09-29 2024-04-04 Fdk株式会社 Solid-state battery and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205449A (en) * 2009-02-27 2010-09-16 Nippon Zeon Co Ltd Electrolyte layer for all-solid secondary battery, laminate for all-solid secondary battery, and all-solid secondary battery
JP2012243743A (en) * 2011-05-24 2012-12-10 Ohara Inc All-solid lithium ion battery
JP2014017199A (en) * 2012-07-11 2014-01-30 Sharp Corp Electrode for lithium secondary battery and method for manufacturing the same, and lithium secondary battery and method for manufacturing the same
JP2014143133A (en) * 2013-01-25 2014-08-07 Toyota Motor Corp Positive electrode for secondary battery, method for manufacturing positive electrode for secondary battery, and all-solid secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205449A (en) * 2009-02-27 2010-09-16 Nippon Zeon Co Ltd Electrolyte layer for all-solid secondary battery, laminate for all-solid secondary battery, and all-solid secondary battery
JP2012243743A (en) * 2011-05-24 2012-12-10 Ohara Inc All-solid lithium ion battery
JP2014017199A (en) * 2012-07-11 2014-01-30 Sharp Corp Electrode for lithium secondary battery and method for manufacturing the same, and lithium secondary battery and method for manufacturing the same
JP2014143133A (en) * 2013-01-25 2014-08-07 Toyota Motor Corp Positive electrode for secondary battery, method for manufacturing positive electrode for secondary battery, and all-solid secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070051A1 (en) * 2022-09-29 2024-04-04 Fdk株式会社 Solid-state battery and method for producing same

Similar Documents

Publication Publication Date Title
US20210384550A1 (en) Solid-state battery
JP7188562B2 (en) solid state battery
WO2019189311A1 (en) All-solid-state battery
EP3951927A1 (en) Solid-state battery
WO2014170998A1 (en) All-solid-state lithium-ion secondary battery
JP7405151B2 (en) solid state battery
JP7107389B2 (en) solid state battery
US20220140388A1 (en) Solid-state battery
WO2021132500A1 (en) Solid-state battery
US20220069347A1 (en) Solid-state battery
WO2021131467A1 (en) Solid-state battery
WO2021124809A1 (en) Solid-state battery
WO2023171457A1 (en) Solid-state battery and electronic device having surface-mounted solid-state battery
WO2020195310A1 (en) Solid-state battery
WO2023188470A1 (en) All-solid-state secondary battery
WO2023127247A1 (en) Solid-state battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP