JP2014016335A - Integrated reference electrode - Google Patents

Integrated reference electrode Download PDF

Info

Publication number
JP2014016335A
JP2014016335A JP2012235088A JP2012235088A JP2014016335A JP 2014016335 A JP2014016335 A JP 2014016335A JP 2012235088 A JP2012235088 A JP 2012235088A JP 2012235088 A JP2012235088 A JP 2012235088A JP 2014016335 A JP2014016335 A JP 2014016335A
Authority
JP
Japan
Prior art keywords
reference electrode
oxide film
integrated reference
metal oxide
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012235088A
Other languages
Japanese (ja)
Other versions
JP6004477B2 (en
Inventor
Yoshinori Hashimoto
資教 橋本
Junichi Tani
純一 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2012235088A priority Critical patent/JP6004477B2/en
Publication of JP2014016335A publication Critical patent/JP2014016335A/en
Application granted granted Critical
Publication of JP6004477B2 publication Critical patent/JP6004477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an integrated reference electrode which exhibits stable electric potential in a wide environmental temperature area from a low temperature area to a high temperature area and is also mechanically robust.SOLUTION: To form a metal oxide film 2B on a metal substrate 2A, and further form a ceramic thin film 1 over the metal oxide film 2B so as to cover a surface of the metal oxide film 2B.

Description

本発明は一体型参照電極に関し、特に軽水炉構造材料等の腐食電位(ECP)測定の際に適用して有用なものである。   The present invention relates to an integrated reference electrode, and is particularly useful when applied to the measurement of corrosion potential (ECP) of light water reactor structural materials and the like.

軽水炉構造材料の腐食電位(ECP)測定は炉内環境モニタリングに最も適した技術である。炉内ECP測定には長期間安定に動作する参照電極が必要であるが、放射線照射下で簡便に利用できる電極は存在しない。そこで、この種の用途に、セラミックス管を酸素伝導体として用いる金属/酸化物電極が提案されている。かかる金属/酸化物電極は、化学的に安定で、酸化還元系から影響を受けない。そのため炉内用参照電極として金属/酸化物電極の適用が期待できる(例えば、非特許文献1および非特許文献2参照)。   Corrosion potential (ECP) measurement of light water reactor structural materials is the most suitable technique for in-reactor environmental monitoring. In-furnace ECP measurement requires a reference electrode that operates stably for a long period of time, but there is no electrode that can be easily used under irradiation. Therefore, a metal / oxide electrode using a ceramic tube as an oxygen conductor has been proposed for this type of application. Such metal / oxide electrodes are chemically stable and unaffected by the redox system. Therefore, application of a metal / oxide electrode as a reference electrode for a furnace can be expected (for example, see Non-Patent Document 1 and Non-Patent Document 2).

図11は、従来技術に係る、この種の金属/酸化物電極で構成した参照電極を概念的に示す説明図である。同図に示すように、参照電極IIIは、セラミックス管01中に、金属/金属酸化物の混合物で形成するM/O電極02を固体電解質として封入したものである。ここで、セラミックス管01は、例えばイットリア安定化ジルコニア(YSZ)で形成され、M/O電極02は、例えばNi/NiOで形成される。また、セラミックス管01はその上端部で構造材としての金属ケース03にロウ付けにより固着された状態で、例えば原子炉内等の所定の計測部位に設置される。M/O電極02には導線04の先端を当接させてあり、M/O電極02の電位を外部で計測し得るように構成してある。   FIG. 11 is an explanatory diagram conceptually showing a reference electrode composed of this type of metal / oxide electrode according to the prior art. As shown in the figure, the reference electrode III is a ceramic tube 01 in which an M / O electrode 02 formed of a metal / metal oxide mixture is sealed as a solid electrolyte. Here, the ceramic tube 01 is made of, for example, yttria stabilized zirconia (YSZ), and the M / O electrode 02 is made of, for example, Ni / NiO. The ceramic tube 01 is installed at a predetermined measurement site such as in a nuclear reactor, for example, with its upper end fixed to a metal case 03 as a structural material by brazing. The tip of the conducting wire 04 is brought into contact with the M / O electrode 02 so that the potential of the M / O electrode 02 can be measured externally.

EPRI report ,NP−7142(1991)EPRI report, NP-7142 (1991) L.W.Niedrach J.Electrochem.Soc.127,2122L. W. Niedrach J. et al. Electrochem. Soc. 127,2122

上述の如き参照電極IIIは、放射線照射下ではM/O電極02を封入しているセラミックス管01と金属ケース03との接合部05で腐食が生じ、この部分が破損する場合がある。破損した場合には、環境の溶液がセラミックス管01内に流入し、またはセラミックス管01からM/O電極02を形成する粉末状の金属/金属酸化物が環境の溶液内に流出して、これを汚損する虞がある。   The reference electrode III as described above may be corroded at the joint portion 05 between the ceramic tube 01 enclosing the M / O electrode 02 and the metal case 03 under radiation irradiation, and this portion may be damaged. In the case of breakage, the environmental solution flows into the ceramic tube 01, or the powdered metal / metal oxide forming the M / O electrode 02 flows out of the ceramic tube 01 into the environmental solution. There is a risk of fouling.

さらに、セラミックス管01は溶液中でのインピーダンスが低温(室温程度)で非常に高い。このためM/O電極02は専ら高温(90℃以上)で動作させるものとして使用していた。この結果、例えば軽水炉の起動停止等の低温時のECP測定には利用することができない。   Furthermore, the ceramic tube 01 has a very high impedance in solution at a low temperature (about room temperature). For this reason, the M / O electrode 02 has been used exclusively for operation at a high temperature (90 ° C. or higher). As a result, it cannot be used for ECP measurement at low temperatures, such as starting and stopping a light water reactor.

また、セラミックス管01は機械的および熱的な衝撃に弱く、セラミックス管01の破損に伴う高温蒸気の外部への漏えいやM/O電極02に用いる固体電解質の環境中への漏洩が懸念される。   Further, the ceramic tube 01 is vulnerable to mechanical and thermal shocks, and there is a concern about leakage of high-temperature steam to the outside due to breakage of the ceramic tube 01 and leakage of the solid electrolyte used for the M / O electrode 02 into the environment. .

本発明は、上記従来技術に鑑み、環境温度の低温域から高温域の広い温度領域において安定した電位を示し、また機械的にも頑強な一体型参照電極を提供することを目的とする。   An object of the present invention is to provide an integrated reference electrode that exhibits a stable potential in a wide temperature range from a low temperature range to a high temperature range and is mechanically robust in view of the above-described prior art.

上記目的を達成する本発明は、次の知見を基礎とするものである。すなわち、上述の如き従来技術に係る参照電極IIIの問題を解決する参照電極として、セラミックスと酸化物を金属基板上に成膜した一体型参照電極が考えられる。かかる一体型参照電極を形成することができれば、高い動作温度(例えば150℃以上)で使用することができると同時に、セラミックスの薄膜化によりインピーダンスを下げることが可能であるため、低い温度領域でも使用し得ると考えられる。   The present invention that achieves the above object is based on the following knowledge. That is, as a reference electrode that solves the problem of the reference electrode III according to the prior art as described above, an integrated reference electrode in which a ceramic and an oxide film are formed on a metal substrate can be considered. If such an integrated reference electrode can be formed, it can be used at a high operating temperature (for example, 150 ° C. or higher), and at the same time, the impedance can be lowered by reducing the thickness of the ceramic. It is considered possible.

ただ、M/O電極02を薄膜化した場合、M/O電極02を構成する金属と金属酸化物との比率を制御することが困難であるため、両者の比率がどのようなものになるか予想が付かない。従来、金属と金属酸化物との比率は1対1またはその近傍であることが望ましいとされ、実際、従来のM/O電極02における金属と金属酸化物の比率は1対1またはその近傍となるように形成されていた。   However, when the thickness of the M / O electrode 02 is reduced, it is difficult to control the ratio of the metal and the metal oxide constituting the M / O electrode 02. I can't predict. Conventionally, it is desirable that the ratio of metal to metal oxide is 1: 1 or the vicinity thereof. In fact, the ratio of metal to metal oxide in the conventional M / O electrode 02 is 1: 1 or the vicinity thereof. It was formed to become.

そこで、本発明者等は、金属と金属酸化物の薄膜化の可能性を検証すべく、図11に示す構造の参照電極IIIにおいて、M/O電極02を構成する金属と金属酸化物の比率を種々変化させて、比率を変化させた場合の電極電位の特性を調べた。具体的には、最適な固体電解質の組成として選定したNi/NiO比とM/O電極02の電極電位との関係を調べた。   Therefore, the present inventors have examined the possibility of thinning the metal and metal oxide, and in the reference electrode III having the structure shown in FIG. 11, the ratio of the metal and metal oxide constituting the M / O electrode 02 is as follows. The characteristics of the electrode potential when the ratio was changed with various changes were investigated. Specifically, the relationship between the Ni / NiO ratio selected as the optimal solid electrolyte composition and the electrode potential of the M / O electrode 02 was examined.

その結果を図12に示す。ここで、実験値は環境の環境温度が288℃に到達後、電極電位が安定したときの計測値を統計的に処理した値である。併せてNi/NiOの平衡反応から求めた理論値を破線で示す。   The result is shown in FIG. Here, the experimental value is a value obtained by statistically processing the measured value when the electrode potential is stabilized after the environmental temperature of the environment reaches 288 ° C. In addition, the theoretical value obtained from the equilibrium reaction of Ni / NiO is indicated by a broken line.

図12を参照すれば、M/O電極02の電極電位はNi/NiO比に対して顕著な影響がなく、許容できる範囲に収まることが確認できる。Niが過剰な場合、電極電位はほぼ一定である。一方、NiOの割合が増加するにつれ電極電位が貴側にシフトするが、高温水中での電位測定のばらつきと比較すると十分に許容できる。かかる結果は短期間の試験を繰り返した結果である。そのため、長期間の試験では固体電解質の継時変化で酸化物の割合が増加し、図12とは傾向が異なる可能性が考えられるが、Ni/NiO比が1:10と10:1と極端に変化した場合のM/O電極02の電極電位の差は高温での電位計測のばらつきと比較して小さく、固体電解質の継時変化による影響は少ないと推測される。   Referring to FIG. 12, it can be confirmed that the electrode potential of the M / O electrode 02 has no significant influence on the Ni / NiO ratio and falls within an allowable range. When Ni is excessive, the electrode potential is almost constant. On the other hand, as the proportion of NiO increases, the electrode potential shifts to the noble side, but it is well tolerated as compared with the variation in potential measurement in high temperature water. Such a result is a result of repeated short-term tests. Therefore, in the long-term test, the ratio of the oxide increases due to the change of the solid electrolyte over time, and it is possible that the tendency is different from that in FIG. 12, but the Ni / NiO ratio is extremely extreme at 1:10 and 10: 1. The difference in the electrode potential of the M / O electrode 02 when it is changed to is smaller than the variation in potential measurement at a high temperature, and it is estimated that the influence of the change in the solid electrolyte over time is small.

この結果より、高温水中でNi/NiO電極は理論値に近い値を示し、Ni/NiO比による電極電位への影響が少ないことから、Ni/NiOを薄膜化しても電極電位は十分許容範囲に収まると考えられる。   From this result, the Ni / NiO electrode shows a value close to the theoretical value in high-temperature water, and the influence of the Ni / NiO ratio on the electrode potential is small. It is thought that it will fit.

かかる知見を基礎とする本願発明の第1の態様は、
金属基板上に金属酸化物膜を形成し、さらに前記金属酸化物膜の表面を覆うように前記金属酸化物膜上にセラミックス膜を形成したことを特徴とする一体型参照電極にある。
The first aspect of the present invention based on such knowledge is as follows:
In the integrated reference electrode, a metal oxide film is formed on a metal substrate, and a ceramic film is formed on the metal oxide film so as to cover the surface of the metal oxide film.

本態様によれば、セラミックス膜部分のインピーダンスを飛躍的に低減し得るので測定環境が低温であっても参照電極としての所定の機能を発揮させることができる。また、機械的強度の脆弱部である他の部材との接合部がないので、機械的な寿命を向上させることができ、長期に亘る所定の安定な機能を保証することができる。   According to this aspect, since the impedance of the ceramic film portion can be drastically reduced, a predetermined function as the reference electrode can be exhibited even if the measurement environment is low temperature. Moreover, since there is no joint part with the other member which is a weak part of mechanical strength, a mechanical lifetime can be improved and the predetermined stable function over a long period can be ensured.

本発明の第2の態様は、
金属基板の表面を熱酸化させて前記金属基板上に金属酸化物膜を形成し、さらに前記金属酸化物膜の表面を覆うように前記金属酸化物膜上にセラミックス膜を形成したことを特徴とする一体型参照電極にある。
The second aspect of the present invention is:
The surface of the metal substrate is thermally oxidized to form a metal oxide film on the metal substrate, and a ceramic film is formed on the metal oxide film so as to cover the surface of the metal oxide film. The integrated reference electrode.

本態様によれば、第1の態様に記載する一体型参照電極と同様の作用・効果に加え、さらに金属基板の熱酸化による酸化膜で所定の金属酸化物膜を形成しているので、金属基板と金属酸化物膜との界面における剥離を防止することができ、長期に亘り安定した電極電位特性を得ることができる。   According to this aspect, in addition to the same operation and effect as the integrated reference electrode described in the first aspect, the predetermined metal oxide film is formed by the oxide film formed by thermal oxidation of the metal substrate. Separation at the interface between the substrate and the metal oxide film can be prevented, and stable electrode potential characteristics can be obtained over a long period of time.

本発明の第3の態様は、
第2の態様に記載する一体型参照電極において、
前記熱酸化による酸化膜は、前記金属基板を、500℃以上に加熱して形成したことを特徴とする一体型参照電極にある。
The third aspect of the present invention is:
In the integrated reference electrode described in the second aspect,
The oxide film formed by thermal oxidation is an integrated reference electrode formed by heating the metal substrate to 500 ° C. or higher.

本発明の第4の態様は、
第3の態様に記載する一体型参照電極において、
前記熱酸化による酸化膜は、前記金属基板を、600℃以上に加熱して形成することを特徴とする一体型参照電極にある。
The fourth aspect of the present invention is:
In the integrated reference electrode described in the third aspect,
The oxide film formed by thermal oxidation is an integrated reference electrode formed by heating the metal substrate to 600 ° C. or higher.

本発明の第5の態様は、
請求項1〜請求項4の何れか一つに記載する一体型参照電極において、
前記セラミックス膜で覆われた前記金属酸化物膜の感応部を除く前記金属酸化物膜および金属基板を覆合部材で覆うことにより一体化したことを特徴とする一体型参照電極にある。
According to a fifth aspect of the present invention,
In the integrated reference electrode according to any one of claims 1 to 4,
In the integrated reference electrode, the metal oxide film and the metal substrate excluding the sensitive part of the metal oxide film covered with the ceramic film are integrated by covering with a covering member.

本態様によれば、当該一体型参照電極を一つの構造体として十分な機械的強度を備えたものとすることができる。   According to this aspect, the integrated reference electrode can be provided as a single structural body with sufficient mechanical strength.

本発明の第6の態様は、
第1〜第5の態様の何れか一つに記載する一体型参照電極において、
前記金属はNi、前記金属酸化物膜はNiO、セラミックス膜はイットリア安定化ジルコニア(YSZ)を用いたことを特徴とする一体型参照電極にある。
The sixth aspect of the present invention is:
In the integrated reference electrode according to any one of the first to fifth aspects,
In the integrated reference electrode, the metal is Ni, the metal oxide film is NiO, and the ceramic film is yttria stabilized zirconia (YSZ).

本態様によれば、当該一体型参照電極を容易かつ適確に形成することができる。   According to this aspect, the integrated reference electrode can be formed easily and accurately.

本発明の第7の態様は、
第1〜第6の態様の何れか一つに記載する一体型参照電極において、
測定対象の環境のpHに対する電極電位の特性であるpH特性が既知であることを特徴とする一体型参照電極にある。
The seventh aspect of the present invention is
In the integrated reference electrode according to any one of the first to sixth aspects,
The integrated reference electrode has a known pH characteristic that is a characteristic of an electrode potential with respect to a pH of an environment to be measured.

本態様によれば、別途環境のpHを計測しておくことで、容易に当該一体型参照電極の電位を適正な値に補正することができる。   According to this aspect, the potential of the integrated reference electrode can be easily corrected to an appropriate value by separately measuring the pH of the environment.

本発明によれば、セラミックス膜を用いることで簡単に薄膜化が可能となり、電極のインピーダンスを低下させることができる結果、室温での電極電位の測定が可能になる。さらに、セラミックス膜により環境の構成要素である溶液と固体電解質を隔離でき、溶液中の酸化還元雰囲気に対して電極電位が影響を受けず、一体型参照電極電位は溶液中のpHのみで決定される。これらのことより、本発明に係る一体型参照電極は溶液中のpHが既知の場合、参照電極として用いることができる。   According to the present invention, it is possible to easily reduce the thickness by using a ceramic film, and to reduce the impedance of the electrode. As a result, it is possible to measure the electrode potential at room temperature. In addition, the ceramic membrane can separate the solution, which is a component of the environment, from the solid electrolyte, the electrode potential is not affected by the redox atmosphere in the solution, and the integrated reference electrode potential is determined only by the pH in the solution. The Accordingly, the integrated reference electrode according to the present invention can be used as a reference electrode when the pH in the solution is known.

さらに、本発明に係る一体型参照電極は従来型金属/酸化物電極の主な破損原因となるセラミックス管およびその接合部が存在しない。この結果、固体電解質の溶液への漏洩を回避することができる。   Furthermore, the integrated reference electrode according to the present invention does not have a ceramic tube and its joint which are the main cause of damage of the conventional metal / oxide electrode. As a result, leakage of the solid electrolyte into the solution can be avoided.

本発明の第1の実施の形態に係る一体型参照電極を概念的に示す説明図である。It is explanatory drawing which shows notionally the integrated reference electrode which concerns on the 1st Embodiment of this invention. 第1の実施の形態に係る一体型参照電極においてpHに対する電極電位の特性を示す特性図である。It is a characteristic view which shows the characteristic of the electrode potential with respect to pH in the integrated reference electrode which concerns on 1st Embodiment. 本発明の第2の実施の形態に係る一体型参照電極を概念的に示す説明図である。It is explanatory drawing which shows notionally the integrated reference electrode which concerns on the 2nd Embodiment of this invention. 第2の実施の形態に係る一体型参照電極を所定の溶液に浸漬した場合の浸漬時間と電極電圧との関係を、第1の実施の形態に係る一体型参照電極との比較において示す特性図である。The characteristic view which shows the relationship between the immersion time at the time of immersing the integrated reference electrode which concerns on 2nd Embodiment in a predetermined solution, and an electrode voltage in the comparison with the integrated reference electrode which concerns on 1st Embodiment It is. 第2の実施の形態に係る一体型参照電極を所定の溶液に浸漬した場合の前記溶液のpHと電極電圧の関係を、室温をパラメータとして示す特性図である。It is a characteristic view which shows the relationship between pH of the said solution and electrode voltage at the time of immersing the integrated reference electrode which concerns on 2nd Embodiment in a predetermined solution as a parameter. 加熱温度をパラメータとして金属基板を熱酸化させた各試料のラマンシフトに対するラマンシフトスペクトルの強度を示す特性図である。It is a characteristic view which shows the intensity | strength of the Raman shift spectrum with respect to the Raman shift of each sample which thermally oxidized the metal substrate using heating temperature as a parameter. 図6に示す各試料(熱酸化させていない金属基板を含む)の外観を示す写真である。It is a photograph which shows the external appearance of each sample (including the metal substrate which is not thermally oxidized) shown in FIG. 図7に示す各試料の断面のTEM像を示す写真で、(a)が400℃で熱酸化させた場合、(b)が450℃で熱酸化させた場合である。FIG. 8 is a photograph showing a cross-sectional TEM image of each sample shown in FIG. 7, where (a) is thermally oxidized at 400 ° C., and (b) is thermally oxidized at 450 ° C. 図7に示す各試料の断面のTEM像を示す写真で、(a)が500℃で熱酸化させた場合、(b)が550℃で熱酸化させた場合、(c)が600℃で熱酸化させた場合、(d)が800℃で熱酸化させた場合である。FIG. 7 is a photograph showing a cross-sectional TEM image of each sample shown in FIG. 7, where (a) is thermally oxidized at 500 ° C., (b) is thermally oxidized at 550 ° C., and (c) is heated at 600 ° C. When oxidized, (d) is when thermally oxidized at 800 ° C. 図1に示す一体型参照電極と同様の構造を有する試料を室温、空気飽和のもとで、pH6.89中性リン酸標準液に50時間程度浸漬した後の試料の断面のTEM像を示す写真である。1 shows a cross-sectional TEM image of a sample having a structure similar to that of the integrated reference electrode shown in FIG. 1 after being immersed in a pH 6.89 neutral phosphoric acid standard solution for about 50 hours at room temperature and under air saturation. It is a photograph. 従来技術に係る参照電極を概念的に示す説明図である。It is explanatory drawing which shows notionally the reference electrode which concerns on a prior art. 図11に示す参照電極のM/O電極のNi/NiOの比率を変えて電極電位のばらつきを調べた場合の特性を示す特性図である。FIG. 12 is a characteristic diagram showing characteristics when the variation in electrode potential is examined by changing the ratio of Ni / NiO of the M / O electrode of the reference electrode shown in FIG. 11.

以下、本発明の実施の形態を図面に基づき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

<第1の実施の形態>
図1は本発明の実施の形態に係る一体型参照電極を概念的に示す説明図である。同図に示すように、本形態に係る一体型参照電極Iは、金属基板2A上に金属酸化物膜2Bを形成し、さらに金属酸化物膜2Bの表面を覆うように金属酸化物膜2B上にセラミックス薄膜1を形成したものである。ここで、金属基板2Aと金属酸化物膜2BとがM/O電極2を構成している。
<First Embodiment>
FIG. 1 is an explanatory diagram conceptually showing an integrated reference electrode according to an embodiment of the present invention. As shown in the figure, the integrated reference electrode I according to this embodiment forms a metal oxide film 2B on a metal substrate 2A, and further covers the surface of the metal oxide film 2B so as to cover the surface of the metal oxide film 2B. The ceramic thin film 1 is formed. Here, the metal substrate 2 </ b> A and the metal oxide film 2 </ b> B constitute the M / O electrode 2.

さらに、本形態に係る一体型参照電極Iは、セラミックス薄膜1で覆われた金属酸化物膜2Bの感応部を除く金属酸化物膜2Bおよび金属基板2Aを覆う金属等の覆合部材3で一体化してある。このように一体化することは必須ではないが、かかる構成とすることにより、一体型参照電極Iを一つの構造体として十分な機械的強度を備えたものとすることができる。   Further, the integrated reference electrode I according to the present embodiment is integrated with a covering member 3 such as a metal covering the metal oxide film 2B and the metal substrate 2A excluding the sensitive part of the metal oxide film 2B covered with the ceramic thin film 1. It has become. Such integration is not essential, but by adopting such a configuration, the integrated reference electrode I can be provided as a single structural body with sufficient mechanical strength.

本形態においては、金属基板2AをNi、金属酸化物膜をNiO、セラミックス薄膜をイットリア安定化ジルコニア(YSZ)でそれぞれ形成した。さらに具体的には、Niの金属基板2A上に500nmのNiO薄膜からなる金属酸化物膜2Bと、100nmのYSZ薄膜からなるセラミックス薄膜1を、例えばスパッタリングによる蒸着により形成した。   In this embodiment, the metal substrate 2A is formed of Ni, the metal oxide film is formed of NiO, and the ceramic thin film is formed of yttria stabilized zirconia (YSZ). More specifically, a metal oxide film 2B made of a 500 nm NiO thin film and a ceramic thin film 1 made of a 100 nm YSZ thin film were formed on a Ni metal substrate 2A by, for example, vapor deposition by sputtering.

かかる一体型参照電極Iにおいて、緩衝液中(室温、大気飽和)でのpH応答を調べた。同図を参照すれば、一体型参照電極Iの電極電位はpHの増加に対して−50.3mV/pHの傾きで直線的に減少し、図11に示す従来のM/O電極02では動作しない室温でpH電極としての動作が確認できた。   In the integrated reference electrode I, the pH response in a buffer solution (room temperature, atmospheric saturation) was examined. Referring to FIG. 11, the electrode potential of the integrated reference electrode I decreases linearly with a slope of −50.3 mV / pH with respect to the increase in pH, and the conventional M / O electrode 02 shown in FIG. The operation as a pH electrode was confirmed at room temperature.

本形態によれば、YSZの薄膜で形成したセラミックス薄膜1は100nmとごく薄いので、この部分のインピーダンスを飛躍的に低減し得る。この結果、測定環境が低温であっても参照電極としての所定の機能を発揮させることができる。   According to this embodiment, since the ceramic thin film 1 formed of a YSZ thin film is as thin as 100 nm, the impedance of this portion can be drastically reduced. As a result, a predetermined function as a reference electrode can be exhibited even when the measurement environment is low temperature.

また、Niの金属基板2A上にNiOの金属酸化物膜2Bを形成し、さらに金属酸化物膜2BをYSZの薄膜で形成したセラミックス薄膜1で覆ったので、図11に示す従来の参照電極IIIの如き、機械的強度の脆弱部である他の部材との接合部05がない。この結果、機械的な寿命を向上させることができ、長期に亘る所定の安定な機能を保証することができる。   Since the NiO metal oxide film 2B is formed on the Ni metal substrate 2A, and the metal oxide film 2B is covered with the ceramic thin film 1 formed of a YSZ thin film, the conventional reference electrode III shown in FIG. Thus, there is no joint portion 05 with another member that is a weak portion of mechanical strength. As a result, the mechanical life can be improved, and a predetermined stable function can be ensured over a long period of time.

測定対象の環境のpHに対する電極電位の特性であるpH特性が既知であるので、別途環境のpHを計測しておくことで、容易に当該一体型参照電極Iの電位を適正な値に補正することができる。   Since the pH characteristic that is the characteristic of the electrode potential with respect to the pH of the environment to be measured is known, the potential of the integrated reference electrode I can be easily corrected to an appropriate value by separately measuring the pH of the environment. be able to.

<第2の実施の形態>
図1に示す第1の実施の形態に係る一体型参照電極Iによれば、上述の如き作用・効果を発揮させることができる。ところが、所定の溶液に浸漬した通常の使用態様では、時間の経過とともに電極電位が著しく減少する。これは、時間の経過とともに金属酸化物膜2Bが金属基板2Aから剥離するためであると考えられる。実際、電極電位が著しく減少した一体型参照電極Iを透過型電子顕微鏡(TEM)により分析した結果、金属基板(Ni基板)2Aと酸化物膜(NiO薄膜)2Bの界面が剥離していることが判明した。
<Second Embodiment>
According to the integrated reference electrode I according to the first embodiment shown in FIG. 1, the above-described actions and effects can be exhibited. However, in a normal usage mode immersed in a predetermined solution, the electrode potential is remarkably reduced with time. This is considered to be because the metal oxide film 2B peels off from the metal substrate 2A with time. In fact, as a result of analyzing the integrated reference electrode I with a significantly reduced electrode potential using a transmission electron microscope (TEM), the interface between the metal substrate (Ni substrate) 2A and the oxide film (NiO thin film) 2B is peeled off. There was found.

この結果、第1の実施の形態に係る一体型参照電極Iは、所定の機能を発揮する一体型参照電極としての寿命が短いという問題を有している。   As a result, the integrated reference electrode I according to the first embodiment has a problem that the lifetime as an integrated reference electrode that exhibits a predetermined function is short.

本形態は、かかる問題を解消し得るように第1の実施の形態をさらに改良したものである。   In the present embodiment, the first embodiment is further improved so that such a problem can be solved.

図3は本発明の第2の実施の形態に係る一体型参照電極を概念的に示す説明図である。なお、図3中、図1と同一部分には同一番号を付し、重複する説明は省略する。   FIG. 3 is an explanatory view conceptually showing an integrated reference electrode according to the second embodiment of the present invention. In FIG. 3, the same parts as those in FIG.

図3に示すように、本形態に係る一体型参照電極IIは、金属基板12Aの表面を熱酸化させて金属基板12A上に金属酸化物膜12Cを形成するとともに、さらに金属酸化物膜12Cの表面を覆うようにセラミックス薄膜1を形成したものである。したがって、本形態においては金属基板12Aおよび金属酸化物膜12CでM/O電極12を構成している。   As shown in FIG. 3, the integrated reference electrode II according to this embodiment forms a metal oxide film 12C on the metal substrate 12A by thermally oxidizing the surface of the metal substrate 12A. The ceramic thin film 1 is formed so as to cover the surface. Therefore, in this embodiment, the M / O electrode 12 is constituted by the metal substrate 12A and the metal oxide film 12C.

さらに具体的には、本形態においては、Niの金属基板12Aを加熱手段である、例えばマッフル炉に収納して所定の高温で所定時間加熱することにより金属基板12Aの表面を熱酸化させて、例えば500nm程度の金属酸化物膜12Cを形成する。その後、金属酸化物膜12Cの表面に、例えば100nm程度のYSZ薄膜からなるセラミックス薄膜1を、例えばスパッタリングによる蒸着により形成する。このときの加熱温度は500℃以上、好ましくは600℃以上とする。   More specifically, in this embodiment, the surface of the metal substrate 12A is thermally oxidized by storing the Ni metal substrate 12A in a muffle furnace as a heating means, for example, and heating it at a predetermined high temperature for a predetermined time, For example, a metal oxide film 12C having a thickness of about 500 nm is formed. Thereafter, the ceramic thin film 1 made of a YSZ thin film of about 100 nm, for example, is formed on the surface of the metal oxide film 12C, for example, by vapor deposition by sputtering. The heating temperature at this time is 500 ° C. or higher, preferably 600 ° C. or higher.

図4は、本形態に係る一体型参照電極IIを所定の溶液(例えば、pH6.89の中性リン酸標準液)に浸漬した場合の浸漬時間と電極電圧との関係を、第1の実施の形態に係る一体型参照電極Iとの比較において示す特性図である。同図において、Aは本形態に係る一体型参照電極IIの特性、Bは第1の実施の形態に係る一体型参照電極Iの特性、Cは溶液の温度特性をそれぞれ示している。同図を参照すれば、本形態に係る一体型参照電極IIの場合、浸漬時間が経過してもほぼ一定の電極電位を維持しているのに対し、第1の実施の形態に係る一体型参照電極Iは浸漬時間の経過とともに急激に電極電位が低下している。すなわち、本形態に係る一体型参照電極IIの電位の変動は、第1の実施の形態に係る一体型参照電極Iに比較してドリフトが1/10〜1/100程度に収まる。このとき、溶液温度は25℃程度で一定である。   FIG. 4 shows the relationship between the immersion time and the electrode voltage when the integrated reference electrode II according to this embodiment is immersed in a predetermined solution (for example, neutral phosphate standard solution of pH 6.89). It is a characteristic view shown in comparison with the integrated reference electrode I which concerns on a form of. In the figure, A indicates the characteristics of the integrated reference electrode II according to the present embodiment, B indicates the characteristics of the integrated reference electrode I according to the first embodiment, and C indicates the temperature characteristics of the solution. Referring to the figure, in the case of the integrated reference electrode II according to the present embodiment, the substantially constant electrode potential is maintained even after the immersion time has elapsed, whereas the integrated reference electrode II according to the first embodiment is maintained. In the reference electrode I, the electrode potential rapidly decreases as the immersion time elapses. That is, the fluctuation of the potential of the integrated reference electrode II according to the present embodiment has a drift of about 1/10 to 1/100 compared with the integrated reference electrode I according to the first embodiment. At this time, the solution temperature is constant at about 25 ° C.

図5は、第2の実施の形態に係る一体型参照電極IIを所定の溶液に浸漬した場合の前記溶液のpHと電極電圧の関係を、室温をパラメータとして示す特性図である。同図を参照すれば、第1の実施の形態に係る一体型参照電極Iと同様にpHの変化に対して電極電位が変化することが分かる。この場合の傾きは、理論値と比較して5%程度小さい。ちなみに、第1の実施の形態に係る一体型参照電極Iは15%である。   FIG. 5 is a characteristic diagram showing the relationship between the pH of the solution and the electrode voltage when the integrated reference electrode II according to the second embodiment is immersed in a predetermined solution, using room temperature as a parameter. Referring to the figure, it can be seen that the electrode potential changes with respect to the change in pH, as in the integrated reference electrode I according to the first embodiment. The slope in this case is about 5% smaller than the theoretical value. Incidentally, the integrated reference electrode I according to the first embodiment is 15%.

上述の如き一体型参照電極IIにおいて適正な加熱温度、すなわち良好な金属酸化物膜12Cが形成される加熱温度を調べた。さらに詳言すると、Niの金属基板12Aをマッフル炉で1時間程度加熱して得られた金属基板12A上に500nmのNiO薄膜からなる金属酸化物膜12Cが形成された試料のラマンスペクトル強度を調べた。その結果を図6に示す。   In the integrated reference electrode II as described above, an appropriate heating temperature, that is, a heating temperature at which a good metal oxide film 12C is formed was examined. More specifically, the Raman spectral intensity of a sample in which a metal oxide film 12C made of a NiO thin film of 500 nm is formed on a metal substrate 12A obtained by heating the Ni metal substrate 12A in a muffle furnace for about 1 hour is examined. It was. The result is shown in FIG.

図6は、加熱温度(400℃、450℃、500℃、550℃、600℃、800℃)をパラメータとして熱酸化させた各試料のラマンシフトに対するラマンスペクトルの強度を示す特性図、図7は各試料の外観を示す写真である。   FIG. 6 is a characteristic diagram showing the intensity of the Raman spectrum with respect to the Raman shift of each sample thermally oxidized using the heating temperature (400 ° C., 450 ° C., 500 ° C., 550 ° C., 600 ° C., 800 ° C.) as a parameter. It is a photograph which shows the external appearance of each sample.

金属酸化物膜12Cが形成されると、図6中に点線で示すラマンシフトの位置には、ラマンスペクトル強度のピークが形成される。図6を参照すれば、加熱温度が500℃以上の場合に、NiOに対応するラマンシフトの位置で、良好な金属酸化物膜12Cが形成されていることを示すピークが認められる。   When the metal oxide film 12C is formed, a peak of Raman spectrum intensity is formed at the position of the Raman shift indicated by a dotted line in FIG. Referring to FIG. 6, when the heating temperature is 500 ° C. or higher, a peak indicating that a good metal oxide film 12C is formed at the Raman shift position corresponding to NiO is recognized.

これは、図7に示す試料の外観を表す写真でも確認することができる。すなわち、図7の上列の最も左側に示す加熱前の試料は、Niの色である銀色であるが、加熱による酸化が進むにつれ赤褐色(400℃)、青味がかった赤褐色(450℃)、薄い緑(500℃、550℃)および濃い緑(600℃、800℃)と変化している。試料の色は緑が濃くなるにつれ良好な金属酸化物膜12Cが形成されていることを表す。   This can also be confirmed by a photograph showing the appearance of the sample shown in FIG. That is, the sample before heating shown on the leftmost side of the upper row of FIG. 7 is silver which is the color of Ni, but reddish brown (400 ° C.), bluish reddish brown (450 ° C.) as oxidation by heating proceeds, It has changed from light green (500 ° C., 550 ° C.) and dark green (600 ° C., 800 ° C.). The color of the sample indicates that a good metal oxide film 12C is formed as green becomes darker.

図8および図9は、図7に示す各試料の断面のTEM像を示す写真で、図8(a)が400℃で熱酸化させた場合、同図(b)が450℃で熱酸化させた場合、図9(a)が500℃で熱酸化させた場合、同図(b)が550℃で熱酸化させた場合、同図(c)が600℃で熱酸化させた場合、同図(d)が800℃で熱酸化させた場合をそれぞれ示している。   8 and 9 are photographs showing TEM images of cross sections of the samples shown in FIG. 7. When FIG. 8 (a) is thermally oxidized at 400 ° C., FIG. 8 (b) is thermally oxidized at 450 ° C. 9 (a) is thermally oxidized at 500 ° C., FIG. 9 (b) is thermally oxidized at 550 ° C., and FIG. 9 (c) is thermally oxidized at 600 ° C. (D) shows the case where it is thermally oxidized at 800 ° C., respectively.

これらの図を参照すれば、400℃および450℃で加熱した図8(a)および同図(b)では20〜30nmの薄い金属酸化物膜(NiO膜)12Cしか形成されず、酸化が不十分な部位が認められる。ちなみに、金属酸化物膜(NiO膜)12Cがぼやけた画像となり、金属基板12Aとの界面が明瞭な金属酸化物膜12Cとはなっていない。   Referring to these figures, in FIGS. 8A and 8B heated at 400 ° C. and 450 ° C., only a thin metal oxide film (NiO film) 12C having a thickness of 20 to 30 nm is formed, and oxidation is not caused. Sufficient sites are observed. Incidentally, the metal oxide film (NiO film) 12C becomes a blurred image, and the interface with the metal substrate 12A is not a clear metal oxide film 12C.

一方、図9(a)〜図9(d)においては、比較的厚い(100nm以上)の安定した金属酸化物膜12Cが認められた。そして、金属酸化物膜12Cは温度が高くなるほど厚い良好な酸化膜となっている。   On the other hand, in FIGS. 9A to 9D, a relatively thick (100 nm or more) stable metal oxide film 12C was observed. The metal oxide film 12C is a good oxide film that is thicker as the temperature is higher.

これらの実験結果より、本形態における金属酸化物膜12Cの形成に際しては、500℃以上、好ましくは600℃以上で加熱すれば良いことが分かる。   From these experimental results, it can be seen that the metal oxide film 12C in this embodiment may be heated at 500 ° C. or higher, preferably 600 ° C. or higher.

図10は、第1の実施の形態に係る一体型参照電極Iと同様に、Niの金属基板2Aの表面にNiOの金属酸化物膜2Bを形成した試料を室温、空気飽和のもとで、pH6.89中性リン酸標準液に50時間程度浸漬した後におけるその断面のTEM像を示す写真である。同図に示す状態では、金属酸化物膜(NiO薄膜)2Bが金属基板(Ni基板)2Aから剥離していることが分かる。   FIG. 10 shows a sample in which a NiO metal oxide film 2B is formed on the surface of a Ni metal substrate 2A in the same manner as the integrated reference electrode I according to the first embodiment. It is a photograph which shows the TEM image of the cross section after being immersed in pH 6.89 neutral phosphoric acid standard solution for about 50 hours. In the state shown in the figure, it can be seen that the metal oxide film (NiO thin film) 2B is peeled off from the metal substrate (Ni substrate) 2A.

なお、上述の如く上記第1および第2の実施の形態では、一体型参照電極I、IIの固体電解質としてNi/NiOを用いたが、他にもCu/CuO、Fe/Fe等が考えられる。 As described above, in the first and second embodiments, Ni / NiO is used as the solid electrolyte of the integrated reference electrodes I and II, but Cu / Cu 2 O and Fe / Fe 3 O are also used. 4 mag is considered.

本発明は密閉された原子炉構造物の健全性を検出する必要がある原子力産業等の産業分野において有効に利用することができる。   The present invention can be effectively used in industrial fields such as the nuclear power industry where it is necessary to detect the soundness of sealed reactor structures.

I、II 一体型参照電極
1 セラミックス薄膜
2 M/O電極
2A 金属基板
2B 金属酸化物膜
3 覆合部材
4 導線
12 M/O電極
12A 金属基板
12C 金属酸化物膜
I, II Integrated reference electrode 1 Ceramic thin film 2 M / O electrode 2A Metal substrate 2B Metal oxide film 3 Cover member 4 Conductor 12 M / O electrode 12A Metal substrate 12C Metal oxide film

Claims (7)

金属基板上に金属酸化物膜を形成し、さらに前記金属酸化物膜の表面を覆うように前記金属酸化物膜上にセラミックス膜を形成したことを特徴とする一体型参照電極。   An integrated reference electrode, wherein a metal oxide film is formed on a metal substrate, and a ceramic film is formed on the metal oxide film so as to cover the surface of the metal oxide film. 金属基板の表面を熱酸化させて前記金属基板上に金属酸化物膜を形成し、さらに前記金属酸化物膜の表面を覆うように前記金属酸化物膜上にセラミックス膜を形成したことを特徴とする一体型参照電極。   The surface of the metal substrate is thermally oxidized to form a metal oxide film on the metal substrate, and a ceramic film is formed on the metal oxide film so as to cover the surface of the metal oxide film. An integrated reference electrode. 請求項2に記載する一体型参照電極において、
前記熱酸化による酸化膜は、前記金属基板を、500℃以上に加熱して形成したことを特徴とする一体型参照電極。
The integrated reference electrode according to claim 2,
The integrated reference electrode according to claim 1, wherein the oxide film formed by thermal oxidation is formed by heating the metal substrate to 500 ° C or higher.
請求項3に記載する一体型参照電極において、
前記熱酸化による酸化膜は、前記金属基板を、600℃以上に加熱して形成することを特徴とする一体型参照電極。
The integrated reference electrode according to claim 3,
The integrated reference electrode according to claim 1, wherein the oxide film formed by thermal oxidation is formed by heating the metal substrate to 600 ° C or higher.
請求項1〜請求項4の何れか一つに記載する一体型参照電極において、
前記セラミックス膜で覆われた前記金属酸化物膜の感応部を除く前記金属酸化物膜および金属基板を覆合部材で覆うことにより一体化したことを特徴とする一体型参照電極。
In the integrated reference electrode according to any one of claims 1 to 4,
An integrated reference electrode, wherein the metal oxide film and the metal substrate excluding the sensitive part of the metal oxide film covered with the ceramic film are integrated by covering with a covering member.
請求項1〜請求項5の何れか一つに記載する一体型参照電極において、
前記金属はNi、前記金属酸化物膜はNiO、セラミックス膜はイットリア安定化ジルコニア(YSZ)を用いたことを特徴とする一体型参照電極。
In the integrated reference electrode according to any one of claims 1 to 5,
An integrated reference electrode, wherein the metal is Ni, the metal oxide film is NiO, and the ceramic film is yttria stabilized zirconia (YSZ).
請求項1〜請求項6の何れか一つに記載する一体型参照電極において、
測定対象の環境のpHに対する電極電位の特性であるpH特性が既知であることを特徴とする一体型参照電極。
In the integrated reference electrode according to any one of claims 1 to 6,
An integrated reference electrode having a known pH characteristic, which is a characteristic of an electrode potential with respect to a pH of an environment to be measured.
JP2012235088A 2012-06-14 2012-10-24 Manufacturing method of integrated reference electrode Active JP6004477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012235088A JP6004477B2 (en) 2012-06-14 2012-10-24 Manufacturing method of integrated reference electrode

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012135175 2012-06-14
JP2012135175 2012-06-14
JP2012235088A JP6004477B2 (en) 2012-06-14 2012-10-24 Manufacturing method of integrated reference electrode

Publications (2)

Publication Number Publication Date
JP2014016335A true JP2014016335A (en) 2014-01-30
JP6004477B2 JP6004477B2 (en) 2016-10-12

Family

ID=50111130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012235088A Active JP6004477B2 (en) 2012-06-14 2012-10-24 Manufacturing method of integrated reference electrode

Country Status (1)

Country Link
JP (1) JP6004477B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016188838A (en) * 2015-03-30 2016-11-04 一般財団法人電力中央研究所 Method of manufacturing integrated reference electrode and integrated reference electrode
WO2019049945A1 (en) * 2017-09-08 2019-03-14 国立大学法人三重大学 Reference electrode

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677751A (en) * 1979-10-12 1981-06-26 Gen Electric Sensor for hydrogen ion
JPS59211854A (en) * 1983-05-11 1984-11-30 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Metallic oxide electrode
JPS63501379A (en) * 1985-04-17 1988-05-26 ベイヤ− ダイアグノステイク ウント エレクトロニクゲ−エムベ−ハ− electrochemical sensor
JPH0445960U (en) * 1990-08-22 1992-04-20
JPH055717A (en) * 1990-08-22 1993-01-14 Toa Denpa Kogyo Kk Ph-measuring electrode and its manufacture
JPH0599887A (en) * 1991-10-09 1993-04-23 Omron Corp Amperometric electrode
JPH0868888A (en) * 1994-05-23 1996-03-12 General Electric Co <Ge> Shroud electrochemical-potential monitor
WO1999040420A1 (en) * 1998-02-04 1999-08-12 Sanwa Newtec Co., Ltd. Liquid sensor and body fluid leak sensing device comprising the same
JP2003004887A (en) * 2001-06-21 2003-01-08 Hitachi Ltd CORROSION POTENTIAL SENSOR, BOILING WATER REACTOR POWER PLANT AND pH SENSOR
JP2004077482A (en) * 2002-08-15 2004-03-11 General Electric Co <Ge> Ceramic electrochemical corrosion potential sensor probe with extended lifetime
JP2005140608A (en) * 2003-11-06 2005-06-02 Hitachi Ltd Corrosion potential sensor
JP2006189344A (en) * 2005-01-06 2006-07-20 Denso Corp Electrode pair for detecting acidity and basicity of oil, and deterioration detector for oil

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677751A (en) * 1979-10-12 1981-06-26 Gen Electric Sensor for hydrogen ion
JPS59211854A (en) * 1983-05-11 1984-11-30 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Metallic oxide electrode
JPS63501379A (en) * 1985-04-17 1988-05-26 ベイヤ− ダイアグノステイク ウント エレクトロニクゲ−エムベ−ハ− electrochemical sensor
JPH0445960U (en) * 1990-08-22 1992-04-20
JPH055717A (en) * 1990-08-22 1993-01-14 Toa Denpa Kogyo Kk Ph-measuring electrode and its manufacture
JPH0599887A (en) * 1991-10-09 1993-04-23 Omron Corp Amperometric electrode
JPH0868888A (en) * 1994-05-23 1996-03-12 General Electric Co <Ge> Shroud electrochemical-potential monitor
WO1999040420A1 (en) * 1998-02-04 1999-08-12 Sanwa Newtec Co., Ltd. Liquid sensor and body fluid leak sensing device comprising the same
JP2003004887A (en) * 2001-06-21 2003-01-08 Hitachi Ltd CORROSION POTENTIAL SENSOR, BOILING WATER REACTOR POWER PLANT AND pH SENSOR
JP2004077482A (en) * 2002-08-15 2004-03-11 General Electric Co <Ge> Ceramic electrochemical corrosion potential sensor probe with extended lifetime
JP2005140608A (en) * 2003-11-06 2005-06-02 Hitachi Ltd Corrosion potential sensor
JP2006189344A (en) * 2005-01-06 2006-07-20 Denso Corp Electrode pair for detecting acidity and basicity of oil, and deterioration detector for oil

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016188838A (en) * 2015-03-30 2016-11-04 一般財団法人電力中央研究所 Method of manufacturing integrated reference electrode and integrated reference electrode
WO2019049945A1 (en) * 2017-09-08 2019-03-14 国立大学法人三重大学 Reference electrode
JPWO2019049945A1 (en) * 2017-09-08 2020-08-20 国立大学法人三重大学 Reference electrode
JP7154510B2 (en) 2017-09-08 2022-10-18 国立大学法人三重大学 reference electrode

Also Published As

Publication number Publication date
JP6004477B2 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
Schroer et al. Design and testing of electrochemical oxygen sensors for service in liquid lead alloys
Grolig et al. Effect of cerium on the electrical properties of a cobalt conversion coating for solid oxide fuel cell interconnects–a study using impedance spectroscopy
JP6004477B2 (en) Manufacturing method of integrated reference electrode
Wang et al. Carbonate‐Melt Oxidized Iridium Wire for pH Sensing
Fernandez et al. Development of an oxygen sensor for molter 44.5% lead–55.5% bismuth alloy
JP2014219399A (en) Current type gas sensor
JP6725142B2 (en) Sensor probe and method of using the same
Horita et al. Oxide scale formation and stability of Fe–Cr alloy interconnects under dual atmospheres and current flow conditions for SOFCs
JP7131365B2 (en) gas sensor
Rodewald et al. The Effect of the Oxygen Exchange at Electrodes on the High-Voltage Electrocoloration of Fe-Doped SrTiO 3 Single Crystals: A Combined SIMS and Microelectrode Impedance Study
Anggraini et al. Tuning H2 sensing performance of zirconia-based sensor using ZrSiO4 (+ Au) sensing-electrode
JP2017510813A (en) Sensor element for detecting at least one characteristic of a measurement gas in a measurement gas space and method for manufacturing the sensor element
Frank Transport properties of zirconium alloy oxide films
JP6480228B2 (en) Gas sensor
JP5035853B2 (en) Oxygen concentration sensor, method for forming the same, and method for measuring oxygen concentration in high-temperature high-pressure water
KR101232121B1 (en) Auxiliary electrode typed sensor and that reference electrode and manufacturing method thereof
Dang et al. Characteristics of NASICON-Based Thick-Film ${\rm CO} _ {2} $ Sensor Attached With Integrated Auxiliary Electrode
KR101190592B1 (en) Solid electrolyte tube and sensortip for measuring sulfur concentration of high temperature melting material comprising the same
JPS59154351A (en) Hydrogen ion concentration measuring apparatus
KR100891561B1 (en) Methode for fabricating novel design gas sensors for hydrogen and oxygen
Caproni et al. Development of zirconia–magnesia/zirconia–yttria composite solid electrolytes
WO2021002199A1 (en) Solid reference material and hydrogen gas sensor
JP6720015B2 (en) Sensor probe and method of using the same
Tavener Development of a standard platinum resistance thermometer for use up to the copper point
KR100992890B1 (en) Oxygen ion sensing electrode for high-temperature molten salt system and quantitative analysis of oxygen ion using the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160901

R150 Certificate of patent or registration of utility model

Ref document number: 6004477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250