JPS59154351A - Hydrogen ion concentration measuring apparatus - Google Patents

Hydrogen ion concentration measuring apparatus

Info

Publication number
JPS59154351A
JPS59154351A JP2772383A JP2772383A JPS59154351A JP S59154351 A JPS59154351 A JP S59154351A JP 2772383 A JP2772383 A JP 2772383A JP 2772383 A JP2772383 A JP 2772383A JP S59154351 A JPS59154351 A JP S59154351A
Authority
JP
Japan
Prior art keywords
hydrogen ion
silver
electrode
ion concentration
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2772383A
Other languages
Japanese (ja)
Other versions
JPH0452407B2 (en
Inventor
Makoto Noda
野田 眞
Toshio Akiyama
秋山 俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2772383A priority Critical patent/JPS59154351A/en
Publication of JPS59154351A publication Critical patent/JPS59154351A/en
Publication of JPH0452407B2 publication Critical patent/JPH0452407B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/4035Combination of a single ion-sensing electrode and a single reference electrode

Abstract

PURPOSE:To use a titled apparatus under high temp. and pressure by providing an indicator electrode for measuring a hydrogen concn. having constitution wherein an internal electrode and an internal electrolyte are contained in a vessel which is formed of an H<+>-sensitive glass or an oxygen ion-conductive solid electrolyte, and using a specified metallic composite for a reference electrode. CONSTITUTION:In the hydrogen ion concn. measuring apparatus, an indicator electrode 10 is a hollow body of a hydrogen ion-sensitive membrane 10A, and is made of a hydrogen ion-sensitive glass membrane or stabilized zirconia. An internal electrode 11 of silver coated with silver chloride or the like and an electrolyte 12 such as a KCl soln. etc. are packed in the hollow sensitive membrane body 10A. Whereas, a reference electrode 20 is constituted of silver or silver alloy or a metallic composite 20 coated with silver (alloy) on the surface, and is covered with an insulating film 21. Since the electrodes 10 and 20 are constituted to resist high temp. and pressure, the direct pH measurement of an aq. soln. such as the primary cooling water or the boiler water in a nuclear power plant at high temp. and pressure can be made possible.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、水溶液中の水素イオン濃度を測定プる装置に
関り−るものである。 更に詳しくは1.高温度、高圧力条件下の水溶液のIl
H値を測定づる装置に関1−るものて゛あって、水溶液
中の水素イオン濃度測定用センサー、各種工業水の水質
管理用のpl−1測定用及び高温、高圧力条件下での直
接測定用の水素イオン濃度測定装置を提供するにある。 従来水溶液中の水素イオン濃度を測定するには測定液中
に指示電極とじで水素イオン選択性電極と、比較電極を
挿入して測定される。第1図には従来の測定装置の概略
を示づ。 1は指示電極で水素イオンの選定性電極が用いられる。 2は比較電極で、内部に内部電極3と内部電解質4を収
納し、液絡部5を有している。6は電位差ifである。 7は測定液である。 従来、水素イオン選択性電極としてはガラス電極が用い
られている。 ガラス電極の構造は周知の如く、水素イオン濃度に感応
するカラス感応膜を有し、内・部に既知の水素イオン濃
度を有す電解質内部溶液を充填し、この内部電解質溶液
と接する内部電極をもち、前記ガラス膜の内、外面間に
は、外部の測定液中の水素イオン活量濃度に応じて、ネ
ルンス1への式に従う電位差を発生する。 このにうなガラス電極は、その特性を良く発揮させるた
め、ガラスの水素イオン感応膜を極め(薄く、均質にか
つ膜内部に欠陥や歪が生じないよう製作されている。 このガラス感応膜は、水溶液の液性状によっては浸蝕さ
れたりしで、感応膜とし−Cの電池出力が低下する等の
劣化を起してしまう欠点がある。 また、特に測定液が高温度条件では、ガラス膜の劣化は
更に促進され、かつ熱的衝撃にも耐え難く実質的には、
これの用いられる液温度は最大110〜130℃である
。 一方、比較電極2どしては、一般に力[]メル電極或い
は銀−塩化8I2電極等が用いられている。 例えば銀−塩化銀電極は周知の如く、ガラス等で作られ
た容器2a内に電解質塩溶、液4を満し、その中に塩化
銀を被覆した銀よりなる内部電極3を浸漬し、電気化学
的半電池を形成し、かつ容器2aの一部に所謂液絡部5
をもっている。 この液絡部5を介して被測定液7と比較電極2の内部電
解質4とは、イオーンの拡散、伝導が達成されている。 以」−の技術構成故に実際の測定に際しては次のような
欠点を本質的に有している。 1、液絡部5を介して内部電解質4のイオンが測定液中
に漏出する。このノζめ被測定液7が汚染されたり、真
のイオン濃度を測定することができない場合が生ずる。 2、液絡部5よりの漏出により内部電解質8!24が減
少したり濃度の変化が起ったりして、比較電極としての
本来の基準電位が変動し−Cしまうことがある。 3゜又液絡部5が閉塞したり1φことも発生し、この場
合には前述の電気導通が1Hられなくなり、測定を内勤
にしてしまう。 4、液絡部5での円滑な電気伝導を得るには、内部液4
は少なくとも被測定液7よりも正圧条件であることが必
要である。 Jズ十のような欠点に対して、極力漏出を少くするよう
な工夫として液絡部の構造を微細化したり、電解質をゲ
ル状化したりして内部電解質の変質や減耗を防止したり
、内部液に加圧を行う装置を聞直したりという各種方法
が用いられている。しかしながら内部に比較電極として
の電位を安定させるため電解質を有し液絡部が形成され
ている従来の技術では上記欠点を払拭できるものではな
い。 以上説明した通り従来の測定り法、技術においでは測定
液が原子力発電所での炉水の1次冷fi1水ヤ)、ボイ
ラー水や化学プラント等でみ1うれる高温高圧条件下の
場合、ここで用いることのできる比較電極は特に液絡部
でのトラブルが発生し、満足されるものがないばかりか
、ρ1−1の測定自体が極めC内勤なものである。 最近この技術に対して酸素イオン伝導に1隔躾を用いた
新規な水素イオン濃度レン4ノーが提案されている。 米国特許第4.264,424号明II書(特開昭56
−77751号公報)によれば、ガラス膜の代りに、特
殊セラミックよりなる隔膜を用い、この隔膜の両面間に
発生する電位差を測定する方法が示されているが、この
特殊セラミックの内部抵抗が極めて大ぎいことに起因し
て、発生電位差が不安定ぐあって測定の信頼性を欠くも
のの他、この測定を行うには、比較電極としてやはり従
来の技術の液絡構造をもつ電極が使用されている。 このため、上述した如くの欠点が依然残っている。 本発明の目的は」E述した従来の水素イオン濃度測定技
術のも′っ欠点を克服する新規な水素イオン濶度測定装
置を提供づ−るものである。 第1の目的は高温度の測定液を直接測定できる。 第2の目的は高圧力の測定液を直接測定できる。 第3の目的は比較電極として内部電解質をもたない。 第4の1」的は所謂液絡構造をもだ4にい、。 第5の目的は極めてシンプルに設h1で゛き、その取扱
いが簡便容易どイ
The present invention relates to an apparatus for measuring hydrogen ion concentration in an aqueous solution. For more details, see 1. Il of aqueous solution under high temperature and high pressure conditions
There are 1-related devices for measuring H value, including sensors for measuring hydrogen ion concentration in aqueous solutions, PL-1 measurement for water quality control of various industrial waters, and direct measurement under high temperature and high pressure conditions. The present invention provides a hydrogen ion concentration measuring device for use. Conventionally, the concentration of hydrogen ions in an aqueous solution is measured by inserting a hydrogen ion selective electrode and a reference electrode into the measurement solution along with an indicator electrode. FIG. 1 shows an outline of a conventional measuring device. 1 is an indicator electrode, and a hydrogen ion selective electrode is used. A reference electrode 2 houses an internal electrode 3 and an internal electrolyte 4, and has a liquid junction 5. 6 is a potential difference if. 7 is a measurement liquid. Conventionally, a glass electrode has been used as a hydrogen ion selective electrode. As is well known, the structure of the glass electrode is that it has a glass-sensitive membrane that is sensitive to hydrogen ion concentration, is filled with an electrolyte internal solution having a known hydrogen ion concentration, and has an internal electrode in contact with this internal electrolyte solution. A potential difference is generated between the inner and outer surfaces of the glass membrane according to the equation for Nerns 1, depending on the hydrogen ion activity concentration in the external measurement liquid. In order to fully demonstrate its characteristics, this glass electrode is manufactured using a glass hydrogen ion sensitive membrane that is extremely thin, homogeneous, and has no defects or distortions inside the membrane. Depending on the liquid properties of the aqueous solution, it may be corroded, resulting in deterioration such as a decrease in the battery output of -C as a sensitive membrane.In addition, especially when the measurement liquid is at a high temperature, the glass membrane may deteriorate. is further promoted, and it is hard to withstand thermal shock, so in effect,
The liquid temperature used here is at most 110-130°C. On the other hand, as the comparison electrode 2, a force[]mel electrode, a silver-chloride 8I2 electrode, or the like is generally used. For example, a silver-silver chloride electrode is a well-known method in which a container 2a made of glass or the like is filled with an electrolyte salt solution 4, and an internal electrode 3 made of silver coated with silver chloride is immersed in the container 2a. A chemical half cell is formed, and a so-called liquid junction 5 is provided in a part of the container 2a.
have. Ion diffusion and conduction are achieved between the liquid to be measured 7 and the internal electrolyte 4 of the comparison electrode 2 via the liquid junction 5. Due to the technical configuration described above, it inherently has the following drawbacks in actual measurements. 1. Ions of the internal electrolyte 4 leak into the measurement liquid via the liquid junction 5. Because of this, the liquid to be measured 7 may be contaminated or the true ion concentration may not be measured. 2. The internal electrolyte 8!24 may decrease or its concentration may change due to leakage from the liquid junction 5, which may cause the original reference potential of the reference electrode to fluctuate and become -C. In addition, the liquid junction 5 may be blocked by 3° or 1φ, and in this case, the above-mentioned electrical continuity cannot be achieved for 1H, and the measurement must be done in-house. 4. In order to obtain smooth electrical conduction at the liquid junction 5, the internal liquid 4
It is necessary that the pressure condition is at least more positive than that of the liquid to be measured 7. To address the drawbacks of J's 10, we have tried to reduce leakage as much as possible by making the structure of the liquid junction finer, making the electrolyte gel, and preventing deterioration and depletion of the internal electrolyte. Various methods are being used, including reconsidering the equipment that pressurizes the liquid. However, the above-mentioned drawbacks cannot be overcome with the conventional technology in which a liquid junction is formed with an electrolyte inside to stabilize the potential as a reference electrode. As explained above, in conventional measurement methods and techniques, when the measuring liquid is under high temperature and high pressure conditions such as primary cooling water in nuclear power plants, boiler water, chemical plants, etc. The reference electrodes that can be used here are not only unsatisfactory because troubles occur particularly at the liquid junction, but also the measurement of ρ1-1 itself is extremely cumbersome. Recently, a new hydrogen ion concentration method has been proposed for this technology, which uses one step for oxygen ion conduction. U.S. Patent No. 4,264,424 Mei II
According to Publication No. 77751), a method is shown in which a diaphragm made of a special ceramic is used instead of a glass membrane and the potential difference generated between the two sides of the diaphragm is measured. Due to the extremely large potential difference, the generated potential difference is unstable and the measurement becomes unreliable. In addition, to perform this measurement, a conventional electrode with a liquid junction structure is used as a reference electrode. There is. Therefore, the above-mentioned drawbacks still remain. An object of the present invention is to provide a new hydrogen ion concentration measuring device which overcomes the drawbacks of the conventional hydrogen ion concentration measuring techniques as described above. The first purpose is to be able to directly measure high-temperature measurement liquids. The second purpose is to be able to directly measure high-pressure measurement liquids. The third purpose is to have no internal electrolyte as a reference electrode. The fourth target is the so-called liquid junction structure. The fifth purpose is that it can be set up extremely simply, and its handling is simple and easy.

【る。 本発明は、測定装置の一方の電極端子に接続される端子
をもつ水素イオン8度測定用指示電極と、他方の電極端
子に接続される端子をもった金属電極体とを水溶液中に
直接浸漬し−(、両端子間に発生する電位差を測足りる
ことにより水溶液中の水素イオン濃度を測定する装置に
おいて、水素イオン淵瓜測定用指示電極は閉塞端を備え
た容器とその内部に内部電極と内部電解質とを有し、そ
の閉塞端は少なくとも水素イオンの感応性ガラスまたは
、酸素イオン伝導性固体電解質から形成され、かつ、金
属電極体の上記水溶液に接触する表面は銀、銀合金又は
銀、銀合金の酸化物或いはそれらの積層体C゛ある水素
イオン’fA度測定装置である。 本発明に使用づる酸素イオン伝導性固体電解質は安定化
ジル−Jニアが好ましい。 金属電極体は銀、銀合金あるいは銀、銀合金にイの酸化
物を被覆したちの又(よアルミ、ニラクル、銅、鉄等の
金属地金の十に銀、銀合金を鍍金或いは積層して被覆し
たもの或いは更にでの外側に銀、銀合金の酸化物を波谷
したものCしよい。 また金属電極体は液浸漬部の一部が少くとも絶縁体で被
覆されているもので、その基部が絶縁体に取付(]られ
測測定量への取イ」部材どなるものであれはよい。 本発明の構成を更に訂しく説明する。 第2図には、高温度・高圧力条件下で゛測定でき、かつ
測定液中にイオン性電解質を漏出させない本発明の構成
を示寸。第2図にd3いて10は指示電極で、20は金
属電極体で両者は測定液15に浸漬(接触)している。 この指示電極10は固体電解質でつくられた水素イオン
感応膜10Aをもつ中空体構造をちっている。この固体
電解質は水素イオン感応性のガラス膜か安定イビジル」
ニアより選ばれる。 この中空体の内側には、内部電極11ど内部電解質12
が充填されている。 内部電極11は、塩化銀を被覆した銀が多くの場合用い
られているが他の金属を使用してもにい。 内部電解質12は、例えば塩化カリウム溶液等の塩溶液
が用いられる。又金属どその金属酸化物との混合体−C
つくられた固体電解質も用いられる。 このように構成された指示電極10は、電気信丹取出し
用の端子13をもっている。この端子13は内部電極1
1と電気的に接続されている。 又この中空体の間目端は接着等の手段で内部と外部とが
遮断、密封されることが望ましい。 金属電極体20は、銀あるいは銀合金又は、銀及び銀合
金の酸化物が表面に被覆された金属より選ばれる。 この金属電極体20は、イの表面の一部く又は全部)が
露出しており、かつ絶縁被覆部21と絶縁部22をもっ
ている。 絶縁部22は測定用容器16に取付()られるような取
付部材を構成することもある。更に電気信号取出し用端
子23をもち、この端子23は金属電極体20と電気導
通している。 指示電極10と金属電極体20との間に発生づる電イイ
l差は一方の端子13と他方の端子23に接続された増
【1】器25を介して電圧812Gで測定される。指示
電極10は人ぎ4【内部抵抗を6っているので、増+j
]器25は高入力抵抗をもI5、電磁気的なノイズの進
入防止のため夫々の端子13゜23からのリード線はシ
ールド1/1,24を施しである。 指示電極10を構成づる中空体を安定化ジル」ニア磁器
でつくり、内部電解質12は塩化カリウム溶液で、内部
電極11は塩化銀(△a(1)を被覆した銀でつくり、
金属電極体20として銀を用いて構成した本発明の指示
電極10と金属電極体20を測定液である水溶液中に浸
漬したどきの動作別横を次に示づ。 内部電解質12と接した内部電極11には電気化学的単
極電位が発/Iする。 指示電極10の感応膜部10Aの内、外面では、夫々の
膜界面で電気化学的ボj−ンシセルが発生覆る。この発
生ポテンシャルは、夫々の界面でのイオン種の平衡によ
って規定される。 股10△内面上の電位は、内部の電解質の水素イオン濃
度を定めると一定となる。 股10 A外面十の電位は、測定液15中のイオン種の
活量温石がこの膜面上で平衡しているので、今イオン種
を水素イオンに注目してみると、ごごで平衡した水素イ
オンの活量濃度に依存したネルンス1〜の式に従う電位
が発生ずる。一般に、箱材水溶液中の水素イオンの活量
濃度は水素イオン濃度に比例するので結局、この感応膜
10△内外面問には、測定液中の水素イオン濃度の対数
に比例したネルンストの式に従う電位差が発生する。又
この感応膜10Δの近くにa3いた金属電極20の表面
でも水溶液中のイオン種の活量に相応した半電池が構成
され、この電極20には単極電位が発生する。従って、
このように構成された装置は全体として一つの電池とし
゛(見ることができる。 この場合金属電極体20がつくる単極電位が測定液中の
水素イオンの濃度の影響を受けなければ、本発明の装置
で測定された電位差は測定液中の水素イオン濃度の対数
に比例りるものである。 本発明者は、水溶液中の水素イオン濶度の影響を受けに
くく、しかも安定した電位を発生する金属電極体を開発
した。この場合の金属電極体としては銀、銀合金及び銀
や銀合金の酸化物を表面に被覆した金属又は銅、アルミ
ニウム、ニッケル、鉄等の金属地金に銀又は銀合金を鍍
金、被覆、積層した金属体が上げられる。 以上述べた本発明よりなる指示電極と金属電極体に、適
切な取付具を装着して使用すると、本発明の測定装置は
従来技術に対し ■比較電極のもつ内部電解質を測定液中に漏出しない。 ■液絡構造をもたない。 ■接液体が物性的に安定な固体でできている。 というまったく新規な水素イオン濃度測定装置を提供づ
−ることができる。 なお、第3図図中にお【プる符号のうら、第2図と同一
符号は同−又は類似する構成要素を示す。 本発明の具体的実施例について、以Fに説明づる。 実施例(1) 第2図に示した本発明の構成において10は指示電4〜
で、85モルのイツトリアを1〜−ブした安定化ジルニ
」ニアの一端閉構造をしでいるセラミックで市る。外径
8mmφ、内径5mmφ、長さ150mmで1315端
部の肉厚は45 nonである。 20は金属電極体であり、太さ1mmφの銀線で、約2
0mmが露出しその伯はセラミックコーテングされでい
る。 指示電極10の内部には、内部電解質12と内部電極1
1が収納されている。 内部電解質12は3七ル/βの1〈CI!、水溶液で、
内部型tfi11は、A!;l Cu2を被覆し/ζ太
さ1mmφの銀線である。 第3図には、本発明の測定装置の性能を1iif認づる
ための実験装置の構成を示す。第3図において試験槽3
0はSUSでつくられ内容積が約18℃で、測定液15
として純水が約13ρ入っている。 この試験槽ζ30には、指示電8i10と金属電極体2
0を測定液15に浸漬く接触)するよう適切な取(=J
貝によって装置し、両電極10.20の電極端子は夫々
テフロン被覆の同軸クープルにより高入力抵抗をもつ増
IJ器25に接続され、増Ill器25の出力をペン書
記録甜によって測定した。指示電極10は一般に高い内
部抵抗をもつICめ増11」器25は高入力抵抗回路を
もつ−CJ5す、指示電極10と増巾器25を接続する
リード線にはシールド37が施しである。又金属電極体
20と増11]器25とを接続するリード線も、電磁気
的誘導雑音等の浸入防止の目的C′シールド37が施し
である。 薬液槽40.41.42は測定液の水溶液中のイオン濃
度を変化させるため例えば、薬液槽40には酸性水溶液
、薬液槽41には中性液、薬液槽42にはアルカリ性水
溶液という所定の薬液が人ってa3す、39は切換分岐
部、38は薬液導入部で、切換分岐部39を操作づるこ
とによって任意の薬液を測定液中に導入させることがで
きる。更に高温度条件下や高圧力条件下での測定を行う
ため次の機能、装置を有している。43は加熱部、44
は温度訓、45は加熱装置よりなり測定液を加温、温度
コントロールさせ、かつ薬液導入部38には、加圧送液
できる加圧装置47が配置され、試験槽30の内圧力を
検出する圧力計46が取f号けられている。 試験槽30は、加圧容器を構成しているので、これに取
イ」りられる部材(指示電極10、金属電極体20、圧
力146、温度!144並びに薬液導入部38)は、そ
の取付界面でこれらの圧力に十分耐えるようなシール機
能をもって強固に装着されている。 実験は、薬液槽40.41.42タンクの酸液又はアル
カリ液を適量測定液に流入させ測定液の01−1値を変
化させたときの両電極間の発生電位差を測定記録した結
果を第4図(こ示した。 ここにおいで、水温は95℃に=1ン1〜ロールした。 この時の電位差は+−95mVを示した。 次に酸溶液をこの測定液に添加し、測定液のpH値が2
4となったとき、両電極間の発生電位差は4−340+
11Vを示し、更にアルカリ溶液を添加して測定液の1
〕ト(値が118となったときの電位差は一163mV
を示し、再+12酸溶液を添加して測定液のl) l−
1値が23となったときの電位差は−j−34/l m
 Vを示した。また、測定液のp t−(変化に対して
短時間で飽和値に達し安定した電位差が得られた。 実施例(2) 実施例< i > ”c説明した構成にJ3いて、金属
電極体どして1mmφの銀:銅=9;1の銀合金を用い
て、上記と同様な構成の測定システムを組立て−C測定
液の11 H値を変化さけたどきの両電極間に発生ずる
電位差を測定した。その結果を第1表に示′1゜ 実施例〈1〉、(2)で述べた方法の特性を第5図に示
した。第5図で△は実施例<’i>、sは実施例(2)
で述べた本発明装置の特性曲線であり、Cは高温度用に
つくられたp H測定用のガラス電極と液絡部がタブル
ジ1?ンクションをもつ比較電極で測定した時の特性曲
線である。同図に示′リ−ように金属電極体として銀及
び銀合金を使用した場合共に従来の方法による測定値と
ばば同等の測定値を得ることができた。 実施例(3) 実施例(1)及び(2)で示した構造と同様な構造をし
ていてその表面に銀、銀合金の酸化物皮膜を形成した金
属電極体を製作した。。 この酸化皮膜の形成は金属露出部を十分に洗浄した後恒
温槽内にて100℃、30分間の加温を行い、更に38
0’C11時間の加熱処理し−C形成した。 この二種類の表面(こ酸化皮膜が形成されている金属電
極体を用いで、上記と同様な構成の測定システムを組立
てで、測定液のpl−1値を変化させたときの両電極間
に発生する電位差を測定した。その結果は第2表の通り
であった。 同表に示すように表面に酸化皮膜が形成されている電極
イホを用いた場合でし酸化皮膜の41い銀、銀合金か1
うできている電極体を用いた場合とほぼ同等の電位差が
測定され、しかも測定液の1)11変化に対して短時間
で安定した電位差が測定された。 比較実験例(1) 以−1−に示した実施例と同様な手段を用いて、金属電
極体の材質、形状を変えて製作した場合についても実験
を行った。金属電極体として白金を用いた場合の比較実
験では、測定液のp H値を純水→I)H2,2(酸性
)→pトM1.9(アルカリ性)→t))12.1(酸
性)に順次変化させると第6図に示すように発生する電
位差はpl−1変化時点で急激な変化を示づがその値は
安定せず漸次変化する急激なカーブをなし、しかも測定
液の1)1」値に対応した安定な電位差を示さなかった
。 双子のことより、ある種の金属よりなる金属電極を直接
水溶液中に浸漬することで水溶液のpH値が測定でき、
又水溶液中の水素イオン濃度を測定できることを示jも
のである。 比較実験例(2) 実施例で説明した指示電極と金属電極を加熱、加圧ので
きる圧力容器にとりつけその耐圧力性を試験したところ
温度200°C1圧力15.5ffi/ct Gの条件
においても何等異常を示すものではなかった。 本発明の装置によれば、指示型(〜、金属電極共に材質
的には安定したセラミックと金属固体よりつくられ、構
造的には前述したにう′/eTシンプルなものであるの
で、水溶液中の水素イオン濃度測定やp H測定に適用
4ると、以下に述べる如く、極めて優れた特徴と効果が
ある。 (1)比較電極としての内部電解質をもたない、これ故
に液絡部をもたない。 (2)測定液を汚染しないので測定液本来の水素イオン
濃度の測定ができる。 (3)高温度の液中で使用できる。 (4)高圧力条件下の液中で使用できる。 (5) 4Mめ−(−コンバク1−に段組Cき、その取
扱いが簡便容易どなる。 (6)液絡部のもつ本質的欠陥を一撞する。 (7)使用中に特性変化が発生したりしたときには、金
属電極表面を磨くとか洗浄とかの手段で容易に特性の回
復が可能どなり、可曲の向上が図れる。 以」二説明したように本発明の水素イA>濃度測定装置
は、水溶液中の水素イオン′a度測定用センサー、各種
工業水の水質管理用のpト1測定、高温、高圧力条イ′
1小での水溶液中の水素イオン濃度の直接測定等に利用
でき工業上有用である。
[ru. In the present invention, an indicator electrode for measuring hydrogen ions having a terminal connected to one electrode terminal of a measuring device and a metal electrode body having a terminal connected to the other electrode terminal are directly immersed in an aqueous solution. In a device that measures the hydrogen ion concentration in an aqueous solution by measuring the potential difference generated between both terminals, the indicator electrode for hydrogen ion measurement consists of a container with a closed end and an internal electrode inside the container. The closed end is formed of at least hydrogen ion-sensitive glass or oxygen ion conductive solid electrolyte, and the surface of the metal electrode body that comes into contact with the aqueous solution is made of silver, silver alloy, or silver, This is a device for measuring the degree of hydrogen ion fA using an oxide of a silver alloy or a laminate thereof.The oxygen ion conductive solid electrolyte used in the present invention is preferably stabilized Zir-Jnia.The metal electrode body is made of silver, Silver alloys or silver or silver alloys coated with the oxide of (A) (Aluminum, niracles, copper, iron, etc., coated with silver or silver alloys plated or laminated), or The outer surface of the metal electrode body may be coated with an oxide of silver or silver alloy with corrugations.Also, the metal electrode body should have at least a part of the liquid immersion part covered with an insulator, and its base should be attached to the insulator. Any material that can be used to measure the quantity to be measured may be used. The structure of the present invention will be explained in more detail. The structure of the present invention that prevents the ionic electrolyte from leaking into the liquid is shown in dimensions.In d3 in Fig. 2, 10 is an indicator electrode, 20 is a metal electrode body, and both are immersed (in contact) in the measuring liquid 15. The indicator electrode 10 has a hollow body structure with a hydrogen ion sensitive membrane 10A made of a solid electrolyte.The solid electrolyte is a hydrogen ion sensitive glass membrane or a stable Ividyl membrane.
Selected by Nia. Inside this hollow body, an internal electrode 11 and an internal electrolyte 12 are provided.
is filled. The internal electrode 11 is often made of silver coated with silver chloride, but other metals may also be used. For the internal electrolyte 12, a salt solution such as a potassium chloride solution is used, for example. Also, mixtures of metals and other metals with metal oxides-C
Fabricated solid electrolytes are also used. The indicator electrode 10 configured in this manner has a terminal 13 for taking out the electric wire. This terminal 13 is the internal electrode 1
1 and is electrically connected. Further, it is desirable that the inner and outer ends of the hollow body be sealed off and sealed by adhesive or other means. The metal electrode body 20 is selected from silver, a silver alloy, or a metal whose surface is coated with an oxide of silver and a silver alloy. This metal electrode body 20 has a part or all of its surface exposed, and has an insulating coating part 21 and an insulating part 22. The insulating portion 22 may constitute a mounting member that is attached to the measurement container 16. Furthermore, it has a terminal 23 for taking out an electric signal, and this terminal 23 is electrically connected to the metal electrode body 20. The voltage difference generated between the indicator electrode 10 and the metal electrode body 20 is measured at a voltage of 812 G via an intensifier 25 connected to one terminal 13 and the other terminal 23. The indicator electrode 10 has an internal resistance of 6, so the increase +j
] The device 25 has a high input resistance I5, and the lead wires from the respective terminals 13 and 23 are shielded 1/1 and 24 to prevent ingress of electromagnetic noise. The hollow body constituting the indicator electrode 10 is made of stabilized Zirnia porcelain, the internal electrolyte 12 is made of potassium chloride solution, the internal electrode 11 is made of silver coated with silver chloride (Δa(1)),
The operation of the indicator electrode 10 and the metal electrode body 20 of the present invention, which are constructed using silver as the metal electrode body 20, is immersed in an aqueous solution as a measuring liquid. An electrochemical unipolar potential is generated at the internal electrode 11 in contact with the internal electrolyte 12. On the inner and outer surfaces of the sensitive membrane portion 10A of the indicator electrode 10, electrochemical void cells are generated at the respective membrane interfaces. This generated potential is defined by the balance of ionic species at each interface. The potential on the inner surface of the crotch 10Δ becomes constant when the hydrogen ion concentration of the internal electrolyte is determined. The potential of the outer surface of the crotch 10 A is that the active hot stones of the ionic species in the measurement solution 15 are balanced on this membrane surface, so if we now focus on the ionic species as hydrogen ions, we can see that the potential is A potential is generated according to the Nerns equation depending on the activity concentration of hydrogen ions. In general, the activity concentration of hydrogen ions in the aqueous solution of the box material is proportional to the hydrogen ion concentration, so the inner and outer surfaces of the sensitive membrane 10△ follow the Nernst equation, which is proportional to the logarithm of the hydrogen ion concentration in the measurement solution. A potential difference occurs. Also, a half-cell corresponding to the activity of the ionic species in the aqueous solution is formed on the surface of the metal electrode 20 located a3 near the sensitive membrane 10Δ, and a unipolar potential is generated in this electrode 20. Therefore,
The device configured in this way can be seen as one battery as a whole. The potential difference measured by the device is proportional to the logarithm of the hydrogen ion concentration in the measurement solution. We have developed an electrode body.In this case, the metal electrode body can be made of metal whose surface is coated with silver, silver alloys, or oxides of silver or silver alloys, or silver or silver alloys on metal bases such as copper, aluminum, nickel, and iron. When used by attaching appropriate fixtures to the indicator electrode and metal electrode body of the present invention described above, the measuring device of the present invention has the following advantages over the prior art: We provide a completely new hydrogen ion concentration measurement device that does not leak the internal electrolyte of the reference electrode into the measurement liquid. ■ Has no liquid junction structure. ■ The liquid in contact with it is made of a physically stable solid. In addition, in Figure 3, the same reference numerals as in Figure 2 indicate the same or similar components. Embodiment (1) In the configuration of the present invention shown in FIG.
It is a ceramic having a closed structure at one end of stabilized Zirninia containing 1 to 85 moles of ittria. The outer diameter is 8 mmφ, the inner diameter is 5 mmφ, the length is 150 mm, and the wall thickness of the 1315 end is 45 mm. 20 is a metal electrode body, which is a silver wire with a thickness of 1 mmφ, approximately 2
0mm is exposed and the area is covered with ceramic coating. Inside the indicator electrode 10, an internal electrolyte 12 and an internal electrode 1 are provided.
1 is stored. The internal electrolyte 12 is 37 l/β of 1 <CI! , in aqueous solution,
Internal type tfi11 is A! ;l It is a silver wire coated with Cu2/ζ with a thickness of 1 mmφ. FIG. 3 shows the configuration of an experimental device for evaluating the performance of the measuring device of the present invention. In Figure 3, test tank 3
0 is made of SUS, has an internal volume of approximately 18℃, and has a measuring liquid of 15
Contains approximately 13ρ of pure water. This test chamber ζ30 contains an indicator 8i10 and a metal electrode body 2.
0 into the measuring solution 15).
The electrode terminals of both electrodes 10 and 20 were respectively connected to an intensifier 25 having a high input resistance by a Teflon-coated coaxial couple, and the output of the intensifier 25 was measured by a pen recorder. The indicator electrode 10 is generally an IC amplifier 11 having a high internal resistance.The amplifier 25 has a high input resistance circuit.The lead wire connecting the indicator electrode 10 and the amplifier 25 is provided with a shield 37. Further, the lead wire connecting the metal electrode body 20 and the amplifier 11] is also provided with a C' shield 37 for the purpose of preventing infiltration of electromagnetic induction noise. The chemical liquid tanks 40, 41, and 42 are used to change the ion concentration in the aqueous solution of the measurement liquid. For example, the chemical liquid tank 40 is filled with an acidic aqueous solution, the chemical liquid tank 41 is filled with a neutral liquid, and the chemical liquid tank 42 is filled with a predetermined chemical liquid such as an alkaline aqueous solution. 39 is a switching branch, and 38 is a chemical liquid introduction part.By operating the switching branch 39, any chemical liquid can be introduced into the measurement liquid. Furthermore, it has the following functions and equipment to perform measurements under high temperature and high pressure conditions. 43 is a heating section, 44
Reference numeral 45 indicates a temperature sensor, and numeral 45 indicates a heating device to heat and control the temperature of the liquid to be measured.A pressure device 47 that can feed the liquid under pressure is arranged in the chemical solution introduction section 38, and a pressure device 47 for detecting the internal pressure of the test chamber 30 A total of 46 are numbered f. Since the test chamber 30 constitutes a pressurized container, the members (indicator electrode 10, metal electrode body 20, pressure 146, temperature 144, and chemical solution introduction part 38) that are attached to it are attached to the mounting interface. It is firmly attached with a sealing function that can withstand these pressures. In the experiment, we measured and recorded the potential difference between both electrodes when an appropriate amount of acid or alkaline solution from the chemical tank 40, 41, 42 tank was poured into the measuring liquid and the 01-1 value of the measuring liquid was changed. Figure 4 (shown here). At this point, the water temperature was set to 95°C and rolled for 1 to 1 hour. The potential difference at this time showed +-95 mV. Next, an acid solution was added to this measurement solution, and the measurement solution was The pH value of
4, the generated potential difference between both electrodes is 4-340+
11V, and then add an alkaline solution to 1 of the measurement solution.
] (When the value is 118, the potential difference is -163 mV
, and add +12 acid solution again to adjust the l) l- of the measurement solution.
The potential difference when the 1 value becomes 23 is -j-34/l m
It showed V. In addition, a stable potential difference was obtained, reaching a saturation value in a short time with respect to changes in p t - (of the measuring solution).Example (2) Assemble a measurement system with the same configuration as above using a 1 mmφ silver alloy with silver: copper = 9: 1. The potential difference generated between the two electrodes when changing the 11H value of the C measurement solution The results are shown in Table 1. The characteristics of the method described in Example <1> and (2) are shown in Figure 5. In Figure 5, △ indicates Example <'i> , s is Example (2)
C is the characteristic curve of the device of the present invention described in 2. C is the characteristic curve of the pH measuring glass electrode made for high temperatures and the liquid junction part. This is a characteristic curve when measured using a reference electrode with a As shown in the figure, when silver and silver alloys were used as the metal electrode body, it was possible to obtain measurement values equivalent to those obtained by the conventional method. Example (3) A metal electrode body having a structure similar to that shown in Examples (1) and (2) and having an oxide film of silver or a silver alloy formed on its surface was manufactured. . This oxide film is formed by thoroughly cleaning the exposed metal parts, heating them at 100°C for 30 minutes in a constant temperature bath, and then heating them at 100°C for 30 minutes.
-C was formed by heat treatment at 0'C for 11 hours. By using these two types of surfaces (metal electrode bodies on which oxidized films are formed) and assembling a measurement system with the same configuration as above, the difference between the two electrodes when the pl-1 value of the measuring liquid is changed. The generated potential difference was measured.The results are shown in Table 2.As shown in the table, when using an electrode with an oxide film formed on the surface, Alloy or 1
Almost the same potential difference was measured as when using an electrode body made of aluminum, and moreover, a stable potential difference was measured in a short time with respect to 1) 11 changes in the measurement liquid. Comparative Experimental Example (1) Using the same means as in the example shown in -1- below, experiments were also carried out in cases where metal electrode bodies were manufactured by changing the material and shape. In a comparative experiment using platinum as a metal electrode body, the pH value of the measurement solution was changed to pure water → I) H2,2 (acidic) → ptoM1.9 (alkaline) → t)) 12.1 (acidic). ), as shown in Figure 6, the generated potential difference shows a sudden change at the point of change in pl-1, but the value is not stable and forms a steep curve that changes gradually. ) did not show a stable potential difference corresponding to the 1'' value. Because of the twins, the pH value of an aqueous solution can be measured by directly immersing a metal electrode made of a certain type of metal in an aqueous solution.
It also shows that the hydrogen ion concentration in an aqueous solution can be measured. Comparative Experimental Example (2) The indicator electrode and metal electrode described in the example were attached to a pressure vessel that can be heated and pressurized, and their pressure resistance was tested. There was no sign of any abnormality. According to the device of the present invention, both the indicator type (~) and the metal electrode are made of stable ceramic and metal solid materials, and the structure is simple like the above-mentioned Ni'/eT. When applied to hydrogen ion concentration measurement and pH measurement4, it has extremely excellent features and effects as described below: (1) It does not have an internal electrolyte as a reference electrode, and therefore does not require a liquid junction. (2) It does not contaminate the measurement liquid, so it is possible to measure the original hydrogen ion concentration of the measurement liquid. (3) It can be used in liquids at high temperatures. (4) It can be used in liquids under high pressure conditions. (5) The 4Mth-(-Convex 1-) has a column C, making its handling simple and easy. (6) Check out the essential defects in the liquid junction. (7) Changes in characteristics occur during use. When the metal electrode surface is polished or washed, the characteristics can be easily restored and the bendability can be improved. , sensors for measuring the degree of hydrogen ions in aqueous solutions, PT1 measurements for water quality control of various industrial waters, high temperature and high pressure strips.
It can be used for direct measurement of hydrogen ion concentration in an aqueous solution at a small scale, and is industrially useful.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の測定装置の概略を承り構成図、第2図
は、本発明の構成を承りだめの説明図、第3図は、本発
明においてその性能を調査するために用いた試験装置の
概略説明図、 第4図は本発明の銀電極を使用し、測定液の01−1を
酸性、アルカリ性、酸性に順次変化したときの電位差測
定図、 第5図は、本発明の実施例による測定結果を示づグラフ
で水溶液のp ti値の変化に対応した出力電位差の関
係を示づ特性図である。 第6図は白金電極(比較例)を使用し、第5図と同様に
液を純水、酸性、アルカリ性、酸性に順次変化したとき
の電位差測定図である。 1・・・指示電極    2・・・比較電極3・・・内
部電極    4・・・内部電解質5・・・液絡部  
   6・・・電位差8110・・・指示電極    
11・・・内部電極12・・・内部電解質   13・
・・端子14・・、・シールド    15・・・測定
液16・・・測定用容器   20・・・金属電極体2
1・・・絶縁被覆部   22・・・絶縁部23・・・
端子      24・・・シールド25・・・増巾器
     26・・・電圧削30・・・試験WI37・
・・シールド38・・・薬液導入部   39・・・切
換(分岐)部40、41.42・・・薬液槽 43・・
・加熱部44・・・温度泪     45・・・加熱V
iば47・・・加圧装置。
Figure 1 is a schematic configuration diagram of a conventional measuring device, Figure 2 is an explanatory diagram of the configuration of the present invention, and Figure 3 is a test used to investigate the performance of the present invention. A schematic explanatory diagram of the apparatus; Figure 4 is a potential difference measurement diagram when the measuring solution 01-1 was sequentially changed to acidic, alkaline, and acidic using the silver electrode of the present invention; Figure 5 is a diagram showing the implementation of the present invention. FIG. 3 is a graph showing measurement results according to an example, and is a characteristic diagram showing a relationship between an output potential difference corresponding to a change in the pti value of an aqueous solution. FIG. 6 is a potential difference measurement diagram when a platinum electrode (comparative example) is used and the liquid is sequentially changed to pure water, acidic, alkaline, and acidic in the same way as FIG. 5. 1... Indicator electrode 2... Reference electrode 3... Internal electrode 4... Internal electrolyte 5... Liquid junction
6...Potential difference 8110...Indicator electrode
11... Internal electrode 12... Internal electrolyte 13.
...Terminal 14...Shield 15...Measurement liquid 16...Measurement container 20...Metal electrode body 2
1... Insulating coating part 22... Insulating part 23...
Terminal 24... Shield 25... Amplifier 26... Voltage reduction 30... Test WI37.
...Shield 38...Medical solution introduction part 39...Switching (branching) part 40, 41.42...Medical solution tank 43...
・Heating part 44...Temperature level 45...Heating V
iba47...pressure device.

Claims (1)

【特許請求の範囲】 1、測定装置の一方の電極端子に接続される端子をもつ
水素イオン濃度測定用指示電極と、他方の電極端子に接
続される端子をもった金属電極体とを水溶液中に直接浸
漬して両端子間に発生ずる電位差を上記測定装置で測定
することにより水溶液中の水素イオン濃度を測定する装
置において、水素イオン濃度測定用指示電極は閉塞端を
備えた容器とその内部に内部電極と内部電解質とを有し
、モの閉塞端は少なくとも水素イオンの感応性カラスま
たは、M索イAン伝導性固体電解質から形成され、かつ
、金属電極体の上記水溶液に接触づる表面は銀、銀合金
又は銀、銀合金の酸化物或いはそれらの積層体であるこ
とを特徴とする水素イオン濃度測定装置。 2、固体電解質は安定化ジルコニアである特許請求の範
囲第1項記載の水素イオン濃度測定装置。 3、金属電極体は金属地金の上に銀、銀合金あるいはそ
の酸化物を被覆又は積層した複合金属体である特許請求
の範囲第1項記載の水素イオン濃度測定装置。 4、金属電極体は絶縁体に取付番ノられ、この絶縁体が
測定装置への取i=を部材どなる特許請求の範囲第1項
又は第3項記載の水素イオン溌度測定装置。 5.1−記金属電極体の液浸漬部の少なくとも一部が絶
縁体で被覆されている特許請求の範囲第1項又は第3項
記載の水素イΔン濃度測定装置。
[Claims] 1. An indicator electrode for hydrogen ion concentration measurement having a terminal connected to one electrode terminal of a measuring device and a metal electrode body having a terminal connected to the other electrode terminal in an aqueous solution. In a device that measures the hydrogen ion concentration in an aqueous solution by directly immersing it in water and measuring the potential difference generated between both terminals with the above measuring device, the indicator electrode for hydrogen ion concentration measurement is connected to a container with a closed end and its interior. has an internal electrode and an internal electrolyte, and the closed end of the metal electrode body is formed of at least a hydrogen ion-sensitive or conductive solid electrolyte, and the surface of the metal electrode body that comes into contact with the aqueous solution is silver, a silver alloy, an oxide of silver or a silver alloy, or a laminate thereof. 2. The hydrogen ion concentration measuring device according to claim 1, wherein the solid electrolyte is stabilized zirconia. 3. The hydrogen ion concentration measuring device according to claim 1, wherein the metal electrode body is a composite metal body in which silver, a silver alloy, or an oxide thereof is coated or laminated on a metal base metal. 4. The hydrogen ion flux measuring device according to claim 1 or 3, wherein the metal electrode body is attached to an insulator, and this insulator serves as a member for attaching the measuring device to the measuring device. 5.1- The hydrogen ion concentration measuring device according to claim 1 or 3, wherein at least a portion of the liquid immersion portion of the metal electrode body is covered with an insulator.
JP2772383A 1983-02-23 1983-02-23 Hydrogen ion concentration measuring apparatus Granted JPS59154351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2772383A JPS59154351A (en) 1983-02-23 1983-02-23 Hydrogen ion concentration measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2772383A JPS59154351A (en) 1983-02-23 1983-02-23 Hydrogen ion concentration measuring apparatus

Publications (2)

Publication Number Publication Date
JPS59154351A true JPS59154351A (en) 1984-09-03
JPH0452407B2 JPH0452407B2 (en) 1992-08-21

Family

ID=12228934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2772383A Granted JPS59154351A (en) 1983-02-23 1983-02-23 Hydrogen ion concentration measuring apparatus

Country Status (1)

Country Link
JP (1) JPS59154351A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205856A (en) * 1985-03-01 1986-09-12 ドレーゲルヴエルク・アクチエンゲゼルシヤフト Measuring electrode of metal/metallic oxide measuring ph
JPH01165952A (en) * 1987-12-23 1989-06-29 Toshin Kogyo Kk Zirconia electrode and measuring device of ph
US5502388A (en) * 1993-02-04 1996-03-26 Hoechst Aktiengesellschaft Method of measuring the pH value of a test solution with glass-electrode measuring cells and of simultaneously calibrating the measuring cells
KR100759926B1 (en) 2005-01-19 2007-09-18 대윤계기산업 주식회사 Hydrogen ion-selective membrane and method for preparing thereof
JP2008170433A (en) * 2006-12-22 2008-07-24 Mettler-Toledo Ag Method for monitoring electrochemical half-cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214475U (en) * 1975-07-18 1977-02-01
JPS5677751A (en) * 1979-10-12 1981-06-26 Gen Electric Sensor for hydrogen ion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214475U (en) * 1975-07-18 1977-02-01
JPS5677751A (en) * 1979-10-12 1981-06-26 Gen Electric Sensor for hydrogen ion

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205856A (en) * 1985-03-01 1986-09-12 ドレーゲルヴエルク・アクチエンゲゼルシヤフト Measuring electrode of metal/metallic oxide measuring ph
JPH0463340B2 (en) * 1985-03-01 1992-10-09 Draegerwerk Ag
JPH01165952A (en) * 1987-12-23 1989-06-29 Toshin Kogyo Kk Zirconia electrode and measuring device of ph
US5502388A (en) * 1993-02-04 1996-03-26 Hoechst Aktiengesellschaft Method of measuring the pH value of a test solution with glass-electrode measuring cells and of simultaneously calibrating the measuring cells
KR100759926B1 (en) 2005-01-19 2007-09-18 대윤계기산업 주식회사 Hydrogen ion-selective membrane and method for preparing thereof
JP2008170433A (en) * 2006-12-22 2008-07-24 Mettler-Toledo Ag Method for monitoring electrochemical half-cell

Also Published As

Publication number Publication date
JPH0452407B2 (en) 1992-08-21

Similar Documents

Publication Publication Date Title
EP1959253B1 (en) Electrochemical sensor
US4264424A (en) Hydrogen ion sensor having a membrane sheath of an oxygen ion conducting ceramic
CN104155355A (en) Oxygen sensor
US3948746A (en) Dissolved oxygen probe
JPH0473095B2 (en)
US4116798A (en) Reference electrode for use at high temperatures and pressures
JPH0321856A (en) Reference electrode probe
US5188715A (en) Condensate corrosion sensor
JPS6013144B2 (en) Device for sensing ions in liquids
US4045319A (en) Electrochemical gage for measuring partial pressures of oxygen
US3794575A (en) Oxygen sensor
JPS59154351A (en) Hydrogen ion concentration measuring apparatus
JPH0370782B2 (en)
JPH05196592A (en) Reference electrode probe used in high- temperature water environment
NO833886L (en) METHOD AND DEVICE FOR DETERMINING HYDROGEN FLOW.
US6863792B1 (en) Method of making electrochemical detectors based on iridium oxide
JPH0616024B2 (en) Apparatus and method for measuring hydrogen concentration in water
JPH0452408B2 (en)
JPH0368339B2 (en)
GB2128751A (en) Hydrogen concentration meter
CN219830933U (en) Electrochemical composite sensor
CN112567237A (en) Potentiometric measuring chain and method for determining pH value
JPS6243557A (en) Solid electrode for electrochemical sensor
JPH0387643A (en) Electrochemical electrode and electrochemical cell using this electrode
JPH02223854A (en) Electrochemical sensor