JP2014016083A5 - - Google Patents

Download PDF

Info

Publication number
JP2014016083A5
JP2014016083A5 JP2012153240A JP2012153240A JP2014016083A5 JP 2014016083 A5 JP2014016083 A5 JP 2014016083A5 JP 2012153240 A JP2012153240 A JP 2012153240A JP 2012153240 A JP2012153240 A JP 2012153240A JP 2014016083 A5 JP2014016083 A5 JP 2014016083A5
Authority
JP
Japan
Prior art keywords
type
core
rectifying member
fluid
inflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012153240A
Other languages
Japanese (ja)
Other versions
JP5795994B2 (en
JP2014016083A (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from JP2012153240A external-priority patent/JP5795994B2/en
Priority to JP2012153240A priority Critical patent/JP5795994B2/en
Priority to CN201380036190.6A priority patent/CN104428622A/en
Priority to BR112015000249A priority patent/BR112015000249A2/en
Priority to US14/413,689 priority patent/US20150136366A1/en
Priority to EP13817311.7A priority patent/EP2889570B1/en
Priority to EA201590160A priority patent/EA030192B1/en
Priority to PCT/JP2013/003907 priority patent/WO2014010180A1/en
Publication of JP2014016083A publication Critical patent/JP2014016083A/en
Publication of JP2014016083A5 publication Critical patent/JP2014016083A5/ja
Publication of JP5795994B2 publication Critical patent/JP5795994B2/en
Application granted granted Critical
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

熱交換器Heat exchanger

ここに開示する技術は、熱交換器に関し、特に伝熱部であるコアを通過する流体の偏流を抑制し得る熱交換器の構造に関する。   The technology disclosed herein relates to a heat exchanger, and more particularly to a structure of a heat exchanger that can suppress a drift of a fluid passing through a core that is a heat transfer section.

従来より、熱交換器におけるヘッダータンクやノズルの形状及び配置等に起因して、熱交換器のコアを通過する流体の流量分布が均等にならずに、偏ってしまう偏流現象が知られている。例えば特許文献1には、ヘッダータンクの形状が、流入ノズルの開口位置から流体の流入方向の奥側に向かって細長い形状を有していることに起因して、コアにおいて、ノズルの開口から遠い奥側の部分の通過流量が、ノズルの開口に近い手前側の部分の通過流量よりも多くなってしまうプレートフィン型熱交換器において、ヘッダータンク内にバッフルプレート(整流体)を配置することが記載されている。ノズルを通じてヘッダータンク内に流入する流体は、バッフルプレートに干渉することでヘッダータンクの奥側へと流れることが抑制されてコアを通過する流体の偏流が抑制される。   Conventionally, due to the shape and arrangement of header tanks and nozzles in the heat exchanger, there is a known drift phenomenon that the flow distribution of the fluid passing through the core of the heat exchanger is not uniform and is biased. . For example, in Patent Document 1, the shape of the header tank is elongated from the opening position of the inflow nozzle toward the back side in the fluid inflow direction, so that the core is far from the nozzle opening. In a plate fin type heat exchanger where the flow rate of the back side part is greater than the flow rate of the near side part near the nozzle opening, a baffle plate (rectifier) may be placed in the header tank. Have been described. The fluid flowing into the header tank through the nozzle is prevented from flowing to the back side of the header tank by interfering with the baffle plate, and the drift of the fluid passing through the core is suppressed.

同様に、特許文献2には、流入ノズルが開口する上端位置から鉛直下向きに延びるヘッダータンクを有するプレートフィン型熱交換器において、ヘッダータンク内の底部から上向きに突出する円筒状の整流体を設けることで、ヘッダータンク内の底部付近の流路断面を縮小させることにより、導入口を介してヘッダータンク内に下向きに流入する流体がヘッダータンクの底部側へと流れることを抑制して、コアを通過する流体の偏流を抑制する技術が記載されている。   Similarly, in Patent Document 2, in a plate fin type heat exchanger having a header tank that extends vertically downward from the upper end position where the inflow nozzle opens, a cylindrical rectifier that protrudes upward from the bottom of the header tank is provided. Thus, by reducing the cross section of the flow path near the bottom in the header tank, the fluid flowing downward into the header tank via the inlet is prevented from flowing to the bottom side of the header tank, and the core A technique for suppressing the drift of the fluid passing therethrough is described.

一方、特許文献3や特許文献4には、中央部に流入ノズルが開口すると共に、そこから次第に拡大してコアに至る形状のヘッダータンクを有する多管式の熱交換器において、ノズルの開口近傍に整流体を配置することにより、ノズルを通じて流入する流体流れを整流体に衝突させて外方に拡散させることで、コアを通過する流体の偏流を抑制する技術が記載されている。   On the other hand, in Patent Document 3 and Patent Document 4, in a multi-tube heat exchanger having a header tank having a shape in which an inflow nozzle opens in the center and gradually expands from there to the core, the vicinity of the nozzle opening A technique is described in which the flow of fluid flowing through the nozzle is made to collide with the flow rectifying body and diffuse outward by disposing the flow rectifying body on the nozzle, thereby suppressing the drift of the fluid passing through the core.

特開2002−310593号公報JP 2002-310593 A 特開2007−71434号公報JP 2007-71434 A 特開昭50−139454号公報JP-A-50-139454 特開2001−248980号公報JP 2001-248980 A

前述したようなコアを通過する流体の偏流を抑制することは、コアにおける熱交換効率を高め、例えば熱交換器の小型化等に有利になる。ここで、前述した特許文献1〜4に記載された熱交換器において生じ得る偏流は、コアに流入しようとする流体の動圧が、多数の流入口が開口するコアの流入面に対して不均等に分布していることに起因している。各特許文献に記載されている整流体は全て、高い動圧を低下させることにより、コアの流入面に対する動圧分布を可能な限り均等にするという機能を有している。   Suppressing the drift of the fluid passing through the core as described above increases the heat exchange efficiency in the core, which is advantageous, for example, in reducing the size of the heat exchanger. Here, the drift that can occur in the heat exchangers described in Patent Documents 1 to 4 described above is such that the dynamic pressure of the fluid that is about to flow into the core is not relative to the inflow surface of the core where many inflow ports open. This is due to the even distribution. All the rectifiers described in each patent document have a function of making the dynamic pressure distribution on the inflow surface of the core as uniform as possible by lowering the high dynamic pressure.

一方、本願発明者らの検討によれば、コアを構成する多数の流路の流路抵抗が互いに相違するような場合にも、コアを通過する流体の偏流が生じる。例えばプレートフィン型熱交換器のコアにおいては、通路内に配設されたコルゲートフィンにより区画される各チャンネルが流路に相当し、流体の流れ方向を変更させるディストリビュータフィンを通路内に配設することにより、流入口から流出口までの流路長さがチャンネル間で異なるようになって流路抵抗が互いに相違する場合や、多管式の熱交換器のコアにおいては、流路に相当する各管がU字状に曲げられることによって、流路長さが各管で異なるようになって流路抵抗が相違する場合が、流路抵抗が違いに異なる具体例として挙げられるが、こうして流路抵抗が各チャンネルで相違することにより、流路抵抗が相対的に低いチャンネルは通過する流量が相対的に多くなる一方、流路抵抗が相対的に高いチャンネルは通過する流量が相対的に少なくなることで、コアを通過する流体の偏流が生じるのである。コアを構成する流路の流路抵抗差に起因する偏流は、前述した流入面に対する流体の動圧分布に起因する偏流とは、その偏り方向が異なる場合もあり、特許文献1〜4に記載されているような整流体を設けたとしても、それを解消することができない。   On the other hand, according to the study by the present inventors, even when the flow resistances of a large number of flow paths constituting the core are different from each other, the drift of the fluid passing through the core occurs. For example, in the core of a plate fin heat exchanger, each channel defined by corrugated fins disposed in the passage corresponds to a flow path, and a distributor fin that changes the flow direction of the fluid is disposed in the passage. Therefore, when the flow path length from the inlet to the outlet is different between the channels and the flow resistances are different from each other, or in the core of the multi-tubular heat exchanger, it corresponds to the flow path. When each pipe is bent in a U-shape, the flow path length is different for each pipe and the flow resistance is different. As a specific example, the flow resistance is different. Because the channel resistance is different for each channel, the flow rate through which the channel with relatively low flow resistance passes is relatively high, while the flow rate through which the channel with relatively high flow resistance passes is high. By becoming a pairwise less is the drift of the fluid passing through the core occurs. The deviation due to the flow resistance difference between the flow paths constituting the core may be different from the deviation due to the dynamic pressure distribution of the fluid with respect to the inflow surface described above. Even if such a rectifier is provided, it cannot be eliminated.

ここに開示する技術は、かかる点に鑑みてなされたものであり、その目的とするところは、熱交換器のコアを通過する流体の偏流を抑制することにある。   The technology disclosed herein has been made in view of such a point, and an object thereof is to suppress the drift of the fluid passing through the core of the heat exchanger.

本願発明者らは、コアの流入面に対する流体の動圧分布と、コアにおける複数のチャンネル間の流路抵抗差という2種類の偏流発生原因それぞれに対して、異なる構成の2種類の整流部材を設けることで、コアを通過する流体の偏流を抑制することにした。   The inventors of the present application provide two types of rectifying members having different configurations for each of two types of drift generation causes, ie, a fluid dynamic pressure distribution with respect to the inflow surface of the core and a flow resistance difference between a plurality of channels in the core. By providing, it decided to suppress the drift of the fluid which passes a core.

具体的にここに開示する技術は、第1流体が流れる第1通路と第2流体が流れる第2通路とを少なくとも有しかつ、前記第1流体と前記第2流体との間での熱交換を少なくとも行うコアを備えた熱交換器に係る。   Specifically, the technology disclosed herein has at least a first passage through which a first fluid flows and a second passage through which a second fluid flows, and heat exchange between the first fluid and the second fluid It concerns on the heat exchanger provided with the core which performs at least.

前記コアには、前記第1流体が流入する流入面と、前記第1流体が流出する流出面とがそれぞれ設定されており、少なくとも前記第1通路は、前記流入面に開口する流入口と前記流出面に開口する流出口とを繋ぐ複数のチャンネルを含むと共に、当該複数のチャンネル間で流路抵抗が異なるように構成されている。   The core has an inflow surface into which the first fluid flows in and an outflow surface from which the first fluid flows out, and at least the first passage includes an inlet opening in the inflow surface and the It includes a plurality of channels that connect the outlet opening that opens to the outflow surface, and is configured to have different flow path resistance between the plurality of channels.

そして、前記熱交換器は、前記コアに対して前記流入面側に配置されかつ、前記コアに流入する前記第1流体の当該流入面に対する動圧分布の均等化を図る第1種の整流部材と、前記コアとは別体の整流部材であって、前記コアの前記第1通路を構成する前記複数のチャンネル間の流路抵抗差に起因する通過流量差を小さくするように設けられた第2種の整流部材と、をさらに備えている。 And the said heat exchanger is arrange | positioned at the said inflow surface side with respect to the said core, and the 1st type rectification | straightening member which aims at equalization of dynamic pressure distribution with respect to the said inflow surface of the said 1st fluid which flows in into the said core And a rectifying member that is separate from the core, and is provided to reduce a flow rate difference caused by a flow resistance difference between the plurality of channels constituting the first passage of the core. And two kinds of rectifying members.

ここで、「複数のチャンネル」は、チャンネル同士が互いに仕切られている構成の他、チャンネル同士が完全には仕切られていないものの、流体が実質的にチャンネルに沿うように流れる構成も含む。   Here, the “plurality of channels” includes not only a configuration in which the channels are partitioned from each other but also a configuration in which the fluid flows substantially along the channels although the channels are not completely partitioned from each other.

この構成によると、例えばコアに接続される流入ヘッダータンクや、そのヘッダータンクに取り付けられる流入ノズルの構成等に起因して、コアの流入面に対して第1流体の動圧分布が不均等な熱交換器において、第1種の整流部材は、その動圧分布の均等化を図るように、コアに対して流入面側に配置される。この第1種の整流部材は、例えば流入ノズルから流入する第1流体の流れに干渉することで、その動圧を低下させるようなバッフル等によって構成することが可能である。   According to this configuration, for example, due to the configuration of the inflow header tank connected to the core, the configuration of the inflow nozzle attached to the header tank, and the like, the dynamic pressure distribution of the first fluid is uneven with respect to the inflow surface of the core. In the heat exchanger, the first type rectifying member is arranged on the inflow surface side with respect to the core so as to equalize the dynamic pressure distribution. This first type of rectifying member can be constituted by a baffle or the like that reduces the dynamic pressure by interfering with the flow of the first fluid flowing in from the inflow nozzle, for example.

一方で、コアにおける第1通路を構成する複数のチャンネル間で、例えば流路長さの相違や、流路径の相違等により流路抵抗差が生じている熱交換器において、第1種の整流部材とは別に、第2種の整流部材が設けられる。第2種の整流部材は、流路抵抗差に起因する通過流量差を小さくするように設けられる。具体的に第2種の整流部材は、少なくとも流路抵抗が相対的に低いチャンネルについて、第1流体の流入流量を制限するか、又は、流出流量を制限することによって、複数のチャンネル間で流路抵抗差が生じていても、各チャンネルを通過する流量差を小さくする。   On the other hand, in a heat exchanger in which a channel resistance difference occurs due to, for example, a channel length difference or a channel diameter difference between a plurality of channels constituting the first passage in the core, the first type rectification A second type of rectifying member is provided separately from the member. The second type of rectifying member is provided so as to reduce the flow rate difference caused by the flow path resistance difference. Specifically, the second type of rectifying member flows between a plurality of channels by restricting the inflow flow rate of the first fluid or restricting the outflow flow rate at least for a channel having a relatively low flow resistance. Even if a path resistance difference occurs, the flow rate difference passing through each channel is reduced.

こうして、第1種の整流部材と、第2種の整流部材との2種類の整流部材を設けることによって、コアの流入面に対する流体の動圧分布に起因する偏流と、コアにおける複数のチャンネル間の流路抵抗差に起因する偏流とを、共に効果的に抑制することが可能になり、熱交換器の熱交換効率が向上し得る。このことは、例えば熱交換器の小型化に有利になる。   In this way, by providing two types of rectifying members, the first type of rectifying member and the second type of rectifying member, the drift caused by the fluid dynamic pressure distribution with respect to the inflow surface of the core, and between the plurality of channels in the core It is possible to effectively suppress both the drift due to the difference in flow path resistance, and the heat exchange efficiency of the heat exchanger can be improved. This is advantageous, for example, for downsizing the heat exchanger.

尚、コアは、第1流体及び第2流体の2種類の流体間の熱交換を行うことに限定されず、3種類以上の流体間での熱交換を行うように構成してもよい。   The core is not limited to performing heat exchange between the two types of fluids of the first fluid and the second fluid, and may be configured to perform heat exchange between three or more types of fluids.

前記第2種の整流部材は、前記コアに対して前記流出面側に配置されている、としてもよい。   The second type rectifying member may be disposed on the outflow surface side with respect to the core.

第2種の整流部材は、前述の通り、第1通路の流入側において複数のチャンネル間で第1流体の流入流量の調整を行うか、又は、第1通路の流出側において複数のチャンネル間で第1流体の流出流量の調整を行うことで、通過流量差を小さくする。第2種の整流部材は、コアに対して流入面側及び流出面側のいずれにも配置可能である。   As described above, the second type of rectifying member adjusts the inflow flow rate of the first fluid between the plurality of channels on the inflow side of the first passage, or between the plurality of channels on the outflow side of the first passage. By adjusting the outflow rate of the first fluid, the flow rate difference is reduced. The second type of rectifying member can be arranged on either the inflow surface side or the outflow surface side with respect to the core.

しかしながら、コアに対して流入面側には第1種の整流部材が配置されるため、第2種の整流部材を、コアに対して流入面側に配置しようとしたときに、例えば配置スペースの制約等から、2種類の整流部材を配置することが困難になる場合もあり得る。   However, since the first type rectifying member is arranged on the inflow surface side with respect to the core, when the second type rectifying member is arranged on the inflow surface side with respect to the core, for example, the arrangement space It may be difficult to arrange two types of rectifying members due to restrictions or the like.

ここで、第2種の整流部材は、後述するように、多数の孔が所定の配置で貫通形成された板状の部材によって構成することが可能である。第2種の整流部材は、そこに貫通形成する孔の径、数、及び/又は、間隔を適宜変更することにより、その開口率(単位面積当たりの孔の面積)の分布が不均等となるように構成すればよい。一方で、各チャンネルの流入口が均等な間隔で配置されているコアの流入面や、流出口が均等な間隔で配置されているコアの流出面においては、各チャンネルの流路抵抗を反映した流路抵抗分布が設定されるから、第2種の整流部材における開口率の分布特性が、流入面又は流出面における流路抵抗分布の特性に対応するように、第2種の整流部材を、流入面又は流出面に相対して配置すればよい。つまり、開口率が低い部位が、流入面又は流出面において流路抵抗の低い部位に相対するように配置すれば、少なくとも流路抵抗が相対的に低いチャンネルについて、第1流体の流入流量を制限するか、又は、流出流量を制限することが実現する。   Here, as will be described later, the second type of rectifying member can be constituted by a plate-like member having a large number of holes penetratingly formed in a predetermined arrangement. The distribution of the aperture ratio (the area of the holes per unit area) becomes uneven by appropriately changing the diameter, number, and / or interval of the holes formed through the second type of rectifying member. What is necessary is just to comprise. On the other hand, the inflow surface of the core in which the inlets of each channel are arranged at equal intervals and the outflow surface of the core in which the outlets are arranged at equal intervals reflect the channel resistance of each channel. Since the flow path resistance distribution is set, the second type rectifying member is set so that the distribution characteristic of the aperture ratio in the second type rectifying member corresponds to the characteristic of the flow path resistance distribution on the inflow surface or the outflow surface. What is necessary is just to arrange | position relative to an inflow surface or an outflow surface. In other words, if the portion with a low aperture ratio is arranged so as to face a portion with a low flow resistance on the inflow surface or the outflow surface, the flow rate of the first fluid is limited at least for a channel with a relatively low flow resistance. Or limiting the outflow rate.

こうした構成の第2種の整流部材を、コアに対して流入面側に配置する場合は、その流入面から離して配置してしまうと、第2種の整流部材を通過することに伴い、開口率の分布に応じて第1流体の流量差を設ける効果が、流入面に到達する前に薄れてしまい、第2種の整流部材としての機能を発揮できなくなる。従って、第2種の整流部材は、流入面に近付けて配置することが望ましい。   When the second type of rectifying member having such a configuration is arranged on the inflow surface side with respect to the core, if the second type of rectifying member is arranged away from the inflow surface, the second type of rectifying member is opened along with passing through the second type of rectifying member. The effect of providing the flow rate difference of the first fluid according to the distribution of the rate is reduced before reaching the inflow surface, and the function as the second type of rectifying member cannot be exhibited. Therefore, it is desirable to arrange the second type of rectifying member close to the inflow surface.

一方で、多数の貫通孔を有する第2種の整流部材の下流側には、貫通孔に相当する開口部分と貫通孔以外の部分に相当する非開口部との間で、大きな速度勾配が生じるため、第2種の整流部材を流入面に対して近付けすぎると、その速度勾配が、コアの流入面に開口する各チャンネルの流入口を通じた第1流体の流入に影響を与えてしまう。すなわち、流入口が貫通孔に相対しているチャンネルについては、第1流体の流入流量が多くなる一方で、流入口が貫通孔に相対していないチャンネルについては、第1流体がほとんど流入しなくなってしまう。このことは、第2種の整流部材の機能を果たさないばかりか、複数のチャンネル間の通過流量差を拡大する虞もある。従って、第2種の整流部材をコアの流入面側に配置する場合は、その配置位置の調整が困難な場合が多い。   On the other hand, on the downstream side of the second type rectifying member having a large number of through holes, a large speed gradient is generated between an opening portion corresponding to the through hole and a non-opening portion corresponding to a portion other than the through hole. Therefore, if the second type of rectifying member is too close to the inflow surface, the velocity gradient affects the inflow of the first fluid through the inlet of each channel that opens to the inflow surface of the core. That is, the flow rate of the first fluid increases in the channel where the inlet is opposed to the through hole, while the first fluid hardly flows in the channel where the inlet is not opposed to the through hole. End up. This not only fulfills the function of the second type of rectifying member, but also may increase the flow rate difference between the plurality of channels. Therefore, when the second type rectifying member is arranged on the inflow surface side of the core, it is often difficult to adjust the arrangement position.

これに対し、第2種の整流部材をコアの流出面側に配置する構成では、第1種の整流部材と第2種の整流部材とを、コアに対して流入面側と流出面側とに分けて配置するため、第1種の整流部材及び第2種の整流部材のそれぞれについて、配置スペースを確保し易い。また、多数の貫通孔を有する第2種の整流部材を流出面に相対して配置する場合は、流出面に近付けて配置した方が機能を発揮し易い一方で、流入面側に配置する場合とは異なり、第2種の整流部材の下流側の速度勾配を考慮する必要がないため、第2種の整流部材の配置の自由度が比較的高いという利点がある。   On the other hand, in the configuration in which the second type of rectifying member is arranged on the outflow surface side of the core, the first type of rectifying member and the second type of rectifying member are connected to the inflow surface side and the outflow surface side with respect to the core. Therefore, it is easy to secure an arrangement space for each of the first type rectifying member and the second type rectifying member. In addition, when the second type of rectifying member having a large number of through holes is disposed relative to the outflow surface, it is easier to perform the function when it is disposed close to the outflow surface, while it is disposed on the inflow surface side. In contrast, since there is no need to consider the speed gradient on the downstream side of the second type of rectifying member, there is an advantage that the degree of freedom of arrangement of the second type of rectifying member is relatively high.

従って第2種の整流部材は、コアの流出面側に配置した方が、その機能を確実に確保しつつも、比較的自由に配置することが可能になる点で有利である。   Therefore, it is advantageous that the second type of rectifying member is disposed on the outflow surface side of the core in that it can be relatively freely disposed while ensuring its function.

前記コアの前記流出面には、前記複数のチャンネルの前記流出口が均等な間隔で配置されている一方で、前記各チャンネルの流路抵抗に対応した所定の流路抵抗分布が反映されており、前記第2種の整流部材は、前記流出面の少なくとも一部に対して相対するように配置された板状の部材であって、その板厚方向に貫通形成された複数の孔を有しており、前記第2種の整流部材において、前記複数の孔によって規定される開口率は、前記流出面に反映されている流路抵抗分布に対応する特性の分布となるように設定されている、としてもよい。   On the outflow surface of the core, the outlets of the plurality of channels are arranged at equal intervals, while a predetermined flow resistance distribution corresponding to the flow resistance of each channel is reflected. The second-type rectifying member is a plate-like member disposed so as to face at least a part of the outflow surface, and has a plurality of holes penetrating in the plate thickness direction. In the second type of rectifying member, the aperture ratio defined by the plurality of holes is set to have a characteristic distribution corresponding to the flow path resistance distribution reflected on the outflow surface. It is good also as.

ここで、第2種の整流部材における開口率の分布特性は、流出面に反映された流路抵抗分布に対応して、流路抵抗が高い部分は、開口率が高くて流体が通過し易くし、流路抵抗が低い部分は、開口率を低くして流体が通過し難くすればよい。こうすることで、複数のチャンネル間で流路抵抗差があっても、第2種の整流部材によって各チャンネルを通過する第1流体の通過流量が調整されて、複数のチャンネル間の通過流量差が抑制される。つまり、複数のチャンネル間の流路抵抗差に起因する偏流が抑制される。   Here, the distribution characteristic of the opening ratio in the second type of rectifying member corresponds to the flow resistance distribution reflected on the outflow surface, and the portion where the flow resistance is high has a high opening ratio and the fluid easily passes therethrough. However, in the portion where the flow resistance is low, the aperture ratio may be lowered to make it difficult for the fluid to pass. In this way, even if there is a flow resistance difference between the plurality of channels, the flow rate of the first fluid passing through each channel is adjusted by the second type of rectifying member, and the flow rate difference between the plurality of channels is adjusted. Is suppressed. That is, the drift due to the flow resistance difference between the plurality of channels is suppressed.

前記コアは、複数の前記第1通路と複数の前記第2通路とが交互に積層して構成されたプレートフィン型であり、少なくとも前記各第1通路内には、当該第1通路内の流れ方向を変更させるディストリビュータフィンが配設されている、としてもよい。   The core is a plate fin type configured by alternately laminating a plurality of the first passages and a plurality of the second passages, and at least in each of the first passages, a flow in the first passage is provided. Distributor fins for changing the direction may be provided.

つまり、プレートフィン型に構成されたコアの第1通路内に、ディストリビュータフィンを配設することで、複数のチャンネル間の流路長さが相違するようになって流路抵抗差が生じることになるが、前述した第2種の整流部材は、その流路抵抗差に起因する通過流量差を小さくするため、コアを通過する流体の偏流が抑制される。   In other words, by disposing the distributor fin in the first passage of the core configured in the plate fin type, the flow path length between the plurality of channels becomes different, resulting in a flow resistance difference. However, since the second type of rectifying member described above reduces the flow rate difference due to the flow path resistance difference, the drift of the fluid passing through the core is suppressed.

前記複数のチャンネル内には、触媒担持体が内蔵されており、熱交換器は、当該チャンネル内を通過する流体を化学反応させる触媒反応器として構成されている、としてもよい。A catalyst carrier may be built in each of the plurality of channels, and the heat exchanger may be configured as a catalyst reactor that chemically reacts a fluid that passes through the channel.

以上説明したように、前記の熱交換器によると、コアの流入面に対する流体の動圧分布に起因する偏流を抑制するための第1種の整流部材と、コアにおける複数のチャンネル間の流路抵抗差に起因する偏流を抑制するための第2種の整流部材とを個別に設けることで、熱交換器における偏流を効果的に抑制することが可能になり、熱交換効率の向上や、熱交換器の小型化に有利になる。   As described above, according to the above heat exchanger, the first type rectifying member for suppressing the drift caused by the dynamic pressure distribution of the fluid with respect to the inflow surface of the core, and the flow paths between the plurality of channels in the core By separately providing the second type rectifying member for suppressing the drift due to the resistance difference, it becomes possible to effectively suppress the drift in the heat exchanger, improving the heat exchange efficiency, This is advantageous for downsizing of the exchanger.

(a)熱交換器の構成を概略的に示す一部破断の正面図、(b)熱交換器の構成を概略的に示す一部破断の側面図である。(A) The partially broken front view which shows the structure of a heat exchanger roughly, (b) The partially broken side view which shows the structure of a heat exchanger roughly. 第1種の整流部材を例示する正面図である。It is a front view which illustrates the 1st type straightening member. 第2種の整流部材を例示する正面図である。It is a front view which illustrates the 2nd type straightening member. 図3とは異なる形状の第2種の整流部材を示す正面図である。It is a front view which shows the 2nd type rectification | straightening member of a shape different from FIG. 図1とは異なる構成の第2種の整流部材を配置した熱交換器を示す、図1対応図である。FIG. 2 is a view corresponding to FIG. 1 showing a heat exchanger in which a second type of rectifying member having a configuration different from that of FIG. 1 is arranged. 第2種の整流部材を第1通路の流入側に配置した熱交換器を示す、図1対応図である。FIG. 2 is a view corresponding to FIG. 1 and showing a heat exchanger in which a second type of rectifying member is arranged on the inflow side of the first passage. 第1種の整流部材を省略した熱交換器を示す、図1対応図である。It is a FIG. 1 corresponding view which shows the heat exchanger which abbreviate | omitted the 1st type rectifying member.

以下、熱交換器の実施形態を図面に基づいて説明する。尚、以下の好ましい実施形態の説明は例示である。図1は、実施形態に係る熱交換器1の構成を概略的に示しており、(a)は熱交換器1の正面図に相当し、(b)は熱交換器1の側面図に相当する。尚、説明の便宜上、図1(a)における紙面上下方向をX方向、左右方向をY方向と呼び、図1(b)における紙面左右方向をZ方向と呼ぶ。   Hereinafter, an embodiment of a heat exchanger will be described based on the drawings. In addition, the following description of preferable embodiment is an illustration. FIG. 1 schematically illustrates a configuration of a heat exchanger 1 according to the embodiment, where (a) corresponds to a front view of the heat exchanger 1 and (b) corresponds to a side view of the heat exchanger 1. To do. For convenience of explanation, the vertical direction in FIG. 1A is called the X direction, the horizontal direction is called the Y direction, and the horizontal direction in FIG. 1B is called the Z direction.

この熱交換器1は、第1流体と第2流体との間で熱交換を行うプレートフィン型のコア2を有している。コア2は、図1(a)に示すように、第1流体が流れる第1通路21と第2流体が流れる第2通路22とが、チューブプレート23を介在しつつ、Y方向に交互に積層することで構成されている。図例において、コア2は、図1(a)に示すX方向長さ及びY方向長さに対して、図1(b)に示すZ方向長さが短く設定された直方体形状を有している。尚、コア2の形状はこのような形状に限定されず、種々の形状を採用し得る。   The heat exchanger 1 has a plate fin type core 2 that performs heat exchange between the first fluid and the second fluid. As shown in FIG. 1A, the core 2 includes a first passage 21 through which the first fluid flows and a second passage 22 through which the second fluid flows alternately stacked in the Y direction with the tube plate 23 interposed therebetween. Is made up of. In the illustrated example, the core 2 has a rectangular parallelepiped shape in which the Z-direction length shown in FIG. 1B is set shorter than the X-direction length and the Y-direction length shown in FIG. Yes. The shape of the core 2 is not limited to such a shape, and various shapes can be adopted.

第1流体は、実線の矢印で示すように、コア2の上端面から第1通路21内に流入してコア2内を下向きに流れた後、コア2の下端部における側面からZ方向に流出するように構成されている。第2流体は、白抜きの矢印で示すように、コア2の下端面から第2通路22内に流入してコア2内を上向きに流れた後、コア2の上端部における側面からZ方向に流出するように構成されている。このように、コア2は、第1流体と第2流体とが対向するように流れる、いわゆる対向流型に構成されている。但し、コア2の構成はこれに限らず、第1流体と第2流体との流れ方向が互いに同じに設定された平行流型としてもよいし、第1流体と第2流体との流れ方向が互いに直交する直交流型としてもよい。   As indicated by a solid line arrow, the first fluid flows into the first passage 21 from the upper end surface of the core 2 and flows downward in the core 2, and then flows out from the side surface at the lower end portion of the core 2 in the Z direction. Is configured to do. As indicated by the white arrow, the second fluid flows into the second passage 22 from the lower end surface of the core 2 and flows upward in the core 2, and then from the side surface at the upper end portion of the core 2 in the Z direction. It is configured to flow out. Thus, the core 2 is configured in a so-called counterflow type in which the first fluid and the second fluid flow so as to face each other. However, the configuration of the core 2 is not limited to this, and it may be a parallel flow type in which the flow directions of the first fluid and the second fluid are set to be the same, or the flow directions of the first fluid and the second fluid may be different. It is good also as a crossflow type which mutually orthogonally crosses.

コア2における各第1通路21内には、図1(b)に模式的に示すように、コルゲートフィン211が配設されており、このコルゲートフィン211によって、各第1通路21は、Z方向に並ぶ複数のチャンネルに区画されている。尚、コルゲートフィン211としては、プレーン型、パーホレート型等、様々な種類のコルゲートフィン211を採用することが可能である。また、図示は省略するが、各第2通路22内にも、コルゲートフィンが配設されており、このコルゲートフィンによって各第2通路もまた、Z方向に並ぶ複数のチャンネルに区画されている。さらに、図示は省略するが、例えばセレート型のフィンを、各第1及び/又は第2通路21、22に配設してもよい。この場合、複数のチャンネルは完全には仕切られないが、流体はフィンに沿うように、主としてX方向に流れるため、複数のチャンネルに区画されることと実質的に同じである。   In each first passage 21 in the core 2, corrugated fins 211 are arranged as schematically shown in FIG. 1B, and each first passage 21 is moved in the Z direction by the corrugated fins 211. Is divided into a plurality of channels. As the corrugated fins 211, various types of corrugated fins 211 such as a plain type and a perforated type can be adopted. Although not shown, corrugated fins are also disposed in the second passages 22, and the second passages are also partitioned into a plurality of channels arranged in the Z direction by the corrugated fins. Furthermore, although illustration is omitted, for example, serrated fins may be arranged in the first and / or second passages 21 and 22. In this case, although the plurality of channels are not completely partitioned, the fluid flows mainly in the X direction along the fins, and thus is substantially the same as being partitioned into the plurality of channels.

各第1通路21内にはまた、コア2の下端部に対応する流出側に、ディストリビュータフィン212が配設されており、これによって、第1通路21内の流れ方向が、X方向の下向きからZ方向の水平向き(図1(b)の紙面左向き)へと変更されている。また、各第2通路22内にも、コア2の上端部に対応する流出側に、ディストリビュータフィン222が配設されており、これによって、第2通路22内の流れ方向が、X方向の上向きからZ方向の水平向き(図1(b)の紙面右向き)へと変更されている。   In each first passage 21, a distributor fin 212 is disposed on the outflow side corresponding to the lower end portion of the core 2, so that the flow direction in the first passage 21 is downward from the X direction. It is changed to the horizontal direction in the Z direction (leftward in FIG. 1B). In each second passage 22, a distributor fin 222 is disposed on the outflow side corresponding to the upper end portion of the core 2, so that the flow direction in the second passage 22 is upward in the X direction. To the horizontal direction in the Z direction (rightward in FIG. 1B).

こうして直方体形状のコア2において、その上端面が第1流体の流入面31になると共に、コア2の下部における側面が第1流体の流出面32になる。一方、コア2の下端面が第2流体の流入面33になると共に、コア2の上部における側面が第2流体の流出面34になる。   Thus, in the rectangular parallelepiped core 2, the upper end surface thereof becomes the first fluid inflow surface 31, and the side surface of the lower portion of the core 2 becomes the first fluid outflow surface 32. On the other hand, the lower end surface of the core 2 becomes the inflow surface 33 of the second fluid, and the side surface in the upper part of the core 2 becomes the outflow surface 34 of the second fluid.

このように構成されたコア2に対し、第1流体の流入面31には、第1流体を各第1通路21の各チャンネルに分配して流入させるための、流入ヘッダータンク41が取り付けられている。この流入ヘッダータンク41は、第1流体の流入面31の形状に対応して、Y方向に細長い形状を有しており、流入ヘッダータンク41におけるY方向の中央部に、第1流体が流入する流入ノズル411が取り付けられている。一方、コア2における、第1流体の流出面32には、各第1通路の各チャンネルを通過した第1流体を集合させて流出させるための、流出ヘッダータンク42が取り付けられている。この流出ヘッダータンク42もまた、Y方向に細長い形状を有しており、流出ヘッダータンク42におけるY方向の中央部に、第1流体が流出する流出ノズル421が取り付けられている。また、第2流体の流入面33には流入ヘッダータンク43が取り付けられると共に、第2流体の流出面34には流出ヘッダータンク44が取り付けられる。第2流体の流入ヘッダータンク43及び流出ヘッダータンク44は、第1流体の流入ヘッダータンク41及び流出ヘッダータンク42と同じ構成であり、それぞれ、Y方向の中央部に流入ノズル431及び流出ノズル441が取り付けられている。   An inflow header tank 41 for attaching the first fluid to each channel of each first passage 21 is attached to the inflow surface 31 of the first fluid with respect to the core 2 configured as described above. Yes. The inflow header tank 41 has an elongated shape in the Y direction corresponding to the shape of the inflow surface 31 of the first fluid, and the first fluid flows into the center of the inflow header tank 41 in the Y direction. An inflow nozzle 411 is attached. On the other hand, an outflow header tank 42 is attached to the outflow surface 32 of the first fluid in the core 2 for collecting and outflowing the first fluid that has passed through the channels of the first passages. The outflow header tank 42 also has an elongated shape in the Y direction, and an outflow nozzle 421 through which the first fluid flows out is attached to the center of the outflow header tank 42 in the Y direction. An inflow header tank 43 is attached to the inflow surface 33 of the second fluid, and an outflow header tank 44 is attached to the outflow surface 34 of the second fluid. The inflow header tank 43 and the outflow header tank 44 for the second fluid have the same configuration as the inflow header tank 41 and the outflow header tank 42 for the first fluid, and the inflow nozzle 431 and the outflow nozzle 441 are provided at the center in the Y direction, respectively. It is attached.

この熱交換器1には、第1流体が流れる第1通路21及び第2流体が流れる第2通路22のそれぞれについて、第1種の整流部材51と、第2種の整流部材52との2種類の整流部材が取り付けられている。第1種の整流部材51は、流入ヘッダータンク41、43内に取り付けられており、第1及び第2流体の流入面31、33に対し、流体の動圧分布の均等化を図るように構成されている。つまり、コア2及び流入ヘッダータンク41、43は共にY方向に細長い形状を有している一方で、流入ノズル411、431は流入ヘッダータンク41、43におけるY方向の中央部に取り付けられている。さらに、流入ヘッダータンク41、43のX方向の長さは比較的短い。結果として、流入ヘッダータンク41、43内に流入した流体は、Y及びZ方向に広がり難い。この傾向は、流入ノズル411、431を通じて流入する流体の流速が速いときには特に顕著になる。このことは、流入ノズル411、431の開口を流入面31、33に投影した領域の近傍は、流体の動圧が極めて高い一方で、その領域に対して外側の領域は、流体の動圧が相対的に低く、流入面31、33の外周縁部は、流体の動圧がさらに低くなるような、流入面31、33に対する流体の動圧分布が不均等になることを招く。こうした不均等な動圧分布は、Y方向の中央側の通路を通過する流体の流量は多い一方で、Y方向の両側の通路を通過する流体の流量は少なくなるという偏流を招く。図例のコア2において、動圧分布の不均等性に起因して発生する偏流は、コア2における第1通路21と第2通路22との積層方向に対する偏流に相当する。   The heat exchanger 1 includes a first rectifying member 51 and a second rectifying member 52 for each of the first passage 21 through which the first fluid flows and the second passage 22 through which the second fluid flows. A type of rectifying member is attached. The first type rectifying member 51 is mounted in the inflow header tanks 41 and 43, and is configured to equalize the fluid dynamic pressure distribution with respect to the inflow surfaces 31 and 33 of the first and second fluids. Has been. That is, both the core 2 and the inflow header tanks 41 and 43 have an elongated shape in the Y direction, while the inflow nozzles 411 and 431 are attached to the center of the inflow header tanks 41 and 43 in the Y direction. Furthermore, the length of the inflow header tanks 41 and 43 in the X direction is relatively short. As a result, the fluid flowing into the inflow header tanks 41 and 43 hardly spreads in the Y and Z directions. This tendency is particularly remarkable when the flow velocity of the fluid flowing in through the inflow nozzles 411 and 431 is high. This is because the fluid dynamic pressure is extremely high in the vicinity of the region where the openings of the inflow nozzles 411 and 431 are projected onto the inflow surfaces 31 and 33, while the fluid dynamic pressure is in the region outside the region. The outer peripheral edges of the inflow surfaces 31 and 33 are relatively low, and the fluid dynamic pressure distribution with respect to the inflow surfaces 31 and 33 is further uneven, so that the fluid dynamic pressure is further reduced. Such an uneven dynamic pressure distribution causes a drift in which the flow rate of the fluid passing through the passage on the center side in the Y direction is large while the flow rate of the fluid passing through the passages on both sides in the Y direction is reduced. In the core 2 of the illustrated example, the drift generated due to the nonuniformity of the dynamic pressure distribution corresponds to the drift in the stacking direction of the first passage 21 and the second passage 22 in the core 2.

第1種の整流部材51は、この流入面31、33に対する流体の動圧分布の均等化を図る機能を有する。具体的に、図例の第1種の整流部材51は、流入ヘッダータンク41、43の中央部に取り付けられた流入ノズル411、431の開口の近傍に配置された板状のバッフルによって構成されている。図2に拡大して示すように、第1種の整流部材51には、板厚方向に貫通する貫通孔511が複数個、形成されており、貫通孔511は、互いに同一径でかつ、ほぼ等間隔となるように配置されている。   The first type rectifying member 51 has a function of equalizing the fluid dynamic pressure distribution with respect to the inflow surfaces 31 and 33. Specifically, the first type of rectifying member 51 in the figure is configured by a plate-like baffle disposed in the vicinity of the opening of the inflow nozzles 411 and 431 attached to the center of the inflow header tanks 41 and 43. Yes. As shown in an enlarged view in FIG. 2, the first type of rectifying member 51 has a plurality of through holes 511 penetrating in the plate thickness direction. The through holes 511 have the same diameter and are substantially the same. It arrange | positions so that it may become equal intervals.

第1種の整流部材51は、流入ノズル411、431の開口の大きさよりも若干大きい程度のY方向長さを有しており、この第1種の整流部材51は、流入ノズル411、431を通じて流入する流体の流れを横切るように配置されて、図1(b)に示すように、流入ヘッダータンク41、43の内壁に、例えば溶接等によって固定されている。   The first type of rectifying member 51 has a length in the Y direction that is slightly larger than the size of the openings of the inflow nozzles 411 and 431, and the first type of rectifying member 51 passes through the inflow nozzles 411 and 431. It arrange | positions so that the flow of the inflowing fluid may be crossed, and as shown in FIG.1 (b), it fixes to the inner wall of the inflow header tanks 41 and 43 by welding etc., for example.

こうした第1種の整流部材51は、流入ノズル411、431を通過して流入ヘッダータンク41、43内に流れ込んだ流体流れに干渉する。流体の一部は、第1種の整流部材51の貫通孔511を通じて、そのままX方向に流れる一方で、残りの流体は、図1(a)に実線の矢印で示すように、第1種の整流部材51を迂回するように、その流れ方向を変更することでY方向に広がるように流れる。その結果、流体の動圧分布が流入面31、33に対して均等化するようになり、第1及び第2通路21、22の積層方向について、コア2に流入する流体の偏流が抑制される。すなわち、複数の第1通路21及び複数の第2通路22への流入量の均等化が図られる。このことは、熱交換器1の熱交換効率の向上に有利になる。   The first type of rectifying member 51 interferes with the fluid flow that has flowed into the inflow header tanks 41 and 43 through the inflow nozzles 411 and 431. A part of the fluid flows in the X direction as it is through the through hole 511 of the first type rectifying member 51, while the remaining fluid is the first type as shown by a solid line arrow in FIG. By changing the flow direction so as to bypass the rectifying member 51, the current flows so as to spread in the Y direction. As a result, the fluid dynamic pressure distribution is equalized with respect to the inflow surfaces 31 and 33, and the drift of the fluid flowing into the core 2 is suppressed in the stacking direction of the first and second passages 21 and 22. . That is, the amount of inflow into the plurality of first passages 21 and the plurality of second passages 22 is equalized. This is advantageous for improving the heat exchange efficiency of the heat exchanger 1.

ここで、第1種の整流部材51は、コア2の流入面31、33よりも、流入ノズル411、431の開口に近い位置に配置することが、流入ノズル411、431を通じて流入ヘッダータンク41、43内に流入する流体の分散性を高め、第1及び第2通路21、22の積層方向についての偏流を防止する上で有利になる。尚、流入面31、33に対する動圧分布は、流入面31、33の大きさ、流入ヘッダータンク41、43の形状、流入ノズル411、431の形状及び配置、並びに、流体の流入速度等に関連して変化するが、第1種の整流部材51の大きさ、貫通孔511の大きさ、数及び配置、並びに、その配設位置は、その動圧分布の状態に応じて、適宜設定すればよい。必要に応じて貫通孔を省略してもよいし、複数のバッフルを配置してもよい。   Here, the first type of rectifying member 51 may be disposed closer to the opening of the inflow nozzles 411 and 431 than the inflow surfaces 31 and 33 of the core 2, and the inflow header tank 41, through the inflow nozzles 411 and 431. This is advantageous in improving the dispersibility of the fluid flowing into 43 and preventing the drift in the stacking direction of the first and second passages 21 and 22. The dynamic pressure distribution on the inflow surfaces 31 and 33 is related to the size of the inflow surfaces 31 and 33, the shape of the inflow header tanks 41 and 43, the shape and arrangement of the inflow nozzles 411 and 431, the inflow speed of the fluid, and the like. However, if the size of the first type rectifying member 51, the size, number and arrangement of the through holes 511, and the arrangement position thereof are appropriately set according to the state of the dynamic pressure distribution. Good. The through hole may be omitted as necessary, and a plurality of baffles may be arranged.

これに対し、第2種の整流部材52は、第1種の整流部材51とは異なり、各第1通路21及び各第2通路22における複数のチャンネル間の流路抵抗に起因する通過流量差を小さくする機能を有している。つまり、このコア2の各第1通路21及び各第2通路22には、前述したように、ディストリビュータフィン212、222が設けられており、これにより、各通路21、22内のコルゲートフィン211及びディストリビュータフィン212、222によって区画されるチャンネルは、その流入口から流出口までの流路長さが互いに異なる。図1(b)に示す例では、第1通路21の流出面32において、相対的に上側に開口する流出口を有するチャンネルは流路長さが相対的に短く、相対的に下側に開口する流出口を有するチャンネルは流路長さが相対的に長くなる。このような流路長さの相違は、チャンネル間の流路抵抗差を生み、流路抵抗差は、チャンネル間を通過する流体の流量差を生む。つまり、図例では、第1通路21において、流出面32において相対的に上側に開口する流出口を有するチャンネルを通過する流量は相対的に多く、相対的に下側に開口する流出口を有するチャンネルを通過する流量は相対的に少なくなる。また、図示は省略するが、第2通路22の流出面34において、相対的に上側に開口する流出口を有するチャンネルは、流路長さが相対的に長いため、そこを通過する流量は相対的に少なく、相対的に下側に開口する流出口を有するチャンネルは、流路長さが相対的に短いため、そこを通過する流量は相対的に多くなる。流出面32、34には、チャンネルの流路抵抗に対応した流路抵抗分布が反映される。図例のコア2において、複数のチャンネル間の流路抵抗差に起因して発生する偏流は、Z方向(幅方向)に対する偏流に相当する。   On the other hand, unlike the first type rectifying member 51, the second type rectifying member 52 is different from the flow rate difference due to the flow resistance between the plurality of channels in each first passage 21 and each second passage 22. Has the function of reducing the size. That is, as described above, the distributor fins 212 and 222 are provided in the first passages 21 and the second passages 22 of the core 2, so that the corrugated fins 211 and 222 in the passages 21 and 22 are provided. The channels defined by the distributor fins 212 and 222 have different flow path lengths from the inlet to the outlet. In the example shown in FIG. 1B, a channel having an outlet opening relatively upward on the outflow surface 32 of the first passage 21 has a relatively short flow path length and is relatively downwardly opened. The channel having the outflow port is relatively long in flow path length. Such a difference in flow path length causes a flow path resistance difference between channels, and a flow path resistance difference causes a flow rate difference of fluid passing between the channels. In other words, in the illustrated example, the first passage 21 has a relatively large flow rate through the channel having the outlet opening relatively upward on the outflow surface 32, and has the outlet opening relatively downward. The flow through the channel is relatively low. Although not shown, the channel having the outlet opening relatively upward on the outflow surface 34 of the second passage 22 has a relatively long flow path length. Since the channel length of the channel having the outlet opening relatively open to the lower side is relatively short, the flow rate passing therethrough is relatively large. The outflow surfaces 32 and 34 reflect the flow resistance distribution corresponding to the flow resistance of the channel. In the core 2 of the illustrated example, the drift generated due to the flow resistance difference between the plurality of channels corresponds to the drift in the Z direction (width direction).

こうした複数のチャンネル間の流路抵抗差に起因する偏流抑制機能を有する第2種の整流部材52は、第1種の整流部材51とは異なり、流出ヘッダータンク42、44内に配設されている。具体的に、第2種の整流部材52は、流出ヘッダータンク42、44内における、流出面32、34の近傍において、その流出面32、34に相対するように配置された板状の部材によって構成されている。この第2種の整流部材52もまた、流出ヘッダータンク42、44の内壁に対して、例えば溶接によって固定されている。   Unlike the first type of rectifying member 51, the second type of rectifying member 52 having a function of suppressing drift due to the difference in flow path resistance between the plurality of channels is disposed in the outflow header tanks 42 and 44. Yes. Specifically, the second type of rectifying member 52 is a plate-like member disposed in the outflow header tanks 42 and 44 in the vicinity of the outflow surfaces 32 and 34 so as to face the outflow surfaces 32 and 34. It is configured. The second type rectifying member 52 is also fixed to the inner walls of the outflow header tanks 42 and 44 by, for example, welding.

図3に示すように、第2種の整流部材52にも、第1種の整流部材51と同様の、互いに同一径の貫通孔521が、板厚方向に貫通して複数個、形成されている。一方で、第2種の整流部材52の貫通孔521は、等間隔に配置されておらず、図3の紙面上側の部分では間隔が相対的に広く、紙面下側の部分では間隔が相対的に狭くなるように、配置されている。これにより、第2種の整流部材52の開口率(単位面積当たりの孔の面積)は、上側の部分は相対的に低く、下側の部分は相対的に高くなる。このような第2種の整流部材52は、前述した流出面32、34に反映された流路抵抗の分布に対応して取り付けられる。つまり、第2種の整流部材52における開口率の低い部分が、流出面32、34における流路抵抗が相対的に低いチャンネルの流出口に相対し、第2種の整流部材52における開口率の高い部分が、流出面32、34において流路抵抗が相対的に高いチャンネルの流出口に相対するように、取り付けられる。具体的には、第1流体の流出面32に対しては、第2種の整流部材52が、図3に示すように、開口率の低い部分が上側で、開口率の高い部分が下側となる状態で取り付けられる。一方、第2流体の流出面34に対しては、第2種の整流部材52が、図3に示す状態から天地を反転させた状態、つまり、開口率の低い部分が下側で、開口率の高い部分が上側となる状態で取り付けられる。こうすることで、流路抵抗が相対的に低いチャンネルの流出口には、第2種の整流部材52における開口率の低い部分が相対するから、流体が流出し難くなる一方で、流路抵抗が相対的に高いチャンネルの流出口には、第2種の整流部材52における開口率の高い部分が相対するから、流体が流出し易くなる。結果として、複数のチャンネル間の流路抵抗差が生じていても、複数のチャンネルを通過する流体の流量差は小さくなる。つまり、第2種の整流部材52によって、複数のチャンネル間の流路抵抗差に起因する偏流が抑制されることになる。このことも、熱交換器1の熱交換効率の向上に有利になる。   As shown in FIG. 3, the second type of rectifying member 52 is also formed with a plurality of through holes 521 having the same diameter as the first type of rectifying member 51 so as to penetrate in the plate thickness direction. Yes. On the other hand, the through-holes 521 of the second type of rectifying member 52 are not arranged at equal intervals, and the interval is relatively wide in the upper portion of the sheet of FIG. It is arranged so that it becomes narrower. Thereby, the opening ratio (the area of the hole per unit area) of the second type rectifying member 52 is relatively low in the upper part and relatively high in the lower part. Such a 2nd type rectification | straightening member 52 is attached corresponding to distribution of flow-path resistance reflected on the outflow surfaces 32 and 34 mentioned above. That is, the portion with a low opening ratio in the second type of rectifying member 52 is opposed to the outlet of the channel having a relatively low flow resistance at the outflow surfaces 32 and 34, and the opening ratio of the second type of rectifying member 52 is The high part is mounted so that it is opposite the outlet of the channel with a relatively high flow resistance at the outflow surfaces 32,34. Specifically, with respect to the outflow surface 32 of the first fluid, as shown in FIG. 3, the second type of rectifying member 52 has a lower opening ratio on the upper side and a higher opening ratio on the lower side. It is attached in the state to become. On the other hand, with respect to the outflow surface 34 of the second fluid, the second type rectifying member 52 is in a state where the top and bottom are reversed from the state shown in FIG. It is attached in a state where the high part is on the upper side. By doing so, a portion having a low opening ratio in the second type of rectifying member 52 is opposed to the outlet of the channel having a relatively low flow resistance. Since the portion with a high opening ratio in the second type rectifying member 52 is opposed to the outlet of the relatively high channel, the fluid easily flows out. As a result, even if there is a flow resistance difference between the plurality of channels, the flow rate difference of the fluid passing through the plurality of channels is reduced. That is, the second type of rectifying member 52 suppresses the drift due to the flow resistance difference between the plurality of channels. This is also advantageous for improving the heat exchange efficiency of the heat exchanger 1.

第2種の整流部材52は、流出面32、34に対して比較的近い位置に配置することが、流路抵抗差に起因する通過流量差の発生を抑制する効果が高い。第2種の整流部材52を流出面32、34から離して配置してしまうと、第2種の整流部材52の開口率を低くすることによる、チャンネルからの流出流量の制限効果が薄れるためである。   Arranging the second type of rectifying member 52 at a position relatively close to the outflow surfaces 32 and 34 has a high effect of suppressing the occurrence of a passage flow rate difference due to the flow path resistance difference. If the second type rectifying member 52 is arranged away from the outflow surfaces 32, 34, the effect of limiting the outflow flow rate from the channel by reducing the opening ratio of the second type rectifying member 52 is reduced. is there.

こうして、第1種の整流部材51と第2種の整流部材52との2種類の整流部材を設けることによって、コア2の流入面31、33に対する流体の動圧分布に起因する偏流(図例では、第1通路21と第2通路22との積層方向に対する偏流)と、コア2における複数のチャンネル間の流路抵抗差に起因する偏流(図例では、コア2の幅方向に対する偏流)とを共に抑制することが可能になる。つまり、発生メカニズムが異なる2種類の偏流を、第1種の整流部材51と第2種の整流部材52との2種類の整流部材のそれぞれによって抑制することで、2種類の偏流それぞれを最適に抑制することが可能になり、熱交換器1の熱交換効率が向上する。   Thus, by providing two types of rectifying members, the first type of rectifying member 51 and the second type of rectifying member 52, the drift caused by the fluid dynamic pressure distribution with respect to the inflow surfaces 31 and 33 of the core 2 (illustration example) Then, the drift in the stacking direction of the first passage 21 and the second passage 22) and the drift due to the flow resistance difference between the plurality of channels in the core 2 (the drift in the width direction of the core 2 in the illustrated example) Can be suppressed together. That is, two types of drifts with different generation mechanisms are suppressed by the two types of rectification members, the first type rectification member 51 and the second type rectification member 52, respectively, thereby optimizing each of the two types of drift. It becomes possible to suppress, and the heat exchange efficiency of the heat exchanger 1 improves.

ここで、図3に例示する第2種の整流部材52は、同一径の貫通孔521の配置間隔を変更することによって、開口率を変化させているが、これとは異なり、同じ間隔に配置した貫通孔の径を変更することによって、開口率を変化させるようにしてもよい。また、貫通孔の径と配置間隔との双方を変更することによって、第2種の整流部材52の開口率を変化させてもよい。   Here, the second type of rectifying member 52 illustrated in FIG. 3 changes the aperture ratio by changing the arrangement interval of the through holes 521 having the same diameter, but is differently arranged at the same interval. The aperture ratio may be changed by changing the diameter of the through hole. Moreover, you may change the aperture ratio of the 2nd type rectification | straightening member 52 by changing both the diameter and arrangement | positioning space | interval of a through-hole.

また、第2種の整流部材52における貫通孔の形状は、図3に例示するように丸穴には限定されず、例えば図4に示すように長穴形状の貫通孔531としてもよい。尚、図4に示す例では、長穴形状の貫通孔531の大きさと配置間隔との双方を変更しているが、大きさのみを変更したり、配置間隔のみを変更したりして、開口率を変化させるようにしてもよい。   Further, the shape of the through hole in the second type of rectifying member 52 is not limited to a round hole as illustrated in FIG. 3, and may be, for example, a long hole shaped through hole 531 as shown in FIG. 4. In the example shown in FIG. 4, both the size and the arrangement interval of the long hole-shaped through-holes 531 are changed, but only the size is changed or only the arrangement interval is changed to open the opening. The rate may be changed.

また、第2種の整流部材52の開口率は、図3に示すように、X方向に連続的に変化させるようにしてもよいし、図4に示すように、X方向に段階的に変化させるようにしてもよい。   Further, the aperture ratio of the second type rectifying member 52 may be continuously changed in the X direction as shown in FIG. 3, or may be changed stepwise in the X direction as shown in FIG. You may make it make it.

第2種の整流部材52はまた、流出面32、34の全面に相対するように配置する以外にも、例えば図5に示すように、流出面32の少なくとも一部にのみ相対するように配置してもよい。図5は、第1通路21についての第2種の整流部材52を、流出面32のおよそ半分に相対するように配置する例を示している。第2種の整流部材52が配置されていない部分は、開口率を大きくしたことと等価である。   The second type rectifying member 52 is also arranged so as to face only at least a part of the outflow surface 32 as shown in FIG. May be. FIG. 5 shows an example in which the second type of rectifying member 52 for the first passage 21 is arranged so as to face approximately half of the outflow surface 32. The portion where the second type rectifying member 52 is not disposed is equivalent to increasing the aperture ratio.

さらに、第2種の整流部材52は、流出ヘッダータンク42内に取り付ける代わりに、流入ヘッダータンク41内に取り付けるようにしてもよい。図6は、第1通路21についての第2種の整流部材52を、流入ヘッダータンク41内に取り付けた例を示している。この第2種の整流部材52も、図3、4に示すような開口率を変更させた板状の部材によって構成すればよく、この第2種の整流部材52を、その開口率の分布が流入面31における流路抵抗の分布に対応するように、流入面31に相対して取り付けることによって、各チャンネルに流入する流量を、その流路抵抗に応じて調整して、複数のチャンネル間での通過流量差を小さくすることが可能になる。   Further, the second type rectifying member 52 may be mounted in the inflow header tank 41 instead of being mounted in the outflow header tank 42. FIG. 6 shows an example in which the second type rectifying member 52 for the first passage 21 is attached in the inflow header tank 41. This second type of rectifying member 52 may also be configured by a plate-like member having a changed aperture ratio as shown in FIGS. 3 and 4, and the second type of rectifying member 52 has an aperture ratio distribution. By attaching it relative to the inflow surface 31 so as to correspond to the distribution of the channel resistance at the inflow surface 31, the flow rate flowing into each channel is adjusted according to the channel resistance, and between the plurality of channels. It becomes possible to reduce the difference between the passage flow rates.

ここで、第2種の整流部材52を流入面31に相対して配置する場合も、流入面31に近付けて配置することが偏流抑制機能を十分に発揮する上では好ましい。すなわち、流入ヘッダータンク41内に取り付けられる第2種の整流部材52は、その開口率を異ならせることにより、そこを通過する流体の流量差、ひいては流入面31に対する流入流量差を設けることで、複数のチャンネル間の通過流量差を小さくする。そのため、第2種の整流部材52を流入面31から離して配置すると、第2種の整流部材52を通過することにより流体の流量差を設ける効果が、流入面31に到達する前に薄れてしまうのである。一方、第2種の整流部材52を流入面31に近付けすぎると、第2種の整流部材52における貫通孔521の部分(つまり、開口部)と、それ以外の部分(つまり、非開口部)との間で生じる流体の速度勾配が、流入面31を通じた各チャンネルへの流入に影響を与えることになる。具体的には、開口部に相対する流入口は流入流量が増大する一方、非開口部に相対する流入口には流体がほとんど流入しなくなる。これは、複数のチャンネル間での通過流量差を小さくするという第2種の整流部材52の機能が発揮されないばかりか、その通過流量差を拡大してしまう虞もある。このように、第2種の整流部材52は、流入ヘッダータンク41に取り付ける場合は、その配設位置の調整が難しくなる場合がある。これに対し、図1等に示すように、第2種の整流部材52を流出ヘッダータンク42に取り付ける場合は、第2種の整流部材52を通過した後の速度勾配を考慮する必要がないため、配置の自由度が高く、複数のチャンネル間での流路抵抗差に起因する偏流を効果的に抑制することが可能になる。   Here, also when arrange | positioning 2nd type rectification | straightening member 52 relative to the inflow surface 31, it is preferable when it arrange | positions close to the inflow surface 31 in order to fully exhibit a drift control function. That is, the second type of rectifying member 52 mounted in the inflow header tank 41 is provided with a difference in flow rate of fluid passing therethrough, and thus inflow rate difference with respect to the inflow surface 31 by making the opening ratios different. Reduce the flow rate difference between multiple channels. Therefore, when the second type of rectifying member 52 is arranged away from the inflow surface 31, the effect of providing a fluid flow rate difference by passing through the second type of rectifying member 52 fades before reaching the inflow surface 31. It ends up. On the other hand, if the second type rectifying member 52 is too close to the inflow surface 31, the portion of the second type rectifying member 52 (that is, the opening) and the other portion (that is, the non-opening portion). The velocity gradient of the fluid generated between the two channels affects the inflow into each channel through the inflow surface 31. Specifically, the inflow rate increases at the inlet facing the opening, while the fluid hardly flows into the inlet facing the non-opening. This not only does not exhibit the function of the second type of rectifying member 52 for reducing the flow rate difference between the plurality of channels, but may also increase the flow rate difference. As described above, when the second type rectifying member 52 is attached to the inflow header tank 41, it may be difficult to adjust the arrangement position thereof. On the other hand, as shown in FIG. 1 and the like, when the second type rectifying member 52 is attached to the outflow header tank 42, it is not necessary to consider the speed gradient after passing through the second type rectifying member 52. Therefore, the degree of freedom in arrangement is high, and it is possible to effectively suppress the drift caused by the flow resistance difference between the plurality of channels.

また、第1種の整流部材51は、流入ヘッダータンク41内に取り付けられるため、第2種の整流部材52を流入ヘッダータンク41内に取り付ける場合は、2種類の整流部材51、52が共に、流入ヘッダータンク41内に取り付けられることになる。このため、流入ヘッダータンク41の構成や、流入ノズル411の構成によっては、2種類の整流部材51、52を、それぞれその機能が十分に発揮されるように配置することが困難になる場合もある。第2種の整流部材52を、流出ヘッダータンク42内に取り付けることは、第1種及び第2種の整流部材51、52を、コア2に対し流入側と流出側とに分けて配置することになるため、第1種及び第2種の整流部材51、52のそれぞれを、最適に配置する上で有利になる。   Further, since the first type of rectifying member 51 is mounted in the inflow header tank 41, when the second type of rectifying member 52 is mounted in the inflow header tank 41, the two types of rectifying members 51, 52 are both It is attached in the inflow header tank 41. For this reason, depending on the configuration of the inflow header tank 41 and the configuration of the inflow nozzle 411, it may be difficult to dispose the two types of rectifying members 51 and 52 so that their functions are fully exhibited. . The attachment of the second type of rectifying member 52 in the outflow header tank 42 means that the first type and the second type of rectifying members 51 and 52 are arranged separately on the inflow side and the outflow side with respect to the core 2. Therefore, each of the first-type and second-type rectifying members 51 and 52 is advantageous in optimal arrangement.

例えば図7に示すように、流入面31に対する流体の動圧分布がほぼ均等化している熱交換器10においては、第1種の整流部材を省略してもよい。すなわち、図7は第1流体の通路がダクト44、45として構成されており、これにより、コア2の第1流体についての流入面31に対し、その動圧分布は、ほぼ均等化している。そのため、第1種の整流部材は不要である。一方で、コア2における各第1通路21内には、前記と同様に、少なくともディストリビュータフィン212が配設されているため、複数のチャンネル間での流路抵抗差は生じている。そこで、図7に示す熱交換器10では、第2種の整流部材52を、流出面32に相対して配設しており、これによって、流路抵抗差に起因して生じ得る、コア2の幅方向についての第1流体の偏流を回避することが可能になる。尚、図7に示す例において、第2種の整流部材52を、流入ヘッダータンク41内に取り付けてもよい。   For example, as shown in FIG. 7, in the heat exchanger 10 in which the dynamic pressure distribution of the fluid with respect to the inflow surface 31 is substantially equalized, the first type rectifying member may be omitted. That is, in FIG. 7, the passage of the first fluid is configured as ducts 44 and 45, so that the dynamic pressure distribution is substantially equalized with respect to the inflow surface 31 for the first fluid of the core 2. Therefore, the first type rectifying member is unnecessary. On the other hand, in each of the first passages 21 in the core 2, at least the distributor fins 212 are disposed in the same manner as described above, so that there is a difference in flow resistance between a plurality of channels. Therefore, in the heat exchanger 10 shown in FIG. 7, the second type of rectifying member 52 is disposed relative to the outflow surface 32, and thereby, the core 2 that may be generated due to the difference in flow path resistance. It is possible to avoid the drift of the first fluid in the width direction. In the example shown in FIG. 7, the second type rectifying member 52 may be attached in the inflow header tank 41.

尚、熱交換器の構成によっては、第1流体についての流路及び第2流体についての流路のいずれか一方についてのみ、第1種及び/又は第2種の整流部材を配置する場合があり得る。   In addition, depending on the configuration of the heat exchanger, the first type and / or the second type of rectifying member may be arranged only for one of the flow path for the first fluid and the flow path for the second fluid. obtain.

また、動圧分布に起因する偏流を抑制する第1種の整流部材は、バッフルによって構成することに限らず、流入ヘッダータンクの構成や流入ノズルの構成及び配置に応じて、公知の種々の構成の整流部材を採用することが可能である。   In addition, the first type of rectifying member that suppresses the drift caused by the dynamic pressure distribution is not limited to the baffle, and various known configurations may be used depending on the configuration of the inflow header tank and the configuration and arrangement of the inflow nozzle. It is possible to employ a straightening member.

またここでは、プレートフィン型のコア2を有する熱交換器1、10を例に、第1種及び第2種の整流部材について説明をしているが、多管式の熱交換器に、第1種及び第2種の整流部材を適用することも可能である。多管式の熱交換器では、例えばU字状に管が曲げられている構成において流路抵抗差が生じ、偏流が発生し得る。第2種の整流部材は、こうした多管式の熱交換器においても偏流の抑制に有効である。   Further, here, the first and second rectifying members are described by taking the heat exchangers 1 and 10 having the plate fin type core 2 as an example. It is also possible to apply the first and second rectifying members. In a multi-tube heat exchanger, for example, in a configuration in which a tube is bent in a U shape, a flow path resistance difference is generated, and drift can occur. The second type of rectifying member is effective in suppressing drift even in such a multitubular heat exchanger.

尚、プレートフィン型熱交換器及び多管式の熱交換器のいずれにおいても、流路抵抗差は、流路長さの差に起因するだけでなく、流路断面積の差や、流路長さ及び断面積双方の差に起因して生じる場合がある。第2種の整流部材は、そのいずれにおいても、流路抵抗差に起因する通過流量差を小さくすることが可能である。   In both the plate fin type heat exchanger and the multi-tube heat exchanger, the flow resistance difference is not only due to the difference in the flow path length, It can be caused by differences in both length and cross-sectional area. In any of the second type rectifying members, it is possible to reduce the flow rate difference caused by the flow path resistance difference.

以上説明したように、ここに開示した熱交換器は、流入面に対する流体の動圧分布の均等化を図る第1種の整流部材と、複数のチャンネル間の流路抵抗差に起因する通過流量差を小さくする第2種の整流部材とによって、流体の偏流を抑制することができるから、各種の熱交換器における熱交換効率の向上に有利になる。また、各チャンネルを通過する流体の流量の均等化が図られるから、例えば各チャンネル内に触媒坦持体が内蔵され、そこを通過する流体を反応させるような用途に用いられる熱交換器(つまり、触媒反応器)においては、反応効率の向上、ひいては性能向上に有利になる。   As described above, the heat exchanger disclosed herein includes the first type of rectifying member that equalizes the dynamic pressure distribution of the fluid with respect to the inflow surface, and the passage flow rate due to the flow resistance difference between the plurality of channels. Since the drift of the fluid can be suppressed by the second type of rectifying member that reduces the difference, it is advantageous for improving the heat exchange efficiency in various heat exchangers. In addition, since the flow rate of the fluid passing through each channel is equalized, for example, a catalyst carrier is built in each channel, and a heat exchanger (that is, used for reacting the fluid passing therethrough) In the case of a catalytic reactor), it is advantageous for improving the reaction efficiency and consequently the performance.

1 熱交換器
10 熱交換器
2 コア
21 第1通路
22 第2通路
211 コルゲートフィン
212、222 ディストリビュータフィン
31、33 流入面
32、34 流出面
51 第1種の整流部材
52 第2種の整流部材
521、531 貫通孔
DESCRIPTION OF SYMBOLS 1 Heat exchanger 10 Heat exchanger 2 Core 21 1st channel | path 22 2nd channel | path 211 Corrugated fins 212 and 222 Distributor fins 31 and 33 Inflow surface 32 and 34 Outflow surface 51 1st type rectification member 52 2nd type rectification member 521, 531 Through hole

Claims (5)

第1流体が流れる第1通路と第2流体が流れる第2通路とを少なくとも有しかつ、前記第1流体と前記第2流体との間での熱交換を少なくとも行うコアを備えた熱交換器であって、
前記コアには、前記第1流体が流入する流入面と、前記第1流体が流出する流出面とがそれぞれ設定されており、
少なくとも前記第1通路は、前記流入面に開口する流入口と前記流出面に開口する流出口とを繋ぐ複数のチャンネルを含むと共に、当該複数のチャンネル間で流路抵抗が異なるように構成されており、
前記コアに対して前記流入面側に配置されかつ、前記コアに流入する前記第1流体の当該流入面に対する動圧分布の均等化を図る第1種の整流部材と、
前記コアとは別体の整流部材であって、前記コアの前記第1通路を構成する前記複数のチャンネル間の流路抵抗差に起因する通過流量差を小さくするように設けられた第2種の整流部材と、をさらに備えている熱交換器。
A heat exchanger having at least a first passage through which a first fluid flows and a second passage through which a second fluid flows, and a core for performing at least heat exchange between the first fluid and the second fluid Because
The core has an inflow surface into which the first fluid flows and an outflow surface from which the first fluid flows out, respectively.
At least the first passage includes a plurality of channels that connect the inflow port that opens to the inflow surface and the outflow port that opens to the outflow surface, and is configured to have different flow resistance between the plurality of channels. And
A first type of rectifying member that is disposed on the inflow surface side with respect to the core and that equalizes a dynamic pressure distribution of the first fluid flowing into the core with respect to the inflow surface;
A rectifying member separate from the core, the second type provided so as to reduce a flow rate difference caused by a flow resistance difference between the plurality of channels constituting the first passage of the core And a rectifying member.
請求項1に記載の熱交換器において、
前記第2種の整流部材は、前記コアに対して前記流出面側に配置されている熱交換器。
The heat exchanger according to claim 1,
The second type rectifying member is a heat exchanger disposed on the outflow surface side with respect to the core.
請求項2に記載の熱交換器において、
前記コアの前記流出面には、前記複数のチャンネルの前記流出口が均等な間隔で配置されている一方で、前記各チャンネルの流路抵抗に対応した所定の流路抵抗分布が反映されており、
前記第2種の整流部材は、前記流出面の少なくとも一部に対して相対するように配置された板状の部材であって、その板厚方向に貫通形成された複数の孔を有しており、
前記第2種の整流部材において、前記複数の孔によって規定される開口率は、前記流出面に反映されている流路抵抗分布に対応する特性の分布となるように設定されている熱交換器。
The heat exchanger according to claim 2,
On the outflow surface of the core, the outlets of the plurality of channels are arranged at equal intervals, while a predetermined flow resistance distribution corresponding to the flow resistance of each channel is reflected. ,
The second type of rectifying member is a plate-like member disposed so as to face at least a part of the outflow surface, and has a plurality of holes formed so as to penetrate therethrough. And
In the second type of rectifying member, the opening ratio defined by the plurality of holes is set to have a characteristic distribution corresponding to a flow path resistance distribution reflected on the outflow surface. .
請求項1〜3のいずれか1項に記載の熱交換器において、
前記コアは、複数の前記第1通路と複数の前記第2通路とが交互に積層して構成されたプレートフィン型であり、
少なくとも前記各第1通路内には、当該第1通路内の流れ方向を変更させるディストリビュータフィンが配設されている熱交換器。
The heat exchanger according to any one of claims 1 to 3,
The core is a plate fin type configured by alternately laminating a plurality of the first passages and a plurality of the second passages,
A heat exchanger in which a distributor fin for changing a flow direction in the first passage is disposed at least in each first passage.
請求項1〜4のいずれか1項に記載の熱交換器において、In the heat exchanger according to any one of claims 1 to 4,
前記複数のチャンネル内には、触媒担持体が内蔵されており、当該チャンネル内を通過する流体を化学反応させる触媒反応器として構成されている熱交換器。A heat exchanger configured as a catalyst reactor in which a catalyst carrier is built in the plurality of channels and chemically reacts with a fluid passing through the channels.
JP2012153240A 2012-07-09 2012-07-09 Heat exchanger Expired - Fee Related JP5795994B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012153240A JP5795994B2 (en) 2012-07-09 2012-07-09 Heat exchanger
EP13817311.7A EP2889570B1 (en) 2012-07-09 2013-06-21 Heat exchanger
BR112015000249A BR112015000249A2 (en) 2012-07-09 2013-06-21 heat exchanger
US14/413,689 US20150136366A1 (en) 2012-07-09 2013-06-21 Heat exchanger
CN201380036190.6A CN104428622A (en) 2012-07-09 2013-06-21 Heat exchanger
EA201590160A EA030192B1 (en) 2012-07-09 2013-06-21 Heat exchanger
PCT/JP2013/003907 WO2014010180A1 (en) 2012-07-09 2013-06-21 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012153240A JP5795994B2 (en) 2012-07-09 2012-07-09 Heat exchanger

Publications (3)

Publication Number Publication Date
JP2014016083A JP2014016083A (en) 2014-01-30
JP2014016083A5 true JP2014016083A5 (en) 2015-02-19
JP5795994B2 JP5795994B2 (en) 2015-10-14

Family

ID=49915665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012153240A Expired - Fee Related JP5795994B2 (en) 2012-07-09 2012-07-09 Heat exchanger

Country Status (7)

Country Link
US (1) US20150136366A1 (en)
EP (1) EP2889570B1 (en)
JP (1) JP5795994B2 (en)
CN (1) CN104428622A (en)
BR (1) BR112015000249A2 (en)
EA (1) EA030192B1 (en)
WO (1) WO2014010180A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10124452B2 (en) * 2013-08-09 2018-11-13 Hamilton Sundstrand Corporation Cold corner flow baffle
WO2017141967A1 (en) * 2016-02-17 2017-08-24 株式会社Ihi Heat treatment apparatus
JP6819199B2 (en) * 2016-10-13 2021-01-27 株式会社Ihi Pressure vessel
KR101865853B1 (en) * 2016-10-17 2018-07-13 충남대학교산학협력단 Shell and tube heat exchanger for reformer
JP2018084308A (en) * 2016-11-25 2018-05-31 株式会社Ihi Pressure container
DK3339792T3 (en) 2016-12-20 2020-05-18 Alfa Laval Corp Ab CONNECTING TO A HEAT EXCHANGE AND HEAT EXCHANGE
JP6347003B1 (en) * 2017-01-25 2018-06-20 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド LNG ship evaporative gas reliquefaction method and system
KR101858514B1 (en) * 2017-01-25 2018-05-17 대우조선해양 주식회사 Boil-Off Gas Reliquefaction Method and System for LNG Vessel
EP3438596B1 (en) * 2017-08-01 2020-04-08 Provides Metalmeccanica S.r.l. Improved fluid distributor
JP7195770B2 (en) * 2018-05-30 2022-12-26 キヤノン株式会社 IMAGING DEVICE AND ELECTRONIC DEVICE USING COOLING UNIT
CN110131707A (en) * 2019-05-14 2019-08-16 东北大学 For preventing from occurring after high-temperature flue gas mixed flow bias current and that strengthens mixed flow turns smoke-box
JP2021085535A (en) * 2019-11-25 2021-06-03 ダイキン工業株式会社 Heat exchanger
EP3855059B1 (en) * 2020-01-24 2023-11-15 Aptiv Technologies Limited Passive flow divider and liquid cooling system comprising the same
US11408688B2 (en) * 2020-06-17 2022-08-09 Mahle International Gmbh Heat exchanger
DE102020210310A1 (en) * 2020-08-13 2022-02-17 Thyssenkrupp Ag Compact heat exchanger
JP7505400B2 (en) 2020-12-25 2024-06-25 株式会社富士通ゼネラル Heat exchanger
US11976677B2 (en) * 2021-11-05 2024-05-07 Hamilton Sundstrand Corporation Integrally formed flow distributor for fluid manifold
CN113899231B (en) * 2021-11-15 2023-09-19 陕西益信伟创智能科技有限公司 Heat exchange core with diversion switching section, heat exchanger and processing method
CN113928574A (en) * 2021-11-19 2022-01-14 中国直升机设计研究所 Heat exchanger of helicopter cooling system

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6918069A (en) * 1969-03-03 1970-09-07
JPS5222706B2 (en) 1974-04-25 1977-06-18
JPS59229193A (en) * 1983-06-10 1984-12-22 Hitachi Ltd Heat exchanger
JPS60189783U (en) * 1984-05-29 1985-12-16 東邦瓦斯株式会社 Support structure for ceramic heat exchanger in heat exchanger
US4844151A (en) * 1986-12-23 1989-07-04 Sundstrand Corporation Heat exchanger apparatus
JPS63210595A (en) * 1987-02-27 1988-09-01 Ishikawajima Harima Heavy Ind Co Ltd Plate fin type heat exchanger
JPH0443297A (en) 1990-06-11 1992-02-13 Matsushita Refrig Co Ltd Lamination type heat exchanger
US5107923A (en) 1991-06-10 1992-04-28 United Technologies Corporation Flow distribution device
FR2697906B1 (en) * 1992-11-10 1995-01-27 Packinox Sa Bundle of plates for heat exchanger.
JP3052121B2 (en) * 1995-08-22 2000-06-12 株式会社ショウエイ Heat exchanger
JPH10300384A (en) * 1997-04-24 1998-11-13 Daikin Ind Ltd Plate type heat-exchanger
JP4078709B2 (en) * 1998-03-20 2008-04-23 ダイキン工業株式会社 Heat exchange element with purification function
JP2000055575A (en) * 1998-08-03 2000-02-25 Daikin Ind Ltd Heat exchange element
JP4615685B2 (en) * 1999-08-23 2011-01-19 株式会社日本触媒 Plate type heat exchanger blockage prevention method
DE60007811T2 (en) 1999-08-23 2004-11-25 Nippon Shokubai Co., Ltd. Blockage prevention method in a plate heat exchanger
JP4058210B2 (en) * 1999-11-30 2008-03-05 三菱製紙株式会社 Photocatalyst member
FR2806156B1 (en) 2000-03-07 2002-05-31 Ciat Sa PLATE HEAT EXCHANGER
JP2001248980A (en) 2000-03-07 2001-09-14 Maruyasu Industries Co Ltd Multitubular heat exchanger
FR2812935B1 (en) 2000-08-08 2002-10-18 Air Liquide MULTIPLE BLOCK HEAT EXCHANGER WITH A UNIFORM FLUID SUPPLY LINE, AND VAPORIZER-CONDENSER COMPRISING SUCH A EXCHANGER
ES2198179B1 (en) 2001-03-01 2004-11-16 Valeo Termico, S.A. HEAT EXCHANGER FOR GASES.
JP2002340495A (en) * 2001-03-14 2002-11-27 Showa Denko Kk Lamination type heat exchanger, lamination type evaporator for car air-conditioner and refrigerating system
JP2002310593A (en) 2001-04-11 2002-10-23 Sumitomo Precision Prod Co Ltd Plate fin type heat exchanger
JP4212888B2 (en) * 2002-12-26 2009-01-21 三菱化学エンジニアリング株式会社 Plate type catalytic reactor
CN100541107C (en) 2003-02-25 2009-09-16 林德股份公司 Heat exchanger
CA2532646C (en) * 2003-07-24 2012-09-11 Basf Aktiengesellschaft Reactor for partial oxidation with heat-transfer sheet modules
EP1514594A1 (en) * 2003-09-10 2005-03-16 Methanol Casale S.A. Pseudo-isothermal catalytic reactor
JP2007071434A (en) 2005-09-06 2007-03-22 Tokyo Roki Co Ltd Laminated heat exchanger
JP4798655B2 (en) * 2005-12-21 2011-10-19 臼井国際産業株式会社 Multi-tube heat exchanger for exhaust gas cooling system
JP4816517B2 (en) * 2006-09-28 2011-11-16 パナソニック株式会社 Heat exchange element
US20100141105A1 (en) * 2008-12-04 2010-06-10 Thermocabinet, Llc Thermal Management Cabinet for Electronic Equipment
AT507552B1 (en) * 2009-05-22 2010-06-15 Siemens Vai Metals Tech Gmbh METHOD AND DEVICE FOR INFLUENCING FLOW CHARACTERISTICS IN A FLUID CURRENT
CN101696857A (en) * 2009-10-20 2010-04-21 无锡佳龙换热器制造有限公司 Plate-fin heat exchanger
JP2011126756A (en) * 2009-12-21 2011-06-30 National Institute Of Advanced Industrial Science & Technology Intra-laminate heat exchange type reactor, and method for manufacturing the same
CN201811618U (en) * 2010-09-28 2011-04-27 杨光伟 Efficient energy-saving slag water heat-exchange device
DE102011013340A1 (en) * 2010-12-30 2012-07-05 Linde Aktiengesellschaft Distributor and heat exchanger device

Similar Documents

Publication Publication Date Title
JP5795994B2 (en) Heat exchanger
JP2014016083A5 (en)
CN103063076B (en) Heat exchanger
US11454448B2 (en) Enhanced heat transfer surface
EP2865983B1 (en) Heat-exchanger header and heat exchanger provided therewith
JP5100860B2 (en) Plate heat exchanger
WO2016190445A1 (en) Heat exchanger tank structure and production method therefor
WO2018047469A1 (en) Heat exchanger
JP2009068742A (en) Heat exchanger
WO2014034509A1 (en) Heat exchanger
US9550165B2 (en) Catalytic reactor
KR101163995B1 (en) Oilcooler
JP6577282B2 (en) Heat exchanger
JP2017125633A (en) Heat exchanger
JP2008082672A (en) Heat exchanger
JP2019020068A (en) Heat exchanger
JP2016200071A (en) EGR gas cooler
CN219328349U (en) Heat exchanger
JP7393527B2 (en) Heat exchanger
JP6732647B2 (en) Heat exchanger
JP6889651B2 (en) Header plateless heat exchanger cooling water inlet structure
CN116412707A (en) Plate heat exchanger
JP2016057036A (en) Heat exchanger
CN114688910A (en) Flat heat exchange tube and heat exchange system with same
JP2024075919A (en) Heat exchanger