JP2014015642A - Visible light responsive semiconductor photoelectrode - Google Patents

Visible light responsive semiconductor photoelectrode Download PDF

Info

Publication number
JP2014015642A
JP2014015642A JP2012152506A JP2012152506A JP2014015642A JP 2014015642 A JP2014015642 A JP 2014015642A JP 2012152506 A JP2012152506 A JP 2012152506A JP 2012152506 A JP2012152506 A JP 2012152506A JP 2014015642 A JP2014015642 A JP 2014015642A
Authority
JP
Japan
Prior art keywords
semiconductor
visible light
light responsive
electrode
stabilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012152506A
Other languages
Japanese (ja)
Other versions
JP5904545B2 (en
Inventor
Kazuhiro Sayama
和弘 佐山
Rie Saito
里英 斉藤
Nini Wang
ニイニイ ワン
Yugo Mitsuishi
雄悟 三石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2012152506A priority Critical patent/JP5904545B2/en
Publication of JP2014015642A publication Critical patent/JP2014015642A/en
Application granted granted Critical
Publication of JP5904545B2 publication Critical patent/JP5904545B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hybrid Cells (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a stable visible light responsive semiconductor photoelectrode improving the stability during photoreaction of a semiconductor material and also having no reduction of efficiency.SOLUTION: The stabilized visible light responsive semiconductor electrode is obtained by covering a protective film made of a compound comprising one or more kinds of elements selected from the group consisting of Nb, Sn, Zr, La, Ti, Bi and Ta on a semiconductor layer made of a visible light responsive semiconductor comprising Bi, V, W and oxygen as constituent elements.

Description

本発明は、可視光応答性半導体光電極、特に、保護膜で安定化された可視光応答性半導体光電極に関する。   The present invention relates to a visible light responsive semiconductor photoelectrode, and more particularly to a visible light responsive semiconductor photoelectrode stabilized by a protective film.

近年、狭いバンドギャップを持つ半導体光電極を使用したH2、O2への水分解は、太陽光エネルギー変換および蓄積のために広く研究されてきている(特許文献1、2参照)。なかでも、湿式塗布法によって作製された導電性ガラス基板上にコートされたFe23、WO3、BiVO4のようないくつかの酸化物結晶光電極は、安価で且つ大面積化させやすいという実用的な点で優れている。しかしながら、これら酸化物半導体光電極の太陽光エネルギー変換効率はまだ十分に高い値ではない。 In recent years, water decomposition into H 2 and O 2 using a semiconductor photoelectrode having a narrow band gap has been extensively studied for solar energy conversion and accumulation (see Patent Documents 1 and 2). Among them, some oxide crystal photoelectrodes such as Fe 2 O 3 , WO 3 , and BiVO 4 coated on a conductive glass substrate manufactured by a wet coating method are inexpensive and easy to increase in area. It is excellent in practical points. However, the solar energy conversion efficiency of these oxide semiconductor photoelectrodes is not yet sufficiently high.

そこで、酸化物半導体光電極の太陽光エネルギー変換効率を向上させる研究が種々なされてきているが、近年、2種類以上の半導体を積層することで効率を大きく向上させること、及びその性能は電解液に依存し、炭酸塩水溶液を用いると非常に良くなることがわかっている(非特許文献1参照)。   Therefore, various studies have been made to improve the solar energy conversion efficiency of oxide semiconductor photoelectrodes. Recently, two or more kinds of semiconductors are stacked to greatly improve the efficiency, and the performance of the electrolyte solution It is known that the use of an aqueous carbonate solution is very good (see Non-Patent Document 1).

しかしながら、一方で、酸化物半導体光電極の安定性については充分とは言えない。すなわち、エネルギー変換デバイスとして利用する場合は、長期間の安定性向上が非常に重要である。長期安定性を向上する場合は一般にその反応溶液に対して安定な物質で被覆すれば良いと思われるが、その場合は一般的には効率が低下する問題を生じる。   However, on the other hand, it cannot be said that the stability of the oxide semiconductor photoelectrode is sufficient. That is, when used as an energy conversion device, it is very important to improve long-term stability. In order to improve the long-term stability, it is generally considered that the reaction solution should be coated with a stable substance. However, in this case, there is a problem that the efficiency generally decreases.

また、光電気化学的な反応では、光による半導体の光溶解という特殊な溶解促進効果がZnOやCdSの単純酸化物や単純硫化物では知られている。暗時には安定でも、光照射で溶解が進行する特殊な現象である。n型半導体では、光で生成した正孔が半導体自身を酸化溶解する機構と考えられている。
そこで、CdSでは、反応溶液中に硫化物イオン、S2-、硫化水素イオン、SH-や亜硫酸イオン、SO3 2-などの犠牲還元剤と呼ばれる化学種を添加することで安定化することが知られている。n型の酸化物系半導体では同様に有機物などの犠牲還元剤を添加することで安定化することが知られている。しかし、犠牲還元剤は時間とともに消費されるので、常に還元剤を追加する必要が有るという問題があった。
In addition, in the photoelectrochemical reaction, a special dissolution promoting effect of light dissolution of a semiconductor by light is known for simple oxides and simple sulfides of ZnO and CdS. Although it is stable in the dark, it is a special phenomenon in which dissolution proceeds with light irradiation. In an n-type semiconductor, it is considered that holes generated by light oxidize and dissolve the semiconductor itself.
Thus, CdS can be stabilized by adding chemical species called sacrificial reducing agents such as sulfide ions, S 2− , hydrogen sulfide ions, SH 2 , sulfite ions, SO 3 2− to the reaction solution. Are known. Similarly, it is known that an n-type oxide semiconductor is stabilized by adding a sacrificial reducing agent such as an organic substance. However, since the sacrificial reducing agent is consumed with time, there is a problem that it is always necessary to add a reducing agent.

また、BiVO4光電極に関して、その表面に一部Ag+、Cr3+、Pd2+、Au3+、Rh3+、Fe3+等の金属イオン層でコートしておくと、光エネルギー変換効率を向上させることができるとともに、安定化するという報告があるが(特許文献3参照)、1800秒(30分)程度の評価であり、その方法での安定性は不十分であった。 In addition, when the surface of the BiVO 4 photoelectrode is partially coated with a metal ion layer such as Ag + , Cr 3+ , Pd 2+ , Au 3+ , Rh 3+ , Fe 3+ , light energy conversion is performed. Although there is a report that the efficiency can be improved and stabilized (see Patent Document 3), the evaluation is about 1800 seconds (30 minutes), and the stability in the method is insufficient.

特表2003―504799号公報Special table 2003-504799 gazette 特開2005−44758号公報JP 2005-44758 A 特開2007−70675号公報JP 2007-70675 A

Rie Saito,Yugo Miseki andKazuhiro Sayama,Highly efficient photoelectrochemical water splitting using athin film photoanode of BiVO4/SnO2/WO3 multi-composite in a carbonateelectrolyte,Chemical Communications,48(2012)3833-3835Rie Saito, Yugo Miseki and Kazuhiro Sayama, Highly efficient photoelectrochemical water splitting using athin film photoanode of BiVO4 / SnO2 / WO3 multi-composite in a carbonateelectrolyte, Chemical Communications, 48 (2012) 3833-3835

以上のような背景から、本発明は、発明者らによるこれまでの検討をさらに深化、発展させて、その半導体材料の光反応中の安定性を向上させ、且つ効率が低下しない、安定化された可視光応答性半導体光電極を提供することを課題としている。   From the background as described above, the present invention has been further stabilized and developed by further studying the inventors' previous studies, improving the stability of the semiconductor material during the photoreaction and not reducing the efficiency. Another object of the present invention is to provide a visible light responsive semiconductor photoelectrode.

本発明者らは、上記課題を解決するために鋭意検討し、可視光応答性半導体の安定化手法を探索研究した結果、特殊な組成を持つ保護膜を可視光応答性の半導体上に被覆することにより安定化できることを見出し、本発明を完成するに至った。   The inventors of the present invention have made extensive studies to solve the above problems, and as a result of exploring and studying a stabilization method for visible light responsive semiconductors, have coated a protective film having a special composition on a visible light responsive semiconductor. As a result, the present invention was completed.

すなわち、この本発明は以下のことを特徴としている。
[1]構成元素としてBi、V、W、及び酸素を含有してなる可視光応答性の半導体からなる半導体層上に、Nb、Sn、Zr、La、Ti、Bi、Taからなる群から選ばれた1種以上の元素を含む化合物からなる保護膜が被覆されていることを特徴とする安定化された可視光応答性半導体電極。
[2]前記半導体が、BiVO4及びWO3を含むことを特徴とする[1]に記載の安定化された可視光応答性半導体電極。
[3]前記保護膜に含まれる元素の量が、単位面積あたりの半導体の量に対して、安定酸化物換算で0.2〜20質量%であることを特徴とする[1]又は[2]に記載の安定化された可視光応答性半導体電極。
[4]前記可視光応答性半導体電極が、炭酸塩の電解質を含む水溶液中における反応に用いる光電極であることを特徴とする[1]〜[3]のいずれかに記載の安定化された可視光応答性半導体電極。
[5]半導体光電極として、請求項1〜4のいずれか1項に記載の安定化された可視光応答性半導体電極を用いたことを特徴とする水分解反応装置。
That is, the present invention is characterized by the following.
[1] Selected from the group consisting of Nb, Sn, Zr, La, Ti, Bi and Ta on a semiconductor layer made of a visible light responsive semiconductor containing Bi, V, W and oxygen as constituent elements. A stabilized visible light responsive semiconductor electrode, wherein a protective film made of a compound containing at least one element is coated.
[2] The stabilized visible light responsive semiconductor electrode according to [1], wherein the semiconductor contains BiVO 4 and WO 3 .
[3] The amount of the element contained in the protective film is 0.2 to 20% by mass in terms of stable oxide with respect to the amount of semiconductor per unit area [1] or [2 ] The stabilized visible light responsive semiconductor electrode of description.
[4] The stabilized light according to any one of [1] to [3], wherein the visible light-responsive semiconductor electrode is a photoelectrode used for a reaction in an aqueous solution containing a carbonate electrolyte. Visible light responsive semiconductor electrode.
[5] A water splitting reaction apparatus using the stabilized visible light responsive semiconductor electrode according to any one of claims 1 to 4 as a semiconductor photoelectrode.

本発明は特に、水分解用の半導体光電極において、半導体材料の光反応中の安定性を向上させ、且つ効率が低下しない、安定化した可視光応答性半導体光電極を提供できる。また、本発明の安定化された光電極における手法は、粉末光触媒反応や、光センサー用途の半導体に対しても有効な方法として提供できる。   In particular, the present invention can provide a stabilized visible light-responsive semiconductor photoelectrode that improves the stability during photoreaction of a semiconductor material and does not decrease the efficiency in a semiconductor photoelectrode for water splitting. Moreover, the method for the stabilized photoelectrode of the present invention can be provided as an effective method for powder photocatalytic reactions and semiconductors for photosensor applications.

可視光応答性半導体電極を用いた水分解反応装置の図Diagram of water splitting reactor using visible light responsive semiconductor electrode 実施例1、2、比較例1における光電流の経時変化を示す図The figure which shows the time-dependent change of the photocurrent in Examples 1, 2 and Comparative Example 1.

本発明は、可視光応答性の半導体からなる半導体電極において、半導体層上に、Nb、Sn、Zr、La、Ti、Bi、Taからなる群から選ばれた1種以上の元素を含む化合物からなる保護膜を被覆することにより、可視光応答性の半導体電極が安定化されていることを特徴とするものである。
なお、上記特許許文献1には、BiVO4半導体の表面の一部にAg+、Cr3+、Pd2+、Au3+、Rh3+、Fe3+等の金属イオンをイオン交換した層で形成しておくと安定化するという表面改質の報告があるが、本発明では、半導体そのものを改質して安定化するのではなく、半導体膜の上に特別な組成の保護膜を被覆することで安定化を行う点で従来技術と大きく異なる。
The present invention relates to a semiconductor electrode made of a visible light responsive semiconductor, and a compound containing one or more elements selected from the group consisting of Nb, Sn, Zr, La, Ti, Bi, Ta on the semiconductor layer. By covering the protective film, the visible light responsive semiconductor electrode is stabilized.
In Patent Document 1, a layer in which metal ions such as Ag + , Cr 3+ , Pd 2+ , Au 3+ , Rh 3+ , and Fe 3+ are ion-exchanged on a part of the surface of the BiVO 4 semiconductor. However, in the present invention, the semiconductor itself is not modified and stabilized, but a protective film having a special composition is coated on the semiconductor film. This is very different from the prior art in that it stabilizes.

本発明の可視光応答性半導体電極は、構成元素として、Bi、V、W、及び酸素を含有してなる可視光応答性の半導体からなるが、特に半導体として、BiVO4、WO3等の金属酸化物含む半導体電極に対して効果があり、その中でも、好ましくは、BiVO4を含む半導体電極、より好ましくはBiVO4及びWO3を含む半導体電極に対して、効果が大きい。なお、2種以上の金属酸化物を含む場合、それらを混合して用いても良いし、或いは、異なる金属酸化物を積層したものであってもよい。 The visible light responsive semiconductor electrode of the present invention is composed of a visible light responsive semiconductor containing Bi, V, W, and oxygen as constituent elements. In particular, the semiconductor is a metal such as BiVO 4 or WO 3. It is effective against a semiconductor electrode comprising an oxide, among which, preferably, a semiconductor electrode comprising BiVO 4, the semiconductor electrode and more preferably comprising BiVO 4 and WO 3, a large effect. In addition, when 2 or more types of metal oxides are included, they may be mixed and used, or different metal oxides may be laminated.

本発明において、保護膜に用いる化合物には、Nb、Sn、Zr、La、Ti、Bi、Taからなる群から選ばれた、2種類以上の元素を含む化合物であってもよい。
また、Nb、Sn、Zr、La、Ti、Bi、Taからなる群から選ばれた1種以上の元素を含有する化合物からなる保護膜の被覆量は、半導体電極が、Nb、Sn、Zr、La、Ti、Bi、Taからなる群から選ばれた1種以上の元素で充分に被覆される量である必要がある。但し、被覆量があまりに多すぎると、半導体と反応液との電気的な接触が阻害されるので、最適な量を選択する。
保護膜をできるだけ薄くすれば、少ない量で半導体への表面被覆率が100%に近くなる。単位面積あたりの半導体の量に対して、添加する元素の量は、安定酸化物換算で0.2〜20質量%、より好ましくは1〜10%である。
In the present invention, the compound used for the protective film may be a compound containing two or more kinds of elements selected from the group consisting of Nb, Sn, Zr, La, Ti, Bi, and Ta.
Further, the coating amount of the protective film made of a compound containing one or more elements selected from the group consisting of Nb, Sn, Zr, La, Ti, Bi, and Ta is such that the semiconductor electrode has Nb, Sn, Zr, The amount needs to be sufficiently covered with one or more elements selected from the group consisting of La, Ti, Bi, and Ta. However, if the coating amount is too large, electrical contact between the semiconductor and the reaction solution is hindered, so an optimal amount is selected.
If the protective film is made as thin as possible, the surface coverage on the semiconductor will be close to 100% with a small amount. The amount of the element to be added is 0.2 to 20% by mass, more preferably 1 to 10% in terms of stable oxide, with respect to the amount of semiconductor per unit area.

本発明の半導体を水分解用の光電極として用いる場合は、電解質を含む水溶液を用いる。電解質としては特に炭酸塩を使う場合に性能が大きく向上することが知られている。本発明の電解質は炭酸塩に限定されないが、効率向上と安定性向上を両立する意味では炭酸塩水溶液にも耐えうる半導体材料が好ましい。その意味では上記の元素Mの化合物を被覆した半導体はその条件を満たしている。
また、上記元素の化合物を被覆する方法としては、上記元素を含む溶液を半導体に塗布して加熱する湿式熱分解法や含浸法、CVD法、噴霧法、スパッタ法などがある。これらの被覆する方法により、酸素を含む雰囲気の場合は、元素はその酸化物の保護膜を半導体表面に形成する。
When the semiconductor of the present invention is used as a water splitting photoelectrode, an aqueous solution containing an electrolyte is used. As an electrolyte, it is known that the performance is greatly improved particularly when carbonate is used. The electrolyte of the present invention is not limited to a carbonate, but a semiconductor material that can withstand an aqueous carbonate solution is preferable in terms of achieving both efficiency improvement and stability improvement. In that sense, the semiconductor coated with the compound of the element M satisfies the condition.
Examples of a method for coating the compound of the element include a wet pyrolysis method in which a solution containing the element is applied to a semiconductor and heating, a impregnation method, a CVD method, a spray method, and a sputtering method. By these coating methods, in the case of an atmosphere containing oxygen, the element forms a protective film of the oxide on the semiconductor surface.

以下、本発明の可視光応答性半導体電極を用いた装置について、一例として、光分解反応装置について説明するが、本発明の可視光応答性半導体電極は、これに限られるものではない。   Hereinafter, as an example of a device using the visible light responsive semiconductor electrode of the present invention, a photolysis reaction device will be described. However, the visible light responsive semiconductor electrode of the present invention is not limited to this.

図1は、水分解反応に用いる装置の一例を示すものであり、水槽内に半導体電極(作用極)と対極を配置し、半導体電極と対極とに導線を接続して外部短絡線を構成している。外部短絡線には、ポテンションスタットが設けられ、ポテンションスタットによって半導体電極と対極との間の電位差を制御し、それによって回路中に生じる電流を計測している。また、水槽には、電解反応の溶液抵抗を下げるための安定な支持電解質を貯留している。さらに、水槽外部から太陽光などの光が半導体電極(作用極)に照射されて光水電解を行なう。   FIG. 1 shows an example of an apparatus used for a water splitting reaction. A semiconductor electrode (working electrode) and a counter electrode are arranged in a water tank, and a lead wire is connected to the semiconductor electrode and the counter electrode to form an external short-circuit line. ing. A potentiostat is provided on the external short-circuit line, and a potential difference between the semiconductor electrode and the counter electrode is controlled by the potentiostat, thereby measuring a current generated in the circuit. In addition, a stable supporting electrolyte for lowering the solution resistance of the electrolytic reaction is stored in the water tank. Furthermore, light such as sunlight is applied to the semiconductor electrode (working electrode) from the outside of the water tank to perform photowater electrolysis.

n型半導体を電極として用いて水を分解する動作原理について説明する。半導体電極に光を照射すると、半導体電極に光が吸収されて、伝導帯に電子が生成し、価電子帯に正孔が生成する。半導体電極の表面に移動した正孔は、水を酸化して酸素を生成する。一方、生成した電子(e-)は、半導体電極中の基材に移動した後、外部短絡線を通り対極に移動する。その際、n型半導体の伝導体は水素の発生電位よりも高いため、バイアス電位をかけて電子のエネルギーを高くする。この電子は、対極上に水を還元し、水素を生成する。 The operation principle of decomposing water using an n-type semiconductor as an electrode will be described. When the semiconductor electrode is irradiated with light, the semiconductor electrode absorbs light, generating electrons in the conduction band and generating holes in the valence band. The holes that have moved to the surface of the semiconductor electrode oxidize water to generate oxygen. On the other hand, the generated electrons (e ) move to the base material in the semiconductor electrode, and then move to the counter electrode through the external short-circuit line. At this time, since the n-type semiconductor conductor is higher than the hydrogen generation potential, a bias potential is applied to increase the electron energy. The electrons reduce water on the counter electrode to generate hydrogen.

以下、本発明を実施例によりさらに具体的に説明するが、本発明はこの実施例によって何ら限定されるものではない。
(実施例1〜4、比較例1)
BiVO4光電極は有機金属熱分解法で作製した。導電性基板(F−SnO2膜:FTO)上にWO3膜(約200nm)を成膜し、その上にBiVO4膜(約100nm)を成膜した。WO3膜を入れることで光電流は向上することがわかっている。WO3膜はタングステン過酸化物水溶液(1.4mol/L)をスピンコートし、500℃で空気焼成して作製した。その後、BiVO4光電極は、有機金属熱分解(MOD)法で作製した。市販(シンメトリックス社製)のBi−MOD溶液とV−MOD溶液(濃度:各0.2mol/L)を1:1で混合し、WO3/FTO膜にスピンコートし、550℃度で空気焼成して作製した。これを3回繰り返した。
次に、このBiVO4/WO3/FTO膜に対して、市販のM−MOD溶液(M=Nb、濃度は0.01〜0.1mol/L)をスピンコートし、550℃で空気焼成して作製した。光電極上の添加金属元素量(μmol/cm2)はXRF測定により計算した。M−MOD溶液をコートしていないBiVO4/WO3/FTO膜を比較例1とした。BiVO4膜及びWO3膜の成膜量(mg/cm2)は、Bi23、V25、WO3に換算して、それぞれ0.039、0.015、0.037であった。半導体の酸化物質量の合計は0.091mg/cm2であった。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples.
(Examples 1-4, Comparative Example 1)
The BiVO 4 photoelectrode was produced by an organometallic pyrolysis method. A WO 3 film (about 200 nm) was formed on a conductive substrate (F-SnO 2 film: FTO), and a BiVO 4 film (about 100 nm) was formed thereon. It has been found that the photocurrent is improved by inserting a WO 3 film. The WO 3 film was prepared by spin-coating a tungsten peroxide aqueous solution (1.4 mol / L) and air firing at 500 ° C. Thereafter, the BiVO 4 photoelectrode was produced by a metal organic pyrolysis (MOD) method. Commercially available (made by Symmetrics) Bi-MOD solution and V-MOD solution (concentration: 0.2 mol / L each) were mixed at 1: 1, spin-coated on WO 3 / FTO film, and air at 550 ° C. Prepared by firing. This was repeated three times.
Next, a commercially available M-MOD solution (M = Nb, concentration is 0.01 to 0.1 mol / L) is spin-coated on the BiVO 4 / WO 3 / FTO film and air-fired at 550 ° C. Made. The amount of added metal element (μmol / cm 2 ) on the photoelectrode was calculated by XRF measurement. A BiVO 4 / WO 3 / FTO film not coated with the M-MOD solution was used as Comparative Example 1. The film formation amounts (mg / cm 2 ) of the BiVO 4 film and the WO 3 film were 0.039, 0.015, and 0.037, respectively, in terms of Bi 2 O 3 , V 2 O 5 , and WO 3. It was. The total oxide mass of the semiconductor was 0.091 mg / cm 2 .

光電極の性能と安定性評価は、疑似太陽光照射下(直径6mmマスク付き)での光電流の時間変化測定により行った。パイレックスガラス製の1室セルに2.5mol/LのKHCO3電解液を入れ、光電極、Pt対極、Ag/AgCl対極をセットし、ポテンショスタットで一定電位(1V vs.Ag/AgCl)で光電流を測定した。 The performance and stability of the photoelectrode were evaluated by measuring changes in photocurrent with time under simulated sunlight irradiation (with a 6 mm diameter mask). Place a 2.5 mol / L KHCO 3 electrolyte in a Pyrex glass single-chamber cell, set the photoelectrode, Pt counter electrode, and Ag / AgCl counter electrode. The current was measured.

図1に、実施例2の典型的な経時変化を示す。光照射すると光電流が観測され、時間とともに少し光電流が向上した。45分(2700秒)では明確な劣化は見られなかった。
表1に光電流の低下率を示す。実施例2〜4のNb濃度では、低下率は100%より少し大きくなった。一方、比較例1では45分で低下率31%と大きく劣化していることがわかる。初期光電流で比較すると、比較例1は実施例1〜4より大きくみえるが、Nbコート膜では光電流が途中で向上するため、最高の光電流はほとんど比較例1と変わらなかった。
以上より、本実施例の手法は、半導体材料の光反応中の安定性を向上させ、且つ効率がほぼ低下しないことがわかった。
FIG. 1 shows a typical time course of Example 2. Photocurrent was observed when irradiated with light, and the photocurrent improved slightly over time. There was no clear degradation at 45 minutes (2700 seconds).
Table 1 shows the reduction rate of the photocurrent. In the Nb concentrations of Examples 2 to 4, the decrease rate was slightly larger than 100%. On the other hand, in Comparative Example 1, it can be seen that the deterioration rate is as large as 31% in 45 minutes. When compared with the initial photocurrent, Comparative Example 1 seems larger than Examples 1 to 4, but the photocurrent was improved in the middle in the Nb coating film, so that the maximum photocurrent was almost the same as Comparative Example 1.
From the above, it has been found that the method of this example improves the stability of the semiconductor material during the photoreaction and the efficiency is not substantially lowered.

(実施例5〜10)
実施例1のM=Nbの代わりに、M=La、Ti、Sn、Zr、Bi、Taを用いた。
結果を表1に示す。光電流の低下率が比較例よりも大きく向上し、安定性が良くなっていることがわかる。また、初期光電流も大きな低下はなかった。
以上より、本実施例の手法は、半導体材料の光反応中の安定性を向上させ、且つ効率がほぼ低下しないことがわかった。
(Examples 5 to 10)
Instead of M = Nb in Example 1, M = La, Ti, Sn, Zr, Bi, and Ta were used.
The results are shown in Table 1. It can be seen that the reduction rate of the photocurrent is greatly improved as compared with the comparative example, and the stability is improved. Also, the initial photocurrent did not decrease greatly.
From the above, it has been found that the method of this example improves the stability of the semiconductor material during the photoreaction and the efficiency is not substantially lowered.

Figure 2014015642
Figure 2014015642

本発明により、水分解用の半導体光電極において、半導体材料の光反応中の安定性を向上させ、且つ効率が低下しない安定化手法を提供することにより、太陽エネルギーを利用した水素製造に利用できる。また、この手法は水分解用や環境浄化用の粉末光触媒反応や、光センサー用途の半導体に対しても有効な安定化手法を提供できる。   INDUSTRIAL APPLICABILITY According to the present invention, a semiconductor photoelectrode for water splitting can be used for hydrogen production using solar energy by providing a stabilization method that improves the stability of a semiconductor material during a photoreaction and does not reduce the efficiency. . This technique can also provide an effective stabilization technique for powder photocatalytic reactions for water splitting and environmental purification, and semiconductors for photosensor applications.

Claims (5)

構成元素としてBi、V、W、及び酸素を含有してなる可視光応答性の半導体からなる半導体層上に、Nb、Sn、Zr、La、Ti、Bi、Taからなる群から選ばれた1種以上の元素を含む化合物からなる保護膜が被覆されていることを特徴とする安定化された可視光応答性半導体電極。   1 selected from the group consisting of Nb, Sn, Zr, La, Ti, Bi, Ta on a semiconductor layer made of a visible light responsive semiconductor containing Bi, V, W and oxygen as constituent elements. A stabilized visible light responsive semiconductor electrode, characterized in that a protective film made of a compound containing at least one element is coated. 前記半導体が、BiVO4及びWO3を含むことを特徴とする請求項1に記載の安定化された可視光応答性半導体電極。 The stabilized visible light responsive semiconductor electrode according to claim 1, wherein the semiconductor includes BiVO 4 and WO 3 . 前記保護膜に含まれる元素の量が、単位面積あたりの半導体の量に対して、安定酸化物換算で0.2〜20質量%であることを特徴とする請求項1又は2に記載の安定化された可視光応答性半導体電極。   The amount of the element contained in the protective film is 0.2 to 20% by mass in terms of a stable oxide with respect to the amount of semiconductor per unit area. Visible light responsive semiconductor electrode. 前記可視光応答性半導体電極が、炭酸塩の電解質を含む水溶液中における反応に用いる光電極であることを特徴とする請求項1〜3のいずれか1項に記載の安定化された可視光応答性半導体電極。   The stabilized visible light response according to any one of claims 1 to 3, wherein the visible light responsive semiconductor electrode is a photoelectrode used for a reaction in an aqueous solution containing a carbonate electrolyte. Conductive electrode. 半導体光電極として、請求項1〜4のいずれか1項に記載の安定化された可視光応答性半導体電極を用いたことを特徴とする水分解反応装置。   A water splitting reaction apparatus using the stabilized visible light responsive semiconductor electrode according to any one of claims 1 to 4 as a semiconductor photoelectrode.
JP2012152506A 2012-07-06 2012-07-06 Visible light responsive semiconductor photoelectrode Active JP5904545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012152506A JP5904545B2 (en) 2012-07-06 2012-07-06 Visible light responsive semiconductor photoelectrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012152506A JP5904545B2 (en) 2012-07-06 2012-07-06 Visible light responsive semiconductor photoelectrode

Publications (2)

Publication Number Publication Date
JP2014015642A true JP2014015642A (en) 2014-01-30
JP5904545B2 JP5904545B2 (en) 2016-04-13

Family

ID=50110594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012152506A Active JP5904545B2 (en) 2012-07-06 2012-07-06 Visible light responsive semiconductor photoelectrode

Country Status (1)

Country Link
JP (1) JP5904545B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206109A (en) * 2014-04-11 2015-11-19 株式会社豊田中央研究所 Photochemical reaction device and electrode for oxidation reaction and electrode for reduction reaction used in the same
JP2016089249A (en) * 2014-11-10 2016-05-23 国立研究開発法人産業技術総合研究所 Utilization method of light energy and utilization device of light energy
JP2016089250A (en) * 2014-11-10 2016-05-23 国立研究開発法人産業技術総合研究所 Utilization method of light energy and utilization device of light energy
KR20190045166A (en) 2016-09-01 2019-05-02 히타치가세이가부시끼가이샤 METHOD FOR MANUFACTURING HYDROGEN GAS
KR102246984B1 (en) * 2020-10-19 2021-04-30 독일에프에이유에를랑겐유체역학연구소 부산지사 Photo-anode device for photoelectrochemical cell and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110180528A (en) * 2019-05-08 2019-08-30 陕西科技大学 One step solvent-thermal method prepares La/B codope BiVO4- OVs/rGO nanocomposite and its application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648125A (en) * 1979-09-28 1981-05-01 Asahi Chemical Ind Silicon board composite structure semiconductor electrode
JP2005044758A (en) * 2003-07-25 2005-02-17 National Institute Of Advanced Industrial & Technology Membranous porous semiconductor photoelectrode with visible light responsiveness
JP2007070675A (en) * 2005-09-06 2007-03-22 Nissan Motor Co Ltd Semiconductor electrode and energy conversion system using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648125A (en) * 1979-09-28 1981-05-01 Asahi Chemical Ind Silicon board composite structure semiconductor electrode
JP2005044758A (en) * 2003-07-25 2005-02-17 National Institute Of Advanced Industrial & Technology Membranous porous semiconductor photoelectrode with visible light responsiveness
JP2007070675A (en) * 2005-09-06 2007-03-22 Nissan Motor Co Ltd Semiconductor electrode and energy conversion system using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206109A (en) * 2014-04-11 2015-11-19 株式会社豊田中央研究所 Photochemical reaction device and electrode for oxidation reaction and electrode for reduction reaction used in the same
JP2016089249A (en) * 2014-11-10 2016-05-23 国立研究開発法人産業技術総合研究所 Utilization method of light energy and utilization device of light energy
JP2016089250A (en) * 2014-11-10 2016-05-23 国立研究開発法人産業技術総合研究所 Utilization method of light energy and utilization device of light energy
KR20190045166A (en) 2016-09-01 2019-05-02 히타치가세이가부시끼가이샤 METHOD FOR MANUFACTURING HYDROGEN GAS
KR102246984B1 (en) * 2020-10-19 2021-04-30 독일에프에이유에를랑겐유체역학연구소 부산지사 Photo-anode device for photoelectrochemical cell and manufacturing method thereof

Also Published As

Publication number Publication date
JP5904545B2 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
Liu et al. Investigation and mitigation of degradation mechanisms in Cu2O photoelectrodes for CO2 reduction to ethylene
Jang et al. Photoelectrochemical water splitting with p‐type metal oxide semiconductor photocathodes
JP5904545B2 (en) Visible light responsive semiconductor photoelectrode
Yu et al. Fabrication and kinetic study of a ferrihydrite-modified BiVO4 photoanode
McDowell et al. Improved stability of polycrystalline bismuth vanadate photoanodes by use of dual-layer thin TiO2/Ni coatings
Li et al. Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency
Kavan et al. Electrochemical characterization of TiO2 blocking layers for dye-sensitized solar cells
Zhu et al. Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review
Zhong et al. Photo-assisted electrodeposition of cobalt–phosphate (Co–Pi) catalyst on hematite photoanodes for solar water oxidation
Hu et al. Efficient photoelectrochemical water splitting over anodized p-type NiO porous films
Hou et al. Electrochemical method for synthesis of a ZnFe2O4/TiO2 composite nanotube array modified electrode with enhanced photoelectrochemical activity
JP6774165B2 (en) Photochemical reaction device, electrode for oxidation reaction and electrode for reduction reaction used for it
Kalamaras et al. Electrodeposited Ti-doped hematite photoanodes and their employment for photoelectrocatalytic hydrogen production in the presence of ethanol
Park et al. Photoelectrochemical oxygen evolution improved by a thin Al2O3 interlayer in a NiOx/n-Si photoanode
JP5905839B2 (en) Hydroxylation catalyst
JP6525816B2 (en) Process for oxidizing water, cell for oxidizing water, water oxidation catalyst, and electrode for electrochemical water oxidation
JP5988090B2 (en) Method for stabilizing visible light responsive semiconductor photoelectrode and water splitting reaction apparatus using the method
JP5803288B2 (en) Semiconductor material and photocatalyst, photoelectrode and solar cell using the same
Saxena et al. Nanostructured Ni: BiVO4 photoanode in photoelectrochemical water splitting for hydrogen generation
JP5642459B2 (en) Photocatalyst electrode, hydrogen generator, and hydrogen generation method
Sordello et al. Photoelectrochemical performance of the Ag (III)-based oxygen-evolving catalyst
JP5675224B2 (en) Visible light water splitting catalyst and photoelectrode manufacturing method
JP2014175245A (en) Semiconductor electrode, and photoelectric conversion element and photochemical reaction element using the same
JP2017095740A (en) Semiconductor electrode, light energy conversion device and manufacturing method of semiconductor electrode
JP2008287900A (en) Photoelectric transfer element and manufacturing method therefor, and solar cell using the element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160309

R150 Certificate of patent or registration of utility model

Ref document number: 5904545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250