JP2016089249A - Utilization method of light energy and utilization device of light energy - Google Patents

Utilization method of light energy and utilization device of light energy Download PDF

Info

Publication number
JP2016089249A
JP2016089249A JP2014227980A JP2014227980A JP2016089249A JP 2016089249 A JP2016089249 A JP 2016089249A JP 2014227980 A JP2014227980 A JP 2014227980A JP 2014227980 A JP2014227980 A JP 2014227980A JP 2016089249 A JP2016089249 A JP 2016089249A
Authority
JP
Japan
Prior art keywords
light energy
anode chamber
oxidation
electrolytic cell
oxidation product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014227980A
Other languages
Japanese (ja)
Other versions
JP6388820B2 (en
Inventor
佐山 和弘
Kazuhiro Sayama
和弘 佐山
康二郎 福
Kojiro Fuku
康二郎 福
雄悟 三石
Yugo Mitsuishi
雄悟 三石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2014227980A priority Critical patent/JP6388820B2/en
Publication of JP2016089249A publication Critical patent/JP2016089249A/en
Application granted granted Critical
Publication of JP6388820B2 publication Critical patent/JP6388820B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a utilization method of light energy, which produces and collects high-purity oxygen at necessary place and time.SOLUTION: The utilization method of light energy comprises: an accumulation step of accumulating in an anode chamber 18 oxidation products such as persulfate ions generated from materials to be oxidized such as sulfate ions by a redox reaction, where the standard redox potential is more positive than +1.23 V (RHE), by applying light on an n-type semiconductor 26 on an anode electrode 22 installed in the anode chamber 18 of an electrolytic tank 12; and a reaction step of transferring the oxidized product accumulated in the anode chamber 18 into a vessel 14 different from the anode chamber 18, thereafter generating oxygen gas by decomposing the oxidized product, and collecting the oxygen gas generated. In a cathode chamber 20, hydrogen gas is generated from water.SELECTED DRAWING: Figure 1

Description

本発明は、半導体光電極に光を照射して酸化生成物を蓄積し、この酸化生成物から酸素を製造したり、この酸化生成物を用いて有機汚染物質を分解したりする光エネルギーの利用方法および光エネルギーの利用装置に関する。   The present invention uses light energy for irradiating a semiconductor photoelectrode with light to accumulate oxidation products, producing oxygen from the oxidation products, and decomposing organic pollutants using the oxidation products. The present invention relates to a method and an apparatus for utilizing light energy.

近年、n型半導体を備える光電極(以下「半導体光電極」ということがある)を使用した水の水素と酸素への分解は、太陽光エネルギーの変換および蓄積のために広く研究されている(特許文献1、特許文献2、および非特許文献1参照)。なかでも、Fe2O3、WO3、BiVO4などの酸化物、TaONなどの酸窒化物、Ta3N5などの窒化物、および硫化物などのn型半導体を備える光電極は、安価で大面積化しやすいという実用的な点で優れている。水素はPt等のカソード電極上で集中して製造され捕集される。大面積の半導体光電極上で生成する酸素をそのまま空気中に放出する場合には、電解槽にガス漏れ防止カバーが不要である。しかしながら、これらの半導体光電極の太陽光エネルギーの変換の実用化には様々な問題点がある。 In recent years, the decomposition of water into hydrogen and oxygen using a photoelectrode comprising an n-type semiconductor (hereinafter sometimes referred to as “semiconductor photoelectrode”) has been extensively studied for the conversion and storage of solar energy ( (See Patent Document 1, Patent Document 2, and Non-Patent Document 1). Among them, photoelectrodes comprising n-type semiconductors such as oxides such as Fe 2 O 3 , WO 3 and BiVO 4 , oxynitrides such as TaON, nitrides such as Ta 3 N 5 , and sulfides are inexpensive. It is excellent in practical point that it is easy to increase the area. Hydrogen is produced and collected in a concentrated manner on a cathode electrode such as Pt. In the case where oxygen generated on a large-area semiconductor photoelectrode is released into the air as it is, a gas leakage prevention cover is unnecessary in the electrolytic cell. However, there are various problems in practical use of solar energy conversion of these semiconductor photoelectrodes.

太陽光エネルギーの変換装置を実用化する場合は、経済性を考慮する必要がある。カソード電極で生成する水素の製造コストは、将来的に30円/Nm3以下にする必要がある。この条件を満たすためには、現状の太陽光エネルギーの変換効率の向上や半導体光電極の製造コストの低減を進める必要があるものの限界がある。経済性を考慮すると、水素のみを製造販売するシステムとコンセプトそのものを変更することが望ましいと考えられる。 When a solar energy conversion device is put into practical use, it is necessary to consider economic efficiency. The production cost of hydrogen produced at the cathode electrode will need to be 30 yen / Nm 3 or less in the future. In order to satisfy this condition, there is a limit to what it is necessary to improve the current solar energy conversion efficiency and reduce the manufacturing cost of the semiconductor photoelectrode. Considering economics, it is desirable to change the concept and the system that produces and sells only hydrogen.

現在の水分解システムの多くは、カソード電極で生成する水素の回収に着目しているため、半導体光電極上で生成する酸素の回収利用に対する意識が低く、酸素を大気中に放出させている場合が多い。しかしながら、酸素も汎用性が高い材料であるため、必要に応じて酸素を製造・捕集できれば、水素および酸素の両生成物を製造・販売する観点から、工業的に付加価値の高いシステムとなり得る。   Many current water splitting systems focus on the recovery of hydrogen produced at the cathode electrode, so there is a low awareness of the recovery and use of oxygen produced on the semiconductor photoelectrode, and oxygen may be released into the atmosphere. Many. However, since oxygen is also a highly versatile material, if oxygen can be produced and collected as needed, it can be an industrially high value-added system from the viewpoint of producing and selling both hydrogen and oxygen products. .

半導体光電極上では酸素の生成だけではなく、いろいろな酸化反応を進行させることができる。水に溶解する酸化還元媒体(レドックス媒体)の還元体を電解槽に共存させると、光照射中に半導体光電極上で発生した正孔によって酸化還元媒体が酸化されて酸化体が生成できる。WO3を備える光電極上で過硫酸などの過酸化物を生成できることも報告されており(非特許文献2参照)、特定の触媒(Ag+やPtなど)存在下で容易に分解して酸素が生成する。 Not only the generation of oxygen but also various oxidation reactions can proceed on the semiconductor photoelectrode. When a reduced form of a redox medium (redox medium) that dissolves in water coexists in an electrolytic cell, the redox medium is oxidized by holes generated on the semiconductor photoelectrode during light irradiation, and an oxidized form can be generated. It has also been reported that peroxides such as persulfuric acid can be generated on a photoelectrode provided with WO 3 (see Non-Patent Document 2), and oxygen decomposes easily in the presence of a specific catalyst (Ag + , Pt, etc.). Generate.

特表2003−504799号公報Special table 2003-504799 gazette 特開2005−44758号公報JP 2005-44758 A

Rie Saito, Yugo Miseki, Kazuhiro Sayama, "Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3 multi-composite in a carbonate electrolyte", Chemical Communications, 48(2012), 3833-3835Rie Saito, Yugo Miseki, Kazuhiro Sayama, "Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4 / SnO2 / WO3 multi-composite in a carbonate electrolyte", Chemical Communications, 48 (2012), 3833-3835 Qixi Mi, Almagul Zhanaidarova, Bruce S. Brunschwig, Harry B. Gray, Nathan S. Lewis, "A Quantitative assessment of the competition between water and anion oxidation at WO3 photoanodes in acidic aqueous electrolytes", Energy Environ. Sci., 2012, 5, 5694-5700Qixi Mi, Almagul Zhanaidarova, Bruce S. Brunschwig, Harry B. Gray, Nathan S. Lewis, "A Quantitative assessment of the competition between water and anion oxidation at WO3 photoanodes in acidic aqueous electrolytes", Energy Environ. Sci., 2012, 5, 5694-5700

以上のような背景から、本発明は、半導体光電極を用いた太陽エネルギーの変換システムにおいて、経済性を考慮し、水素だけでなく、有用な酸化生成物を効率よく捕集する技術を提供することを課題としている。有用な酸化生成物を効率よく捕集できれば、これを製造販売することが可能になるだけでなく、必要に応じて高純度な酸素の製造・回収が可能になる。純度の高い酸素は工業的にはきわめて重要な物質である。   From the background as described above, the present invention provides a technique for efficiently collecting not only hydrogen but also useful oxidation products in consideration of economic efficiency in a solar energy conversion system using a semiconductor photoelectrode. It is an issue. If useful oxidation products can be collected efficiently, not only can this be produced and sold, but high-purity oxygen can be produced and recovered as required. High-purity oxygen is a very important material industrially.

本発明者らは、半導体光電極を用いた水分解での水素製造において、酸化生成物を製造・蓄積した水溶液を半導体光電極室(アノード室)の外に移した後、触媒存在下で酸化生成物を分解することで、従来技術では困難だった純度の高い酸素を必要に応じて製造・捕集する技術を鋭意検討し、本発明を完成するに至った。   In hydrogen production by water splitting using a semiconductor photoelectrode, the inventors transferred an aqueous solution produced and accumulated an oxidation product out of the semiconductor photoelectrode chamber (anode chamber), and then oxidized in the presence of a catalyst. By decomposing the product, the inventors have intensively studied a technique for producing and collecting high-purity oxygen, which was difficult with the prior art, as necessary, and completed the present invention.

本発明の光エネルギーの利用方法は、電解槽のアノード室内に設けられたアノード電極の表面のn型半導体に光を照射して、標準酸化還元電位が+1.23V(RHE)より正側である酸化還元反応によって被酸化物から生成する酸化生成物をアノード室内に蓄積する蓄積工程と、アノード室内に蓄積した酸化生成物を電解槽外に移した後、この酸化生成物の還元を伴う化学反応を行う反応工程とを有する。標準酸化還元電位が+1.23V(RHE)とは、pH=0において+1.23V(NHE、pH=0)の電位であり、水の酸化還元を伴う反応の場合はネルンストの式に従い、pH=14においては+0.059V/pHシフトするので、+0.404V(NHE、pH=14)に相当する。   In the method of using light energy according to the present invention, the standard oxidation-reduction potential is more positive than +1.23 V (RHE) by irradiating light to the n-type semiconductor on the surface of the anode electrode provided in the anode chamber of the electrolytic cell. An accumulation process for accumulating oxidation products generated from the oxide by oxidation-reduction reaction in the anode chamber, and a chemical reaction involving reduction of the oxidation products after transferring the oxidation products accumulated in the anode chamber to the outside of the electrolytic cell And a reaction step of performing. The standard redox potential is +1.23 V (RHE), which is a potential of +1.23 V (NHE, pH = 0) at pH = 0, and in the case of a reaction involving redox water, according to the Nernst equation, the pH = Since it shifts by +0.059 V / pH at 14, this corresponds to +0.404 V (NHE, pH = 14).

本発明の光エネルギーの利用方法において、反応工程は、アノード室内に蓄積した酸化生成物を電解槽と異なる容器に移す過程を備えることが好ましい。本発明の光エネルギーの利用方法において、反応工程は、酸化生成物を分解して酸素ガスを発生させ、発生した酸素ガスを捕集する過程を備えていてもよい。本発明の光エネルギーの利用方法において、被酸化物が硫酸イオンで酸化生成物が過硫酸イオン、被酸化物がCe3+で酸化生成物がCe4+、被酸化物がIO3 -で酸化生成物がIO4 -、被酸化物がCl-で酸化生成物がClO-、または被酸化物がBr-で酸化生成物がBrO-であってもよい。 In the light energy utilization method of the present invention, the reaction step preferably includes a process of transferring the oxidation product accumulated in the anode chamber to a container different from the electrolytic cell. In the light energy utilization method of the present invention, the reaction step may include a process of decomposing the oxidation product to generate oxygen gas and collecting the generated oxygen gas. In the light energy utilization method of the present invention, the oxide is sulfate ion and the oxidation product is persulfate ion, the oxide is Ce 3+ and the oxidation product is Ce 4+ , and the oxide is oxidized with IO 3 The product may be IO 4 , the oxide may be Cl and the oxidation product may be ClO , or the oxide may be Br and the oxidation product may be BrO .

本発明の光エネルギーの利用方法において、n型半導体がTi、W、V、Bi、Fe、Nb、ランタノイド、およびTaの中から選択される1以上の元素を含むことが好ましい。本発明の光エネルギーの利用方法において、アノード室内での酸化還元反応と並行して、電解槽のカソード室内で、被還元物から還元生成物の生成または水から水素ガスの生成を行ってもよい。   In the method of using light energy of the present invention, the n-type semiconductor preferably contains one or more elements selected from Ti, W, V, Bi, Fe, Nb, lanthanoid, and Ta. In the light energy utilization method of the present invention, in parallel with the oxidation-reduction reaction in the anode chamber, the reduction product may be generated from the substance to be reduced or the hydrogen gas may be generated from water in the cathode chamber of the electrolytic cell. .

本発明の光エネルギーの利用装置は、光エネルギーの利用方法に用い、電解槽と、電解槽と異なる容器とを有し、電解槽は、隔膜で区分されたアノード室およびカソード室と、アノード室に設けられ表面にn型半導体を有するアノード電極と、カソード室に設けられアノード電極と電気的に接続されたカソード電極とを備える。本発明の光エネルギーの利用装置において、アノード室内に蓄積した酸化生成物を容器に移す移送部材をさらに有していてもよい。   The light energy utilization apparatus of the present invention is used in a light energy utilization method, and has an electrolytic cell and a container different from the electrolytic cell. The electrolytic cell is divided into an anode chamber and a cathode chamber separated by a diaphragm, and an anode chamber. And an anode electrode having an n-type semiconductor on the surface, and a cathode electrode provided in the cathode chamber and electrically connected to the anode electrode. The light energy utilization apparatus of the present invention may further include a transfer member that transfers the oxidation product accumulated in the anode chamber to the container.

本発明によれば、半導体光電極を用いた水の電気分解で生成した酸化生成物を半導体光電極室外に移した後、酸化生成物を分解することで、必要に応じた場所と時間で純度の高い酸素を製造・捕集できる。   According to the present invention, after transferring an oxidation product generated by electrolysis of water using a semiconductor photoelectrode to the outside of the semiconductor photoelectrode chamber, the oxidation product is decomposed, so that the purity can be obtained at a place and time as required. Can produce and collect high oxygen.

半導体光電極を用いた酸化生成物の製造・蓄積と、酸素の製造を模式的に示した図である。It is the figure which showed typically manufacture and accumulation | storage of the oxidation product using a semiconductor photoelectrode, and manufacture of oxygen.

以下、本発明の光エネルギーの利用方法および光エネルギーの利用装置について、図面を参照しながら実施形態と実施例に基づいて詳細に説明する。なお、重複説明は適宜省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, a light energy utilization method and a light energy utilization apparatus according to the present invention will be described in detail based on embodiments and examples with reference to the drawings. Note that repeated explanation is omitted as appropriate.

太陽光エネルギー変換の装置を実用化する場合は、経済性を考慮すると水素のみを製造販売するというシステムとコンセプトそのものを変更することが望ましい。本発明者らは、「光電気化学コンビナート」という新たなコンセプトを検討した。水を分解して水素を製造・捕集するだけではなく、複数の機能を融合して、有用化学品を製造するなどの付加価値が高い反応を同時に行う概念である。水素以外の高価な有用化学品を製造・販売できれば、結果的に水素製造システム全体の経済性は向上して、早期の実用化へとつながる。   When putting solar energy conversion devices into practical use, it is desirable to change the system and concept of producing and selling only hydrogen, considering the economy. The present inventors examined a new concept called “photoelectrochemical complex”. It is a concept that not only produces and collects hydrogen by decomposing water, but also simultaneously performs high value-added reactions such as producing useful chemicals by fusing multiple functions. If expensive useful chemicals other than hydrogen can be manufactured and sold, the overall economics of the hydrogen production system will improve, leading to early commercialization.

光電気化学コンビナートは、光電気化学装置を中心として、その周りに様々な化学プロセスが配置されてコンビナートを形成する形態である。アノード反応だけでなくカソード反応でも付加価値の高い反応を行うことが可能である。付加価値の高い反応には、廃棄物処理、有害物質分解(漂白、洗浄、殺菌など)、および有機合成反応なども含まれる。本発明では、特に、酸化生成物を製造・蓄積した水溶液から、触媒存在下でこれらを分解することで、純度の高い酸素を必要に応じて製造・捕集する技術を鋭意検討し、それを完成するに至った。   A photoelectrochemical complex is a form in which various chemical processes are arranged around a photoelectrochemical apparatus to form a complex. It is possible to carry out a reaction with high added value not only in the anode reaction but also in the cathode reaction. High value-added reactions include waste disposal, toxic substance decomposition (bleaching, washing, sterilization, etc.) and organic synthesis reactions. In the present invention, in particular, a technique for producing and collecting high-purity oxygen as necessary by decomposing these in the presence of a catalyst from an aqueous solution produced and accumulated oxidation products is studied. It came to be completed.

図1は、本発明の実施形態に係る光エネルギーの利用装置10を模式的に示している。光エネルギーの利用装置10は、電解槽12と、電解槽12と異なる容器14とを備えている。光エネルギーの利用装置10は、後述する光エネルギーの利用方法に用いる。電解槽12は電気分解を行う装置で、隔膜16で区分されたアノード室18およびカソード室20を備えている。隔膜16は、アノード室18内のイオンをカソード室20内に、カソード室20内のイオンをアノード室18内に通過させる。   FIG. 1 schematically shows a light energy utilization apparatus 10 according to an embodiment of the present invention. The light energy utilization apparatus 10 includes an electrolytic cell 12 and a container 14 different from the electrolytic cell 12. The light energy utilization device 10 is used in a light energy utilization method described later. The electrolytic cell 12 is an apparatus for electrolysis, and includes an anode chamber 18 and a cathode chamber 20 separated by a diaphragm 16. The diaphragm 16 allows ions in the anode chamber 18 to pass into the cathode chamber 20 and ions in the cathode chamber 20 to pass into the anode chamber 18.

アノード室18にはアノード電極22が設けられている。アノード電極22は、導電性基板24と、導電性基板24の表面に形成されたn型半導体26とを備えている。n型半導体26としては、価電子帯準位が+1.23V(RHE)よりも正側で、アノード室18内の電気分解に対して安定な物質が使用できる。n型半導体26は、Ti、W、V、Bi、Fe、Nb、ランタノイド、およびTaの中から選択される1以上の元素を含むものが好ましい。具体的には、TiO2、WO3、BiVO4、Fe2O3、Ta2O5、Bi2WO6のような酸化物、TaONなどの酸窒化物、Ta3N5などの窒化物、硫化物、オキシサルファイド、BiOCl、BiOBr、BiOI等のオキシハライド、またはこれらの化合物にドーピングした物質などがn型半導体26として使用できる。 An anode electrode 22 is provided in the anode chamber 18. The anode electrode 22 includes a conductive substrate 24 and an n-type semiconductor 26 formed on the surface of the conductive substrate 24. As the n-type semiconductor 26, a substance having a valence band level on the positive side of +1.23 V (RHE) and stable to electrolysis in the anode chamber 18 can be used. The n-type semiconductor 26 preferably contains one or more elements selected from Ti, W, V, Bi, Fe, Nb, lanthanoid, and Ta. Specifically, oxides such as TiO 2 , WO 3 , BiVO 4 , Fe 2 O 3 , Ta 2 O 5 , Bi 2 WO 6 , oxynitrides such as TaON, nitrides such as Ta 3 N 5 , An oxyhalide such as sulfide, oxysulfide, BiOCl, BiOBr, BiOI, or a material doped with these compounds can be used as the n-type semiconductor 26.

アノード室18内には、アノード電極22が浸るように電解液が注入されている。電解液には、被酸化物が溶けている。カソード室20にはカソード電極28が設けられている。アノード電極22とカソード電極28は、直流電源を介して電気的に接続されている。カソード室20内には、カソード電極28が浸るように電解液が注入されている。また、光エネルギーの利用装置10は、アノード室18内に蓄積した酸化生成物を容器14に移すポンプなどの移送部材を備えている(不図示)。   An electrolytic solution is injected into the anode chamber 18 so that the anode electrode 22 is immersed therein. The oxide is dissolved in the electrolytic solution. A cathode electrode 28 is provided in the cathode chamber 20. The anode electrode 22 and the cathode electrode 28 are electrically connected via a DC power source. An electrolytic solution is injected into the cathode chamber 20 so that the cathode electrode 28 is immersed therein. Further, the light energy utilization apparatus 10 includes a transfer member such as a pump (not shown) that transfers the oxidation product accumulated in the anode chamber 18 to the container 14.

半導体光電極を用いて水を電気分解する一般的な動作原理について説明する。半導体光電極に光を照射すると、伝導帯に電子(e-)が生成し、価電子帯に正孔が生成する。半導体光電極の表面に移動した正孔は、水を酸化して酸素を生成する。一方、生成した電子は、半導体光電極の導電性基板に移動した後、外部短絡線を通り対極に移動する。この際、n型半導体の伝導帯は水素の発生電位よりも正側であるため、半導体光電極と対極の間にバイアス電位をかけて電子のエネルギーを高くする。この電子によって、対極上で水が還元されて水素が生成する。 A general operating principle for electrolyzing water using a semiconductor photoelectrode will be described. When the semiconductor photoelectrode is irradiated with light, electrons (e ) are generated in the conduction band and holes are generated in the valence band. The holes that have moved to the surface of the semiconductor photoelectrode oxidize water to produce oxygen. On the other hand, the generated electrons move to the conductive substrate of the semiconductor photoelectrode, and then move to the counter electrode through the external short-circuit line. At this time, since the conduction band of the n-type semiconductor is on the positive side with respect to the generation potential of hydrogen, a bias potential is applied between the semiconductor photoelectrode and the counter electrode to increase the energy of electrons. By these electrons, water is reduced on the counter electrode to generate hydrogen.

つぎに、本発明の実施形態に係る光エネルギーの利用方法について説明する。光エネルギーの利用方法は、蓄積工程と、反応工程とを備えている。蓄積工程では、電解槽12のアノード室18内に設けられたアノード電極22の表面のn型半導体26に光を照射して、標準酸化還元電位が+1.23V(RHE)より正側である酸化還元反応によって、被酸化物から生成する酸化生成物をアノード室18内に蓄積する。この酸化生成物は、水溶性で高付加価値な物質である。特に、酸化生成物は過酸化物であることが好ましく、さらに過硫酸であることがより好ましい。   Next, a method for using light energy according to an embodiment of the present invention will be described. The method of using light energy includes an accumulation process and a reaction process. In the accumulation step, the n-type semiconductor 26 on the surface of the anode electrode 22 provided in the anode chamber 18 of the electrolytic cell 12 is irradiated with light, and the standard oxidation-reduction potential is an oxidation whose positive side is +1.23 V (RHE). Oxidation products generated from the oxide are accumulated in the anode chamber 18 by the reduction reaction. This oxidation product is a water-soluble and high value-added substance. In particular, the oxidation product is preferably a peroxide, more preferably persulfuric acid.

過酸化物はO-O結合を持つ物質であり、過酸化水素や過硫酸などがある。過硫酸はO-O結合を持つ硫黄のオキソ酸のひとつであり、過硫酸イオンはSO5 2-またはS2O8 2-で表記される。本実施形態の光エネルギーの利用方法に使用できる被酸化物と酸化生成物の組み合わせとしては、H2OとH2O2、SO4 2-とS2O8 2-、SO4 2-とSO5 2-などが挙げられる。また、O-O結合は無いがCe3+とCe4+などや、ハロゲンを含むイオンではIO3 -とIO4 -、Cl-とClO-、Cl-とClO2 -、Cl-とClO3 -、Br-とBrO-、Br-とBrO3 -、I-とIO4 -、I-とIO-なども被酸化物と酸化生成物の組み合わせとして挙げられる。被酸化物および酸化生成物は水溶性であることが好ましい。 Peroxide is a substance with an OO bond, such as hydrogen peroxide or persulfuric acid. Persulfuric acid is one of sulfur oxo acids having an OO bond, and persulfate ion is represented by SO 5 2- or S 2 O 8 2- . Examples of combinations of oxides and oxidation products that can be used in the light energy utilization method of the present embodiment include H 2 O and H 2 O 2 , SO 4 2- and S 2 O 8 2- , SO 4 2- and SO 5 2- and the like. Also, there is no OO bond, but Ce 3+ and Ce 4+ etc., and for ions containing halogen, IO 3 and IO 4 , Cl and ClO , Cl and ClO 2 , Cl and ClO 3 , Br - and BrO -, Br - and BrO 3 -, I - and IO 4 -, I - given as a combination, such as may be oxides and oxidation products - and IO. The oxide and the oxidation product are preferably water-soluble.

反応工程では、アノード室18内に蓄積した酸化生成物を含む電解液をアノード室18外に移した後、この酸化生成物の還元を伴う化学反応を行う。反応工程では、アノード室18内に蓄積した酸化生成物を含む電解液を電解槽12と異なる容器14に移すことが好ましい。必要に応じた場所と時間で化学反応を行えるからである。電解液を容器14に移すのは、流通式またはバッチ式のどちらでも可能である。反応工程では、容器14内の酸化生成物を分解して酸素ガスを発生させ、発生した酸素ガスを捕集することができる。Ag+やPtなどの金属触媒、加熱、または光照射などが、酸素ガスを発生させる酸化生成物の分解に利用できる。酸化生成物の還元を伴う化学反応としては、酸素ガスの発生以外に、酸化生成物の強い酸化力を利用した有機汚染物質の分解や、排水処理、漂白、殺菌、消毒、洗浄、選択的有機合成などが挙げられる。 In the reaction step, the electrolytic solution containing the oxidation product accumulated in the anode chamber 18 is transferred to the outside of the anode chamber 18 and then a chemical reaction involving reduction of the oxidation product is performed. In the reaction step, it is preferable to transfer the electrolytic solution containing the oxidation product accumulated in the anode chamber 18 to a container 14 different from the electrolytic cell 12. This is because a chemical reaction can be performed at a place and time as required. The electrolytic solution can be transferred to the container 14 by either a flow type or a batch type. In the reaction step, the oxidized product in the container 14 is decomposed to generate oxygen gas, and the generated oxygen gas can be collected. Metal catalysts such as Ag + and Pt, heating, or light irradiation can be used to decompose the oxidation product that generates oxygen gas. In addition to the generation of oxygen gas, chemical reactions involving the reduction of oxidation products include decomposition of organic pollutants using the strong oxidizing power of oxidation products, wastewater treatment, bleaching, disinfection, disinfection, washing, selective organic Examples include synthesis.

一方、電解槽12のカソード室20では、アノード室18内での酸化還元反応と並行して、標準酸化還元電位が+1.23V(RHE)より負側である酸化還元反応によって被還元物から還元生成物または水から水素ガスが生成される。本実施形態の光エネルギーの利用方法に使用できる被還元物と還元生成物の組み合わせとしては、Fe3+とFe2+、IO3 -とI-、I3 -とI-などが挙げられる。また、メチルビオロゲンなどの有機レドックスも使用できる。なお、複数のアノード電極を隔壁で隔てた電解槽を用いれば、複数の異なる酸化反応を同時に行うこともできる。 On the other hand, in the cathode chamber 20 of the electrolytic cell 12, in parallel with the oxidation-reduction reaction in the anode chamber 18, reduction is performed from the reduction target by an oxidation-reduction reaction in which the standard oxidation-reduction potential is more negative than +1.23 V (RHE). Hydrogen gas is produced from the product or water. Examples of combinations of reductants and reduction products that can be used in the light energy utilization method of the present embodiment include Fe 3+ and Fe 2+ , IO 3 and I , and I 3 and I . Also, organic redox such as methyl viologen can be used. If an electrolytic cell in which a plurality of anode electrodes are separated by partition walls is used, a plurality of different oxidation reactions can be performed simultaneously.

半導体光電極上には反応を効率よく進行させる助触媒を担持しても良い。助触媒としては、PtやPdなどの貴金属、RuO2やIrO2などの貴金属酸化物、および酸化チタン、酸化ビスマス、もしくは酸化スズなどの酸化物から選択される1以上の物質、またはこれらの複合化物質が挙げられる。助触媒を半導体光電極上に担持することは、ハロゲンイオンが関係する反応で特に好ましい。 A cocatalyst that allows the reaction to proceed efficiently may be supported on the semiconductor photoelectrode. The co-catalyst includes one or more substances selected from noble metals such as Pt and Pd, noble metal oxides such as RuO 2 and IrO 2 , and oxides such as titanium oxide, bismuth oxide, and tin oxide, or a composite thereof. Chemical substances. Supporting a cocatalyst on a semiconductor photoelectrode is particularly preferred for reactions involving halogen ions.

以下、実施例によって本発明をさらに具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited at all by these Examples.

(実施例1)
まず、0.5mol/LのNa2WO4水溶液20mLをビュレット内の陽イオン交換樹脂に通し、この滴下液が中性になるまでイオン交換水を足しながら、ポリエチレングリコール(平均分子量300)12.5mLと、エタノール20mLの混合溶液中に滴下することで、H2WO4水溶液へプロトン交換した。つぎに、このH2WO4水溶液約100mLを75℃で約13mLに濃縮して、WO3の前駆体水溶液を得た。そして、導電性基板であるF-SnO2(FTO)膜の表面にこの前駆体水溶液をスピンコートした後、550℃で空気焼成し、これを12回繰り返して、n型半導体がWO3であるアノード電極を作製した。つぎに、カチオン交換膜を隔膜とした二室型の電解槽のアノード室内にこのアノード電極を、カソード室内にPtからなるカソード電極をそれぞれ設置し、これらの電極を直流電源を介して電気的に接続した。
Example 1
First, 20 mL of a 0.5 mol / L Na 2 WO 4 aqueous solution was passed through a cation exchange resin in a burette, and while adding ion-exchanged water until this dripping solution became neutral, polyethylene glycol (average molecular weight 300) was 12.5 mL. Then, the solution was proton-exchanged into an aqueous solution of H 2 WO 4 by dropping it into a mixed solution of 20 mL of ethanol. Next, about 100 mL of this H 2 WO 4 aqueous solution was concentrated to about 13 mL at 75 ° C. to obtain a WO 3 precursor aqueous solution. Then, the precursor aqueous solution is spin-coated on the surface of the F-SnO 2 (FTO) film, which is a conductive substrate, and then air-fired at 550 ° C. This is repeated 12 times, and the n-type semiconductor is WO 3 An anode electrode was produced. Next, this anode electrode is installed in the anode chamber of a two-chamber electrolytic cell using a cation exchange membrane as a diaphragm, and a cathode electrode made of Pt is installed in the cathode chamber, and these electrodes are electrically connected via a DC power source. Connected.

そして、アノード室とカソード室の両室内に1mol/LのH2SO4水溶液を29mLずつ入れて、疑似太陽光照射下、1mAの一定電流で7.2Cの電気量を流した。アノード室内の電解液に38μmolの過硫酸イオン(ファラデー効率100%)が生成したことを呈色実験で確認した。つぎに、アノード室内に蓄積した過硫酸イオン13μmolを含む電解液を気密性が高い別の容器に移した。そして、この電解液に128μmolのAg+触媒を入れて60℃で2時間撹拌したところ、6.5μmol(収率100%)の酸素が発生したことをガスクロマトグラフで確認した。このように電解槽と離れた場所で酸素が製造できた。この酸素を捕集して売買の対象とすることができる。 Then, 29 mL of a 1 mol / L H 2 SO 4 aqueous solution was put in each of the anode chamber and the cathode chamber, and an electric quantity of 7.2 C was passed at a constant current of 1 mA under irradiation with simulated sunlight. A color experiment confirmed that 38 μmol of persulfate ion (Faraday efficiency 100%) was generated in the electrolyte in the anode chamber. Next, the electrolytic solution containing 13 μmol of persulfate ions accumulated in the anode chamber was transferred to another container having high airtightness. Then, 128 μmol of Ag + catalyst was added to this electrolytic solution and stirred at 60 ° C. for 2 hours, and it was confirmed by gas chromatography that 6.5 μmol (yield 100%) of oxygen was generated. In this way, oxygen could be produced at a location away from the electrolytic cell. This oxygen can be collected and sold.

(比較例1)
電解槽に1mol/LのHClO4水溶液を入れたこと、および疑似太陽光照射下で7.2Cの電気量を流したことが実施例1と異なるが、これらを除いて実施例1と同様にして電気分解を行った。その結果、アノード室内には過酸化物が生成しなかった。アノード室内に全量17.5μmol(収率94%)の酸素が発生したことを、酸素センサーを利用した経時変化によって確認した。半導体光電極上でClO4 -がClO4ラジカルに酸化される報告があるが、ClO4ラジカルは不安定であるため即座に酸素まで分解する(非特許文献2参照)。この場合、半導体光電極上で直接酸素が生成するため、電解槽外で酸素の製造・捕集ができない。
(Comparative Example 1)
Although it differs from Example 1 that 1 mol / L HClO 4 aqueous solution was put into the electrolytic cell and an electric quantity of 7.2 C was flowed under simulated sunlight irradiation, it was the same as Example 1 except these. Electrolysis was performed. As a result, no peroxide was generated in the anode chamber. It was confirmed by the change over time using an oxygen sensor that 17.5 μmol (yield 94%) of oxygen was generated in the anode chamber. Although it has been reported that ClO 4 is oxidized to ClO 4 radicals on the semiconductor photoelectrode, the ClO 4 radicals are unstable and thus immediately decompose to oxygen (see Non-Patent Document 2). In this case, oxygen is directly generated on the semiconductor photoelectrode, so that production and collection of oxygen cannot be performed outside the electrolytic cell.

(実施例2)
まず、アニオン交換膜を隔膜とした二室型の電解槽に、実施例1と同じアノード電極、カソード電極、および両極の電気的接続部材を設置した。つぎに、Ce(ClO4)3とHClO4の双方が1mol/Lで溶けている水溶液をアノード室に、1mol/LのHClO4水溶液をカソード室に29mLずつ入れた。そして、疑似太陽光照射下、0.2mAの一定電流で2.9Cの電気量を流した。その結果、アノード室内に13μmolのCe4+(ファラデー効率43%)が生成したことを呈色実験で確認した。
(Example 2)
First, the same anode electrode, cathode electrode, and bipolar electrical connection members as in Example 1 were installed in a two-chamber electrolytic cell using an anion exchange membrane as a diaphragm. Next, an aqueous solution in which both Ce (ClO 4 ) 3 and HClO 4 were dissolved at 1 mol / L was placed in the anode chamber, and 29 mL of a 1 mol / L HClO 4 aqueous solution was placed in the cathode chamber. And the electric quantity of 2.9C was sent with the constant current of 0.2mA under pseudo-sunlight irradiation. As a result, it was confirmed by a color experiment that 13 μmol of Ce 4+ (Faraday efficiency 43%) was generated in the anode chamber.

(実施例3)
まず、カチオン交換膜を隔膜とした二室型の電解槽に、実施例1と同じアノード電極、カソード電極、および両極の電気的接続部材を設置した。つぎに、アノード室とカソード室の両室内に0.2mol/LのNaIO3水溶液を29mLずつ入れて、疑似太陽光照射下、1mAの一定電流で7.2Cの電気量を流した。アノード室内の電解液に19μmolのIO4 -(ファラデー効率50%)が生成したことを呈色実験で確認した。
(Example 3)
First, the same anode electrode, cathode electrode, and bipolar electrical connection members as in Example 1 were installed in a two-chamber electrolytic cell using a cation exchange membrane as a diaphragm. Next, 29 mL of 0.2 mol / L NaIO 3 aqueous solution was put into both the anode chamber and the cathode chamber, and an electric quantity of 7.2 C was applied at a constant current of 1 mA under simulated sunlight irradiation. A color experiment confirmed that 19 μmol of IO 4 (Faraday efficiency 50%) was produced in the electrolyte in the anode chamber.

(実施例4)
まず、カチオン交換膜を隔膜とした二室型の電解槽に、実施例1と同じアノード電極、カソード電極、および両極の電気的接続部材を設置した。つぎに、アノード室とカソード室の両室内に5.0mol/LのNaCl水溶液を35mLずつ入れて、キセノンランプを用いて紫外・可視光を照射下、1.0mAの一定電流で2.0Cの電気量を流した。アノード室内の電解液に5.2μmolのClO-(ファラデー効率50%)が生成したことを呈色実験で確認した。
Example 4
First, the same anode electrode, cathode electrode, and bipolar electrical connection members as in Example 1 were installed in a two-chamber electrolytic cell using a cation exchange membrane as a diaphragm. Next, 35 mL of 5.0 mol / L NaCl aqueous solution is placed in both the anode chamber and the cathode chamber, and an electric charge of 2.0 C is applied at a constant current of 1.0 mA under irradiation with ultraviolet and visible light using a xenon lamp. Washed away. A color experiment confirmed that 5.2 μmol of ClO (Faraday efficiency 50%) was formed in the electrolyte in the anode chamber.

(実施例5)
まず、カチオン交換膜を隔膜とした二室型の電解槽に、実施例1と同じアノード電極、カソード電極、および両極の電気的接続部材を設置した。つぎに、アノード室とカソード室の両室内に5.0mol/LのNaBr水溶液を35mLずつ入れて、キセノンランプを用いて紫外・可視光を照射下、1.0mAの一定電流で2.0Cの電気量を流した。アノード室内の電解液に7.8μmolのBrO-(ファラデー効率75%)が生成したことを呈色実験で確認した。
(Example 5)
First, the same anode electrode, cathode electrode, and bipolar electrical connection members as in Example 1 were installed in a two-chamber electrolytic cell using a cation exchange membrane as a diaphragm. Next, 35 mL each of 5.0 mol / L NaBr aqueous solution is placed in both the anode chamber and the cathode chamber, and an electric quantity of 2.0 C is applied at a constant current of 1.0 mA under irradiation with ultraviolet and visible light using a xenon lamp. Washed away. The anode chamber of the electrolytic solution of 7.8μmol BrO - (Faraday efficiency 75%) had to be generated and confirmed by coloration experiments.

本発明は、純度の高い酸素を必要に応じて製造・捕集する技術に適用できる。また、酸化生成物を利用した有機汚染物質の分解などにも応用できる。   The present invention can be applied to a technique for producing and collecting high-purity oxygen as necessary. It can also be applied to the decomposition of organic pollutants using oxidation products.

10 光エネルギーの利用装置
12 電解槽
14 容器
16 隔膜
18 アノード室
20 カソード室
22 アノード電極
24 導電性基板
26 n型半導体
28 カソード電極
DESCRIPTION OF SYMBOLS 10 Light energy utilization apparatus 12 Electrolyzer 14 Container 16 Diaphragm 18 Anode chamber 20 Cathode chamber 22 Anode electrode 24 Conductive substrate 26 N-type semiconductor 28 Cathode electrode

Claims (8)

電解槽のアノード室内に設けられたアノード電極の表面のn型半導体に光を照射して、標準酸化還元電位が+1.23V(RHE)より正側である酸化還元反応によって被酸化物から生成する酸化生成物を前記アノード室内に蓄積する蓄積工程と、
前記アノード室内に蓄積した酸化生成物を前記電解槽外に移した後、この酸化生成物の還元を伴う化学反応を行う反応工程と、
を有する光エネルギーの利用方法。
The n-type semiconductor on the surface of the anode electrode provided in the anode chamber of the electrolytic cell is irradiated with light, and is generated from the oxide by an oxidation-reduction reaction in which the standard oxidation-reduction potential is positive from +1.23 V (RHE). An accumulation step of accumulating oxidation products in the anode chamber;
A reaction step of carrying out a chemical reaction involving reduction of the oxidation product after transferring the oxidation product accumulated in the anode chamber to the outside of the electrolytic cell;
A method of using light energy.
前記反応工程は、前記アノード室内に蓄積した酸化生成物を前記電解槽と異なる容器に移す過程を備える請求項1に記載の光エネルギーの利用方法。   The method of using light energy according to claim 1, wherein the reaction step includes a step of transferring an oxidation product accumulated in the anode chamber to a container different from the electrolytic cell. 前記反応工程は、酸化生成物を分解して酸素ガスを発生させ、発生した酸素ガスを捕集する過程を備える請求項1または2に記載の光エネルギーの利用方法。   The method of using light energy according to claim 1, wherein the reaction step includes a process of decomposing an oxidation product to generate oxygen gas and collecting the generated oxygen gas. 前記被酸化物が硫酸イオンで前記酸化生成物が過硫酸イオン、前記被酸化物がCe3+で前記酸化生成物がCe4+、前記被酸化物がIO3 -で前記酸化生成物がIO4 -、前記被酸化物がCl-で前記酸化生成物がClO-、または前記被酸化物がBr-で前記酸化生成物がBrO-である請求項1から3のいずれかに記載の光エネルギーの利用方法。 The oxide is sulfate ion and the oxidation product is persulfate ion, the oxide is Ce 3+ and the oxidation product is Ce 4+ , the oxide is IO 3 and the oxidation product is IO 4 -, wherein the oxide is Cl - said oxidation product is ClO - or the oxidizable compound is Br, - light energy according to any one of claims 1 to 3 is - said oxidation product is BrO How to use 前記n型半導体がTi、W、V、Bi、Fe、Nb、ランタノイド、およびTaの中から選択される1以上の元素を含む請求項1から4のいずれかに記載の光エネルギーの利用方法。   The method of using light energy according to any one of claims 1 to 4, wherein the n-type semiconductor includes one or more elements selected from Ti, W, V, Bi, Fe, Nb, lanthanoid, and Ta. 前記アノード室内での酸化還元反応と並行して、前記電解槽のカソード室内で、被還元物から還元生成物の生成または水から水素ガスの生成を行う請求項1から5のいずれかに記載の光エネルギーの利用方法。   6. In parallel with the oxidation-reduction reaction in the anode chamber, the reduction product is generated from the substance to be reduced or the hydrogen gas is generated from water in the cathode chamber of the electrolytic cell. How to use light energy. 請求項2から6のいずれかに記載の光エネルギーの利用方法に用いる光エネルギーの利用装置であって、
電解槽と、前記電解槽と異なる容器とを有し、
前記電解槽は、隔膜で区分されたアノード室およびカソード室と、前記アノード室に設けられ表面にn型半導体を備えるアノード電極と、前記カソード室に設けられ前記アノード電極と電気的に接続されたカソード電極とを備える光エネルギーの利用装置。
A light energy utilization apparatus for use in the light energy utilization method according to any one of claims 2 to 6,
Having an electrolytic cell and a container different from the electrolytic cell,
The electrolytic cell has an anode chamber and a cathode chamber separated by a diaphragm, an anode electrode provided in the anode chamber and having an n-type semiconductor on a surface thereof, and provided in the cathode chamber and electrically connected to the anode electrode. A light energy utilization device comprising a cathode electrode.
前記アノード室内に蓄積した酸化生成物を前記容器に移す移送部材をさらに有する請求項7に記載の光エネルギーの利用装置。   The light energy utilization apparatus according to claim 7, further comprising a transfer member that transfers the oxidation product accumulated in the anode chamber to the container.
JP2014227980A 2014-11-10 2014-11-10 Light energy utilization method and light energy utilization apparatus Active JP6388820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014227980A JP6388820B2 (en) 2014-11-10 2014-11-10 Light energy utilization method and light energy utilization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014227980A JP6388820B2 (en) 2014-11-10 2014-11-10 Light energy utilization method and light energy utilization apparatus

Publications (2)

Publication Number Publication Date
JP2016089249A true JP2016089249A (en) 2016-05-23
JP6388820B2 JP6388820B2 (en) 2018-09-12

Family

ID=56017687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014227980A Active JP6388820B2 (en) 2014-11-10 2014-11-10 Light energy utilization method and light energy utilization apparatus

Country Status (1)

Country Link
JP (1) JP6388820B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113571717A (en) * 2021-07-23 2021-10-29 中国人民解放军军事科学院军事医学研究院 High-efficiency photoelectrode and preparation method and application thereof
CN115011988A (en) * 2022-08-09 2022-09-06 河南省动力电池创新中心有限公司 Multilayer composite light anode and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693270A (en) * 1979-12-26 1981-07-28 Fuji Photo Film Co Ltd Reversible photo-charging photochemical cell
JPS6328895A (en) * 1986-07-21 1988-02-06 Shiken:Kk Oxidation-reduction method and diaphragm type photoelectrochemical device
JP2004256378A (en) * 2003-02-27 2004-09-16 National Institute Of Advanced Industrial & Technology Method and apparatus for manufacturing hydrogen and oxygen
JP2007070675A (en) * 2005-09-06 2007-03-22 Nissan Motor Co Ltd Semiconductor electrode and energy conversion system using the same
JP2010001539A (en) * 2008-06-20 2010-01-07 Sumitomo Chemical Co Ltd Method of producing aromatic hydroxide
JP2014015642A (en) * 2012-07-06 2014-01-30 National Institute Of Advanced Industrial & Technology Visible light responsive semiconductor photoelectrode
US20140318979A1 (en) * 2011-11-08 2014-10-30 The University Court Of The University Of Glasgow Apparatus and methods for the electrochemical generation of oxygen and/or hydrogen

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693270A (en) * 1979-12-26 1981-07-28 Fuji Photo Film Co Ltd Reversible photo-charging photochemical cell
JPS6328895A (en) * 1986-07-21 1988-02-06 Shiken:Kk Oxidation-reduction method and diaphragm type photoelectrochemical device
JP2004256378A (en) * 2003-02-27 2004-09-16 National Institute Of Advanced Industrial & Technology Method and apparatus for manufacturing hydrogen and oxygen
JP2007070675A (en) * 2005-09-06 2007-03-22 Nissan Motor Co Ltd Semiconductor electrode and energy conversion system using the same
JP2010001539A (en) * 2008-06-20 2010-01-07 Sumitomo Chemical Co Ltd Method of producing aromatic hydroxide
US20140318979A1 (en) * 2011-11-08 2014-10-30 The University Court Of The University Of Glasgow Apparatus and methods for the electrochemical generation of oxygen and/or hydrogen
JP2014532812A (en) * 2011-11-08 2014-12-08 ザ ユニヴァーシティー コート オブ ザ ユニヴァーシティー オブ グラスゴーThe University Court Of The University Of Glasgow Apparatus and method for electrochemical generation of oxygen and / or hydrogen
JP2014015642A (en) * 2012-07-06 2014-01-30 National Institute Of Advanced Industrial & Technology Visible light responsive semiconductor photoelectrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113571717A (en) * 2021-07-23 2021-10-29 中国人民解放军军事科学院军事医学研究院 High-efficiency photoelectrode and preparation method and application thereof
CN113571717B (en) * 2021-07-23 2024-03-19 中国人民解放军军事科学院军事医学研究院 Efficient photoelectrode and preparation method and application thereof
CN115011988A (en) * 2022-08-09 2022-09-06 河南省动力电池创新中心有限公司 Multilayer composite light anode and preparation method thereof

Also Published As

Publication number Publication date
JP6388820B2 (en) 2018-09-12

Similar Documents

Publication Publication Date Title
Liu et al. Hydrogen peroxide production from solar water oxidation
Baek et al. Selective and efficient Gd-doped BiVO4 photoanode for two-electron water oxidation to H2O2
Sayama Production of high-value-added chemicals on oxide semiconductor photoanodes under visible light for solar chemical-conversion processes
Mase et al. Efficient photocatalytic production of hydrogen peroxide from water and dioxygen with bismuth vanadate and a cobalt (II) chlorin complex
McHugh et al. Decoupled electrochemical water splitting: from fundamentals to applications
Miseki et al. Photocatalytic water splitting for Solar hydrogen production using the carbonate effect and the Z‐scheme reaction
JP6418906B2 (en) Light energy utilization method and light energy utilization apparatus
Siahrostami et al. One-or two-electron water oxidation, hydroxyl radical, or H2O2 evolution
Bloor et al. Solar-driven water oxidation and decoupled hydrogen production mediated by an electron-coupled-proton buffer
Hu et al. Efficient photoelectrochemical water splitting over anodized p-type NiO porous films
Arai et al. Solar CO 2 reduction using H2O by a semiconductor/metal-complex hybrid photocatalyst: enhanced efficiency and demonstration of a wireless system using SrTiO 3 photoanodes
Valdés et al. Oxidation and photo-oxidation of water on TiO2 surface
Daskalaki et al. Solar light-induced photoelectrocatalytic degradation of bisphenol-A on TiO2/ITO film anode and BDD cathode
JP6213958B2 (en) Fuel cell
Khnayzer et al. Structure and activity of photochemically deposited “CoPi” oxygen evolving catalyst on titania
Fujishima et al. Competitive photoelectrochemical oxidation of reducing agents at the titanium dioxide photoanode
Zahran et al. Kinetics and mechanism of heterogeneous water oxidation by α-Mn2O3 sintered on an FTO electrode
Raptis et al. Renewable energy production by photoelectrochemical oxidation of organic wastes using WO3 photoanodes
JP4406689B2 (en) Equipment for producing hydrogen and oxygen by water photolysis
Pang et al. Photocatalytic production of hypochlorous acid over Pt/WO3 under simulated solar light
Qiao et al. High yield of H2O2 and efficient S recovery from toxic H2S splitting through a self-driven photoelectrocatalytic system with a microporous GDE cathode
Poonia et al. Photoelectrocatalytic systems for simultaneous energy recovery and wastewater treatment: a review
Choi et al. Solar hydrogen peroxide production on carbon nanotubes wired to titania nanorod arrays catalyzing As (III) oxidation
JP6388820B2 (en) Light energy utilization method and light energy utilization apparatus
Tada et al. Hydrogen Peroxide Production by Inorganic Photocatalysts Consisting of Gold Nanoparticle and Metal Oxide toward Oxygen Cycle Chemistry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180815

R150 Certificate of patent or registration of utility model

Ref document number: 6388820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250