JP2014014834A - Method of manufacturing high strength steel formed member - Google Patents

Method of manufacturing high strength steel formed member Download PDF

Info

Publication number
JP2014014834A
JP2014014834A JP2012153434A JP2012153434A JP2014014834A JP 2014014834 A JP2014014834 A JP 2014014834A JP 2012153434 A JP2012153434 A JP 2012153434A JP 2012153434 A JP2012153434 A JP 2012153434A JP 2014014834 A JP2014014834 A JP 2014014834A
Authority
JP
Japan
Prior art keywords
steel sheet
molded member
less
zinc
strength steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012153434A
Other languages
Japanese (ja)
Other versions
JP5880321B2 (en
Inventor
Kazuhito Imai
和仁 今井
Hitomi Nishihata
ひとみ 西畑
Keiji Futaba
敬士 二葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2012153434A priority Critical patent/JP5880321B2/en
Publication of JP2014014834A publication Critical patent/JP2014014834A/en
Application granted granted Critical
Publication of JP5880321B2 publication Critical patent/JP5880321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably impart excellent resistance weldability and coating adhesion to a high strength steel formed member obtained by hot press-forming a galvanized steel sheet.SOLUTION: The galvanized steel sheet is heated to a temperature range of a hardenable temperature or more, the press-forming of the heated galvanized steel sheet is started in the temperature range of the hardenable temperature or more and the heated galvanized steel sheet is quickly cooled in a metal mold in parallel to the press forming or immediately after the press forming, thereby obtaining a formed member, and a surface of this formed member is ground off by projecting media having an average particle diameter of 90 μm or less as a shot bullet by a shot projection device. The high strength steel formed member is manufactured in such a manner that the obtained formed member has a zinc oxide layer having a thickness of 15 g/mor less in an upper part of an iron zinc solid solution phase of a member surface, and has surface roughness of 7 μm or less in a roughness index Rp of JIS regulation.

Description

本発明は、高強度鋼成形部材の製造方法に関し、具体的には、高度の抵抗溶接性と良好な塗装密着性とを兼ね備える高強度鋼成形部材の製造方法に関する。   The present invention relates to a method for manufacturing a high-strength steel molded member, and specifically relates to a method for manufacturing a high-strength steel molded member having both high resistance weldability and good paint adhesion.

近年、亜鉛系めっき鋼板からなる成形素材を熱間プレス成形して高強度鋼成形部材(熱間プレス成形品)を製造する技術の実用化が推進されている。   In recent years, the practical application of a technique for producing a high-strength steel molded member (hot press-formed product) by hot-pressing a forming material made of a zinc-based plated steel sheet has been promoted.

この高強度鋼成形部材は、例えばスポット溶接といった抵抗溶接により接合されて製品に組み立てられることが多く、高強度鋼成形部材のユーザーには、得られた高強度鋼成形部材の抵抗溶接性を現在よりも改善したいという要望がある。   This high-strength steel forming member is often joined to a product by resistance welding, for example, spot welding, and users of high-strength steel forming members now have resistance weldability of the obtained high-strength steel forming members. There is a demand for improvement.

特許文献1には、高強度鋼成形部材の抵抗溶接性の向上を意図するものではないが、鉄−亜鉛固溶相を含む1〜50μmの厚みの亜鉛系めっき層を表面に有するとともにこの亜鉛系めっき層の上に存在する酸化亜鉛層の平均厚みが2μm以下であることにより、高強度で塗装後耐食性や塗装密着性に優れる熱間プレス成形品が開示されている。   Patent Document 1 does not intend to improve resistance weldability of a high-strength steel molded member, but has a zinc-based plating layer having a thickness of 1 to 50 μm including an iron-zinc solid solution phase on the surface of this zinc. A hot press-molded product is disclosed that has high strength and excellent post-painting corrosion resistance and paint adhesion, because the average thickness of the zinc oxide layer present on the system plating layer is 2 μm or less.

国際公開第2004/094684号パンフレットInternational Publication No. 2004/094684 Pamphlet

しかし、特許文献1を含め、これまでは熱間プレス成形品の抵抗溶接性を高めるための検討は殆ど行われてこなかった。一方で、ユーザーからは以前にも増して高度の性能が要求され、その一つとして高度の抵抗溶接性と良好な塗装密着性とを兼ね備える高強度鋼成形部材が求められるようになった。   However, up to now, including Patent Document 1, little study has been made to improve the resistance weldability of hot press-formed products. On the other hand, users have demanded higher performance than ever before, and as one of them, a high-strength steel molded member having both high resistance weldability and good paint adhesion has come to be demanded.

本発明の目的は、高度の抵抗溶接性と良好な塗装密着性とを兼ね備える高強度鋼成形部材の製造方法を提供することである。   An object of the present invention is to provide a method for producing a high-strength steel molded member having both high resistance weldability and good paint adhesion.

本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、(i)熱間プレス成形品の抵抗溶接性にはその表面の導電性の影響が大きいこと、(ii)熱間プレス成形品の表面をショットブラスト処理等により研掃すると、熱間プレス成形品の抵抗溶接性が改善されること、さらには、(iv)熱間プレス成形品の研掃条件によっては熱間プレス成形品の塗装密着性が劣化することを知見した。本発明は、これらの知見(i)〜(iv)に基づくものである。   As a result of intensive studies to solve the above problems, the present inventors have found that (i) the resistance weldability of a hot press-formed product is greatly affected by the conductivity of its surface, (ii) When the surface of the press-formed product is abraded by shot blasting or the like, the resistance weldability of the hot press-formed product is improved. Furthermore, (iv) depending on the polishing conditions of the hot press-formed product, It was found that the paint adhesion of molded products deteriorated. The present invention is based on these findings (i) to (iv).

本発明は、亜鉛系めっき鋼板を焼入れ可能温度以上の温度範囲に加熱する加熱工程と、前記加熱された亜鉛系めっき鋼板を、焼入れ可能温度以上の温度範囲でプレス成形を開始し、プレス成形と並行してまたはプレス成形の直後に金型内で急冷して成形部材を得る熱間プレス工程と、熱間プレス工程で得られた成形部材の表面を研掃する研掃工程とを備え、前記研掃工程を経て得られた成形部材が、部材表面の鉄亜鉛固溶相の上部に厚さが15g/m以下の酸化亜鉛層を有するとともに、JIS規定の粗さ指標Rpで7μm以下、である表面粗さを有することを特徴とする高強度鋼成形部材の製造方法である。 The present invention includes a heating step of heating the zinc-based plated steel sheet to a temperature range higher than or equal to the quenchable temperature, and starting the press molding of the heated zinc-based plated steel sheet at a temperature range equal to or higher than the quenchable temperature. In parallel or immediately after press molding, a hot pressing step for rapidly cooling in a mold to obtain a molded member, and a polishing step for cleaning the surface of the molded member obtained in the hot pressing step, The molded member obtained through the polishing process has a zinc oxide layer having a thickness of 15 g / m 2 or less on the iron zinc solid solution phase on the surface of the member, and a roughness index Rp defined by JIS is 7 μm or less. It is a manufacturing method of the high strength steel forming member characterized by having the surface roughness which is.

この本発明では、成形部材の表面の研掃が、成形部材の表面に、ショット投射装置で平均粒子径90μm以下のメディアをショット弾として投射することにより、行われることが好ましい。   In the present invention, it is preferable that the surface of the molded member is polished by projecting a medium having an average particle diameter of 90 μm or less as a shot bullet on the surface of the molded member with a shot projection device.

本発明によれば、亜鉛系めっき鋼板を熱間プレス成形して得られる高強度鋼成形部材に、優れた抵抗溶接性および塗装密着性を安定して与えることができる。   According to the present invention, excellent resistance weldability and paint adhesion can be stably imparted to a high-strength steel molded member obtained by hot press forming a zinc-based plated steel sheet.

本発明を実施するための形態を工程毎に説明する。
(1)加熱工程
亜鉛系めっき鋼板を焼入れ可能温度以上の温度範囲に加熱する。
The form for implementing this invention is demonstrated for every process.
(1) Heating process The zinc-based plated steel sheet is heated to a temperature range above the quenchable temperature.

亜鉛系めっき鋼板のめっき付着量は、加熱工程により表面に鉄のスケールが形成されない程度に被覆されていればよく、そのためには20g/m以上である。さらに、近年は、高強度鋼成形部材の高耐食性も求められることが多く、そのためには40g/m以上、より好ましくは60g/m以上である。めっき付着量が過小であると部位によっては耐食性が要求レベルに満たないことがある。 The coating amount of the galvanized steel sheet only needs to be coated to such an extent that iron scale is not formed on the surface by the heating process, and for that purpose, it is 20 g / m 2 or more. Furthermore, in recent years, high corrosion resistance of high-strength steel molded members is often required, and for that purpose, it is 40 g / m 2 or more, more preferably 60 g / m 2 or more. If the amount of plating is too small, the corrosion resistance may be less than the required level depending on the part.

一方、後述する研掃工程を経た後における成形部材の後述の表面を得るには、加熱工程において鉄亜鉛の合金化反応を十分に進行させる必要がある。この観点から、めっき付着量は、少ないほうがよく、好ましくは100g/m以下であり、より好ましくは70g/m以下である。 On the other hand, in order to obtain the later-described surface of the molded member after the later-described polishing step, it is necessary to sufficiently advance the alloying reaction of iron zinc in the heating step. From this point of view, the amount of plating adhesion should be small, preferably 100 g / m 2 or less, and more preferably 70 g / m 2 or less.

このような比較的厚目付けの亜鉛系めっき鋼板を得るには、溶融亜鉛めっきのほうが電気亜鉛めっきよりもコスト的に有利である。さらに、単なる溶融亜鉛めっき鋼板よりも合金化溶融亜鉛めっき鋼板のほうが、加熱工程において鉄−亜鉛間の相互拡散が速やかに進行し、最終的に鉄−亜鉛金属間化合物相が存在しない成形部材を得られやすいために、好ましい。   In order to obtain such a comparatively thick galvanized steel sheet, hot dip galvanization is more cost effective than electrogalvanization. Furthermore, the alloyed hot-dip galvanized steel sheet is faster than the hot-dip galvanized steel sheet, and the interdiffusion between the iron and zinc proceeds more rapidly in the heating process, and finally the formed member without the iron-zinc intermetallic compound phase exists. It is preferable because it is easily obtained.

前述したように、溶融亜鉛めっき鋼板(合金化溶融亜鉛めっき鋼板を含む)は、通常、めっき皮膜中に少量のAlを含有する。これは、溶融亜鉛めっきにおいては、めっき−母材鋼界面の鉄亜鉛の拡散を抑制するためと、めっき浴のドロス量を制御するために、めっき浴には通常0.1〜0.2%前後のAlが添加されていることによる。前述したように、成形部材の鉄亜鉛固溶相および酸化皮膜(酸化亜鉛層)に含有されるAl量が過剰であると、高強度鋼成形部材の塗装密着性が劣化する。このため、溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板のめっき皮膜中のAl含有量は0.40%以下であることが好ましい。   As described above, galvanized steel sheets (including galvannealed steel sheets) usually contain a small amount of Al in the plating film. This is because, in hot dip galvanizing, in order to suppress the diffusion of iron zinc at the plating-base steel interface and to control the dross amount of the plating bath, it is usually 0.1 to 0.2% in the plating bath. This is because the front and rear Al are added. As described above, when the amount of Al contained in the iron zinc solid solution phase and the oxide film (zinc oxide layer) of the molded member is excessive, the coating adhesion of the high strength steel molded member is deteriorated. For this reason, it is preferable that Al content in the plating film of a hot dip galvanized steel plate or an alloyed hot dip galvanized steel plate is 0.40% or less.

高強度鋼成形部材の加工素材として合金化溶融亜鉛めっき鋼板を使用する場合、めっき皮膜中のFe含有量が比較的高めのものが好ましい。これは、上述したように、比較的短時間の加熱で金属間化合物相を消滅させて、酸化亜鉛層とその下の鉄亜鉛固溶相のみからなる表層構造を形成するためである。ただし、めっき皮膜中のFe含有量を過度に高めようとするのは、場合によっては、溶融めっき鋼板製造時のラインスピードを極端に低下させる必要を生じ、現実的ではない。めっき皮膜のFe含有量の好ましい範囲は10〜20%であり、より好ましくは10〜15%である。   When an alloyed hot-dip galvanized steel sheet is used as a processing material for a high-strength steel forming member, it is preferable that the Fe content in the plating film is relatively high. This is because, as described above, the intermetallic compound phase is extinguished by heating for a relatively short time to form a surface layer structure composed of only the zinc oxide layer and the iron zinc solid solution phase therebelow. However, it is not practical to excessively increase the Fe content in the plating film because, in some cases, it is necessary to extremely reduce the line speed during the production of the hot dip plated steel sheet. The preferable range of the Fe content of the plating film is 10 to 20%, more preferably 10 to 15%.

コスト面では一般に不利であるが、高強度鋼成形部材の加工素材として電気亜鉛系めっき鋼板を使用することも可能である。電気めっき鋼板には、通常はめっき皮膜がAlを含まないという利点がある。電気めっき鋼板は、普通の純亜鉛めっき鋼板でもよいが、亜鉛−鉄合金めっき鋼板(めっき皮膜のFe含有量が20%以下)または亜鉛−8〜18%ニッケル合金めっき鋼板が好ましい。亜鉛−鉄合金電気めっき鋼板には、Alを含有しないという利点に加えて、合金化溶融亜鉛めっき鋼板と同様に、比較的短時間で固溶相を形成し、かつ金属間化合物を残存させないようにすることができるという利点がある。   Although it is generally disadvantageous in terms of cost, it is also possible to use an electrogalvanized steel sheet as a processing material for a high-strength steel forming member. Electroplated steel sheets have the advantage that the plating film usually does not contain Al. The electroplated steel sheet may be an ordinary pure galvanized steel sheet, but is preferably a zinc-iron alloy plated steel sheet (the Fe content of the plating film is 20% or less) or a zinc-8-18% nickel alloy plated steel sheet. In addition to the advantage of not containing Al, the zinc-iron alloy electroplated steel sheet, like the alloyed hot-dip galvanized steel sheet, forms a solid solution phase in a relatively short time and does not leave intermetallic compounds. There is an advantage that can be.

加熱工程では、亜鉛系めっき鋼板を焼入れ可能な温度範囲の所定温度に加熱する。加熱温度は、めっき鋼板の鋼成分にもよるが、通常は700〜1000℃程度であり、好ましくは850〜950℃である。亜鉛系めっき鋼板の加熱温度が高過ぎると、酸化皮膜層の膜厚が大きくなり過ぎ、表面の不均一が過大となって均一な表面を得るための研掃処理に要する時間が長くなる。一方、加熱温度が低過ぎると、焼入れし難くなる他に、材料によっては軟化が不十分となり、熱間プレス成形時に過大なプレス圧が必要となって、高強度鋼成形部材の表面に欠陥が発生したり、材料が破断するといった成形不良の原因となることがある。   In the heating step, the galvanized steel sheet is heated to a predetermined temperature in a temperature range that can be quenched. Although heating temperature is based also on the steel component of a plated steel plate, it is about 700-1000 degreeC normally, Preferably it is 850-950 degreeC. If the heating temperature of the galvanized steel sheet is too high, the film thickness of the oxide film layer becomes too large, the surface non-uniformity becomes excessive, and the time required for the polishing treatment for obtaining a uniform surface becomes long. On the other hand, if the heating temperature is too low, it becomes difficult to quench, and depending on the material, the softening becomes insufficient, and an excessive press pressure is required during hot press forming, resulting in defects on the surface of the high-strength steel forming member. It may be a cause of molding defects such as generation or material breakage.

加熱手段は、特に限定されるものではない。通常は、ガス炉または電気炉により、加工素材の亜鉛系めっき鋼板を酸化性雰囲気中で加熱する。酸化性雰囲気は大気でよいが、大気および/または酸素と他のガス(例、窒素、燃焼ガス等)との混合ガスでもよい。このような酸化性雰囲気中で加熱すると、めっき層の表面には酸化亜鉛層が形成されるので、加熱中の亜鉛の蒸発量を抑制することができる。一方で、後述するように合金化反応を十分に進行させる上では、それに伴って酸化亜鉛層も厚く成長して溶接性には好ましくないため、後述する研掃工程を備えることが特に有効である。   The heating means is not particularly limited. Usually, a zinc-based plated steel sheet as a work material is heated in an oxidizing atmosphere by a gas furnace or an electric furnace. The oxidizing atmosphere may be air, but may also be air and / or a mixed gas of oxygen and another gas (eg, nitrogen, combustion gas, etc.). When heated in such an oxidizing atmosphere, since the zinc oxide layer is formed on the surface of the plating layer, the amount of zinc evaporation during heating can be suppressed. On the other hand, as will be described later, in order to sufficiently advance the alloying reaction, the zinc oxide layer grows thick accordingly and is not preferable for weldability. Therefore, it is particularly effective to have a polishing step described later. .

さらに、この加熱工程において、めっき層と母材鋼との合金化反応を十分に進行させる。合金化反応が不十分であると、熱間プレス成形の開始前のめっき鋼板の表層部には液相状態の亜鉛(または亜鉛−鉄合金)が存在し、この状態でプレス加工することにより得られる成形部材に溶融亜鉛割れが生じることが考えられる。そのため、加熱工程においては、熱間プレス成形後の高強度鋼成形部材の表層部に、鉄亜鉛固溶相(α−Fe中にZnが固溶した組織)が形成され、亜鉛−鉄系の金属間化合物相が存在しない程度にまで、十分に合金化反応を進行させる。   Furthermore, in this heating step, the alloying reaction between the plating layer and the base steel is sufficiently advanced. If the alloying reaction is insufficient, zinc in the liquid phase (or zinc-iron alloy) exists in the surface layer portion of the plated steel sheet before the start of hot press forming, and is obtained by pressing in this state. It is considered that molten zinc cracks occur in the formed member. Therefore, in the heating process, an iron-zinc solid solution phase (structure in which Zn is dissolved in α-Fe) is formed on the surface layer portion of the high-strength steel formed member after hot press forming, and the zinc-iron-based structure is formed. The alloying reaction is sufficiently advanced to such an extent that no intermetallic compound phase exists.

合金化反応を十分に進行させるには、前述した加熱温度の他に、加熱時間や昇温速度等も影響する。加熱時間が例えば数秒間と極端に短いと、合金化反応が進行し難い皮膜を十分に形成することが難しい。室温の鋼板を電気炉やガス炉で加熱する場合は、加熱温度やめっき鋼板の寸法にもよるが、好ましい加熱時間は4〜6分間である。   In order to sufficiently advance the alloying reaction, in addition to the heating temperature described above, the heating time, the heating rate, and the like are also affected. If the heating time is extremely short, for example, several seconds, it is difficult to sufficiently form a film in which the alloying reaction does not proceed easily. When heating a steel plate at room temperature in an electric furnace or a gas furnace, the preferred heating time is 4 to 6 minutes, although it depends on the heating temperature and the dimensions of the plated steel plate.

(2)熱間プレス工程
加熱工程により加熱された亜鉛系めっき鋼板を、焼入れ可能温度以上の温度範囲でプレス成形を開始し、プレス成形と並行してまたはプレス成形の直後に金型内で急冷することにより高強度鋼成形部材を得る。
(2) Hot pressing process Press-molding of the zinc-based plated steel sheet heated in the heating process is started in a temperature range above the quenchable temperature, and is rapidly cooled in the mold in parallel with or immediately after press molding. By doing so, a high strength steel molded member is obtained.

熱間プレス成形の条件は、公知の熱間プレス成形の条件と同じでよい。加熱工程で加熱された亜鉛系めっき鋼板を、速やかにプレス機に搬送してセットし、プレス成形する。このとき、プレス金型で成形部材が冷却されることにより、焼入れが達成される。プレス金型に水冷機構を組み込むことが有効であり、成形部材に直接水がかかる直接水冷方式と、金型内部を水冷する間接水冷方式のいずれでも構わない。   The conditions for hot press molding may be the same as those for known hot press molding. The galvanized steel sheet heated in the heating process is quickly conveyed to a press machine and set, and press-molded. At this time, quenching is achieved by cooling the molded member with a press die. It is effective to incorporate a water cooling mechanism into the press die, and either a direct water cooling method in which water is directly applied to the molding member or an indirect water cooling method in which the inside of the die is water cooled may be used.

このような熱間プレス工程は、当業者にとっては周知であるので、これ以上の説明は省略する。   Since such a hot pressing process is well known to those skilled in the art, further explanation is omitted.

(3)研掃工程
熱間プレス工程で得られた高強度鋼成形部材の表面の酸化亜鉛層の厚さを研掃工程において低減するか、あるいは酸化亜鉛層を除去する。研掃工程の結果、高強度鋼成形部材の表面の酸化亜鉛の厚さを15g/m以下とし、かつ高強度鋼成形部材の表面粗さをJIS B 0601(2001)の粗さ曲線の最大山高さRpで7μm以下であるようにする。
(3) Abrasion process The thickness of the zinc oxide layer on the surface of the high-strength steel molded member obtained in the hot pressing process is reduced in the abrading process, or the zinc oxide layer is removed. As a result of the polishing process, the thickness of the zinc oxide on the surface of the high-strength steel molded member is 15 g / m 2 or less, and the surface roughness of the high-strength steel molded member is the maximum of the roughness curve of JIS B 0601 (2001). The peak height Rp is 7 μm or less.

このような表面を得るためには、研掃工程として、ショットブラスト処理が好ましい。具体的には、平均粒子径が30〜300μm程度のメディアをショット弾として、インペラータイプあるいはエアー式の投射装置により数秒間〜60秒間のショットブラスト処理を行う。   In order to obtain such a surface, a shot blast treatment is preferable as the polishing step. Specifically, shot blasting is performed for several seconds to 60 seconds with an impeller type or air type projection device using a medium having an average particle diameter of about 30 to 300 μm as a shot bullet.

高強度鋼成形部材の酸化亜鉛層が厚過ぎると、表面の導電性を阻害し、抵抗溶接性に悪影響を与える。また、研掃処理の結果、表面粗さが大きくなり過ぎると、塗装密着性に悪影響を及ぼす。抵抗溶接性と塗装密着性を兼ね備える高強度鋼成形部材を安定して得るためには、前述したように、研掃工程を経た後の表面の酸化亜鉛の厚さは15g/m以下であり、望ましくは10g/m以下であり、かつ、表面粗さは、JIS B 0601(2001)の粗さ曲線の最大山高さRpで7μm以下である。 When the zinc oxide layer of the high-strength steel molded member is too thick, the surface conductivity is hindered and the resistance weldability is adversely affected. Further, if the surface roughness becomes too large as a result of the blast treatment, the coating adhesion is adversely affected. In order to stably obtain a high-strength steel molded member having both resistance weldability and paint adhesion, as described above, the thickness of the zinc oxide on the surface after the polishing step is 15 g / m 2 or less. Desirably, it is 10 g / m 2 or less, and the surface roughness is 7 μm or less in terms of the maximum peak height Rp of the roughness curve of JIS B 0601 (2001).

研掃には、所望の表面が得られる限りにおいて、ショットブラスト処理の他に、サンドペーパーを用いたり、あるいは研掃処理のメディアとして例えば鋼線を切断して得られるカットワイヤー材や鋼球を破砕して鋭利な突起を有するグリッドを用いたりしてもよい。また、ある程度目の細かなサンドペーパーを使用する方法もある。   As long as the desired surface can be obtained, in addition to shot blasting, sandpaper is used for the blasting, or, for example, a cut wire material or a steel ball obtained by cutting a steel wire as a media for the blasting treatment is used. You may use the grid which crushes and has a sharp protrusion. There is also a method that uses sandpaper that is fine to some degree.

しかし、これらの手段では、高強度鋼成形部材の表面が荒れ易く、また鉄亜鉛固溶相の除去量が増加して耐食性に悪影響を及ぼす可能性があるので、適正条件の設定が難しい。この点、前述した粒径程度のメディア(材質として鋼やアルミナがあげられる。形状も極端に角張っている等でなければ、例えば特に限られない)をショット弾とするショットブラスト処理を用いることが容易である。また、メディアの粒径もできるだけ細かいほうがムラなく均一に処理し易い(カバー率が高い)とともに、粗さの小さい表面を得やすいので好ましい。特に、メディアの平均粒子径が90μm以下であると、塗装密着性の観点からも好適である。   However, with these means, the surface of the high-strength steel molded member is likely to be rough, and the removal amount of the iron-zinc solid solution phase may increase to adversely affect the corrosion resistance, so that it is difficult to set appropriate conditions. In this regard, it is possible to use a shot blasting process in which the above-mentioned media having a particle size (such as steel and alumina are used as the material. The shape is not particularly limited unless the shape is extremely square, for example). Easy. Further, it is preferable that the particle diameter of the media is as small as possible because it is easy to uniformly treat (high coverage) and a surface with low roughness is easily obtained. In particular, when the average particle diameter of the media is 90 μm or less, it is also preferable from the viewpoint of coating adhesion.

このようにして、亜鉛系めっき鋼板を熱間プレス成形することにより製造される高強度鋼成形部材に、優れた抵抗溶接性および塗装密着性を安定して与えることができる。   In this way, excellent resistance weldability and paint adhesion can be stably imparted to a high-strength steel molded member produced by hot press-molding a zinc-based plated steel sheet.

本発明の作用効果を、実施例を参照しながら、さらに具体的に説明する。
(A)高強度鋼成形部材(熱間プレス部材)の製造
C:0.2%、Si:0.3%、Mn:1.3%、P:0.01%を含有する板厚2mmの焼入れ性の冷延鋼板を素地鋼板とする、めっき付着量が片面当たり65g/mで、めっき皮膜中のFe含有量が15%の合金化溶融亜鉛めっき鋼板(記号:GA)を加工素材として用いた。
The effects of the present invention will be described more specifically with reference to examples.
(A) Manufacture of high-strength steel molded member (hot pressed member) C: 0.2%, Si: 0.3%, Mn: 1.3%, P: 0.01% of plate thickness containing 0.01% An alloyed hot-dip galvanized steel sheet (symbol: GA) with a hardened cold-rolled steel sheet as the base steel sheet and a plating coating amount of 65 g / m 2 per side and a Fe content of 15% in the plating film is used as the processing material. Using.

また、上記と同様の化学組成および板厚の冷延鋼板を素地鋼板とする、電気亜鉛ニッケルめっき鋼板(記号:ZN、めっき付着量:片面あたり50、70g/m、めっき皮膜中のNi含有量:8〜18%)、溶融亜鉛めっき鋼板(記号GI、めっき付着量:片面あたり80g/m)も加工素材として用いた。 Further, an electrogalvanized nickel-plated steel sheet (symbol: ZN, plating adhesion amount: 50, 70 g / m 2 per side, Ni content in the plating film), using a cold-rolled steel sheet having the same chemical composition and thickness as the base steel sheet Amount: 8 to 18%), hot-dip galvanized steel sheet (symbol GI, plating adhesion amount: 80 g / m 2 per side) was also used as a processing material.

(B)加熱工程
前記のめっき鋼板を、大気雰囲気の電気炉を用いて900℃で5分間加熱した。ただし、GI材は7分間加熱した。
(B) Heating process The said plated steel plate was heated at 900 degreeC for 5 minute (s) using the electric furnace of an atmospheric condition. However, the GI material was heated for 7 minutes.

(C)熱間プレス工程:
前記めっき鋼板を電気炉から取り出し後、速やかに、プレス成形を模擬するため、ジャケット水冷機構を有する平板プレスによりプレスして焼き入れサンプルを作成した。水冷プレス金型には30秒間保持した。これにより、プレス成形と同時に焼入れも達成された。
(C) Hot pressing process:
In order to simulate press forming immediately after the plated steel plate was taken out of the electric furnace, it was pressed by a flat plate press having a jacket water cooling mechanism to prepare a quenched sample. The water-cooled press mold was held for 30 seconds. Thereby, quenching was achieved simultaneously with press molding.

(D)研掃工程:
表1に示す投射方法で、カバー率、酸化亜鉛層の厚み、表面粗さを変えた試料No.1〜39を作成した。
(D) Abrasion process:
In the projection method shown in Table 1, the sample No. 1 was obtained by changing the cover rate, the thickness of the zinc oxide layer, and the surface roughness. 1-39 were created.

研掃は、表1に示すメディア種,粒径,砥粒形状,研掃条件,投射時間で行った。表1の「研掃条件」の欄における条件1〜5の内容は以下に列記の通りである。   The polishing was performed using the media type, particle size, abrasive shape, polishing conditions, and projection time shown in Table 1. The contents of the conditions 1 to 5 in the column of “Scouring conditions” in Table 1 are listed below.

条件1:エアー圧0.3MPa,投射距離100mm,ノズル径8mm
条件2:エアー圧0.5MPa,投射距離100mm,ノズル径8mm
条件3:エアー圧0.5MPa,投射距離100mm,ノズル径8mm
条件4:エアー圧0.5MPa,投射距離100mm,ノズル径8mm
条件5:荷重9.8N,10往復
また、粒径200,300μmのショット弾は直圧式のショット投射機で投射し、その他のショット弾は吸引式のショット投射機で投射した。
Condition 1: Air pressure 0.3 MPa, projection distance 100 mm, nozzle diameter 8 mm
Condition 2: Air pressure 0.5 MPa, projection distance 100 mm, nozzle diameter 8 mm
Condition 3: Air pressure 0.5 MPa, projection distance 100 mm, nozzle diameter 8 mm
Condition 4: Air pressure 0.5 MPa, projection distance 100 mm, nozzle diameter 8 mm
Condition 5: Load 9.8 N, 10 reciprocations Further, shot bullets having a particle diameter of 200 and 300 μm were projected by a direct pressure type shot projector, and other shot bullets were projected by a suction type shot projector.

サンドペーパー研削は、70×30mmの鉄製ブロック体に砥粒の異なる数種類のサンドペーパーを巻き付け、荷重9.8Nで全面を10往復させ、研掃した。   Sandpaper grinding was performed by winding several types of sandpaper with different abrasive grains around a 70 × 30 mm iron block, reciprocating the entire surface 10 times with a load of 9.8 N, and polishing.

研掃処理(サンドペーパー研削を除く)のカバー率は、焼入れサンプルに予め市販の感圧紙を張り付けておき、これに研掃処理し、投射された部分の変色した割合をデジタル画像処理により2値化して求めた。   The coverage of the blasting process (excluding sandpaper grinding) is a binary value obtained by applying a commercially available pressure-sensitive paper to the quenched sample in advance, scouring it, and changing the proportion of the projected portion discolored by digital image processing. I asked for it.

(E)試料No.1〜39の分析,評価
(E1)表面の酸化亜鉛量
試料No.1〜39の表面を5%クロム酸で溶解し、溶液をICP発光分析することにより定量した。
(E) Sample No. 1 to 39 Analysis and Evaluation (E1) Surface Zinc Oxide Sample No. The surface of 1-39 was dissolved with 5% chromic acid, and the solution was quantified by ICP emission analysis.

(E2)表面の集合組織(鉄亜鉛固溶相の存在)
まず、試料No.1〜39の表面からX線回折スペクトルをとった。表1に示す試料ではいずれも、亜鉛−鉄金属間化合物に由来するピークは観察されなかった。次に、試料No.1〜39から断面観察用サンプルを切り出し、樹脂埋め込みと鏡面研磨した後、表層部を断面方向から、SEMの後方散乱電子(BSE)像で観察した。表1の試料No.1〜39の鉄亜鉛固溶相の厚みは10〜30μm程度であり、固溶相中の亜鉛濃度は25〜35%の範囲であった。
(E2) Surface texture (existence of iron zinc solid solution phase)
First, sample no. X-ray diffraction spectra were taken from surfaces 1 to 39. In any of the samples shown in Table 1, no peak derived from the zinc-iron intermetallic compound was observed. Next, sample No. Samples for cross-sectional observation were cut out from 1 to 39, and after resin embedding and mirror polishing, the surface layer portion was observed with a backscattered electron (BSE) image of SEM from the cross-sectional direction. Sample No. in Table 1 The thicknesses of the iron zinc solid solution phases 1 to 39 were about 10 to 30 μm, and the zinc concentration in the solid solution phase was in the range of 25 to 35%.

(E3)塗装密着性
試料No.1〜39に化成処理(処理液:日本パーカライジング株式会社製PBL−3080,処理条件は当該処理液での標準条件)を施した後、さらに、電着塗装[関西ペイント製GT10,膜厚目標値15μm,電圧および通電パターン:200Vのスロープ通電(0Vから200Vまで30秒間で昇圧)]、焼付け160℃×20分間)を施した。この電着塗装材を、50℃の5%塩化ナトリウム水溶液に1000時間浸漬し、その後、塗装面について、JIS K 5600に規定された、2mm幅碁盤目試験25マスの剥離試験を行い、レーティングで8以上のものを合格(○)と表示し、特にレーティング10を合格(◎)と表示し、レーティング6以下を×と表示した。
(E3) Paint adhesion Sample No. 1 to 39, after chemical conversion treatment (treatment liquid: PBL-3080 manufactured by Nihon Parkerizing Co., Ltd., treatment conditions are standard conditions in the treatment liquid), electrodeposition coating [GT10 made by Kansai Paint, film thickness target value 15 μm, voltage and energization pattern: 200 V slope energization (pressurization from 0 V to 200 V in 30 seconds)], baking 160 ° C. × 20 minutes). This electrodeposition coating material was immersed in a 5% sodium chloride aqueous solution at 50 ° C. for 1000 hours, and then the coated surface was subjected to a 2 mm wide cross-cut test 25-mass peel test specified in JIS K 5600, and rated. A rating of 8 or more was indicated as pass (◯), a rating of 10 was indicated as pass (合格), and a rating of 6 or less was indicated as x.

(F)化成結晶の組成比(P/P+H)の測定
市販のリン酸亜鉛処理液を用いてサンプル表面に約2.0〜2.3g/mの化成処理層を形成した。これをX線回折法により、燐酸亜鉛結晶のホパイト;H、燐酸亜鉛鉄結晶のフォスフォフィラト;Pの回折強度(cps)をそれぞれ測定して、その比率をP/(P+H)とした。P/(P+H)が0.20以上を合格とし、これ以外を不合格とした。
(F) Measurement of chemical composition composition ratio (P / P + H) A chemical conversion treatment layer of about 2.0 to 2.3 g / m 2 was formed on the sample surface using a commercially available zinc phosphate treatment solution. The X-ray diffraction method was used to measure the diffraction intensity (cps) of zinc phosphate crystal hoplite: H, zinc iron phosphate crystal phosphophyllate; P, and the ratio was defined as P / (P + H). When P / (P + H) was 0.20 or more, it was judged as acceptable, and the others were regarded as unacceptable.

(G)抵抗溶接性:
次の条件で試料1〜39の表面の電気抵抗を測定し、これをスポット溶接性の評価とした。
(G) Resistance weldability:
The electrical resistance of the surfaces of Samples 1 to 39 was measured under the following conditions, and this was evaluated as spot weldability.

DR型電極チップ(直径6mm,先端部曲率40mm)で鋼板を挟み、加圧力0.3MPa、加圧時間4秒間、定電流2Aを通電し、電極間電圧値から抵抗値を測定した。電気抵抗30mΩ以下を良好(○)とし、それ以外を不芳(×)とした。   A steel plate was sandwiched between DR-type electrode tips (diameter 6 mm, tip curvature 40 mm), a constant current 2 A was applied for 4 seconds with a pressurizing force of 0.3 MPa, and the resistance value was measured from the voltage value between the electrodes. An electrical resistance of 30 mΩ or less was evaluated as good (◯), and the other resistance was determined as bad (×).

以上の試験条件および試験結果を表1にまとめて示す。以下に表1における試料No.1〜39について説明する。   The above test conditions and test results are summarized in Table 1. Sample No. in Table 1 is shown below. 1 to 39 will be described.

(H)GA材鋼球投射系
表1の試料No.1〜4,6〜14は本発明例である。試料No.1〜4,6〜14の投射結果から、試料No.1〜4,6〜14は、良好な抵抗溶接性および塗装密着性を有することが分かる。
(H) GA steel ball projection system Sample No. in Table 1 1-4 and 6-14 are examples of the present invention. Sample No. From the projection results of 1-4, 6-14, sample no. It can be seen that 1-4, 6-14 have good resistance weldability and paint adhesion.

これに対し、試料No.5は、酸化亜鉛量が本発明の範囲を超える比較例であり、抵抗溶接性が不芳であった。   In contrast, sample no. No. 5 is a comparative example in which the amount of zinc oxide exceeds the range of the present invention, and resistance weldability was unsatisfactory.

試料No.15は、酸化亜鉛量および表面粗さが本発明の範囲を超える比較例であり、抵抗溶接性および塗装密着性がいずれも不芳であった。   Sample No. No. 15 is a comparative example in which the amount of zinc oxide and the surface roughness exceed the range of the present invention, and both resistance weldability and paint adhesion were unsatisfactory.

さらに、試料No.1〜4,6〜14の本発明例で比較すると、P/P+Hの値が0.40以上であると(試料No.9〜13)、SDT1000h剥離レーティング評価が10(すなわち、塗装密着性が◎)になる。これらは、メディアである鋼球の粒径が50μm以下と細かいものを使用したときに得られており、また、燐酸亜鉛結晶のホパイトよりも耐アルカリ性の高い燐酸亜鉛鉄結晶のフォスフォフィライトの比率が増加していた。   Furthermore, sample no. When compared with the present invention examples 1 to 4 and 6 to 14, when the value of P / P + H is 0.40 or more (sample Nos. 9 to 13), the SDT 1000h peeling rating evaluation is 10 (that is, the coating adhesion is ◎). These are obtained when the diameter of the steel ball, which is a medium, is as fine as 50 μm or less, and the zinc phosphate iron crystal phosphophyllite has higher alkali resistance than the phosphate of zinc phosphate crystal. The ratio was increasing.

(I)GA材アルミナ投射系
表1の試料No.16〜19は、酸化亜鉛量と表面粗さが本発明の範囲を満足する本発明例であり、抵抗溶接性および塗装密着性がいずれも良好であり、特に塗装密着性が良好であった。
(I) GA material alumina projection system Sample No. in Table 1 Nos. 16 to 19 are examples of the present invention in which the amount of zinc oxide and the surface roughness satisfy the scope of the present invention, both resistance weldability and coating adhesion were good, and particularly coating adhesion was good.

さらに、試料No.16〜19の結果から理解されるように、アルミナの粒径が40〜80μmと細かいものを使用することにより、塗装密着性が極めて良好になる。   Furthermore, sample no. As understood from the results of 16 to 19, the coating adhesion is very good by using a fine alumina particle having a particle size of 40 to 80 μm.

(J)GA材グリット投射系
表1の試料No.20〜23は、酸化亜鉛層の除去は達成されたものの表面粗さが本発明の範囲を超える比較例であるため、塗装密着性が不芳であった。母材の表面粗さが過大であると、塗膜厚みでは被覆し切れない突起部分からの腐食が進行するためと推定される。
(J) GA material grit projection system Sample No. in Table 1 Nos. 20 to 23 were comparative examples in which the removal of the zinc oxide layer was achieved but the surface roughness exceeded the range of the present invention, and thus the coating adhesion was unsatisfactory. If the surface roughness of the base material is excessive, it is presumed that corrosion from the protruding portion that cannot be covered with the coating film thickness proceeds.

(K)GA材サンドペーパー研削系
表1の試料No.24〜27のうちで酸化亜鉛量と表面粗さの両方が本発明の範囲を満足する試料No.26のみが抵抗溶接性および塗装密着性が良好であった。このように、サンドペーパーによる研削は、ショットブラスト処理よりも、表面が荒れ易く、適正条件の設定が難しいことがわかる。
(K) GA material sandpaper grinding system Sample No. in Table 1 Among samples Nos. 24-27, the sample No. 2 in which both the amount of zinc oxide and the surface roughness satisfy the scope of the present invention. Only No. 26 had good resistance weldability and paint adhesion. Thus, it can be seen that grinding with sandpaper is more rough than the shot blasting process and it is difficult to set appropriate conditions.

試料No.28は、研掃を行わない参考例であり、酸化亜鉛量が18g/mと多いために抵抗溶接性が不芳であり、表面粗さが本発明の範囲を超えるために塗装密着性も不芳であった。 Sample No. No. 28 is a reference example in which no polishing is performed, the resistance weldability is unsatisfactory because the amount of zinc oxide is as large as 18 g / m 2 , and the coating roughness is also low because the surface roughness exceeds the range of the present invention. It was unsatisfactory.

(L)Zn−Ni70めっき材鋼球投射系、Zn−Ni50めっき材アルミナ投射系
表1の試料No.29〜32は、Zn−Ni70材であり、酸化亜鉛量と表面粗さが本発明の範囲内であり、特に試料No.29〜31はSDT1000h後の碁盤目剥離のレーティングが良好であった。
(L) Zn-Ni70 plating material steel ball projection system, Zn-Ni50 plating material alumina projection system Nos. 29 to 32 are Zn—Ni 70 materials, and the amount of zinc oxide and the surface roughness are within the scope of the present invention. Nos. 29 to 31 had good cross-cut peeling ratings after SDT 1000h.

試料No.33,34は、Zn−Ni50材をアルミナ投射したものであり、酸化亜鉛量と表面粗さの両方が本発明の範囲内であり、試料No.33は特にSDT1000h後の碁盤目剥離のレーティングが良好であった。   Sample No. Nos. 33 and 34 are obtained by projecting Zn—Ni50 material with alumina, both the amount of zinc oxide and the surface roughness are within the scope of the present invention, and In particular, No. 33 had a good grid peeling rating after 1000 hours of SDT.

試料No.35は、研掃を行わない参考例であり、酸化亜鉛量が本発明の範囲より多いために抵抗溶接性が不芳であり、表面粗さが10μmであるために塗装密着性も不芳であった。   Sample No. No. 35 is a reference example in which no polishing is performed, the resistance weldability is unsatisfactory because the amount of zinc oxide is larger than the range of the present invention, and the coating adhesion is unsatisfactory because the surface roughness is 10 μm. there were.

(M)GIめっき材鋼球投射系
表1の試料No.36〜38は、亜鉛酸化物量および粗さが本発明の範囲を満足する本発明例であり、抵抗溶接性および塗装密着性がいずれも良好であった。
(M) GI plated steel ball projection system Sample No. in Table 1 36 to 38 are examples of the present invention in which the amount and roughness of zinc oxide satisfy the scope of the present invention, and both resistance weldability and paint adhesion were good.

さらに、試料No.39は、研掃を行わない参考例であり、酸化亜鉛量が18g/mと多いために塗装密着性が不芳であり、表面粗さが8μmであるために耐食性も不芳であった。 Furthermore, sample no. No. 39 is a reference example in which no cleaning is performed, and the coating adhesion is poor because the amount of zinc oxide is as large as 18 g / m 2, and the corrosion resistance is also poor because the surface roughness is 8 μm. .

Figure 2014014834
Figure 2014014834

Claims (2)

亜鉛系めっき鋼板を焼入れ可能温度以上の温度範囲に加熱する加熱工程と、
加熱された前記亜鉛めっき鋼板を、焼入れ可能温度以上の温度範囲でプレス成形を開始し、プレス成形と並行してまたはプレス成形の直後に金型内で急冷して成形部材を得る熱間プレス工程と、
熱間プレス成形工程で得られた前記成形部材の表面を研掃する研掃工程とを備え、
前記研掃工程を経て得られた成形部材が、表面の鉄亜鉛固溶相の上部に厚さが15g/m以下の酸化亜鉛層を有するとともに、JIS規定の粗さ指標Rpで7μm以下である表面粗さを有すること
を特徴とする高強度鋼成形部材の製造方法。
A heating process for heating the galvanized steel sheet to a temperature range above the quenchable temperature;
Hot pressing process in which press forming of the heated galvanized steel sheet is started in a temperature range higher than the quenchable temperature, and is rapidly cooled in the mold in parallel with the press forming or immediately after the press forming. When,
A polishing step of cleaning the surface of the molded member obtained in the hot press molding step,
The molded member obtained through the abrading step has a zinc oxide layer having a thickness of 15 g / m 2 or less on the surface of the iron zinc solid solution phase and has a roughness index Rp defined by JIS of 7 μm or less. A method for producing a high-strength steel molded member having a certain surface roughness.
前記成形部材の表面の研掃は、前記成形部材の表面に、ショット投射装置で平均粒子径90μm以下のメディアをショット弾として投射することにより、行われる請求項1記載の高強度鋼成形部材の製造方法。   The high-strength steel molded member according to claim 1, wherein the surface of the molded member is polished by projecting a medium having an average particle diameter of 90 µm or less as a shot bullet on the surface of the molded member with a shot projection device. Production method.
JP2012153434A 2012-07-09 2012-07-09 Manufacturing method of high strength steel molded parts Active JP5880321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012153434A JP5880321B2 (en) 2012-07-09 2012-07-09 Manufacturing method of high strength steel molded parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012153434A JP5880321B2 (en) 2012-07-09 2012-07-09 Manufacturing method of high strength steel molded parts

Publications (2)

Publication Number Publication Date
JP2014014834A true JP2014014834A (en) 2014-01-30
JP5880321B2 JP5880321B2 (en) 2016-03-09

Family

ID=50110002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012153434A Active JP5880321B2 (en) 2012-07-09 2012-07-09 Manufacturing method of high strength steel molded parts

Country Status (1)

Country Link
JP (1) JP5880321B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006232A1 (en) * 2014-07-10 2016-01-14 Jfeスチール株式会社 Hot-press-molded article and production method for same, and plated steel sheet for use in hot-press molding
WO2017017905A1 (en) * 2015-07-29 2017-02-02 Jfeスチール株式会社 Method for producing hot-pressed member
JP2018176220A (en) * 2017-04-12 2018-11-15 株式会社キーレックス Method for welding hot press-molded product
CN109518113A (en) * 2019-01-28 2019-03-26 河北天振工程技术有限公司 A kind of environmentally friendly hot zinc plating equipment and process dedicated for corrugated steel
JP2019173044A (en) * 2018-03-26 2019-10-10 日鉄日新製鋼株式会社 Inorganic conversion treatment solution and inorganic conversion treated steel sheet
JP2020032434A (en) * 2018-08-28 2020-03-05 株式会社キーレックス Hot press molding method
JP2020143354A (en) * 2019-03-08 2020-09-10 Jfeスチール株式会社 Hot-press member and method for producing the same
WO2020241864A1 (en) * 2019-05-31 2020-12-03 日本製鉄株式会社 Hot stamp formed article
JP2021091009A (en) * 2021-03-04 2021-06-17 株式会社キーレックス Method of welding hot press molding
JP7063430B1 (en) * 2021-01-22 2022-05-09 Jfeスチール株式会社 A method for manufacturing a hot pressed member, a coated member, a steel plate for hot pressing, and a method for manufacturing a hot pressed member and a method for manufacturing a painted member.
WO2022158062A1 (en) * 2021-01-22 2022-07-28 Jfeスチール株式会社 Hot pressing member, coating member, steel sheet for hot pressing, method for manufacturing hot pressing member, and method for manufacturing coating member

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288173A (en) * 1988-09-22 1990-03-28 Mitsubishi Electric Corp Removing method for oxide film
US20010047576A1 (en) * 2000-02-14 2001-12-06 Sadler Love & Associates, Inc. Method and apparatus for the descaling of metal
JP2003306757A (en) * 2002-04-18 2003-10-31 Jfe Steel Kk HOT DIP Al-Zn ALLOY-COATED STEEL SHEET AND METHOD OF PRODUCING THE SAME
WO2004094684A1 (en) * 2003-04-23 2004-11-04 Sumitomo Metal Industries, Ltd. Hot press formed product and method for production thereof
JP2004323897A (en) * 2003-04-23 2004-11-18 Sumitomo Metal Ind Ltd Hot press formed article and method for manufacturing the same
JP2005074464A (en) * 2003-08-29 2005-03-24 Sumitomo Metal Ind Ltd Hot-pressing formed product and its producing method
JP2012025977A (en) * 2010-07-20 2012-02-09 Sumitomo Metal Ind Ltd Surface-treated steel material for heat treatment and manufacturing method for heat treated steel member

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288173A (en) * 1988-09-22 1990-03-28 Mitsubishi Electric Corp Removing method for oxide film
US20010047576A1 (en) * 2000-02-14 2001-12-06 Sadler Love & Associates, Inc. Method and apparatus for the descaling of metal
JP2003306757A (en) * 2002-04-18 2003-10-31 Jfe Steel Kk HOT DIP Al-Zn ALLOY-COATED STEEL SHEET AND METHOD OF PRODUCING THE SAME
WO2004094684A1 (en) * 2003-04-23 2004-11-04 Sumitomo Metal Industries, Ltd. Hot press formed product and method for production thereof
JP2004323897A (en) * 2003-04-23 2004-11-18 Sumitomo Metal Ind Ltd Hot press formed article and method for manufacturing the same
JP2005074464A (en) * 2003-08-29 2005-03-24 Sumitomo Metal Ind Ltd Hot-pressing formed product and its producing method
JP2012025977A (en) * 2010-07-20 2012-02-09 Sumitomo Metal Ind Ltd Surface-treated steel material for heat treatment and manufacturing method for heat treated steel member

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006232A1 (en) * 2014-07-10 2016-01-14 Jfeスチール株式会社 Hot-press-molded article and production method for same, and plated steel sheet for use in hot-press molding
JPWO2016006232A1 (en) * 2014-07-10 2017-04-27 Jfeスチール株式会社 HOT PRESS FORMED BODY, ITS MANUFACTURING METHOD, AND PLATED STEEL STEEL FOR HOT PRESS FORMED BODY
WO2017017905A1 (en) * 2015-07-29 2017-02-02 Jfeスチール株式会社 Method for producing hot-pressed member
JPWO2017017905A1 (en) * 2015-07-29 2017-07-27 Jfeスチール株式会社 Manufacturing method of hot press member
JP2018176220A (en) * 2017-04-12 2018-11-15 株式会社キーレックス Method for welding hot press-molded product
JP2019173044A (en) * 2018-03-26 2019-10-10 日鉄日新製鋼株式会社 Inorganic conversion treatment solution and inorganic conversion treated steel sheet
JP2020032434A (en) * 2018-08-28 2020-03-05 株式会社キーレックス Hot press molding method
CN109518113A (en) * 2019-01-28 2019-03-26 河北天振工程技术有限公司 A kind of environmentally friendly hot zinc plating equipment and process dedicated for corrugated steel
JP2020143354A (en) * 2019-03-08 2020-09-10 Jfeスチール株式会社 Hot-press member and method for producing the same
JP7126093B2 (en) 2019-03-08 2022-08-26 Jfeスチール株式会社 HOT PRESS MEMBER AND MANUFACTURING METHOD THEREOF
WO2020241864A1 (en) * 2019-05-31 2020-12-03 日本製鉄株式会社 Hot stamp formed article
JPWO2020241864A1 (en) * 2019-05-31 2020-12-03
JP7277823B2 (en) 2019-05-31 2023-05-19 日本製鉄株式会社 hot stamped body
JP7063430B1 (en) * 2021-01-22 2022-05-09 Jfeスチール株式会社 A method for manufacturing a hot pressed member, a coated member, a steel plate for hot pressing, and a method for manufacturing a hot pressed member and a method for manufacturing a painted member.
WO2022158062A1 (en) * 2021-01-22 2022-07-28 Jfeスチール株式会社 Hot pressing member, coating member, steel sheet for hot pressing, method for manufacturing hot pressing member, and method for manufacturing coating member
JP2021091009A (en) * 2021-03-04 2021-06-17 株式会社キーレックス Method of welding hot press molding

Also Published As

Publication number Publication date
JP5880321B2 (en) 2016-03-09

Similar Documents

Publication Publication Date Title
JP5880321B2 (en) Manufacturing method of high strength steel molded parts
JP4085876B2 (en) Hot press-formed product and method for producing the same
TWI470118B (en) Hot - pressing method for hot - pressing plated steel sheet and plated steel sheet
WO2004094684A1 (en) Hot press formed product and method for production thereof
JP5251078B2 (en) Steel plate for containers and manufacturing method thereof
TWI623649B (en) Hot-pressed aluminized steel sheet and manufacturing method of hot-pressed aluminized steel sheet
WO2012053694A1 (en) Galvanized steel sheet having excellent coatability, coating adhesion, and spot weldability, and method for manufacturing same
JP4506128B2 (en) Hot press-formed product and method for producing the same
JP5186817B2 (en) Steel plate for containers
JP7160203B2 (en) Galvanized steel sheet for hot stamping, method for producing galvanized steel sheet for hot stamping, and hot stamped compact
WO2019054483A1 (en) Hot-dip plated checkered plate and manufacturing method thereof
WO2021235083A1 (en) Al-PLATED HOT STAMPED STEEL MATERIAL
JP2005256042A (en) Galvannealed steel sheet, and method for manufacturing the same
JP3931859B2 (en) Galvanized steel for hot forming and hot forming method
CN115298356A (en) Hot-pressing component
JPH0696783B2 (en) Galvanized steel sheet with excellent press formability, chemical conversion treatment and weldability
WO2021234790A1 (en) HOT-STAMP MOLDED ARTICLE AND METHOD FOR MANUFACTURING SAME, AND Al-PLATED STEEL SHEET
JP7160204B2 (en) hot stamped body
JP7277823B2 (en) hot stamped body
KR101490564B1 (en) Hot press formed products having excellent corrosion resistance and method for manufacturing the same
JP5186815B2 (en) Steel plate for containers
JPH03287784A (en) Zinc plated steel sheet having superior press formability, chemical convertibility and weldability
JPH0565623A (en) Hot-dip galvanized steel sheet excellent in press formability and spot weidability
JPH06316790A (en) Galvanized steel sheet excellent in spot weldability
JPH03287785A (en) Zinc plated steel sheet having superior press formability, chemical convertibility and weldability

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150717

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20151016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R151 Written notification of patent or utility model registration

Ref document number: 5880321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350