WO2016006232A1 - Hot-press-molded article and production method for same, and plated steel sheet for use in hot-press molding - Google Patents

Hot-press-molded article and production method for same, and plated steel sheet for use in hot-press molding Download PDF

Info

Publication number
WO2016006232A1
WO2016006232A1 PCT/JP2015/003426 JP2015003426W WO2016006232A1 WO 2016006232 A1 WO2016006232 A1 WO 2016006232A1 JP 2015003426 W JP2015003426 W JP 2015003426W WO 2016006232 A1 WO2016006232 A1 WO 2016006232A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
plating
hot press
layer
hot
Prior art date
Application number
PCT/JP2015/003426
Other languages
French (fr)
Japanese (ja)
Inventor
泰明 沖田
池田 倫正
公一 谷口
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2015551289A priority Critical patent/JP6146482B2/en
Publication of WO2016006232A1 publication Critical patent/WO2016006232A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a hot press-formed body excellent in resistance spot weldability, a manufacturing method thereof, and a plated steel sheet for a hot press-formed body.
  • Patent Document 1 a material (steel plate) to be formed is preheated and softened so as to facilitate press working, and then the heated steel plate is formed using a die and a die and rapidly cooled at the same time.
  • hot press molding the process of heating and then molding and cooling at the same time is referred to as hot press molding
  • a molding technique that makes it easy to mold and achieve high strength is disclosed.
  • heating the steel plate to a high temperature of Ac3 or higher before forming is necessary to obtain high strength after press forming. For this reason, scale (iron oxide) is generated on the surface of the steel sheet, and the scale peels off during hot press forming, damaging the mold or damaging the surface of the compact after hot press forming. is there.
  • the scale remaining on the surface of the molded body not only causes poor appearance and poor paint adhesion, but also has high electrical resistance, which makes resistance spot welding mainly used in the assembly of car bodies difficult. There's a problem. For this reason, the scale on the surface of the molded body is usually removed by a treatment such as pickling or shot blasting, but this complicates the manufacturing process and causes a decrease in productivity.
  • an Al-based plated steel sheet As a conventional hot-pressed plated steel sheet, for example, as described in Patent Document 2, an Al-based plated steel sheet has been often used.
  • Fe rapidly diffuses into the plating layer when heated in the austenite region to form an alloy layer of Al and Fe, and resistance spot welding is performed without performing pickling or shot blasting. Is possible.
  • the Al—Fe alloy layer is hard and brittle, there are problems in that it is peeled off during processing to reduce processing productivity and shorten the mold life.
  • Patent Document 3 discloses a Zn—Fe-based compound that prevents corrosion and decarburization during heating when a steel sheet coated with Zn or a Zn-based alloy is formed into a hot press-formed body, and has a lubricating function. And a method for producing an alloy compound such as a Zn—Fe—Al based compound on the surface of a steel sheet. It has been shown that a member manufactured by this method, particularly a member using a steel sheet coated with Zn-50 to 55 mass% Al, can obtain an excellent corrosion prevention effect.
  • Patent Document 4 discloses a hot pressed member in which a plated layer containing a Fe—Zn solid solution phase is formed on the surface of the member after hot pressing using an alloyed hot-dip Zn plated steel sheet. It has been shown that this hot press member can provide excellent hot press workability (coating layer adhesion), corrosion resistance, and weldability.
  • the present invention provides a hot press-formed body excellent in resistance spot weldability that does not require a step of removing oxides by shot blasting or the like, a manufacturing method thereof, and a plated steel sheet for hot press. With the goal.
  • the present inventors have intensively studied to solve the above problems. As a result, the following knowledge was obtained.
  • a hot press-molded body with plating obtained by heating a plated steel sheet to a temperature equal to or higher than the Ac3 transformation point of the plated steel sheet, and then simultaneously cooling the plated steel sheet using a mold.
  • On the surface of the plating there is an oxide layer having a network-like unevenness with an average roughness Ra of 2 ⁇ m or more and an average thickness of 3 ⁇ m or less, and under the oxide layer, A hot press-formed body having a plating layer having a melting point equal to or lower than the heating temperature.
  • the density of a plating layer is evaluated by the density of main components constituting the plating layer.
  • the main component means a component exceeding 50% by weight.
  • the density of the oxide layer refers to the density of the oxide formed from the main components constituting the plating layer.
  • a steel sheet having a plating layer used for a hot press-formed body is generically called a hot-press formed body plated steel sheet. Therefore, the plated steel sheet for hot press-formed bodies of the present invention has a plating layer regardless of whether or not the alloying treatment is performed after the plating treatment. That is, the plated steel sheet for hot press-formed body in the present invention is a hot dip galvanized steel sheet that has not been subjected to alloying treatment, an alloyed hot dip galvanized steel sheet that has been alloyed, It includes galvanized steel sheets, hot dip zinc-aluminum alloy plated steel sheets, aluminum plated steel sheets and the like.
  • the hot press molding excellent in resistance spot weldability which does not require the process of removing an oxide by shot blasting etc. is obtained.
  • processing can be performed without causing galling or breakage of the steel sheet, and it is not necessary to remove scale such as shot blasting. Cost reduction is possible.
  • FIG. 1 is a cross-sectional view of a plated layer of a hot press-formed body obtained by hot pressing at an inappropriate heating temperature using a Zn-based plated steel sheet.
  • FIG. 2 is a cross-sectional view of a plated layer of a hot press-formed body using a Zn-based plated steel sheet.
  • FIG. 3 is a cross-sectional view of a plating layer of a hot press-formed body using an Al-based plated steel sheet.
  • FIG. 4 is a diagram used for explaining the press molding method.
  • the hot press-formed body excellent in resistance spot weldability according to the present invention is obtained by heating a plated steel sheet to a temperature equal to or higher than the Ac3 transformation point of the plated steel sheet, and then forming it using a mold and cooling it at the same time. It is a hot press-molded product.
  • the surface of the plating has an oxide layer with mesh-like irregularities, and under the oxide layer, there is a plating layer whose melting point is equal to or lower than the heating temperature during hot press molding. It is characterized by.
  • the hot press-formed body of the present invention has a wide appropriate current range in resistance spot welding and is excellent in resistance spot weldability.
  • the plated steel sheet In oxide layer hot press forming with mesh-like irregularities, the plated steel sheet must be heated to 3 or more points (usually 800 ° C to 1000 ° C) on the plated steel plate, and plating oxide is formed on the plated surface. Is done.
  • Zn-based plating ZnO having a high electric resistance value is formed thick on the surface, and this is the cause, and when the obtained hot press-molded body is resistance spot welded, scattering is likely to occur.
  • the appropriate current range for spot welding may be narrow.
  • the heating temperature is lower than the melting point of Zn-Ni plating.
  • a flat ZnO layer is formed on the plating surface (Fig. 1), and even if resistance spot welding is performed on a plate assembly in which two hot press materials are stacked, the ZnO layer is energized between the steel plates. Path formation may be hindered and there may be no current flow.
  • the oxide formed on the plating surface of the hot press-molded body is an oxide exhibiting a high electrical resistance
  • resistance spot welding is performed when the oxide on the plating surface forms a mesh-like unevenness. It becomes possible. This is due to the following reason.
  • a plate assembly in which a hot press-molded body in which the oxide on the plating surface forms a mesh-like unevenness is sandwiched between at least one of the two or more superposed steel sheets is sandwiched between a pair of electrodes, and the pressure is applied. Resistance spot welding is performed while adding. In this case, at the position where the electrode pressing force is applied, the conductive layer is formed by the collapse of the uneven oxide layer, and resistance spot welding becomes possible. From the above, in the present invention, the surface of the plating has an oxide layer having a mesh-like unevenness.
  • the oxide layer having mesh-like irregularities has an average roughness Ra of 2 ⁇ m or more and an average thickness of 3 ⁇ m or less.
  • Ra is less than 2 ⁇ m, the unevenness is small and the oxide layer does not collapse sufficiently even when pressed by an electrode, so that it is difficult to secure an energization path.
  • Further preferable Ra is 3 ⁇ m or more.
  • the average thickness of the oxide layer exceeds 3 ⁇ m, even if there is an unevenness with Ra of 2 ⁇ m or more, the thickness of the oxide layer is too thick. It becomes difficult to ensure.
  • the oxide layer having mesh-like irregularities is formed on the surface of the plating while heating the plated steel sheet.
  • the oxide layer formed during this heat treatment is subjected to a high load by subsequent molding.
  • unevenness exists on the surface of the oxide layer, the unevenness partially collapses due to this load to form a discontinuous oxide layer, and an energization path during resistance spot welding is secured.
  • scattering is less likely to occur, a wide appropriate current range can be obtained, and resistance spot weldability is further improved. Therefore, it is preferable that a discontinuous oxide layer is present on the plating surface.
  • the oxide layer having such network-like irregularities uses, for example, plating in which the density of the main component constituting the plating layer is higher than the density of the oxide formed from the main component constituting the plating layer, and It can be formed by heating the heating temperature of the hot press to a temperature higher than the melting point of the plating layer.
  • the density of Zn is the 7.14 g / cm 3 (room temperature), 600 density of 6.81 g / cm 3, ZnO in the molten state of °C is 5.61 g / cm 3 (room temperature) .
  • ZnO network-like irregularities are formed on the plating surface. Is done.
  • the Al density is 2.70 g / cm 3 (room temperature) and the Al 2 O 3 density is 3.95 g / cm 3 (room temperature).
  • the plating no mesh-like irregularities like Zn-based are formed.
  • a plating layer whose melting point is lower than the heating temperature during hot press forming has a plating layer that is lower than the heating temperature under the oxide layer without being lost due to oxidation during the heat treatment or diffusion to the steel sheet. If the plating layer melts in the initial stage of resistance spot welding, the oxide layer with high electrical resistance formed on the plating layer collapses, and further collapses from the pressurized part with the molten plating. The oxide layer thus discharged is discharged, and a stable wide energization path is formed. As a result, scattering does not easily occur and a wide appropriate current range can be obtained.
  • having a plating layer means observing the cross section of the plating layer of any 10 fields of view with a SEM backscattered electron image at a magnification of 500 times, and the plating layer is present on 50% or more of the steel sheet surface excluding the oxide layer. Suppose you are.
  • an oxide layer having irregularities can be formed by using plating in which the density of the main component constituting the plating layer is higher than the density of the oxide formed from the main component constituting the plating layer. it can. From this point, Zn plating is preferable as the plating. In the case of Zn-based plating, the sacrificial corrosion resistance of Zn to Fe can also have excellent corrosion resistance. In the case where the remainder of the plating layer other than Zn contains components such as Al and Mg, the density of Al and Mg is lower than the density of oxides such as Al and Mg, and there is a tendency to ionize Al and Mg.
  • the components such as Al and Mg are present in a small amount in the plating phase.
  • Al is preferably 10% or less. More preferably, Al is 0.1% or less.
  • Inevitable impurities are acceptable if Mg: less than 1.0% and Si: less than 1.0%. In this way, Mg: less than 1.0%, Si: less than 1.0%, the adhesion of dross is reduced, the occurrence of cracks in the plating layer during hot press molding is reduced, and the advantage of excellent workability There is.
  • the plating that can be suitably used is a plating containing Al: 10% or less and Fe: 20% or less in mass%, with the balance being made of Zn and inevitable impurities.
  • Another plating that can be suitably used is a plating containing Ni: 10 to 25%, with the balance being Zn and inevitable impurities.
  • the adhesion amount is preferably 10 to 90 g / m 2 .
  • Any of Ni 2 Zn 11 , ZiZn 3 , and Zi 5 Zn 21 is contained in the component contained in the balance other than Zn by containing Ni that has an ionization tendency lower than that of Zn and does not inhibit the formation of irregularities on the surface of the plating layer.
  • a gamma phase having a crystal structure of 1 and a very high melting point of 881 ° C. is formed. Thereby, excessive zinc oxide formation on the plating layer surface in the heating process can be suppressed.
  • the zinc oxide layer Even if the zinc oxide layer has irregularities, it will hinder the energization path in resistance spot welding, so it is preferable that the zinc oxide layer is thin, and the energization path is more effective by suppressing excessive zinc oxide formation. Secured. Furthermore, since the plating layer remains as a ⁇ phase even after hot press forming is completed, it exhibits excellent perforated corrosion resistance due to the sacrificial anticorrosive effect of Zn, and the ⁇ phase melts at the initial stage of energization of resistance spot welding. Contributes to the expansion and stabilization of routes.
  • the formation of the ⁇ phase at a Ni content of 10 to 25% does not necessarily match the equilibrium diagram of the Ni—Zn alloy, but this is a non-equilibrium progress of the plating layer formation reaction performed by electroplating or the like. It is thought to do.
  • the coating layer I has an adhesion amount of 0.01-5 g / m 2 and 10-25% Ni. It is preferable that the plating layer has a structure in which the balance is made of Zn and inevitable impurities, and the plating layer II has an adhesion amount of 10 to 90 g / m 2 . If the amount of Ni in the plating layer I is less than 60%, it is not possible to sufficiently suppress the diffusion of Zn in the plating layer into the underlying steel sheet, so that excellent perforated corrosion resistance may not be obtained.
  • the Ni content of the plating layer I is 60% or more, the diffusion of Zn in the plating layer to the underlying steel sheet is suppressed, and many ⁇ phases remain after hot press forming, contributing to the expansion of the appropriate current range for resistance spot welding. To do.
  • the amount of Ni in the plating layer I is preferably 100%. In the case of less than 100%, the balance is Zn and an unavoidable impurity having a sacrificial anticorrosive effect.
  • the adhesion amount per one side of the plating layer I is less than 0.01 g / m 2 , the effect of suppressing the diffusion of Zn into the underlying steel sheet is not sufficiently exhibited. If it exceeds 5 g / m 2 , the effect will be saturated and the cost will increase. Therefore, 0.01 to 5 g / m 2 is set.
  • the plating layer II is a plating layer containing 10 to 25% of Ni and the balance of Zn and inevitable impurities.
  • a ⁇ phase having a high melting point of 881 ° C. having a crystal structure of Ni 2 Zn 11 , NiZn 3 , or Ni 5 Zn 21 is formed.
  • Excessive zinc oxide formation on the plating layer surface during the heating process can be suppressed. Even if the zinc oxide layer has irregularities, it will hinder the energization path in resistance spot welding, so it is preferable that the zinc oxide layer is thin, and the energization path is more effective by suppressing excessive zinc oxide formation. Secured.
  • the plating layer II remains as a ⁇ phase even after the hot press forming is completed, excellent perforated corrosion resistance is exhibited due to the sacrificial anticorrosive effect of Zn.
  • the formation of the ⁇ phase when the Ni content is 10 to 25% by mass does not necessarily match the equilibrium diagram of the Ni—Zn alloy. This is probably because the formation reaction of the plating layer performed by electroplating or the like proceeds in a non-equilibrium manner.
  • the adhesion amount per one side of the plating layer II is less than 10 g / m 2 , the sacrificial anticorrosive effect of Zn is not sufficiently exhibited. If it exceeds 90 g / m 2 , the effect is saturated and the cost is increased. Therefore, it is set to 10 to 90 g / m 2 .
  • the method for forming such plating layer I and plating layer II is not particularly limited. Known electroplating methods are preferred.
  • the ⁇ phase of Ni 2 Zn 11 , NiZn 3 , and Ni 5 Zn 21 can be confirmed by an X-ray diffraction method or an electron beam diffraction method using TEM (Transmission Electron Microscopy). Further, although the ⁇ phase is formed as described above by setting the Ni content of the plating layer II to 10 to 25 mass%, some ⁇ phase may be mixed depending on the conditions of electroplating. At this time, in order to minimize the zinc oxide formation reaction on the surface of the plating layer during the heating process, the amount of ⁇ phase is preferably 5% by mass or less. The amount of the ⁇ phase is defined by the mass ratio of the ⁇ phase to the total mass of the plating layer II, and can be quantified by, for example, the anodic dissolution method.
  • the plated steel sheet for hot press-formed bodies of the present invention preferably has a plated layer on the steel sheet surface, and the density of the plated layer is preferably higher than the density of the oxide formed from the main components constituting the plated layer.
  • the plating layer preferably contains, by mass%, Al: 10% or less, Fe: 20% or less, and the balance of Zn and inevitable impurities.
  • Ni: 10 to 25% is contained, the balance is made of Zn and inevitable impurities, and the adhesion amount is 10 to 90 g / m 2 .
  • the plating layer contains, in order from the steel plate surface, in mass%, Ni: 60% or more, the balance consisting of Zn and unavoidable impurities, and an adhesion amount of 0.01 to 5 g / m 2 and mass. It is preferable to have a plating layer II containing Ni: 10 to 25%, the balance being Zn and inevitable impurities, and having an adhesion amount of 10 to 90 g / m 2 .
  • Hot-rolled steel sheets and cold-rolled steel sheets can be used as the plated steel sheets for hot press-formed bodies.
  • Component composition is mass%, C: 0.15-0.5%, Si: 0.05-2.0%, Mn: 0.5-3%, P: 0.1% or less, S: 0.05% or less, Al: 0.1% or less, N: 0.01 % Or less, with the balance being Fe and inevitable impurities.
  • it contains at least one selected from Cr: 0.01 to 1%, Ti: 0.2% or less, and B: 0.0005 to 0.08%, or Sb: 0.003 to 0.03% by mass.
  • the tensile strength (henceforth TS may be called) 980 Mpa or more can be provided to a hot press molding.
  • C 0.15-0.5% C is an element that improves the strength of the steel.
  • the C content needs to be 0.15% or more.
  • the amount of C exceeds 0.5%, the blanking workability of the steel plate as the material will be significantly reduced. Therefore, the C content is 0.15 to 0.5%.
  • Si 0.05-2.0% Si, like C, is an element that improves the strength of steel.
  • the Si amount needs to be 0.05% or more.
  • the amount of Si exceeds 2.0%, the occurrence of surface defects called red scale during hot rolling significantly increases, the rolling load increases, and the ductility of the hot-rolled steel sheet deteriorates.
  • the Si content exceeds 2.0%, the plating processability may be adversely affected when a plating process for forming a plating film mainly composed of Zn or Al on the steel sheet surface is performed. Therefore, the Si content is 0.05 to 2.0%.
  • Mn 0.5-3.0%
  • Mn is an element effective for suppressing the ferrite transformation and improving the hardenability.
  • the Ac3 transformation point is lowered, it is an effective element for lowering the heating temperature before hot pressing.
  • the amount of Mn needs to be 0.5% or more.
  • the amount of Mn exceeds 3.0%, segregation occurs and the uniformity of the properties of the raw steel plate and hot press-formed product decreases. Therefore, the Mn content is 0.5 to 3.0%.
  • the P content is 0.1% or less. More preferably, in order to improve the cross tensile strength of the resistance spot welded portion, the P content is 0.02% or less.
  • Al 0.1% or less
  • the Al content is 0.1% or less.
  • N 0.01% or less
  • the balance is Fe and inevitable impurities.
  • Cr 0.01 to 1%
  • Ti 0.2% or less
  • B 0.0005 to 0.08% and / or Sb: 0.003 to 0.03%
  • Cr 0.01-1%
  • the Cr content is preferably 0.01% or more.
  • the upper limit of the Cr content is preferably 1%.
  • Ti 0.2% or less Ti is an element effective for strengthening steel and improving toughness by refining. It is also an element effective for forming a nitride in preference to B and exhibiting the effect of improving the hardenability by the solid solution B. However, if the amount of Ti exceeds 0.2%, the rolling load during hot rolling is extremely increased, and the toughness of the hot press-formed product is reduced, so the upper limit of the amount of Ti is preferably 0.2%. .
  • B 0.0005-0.08%
  • B is an element effective for improving the hardenability during hot pressing and toughness after hot pressing.
  • the B content is preferably 0.0005% or more.
  • the upper limit is preferably 0.08%.
  • Sb has an effect of suppressing a decarburized layer generated in the surface layer portion of the steel plate after the steel plate is heated until the steel plate is cooled by a series of hot press processes.
  • the amount of Sb is preferably 0.003% or more.
  • the upper limit of the Sb amount is preferably 0.03%.
  • Hot press-formed hot press with excellent resistance spot weldability by heating the plated steel sheet for hot press-formed body composed of the above at a temperature equal to or higher than the Ac3 transformation point of the plated steel sheet and then forming using a mold.
  • a shaped body is produced.
  • Heating is preferably performed at an average temperature increase rate of 50 ° C./s or more. More preferably, the average rate of temperature increase is 100 ° C./s or more, and still more preferably 110 ° C./s or more.
  • the average rate of temperature increase is the average rate of temperature increase from room temperature (20 ° C.) to the heating temperature, ((heating temperature) ⁇ room temperature (20 ° C.)) / (Temperature increasing time). Can be sought.
  • the heating is performed at a temperature higher than the Ac3 transformation point is to form a hard phase such as a martensite phase by rapid cooling during hot pressing and to increase the strength of the hot press-formed body.
  • the reason why the plating layer is heated to the melting point or higher is to melt the plating layer and form irregularities in the oxide of the plating layer formed on the surface.
  • the heating temperature exceeds 1000 ° C, a large amount of oxide layer is formed on the surface of the plating layer, and even if unevenness is formed on the oxide layer, it is a very thick oxide that hinders the formation of a current path during resistance spot welding Layers may be formed. Therefore, the upper limit of the heating temperature is preferably 1000 ° C.
  • the heating temperature here means the highest temperature reached of the steel sheet.
  • the holding time at the maximum plate temperature is not particularly limited. In order to suppress the formation of the oxide layer, a shorter time is preferable, preferably 300 s or less, more preferably 60 s or less, and still more preferably 10 s or less.
  • the heating method examples include heating by an electric furnace or a gas furnace, flame heating, energization heating, high frequency heating, induction heating, and the like.
  • energization heating, high-frequency heating, induction heating, and the like are suitable for setting the average temperature rising rate to 50 ° C./s or more.
  • the hot press molded product can be taken out from the mold and cooled using a liquid or a gas.
  • C 0.23%, Si: 0.25%, Mn: 1.2%, P: 0.01%, S: 0.01%, Al: 0.03%, N: 0.005%, Cr: 0.2%, Ti: A cold-rolled steel sheet containing 0.02%, B: 0.0022%, Sb: 0.008%, the balance being composed of Fe and inevitable impurities, an Ac3 transformation point of 820 ° C, and a sheet thickness of 1.2 mm was used. .
  • alloyed hot-dip Zn plating is about 670 ° C.
  • the melting point of hot-dip Zn plating (GI) and electric pure Zn plating (EG) is about 420 ° C.
  • electric Zn alloy plating (Zn -Ni) has a melting point of about 800 ° C to 880 ° C
  • Zn-Al plating (Zn-Al) has a melting point of about 380 ° C to 400 ° C
  • Zn-Al-Si plating (Zn-Al-Si) has a melting point of about 570
  • the melting point of Al—Si plating (Al—Si) is about 660 ° C., which is about 660 ° C. because it is alloyed with Fe during heating.
  • the above steel sheet was heated to 900 ° C. in the atmosphere for 180 seconds, removed from the furnace without being held at 900 ° C., air-cooled to 700 ° C. in the atmosphere, and immediately shown in FIG.
  • a hot press-molded body was produced by drawing using a press molding method as shown in FIG. The punch width when drawing was 70 mm and the processing height was 30 mm.
  • the presence or absence of mesh-like irregularities on the surface of the plating layer was determined by observing the surface with an SEM. The case where there was unevenness was marked as ⁇ , and the case where there was no unevenness was marked as x.
  • the average roughness of the plating layer was measured at 10 appropriate locations using a surface roughness measuring instrument.
  • the average average roughness was defined as “ ⁇ ” when 3 ⁇ m or more, “ ⁇ ” when 2 ⁇ m or more but less than 3 ⁇ m, and “x” when less than 2 ⁇ m.
  • the thickness of the oxide layer was determined by cross-sectional SEM observation of the plating layer.
  • the reflected electron image was photographed by SEM at 10 times with 1500 magnifications, and the average value of the thickness of the oxide layer formed on the outermost surface was determined from the photographed image.
  • the case where 3 ⁇ m or less is “ ⁇ ” and the case where it exceeds 3 ⁇ m is “ ⁇ ”.
  • the presence or absence of the plating layer was confirmed from the image.
  • the product in which the plating layer remained on 50% or more of the steel sheet surface excluding the oxide layer was indicated as “ ⁇ ”, and the case where it was less than 50% was indicated as “X”.
  • a welding test was performed on the hot press-formed body obtained as described above.
  • an inverter DC resistance spot welder was used, and welding was performed with a chrome-copper DR electrode (electrode tip diameter: 6 mm) at a pressure of 450 kgf and an energization time of 340 msec.
  • the nugget diameter was 4 ⁇ t (t: plate thickness)
  • the appropriate current range defined from the current value (mm) to the occurrence of scattering was determined.
  • An appropriate current range of 1 kA or more was indicated as “good”, and “1.5” or higher was indicated as “ ⁇ ”, indicating an even better weldability.
  • An appropriate current range of less than 1 kA is indicated as “x”.
  • C 0.23%, Si: 0.25%, Mn: 1.2%, P: 0.01%, S: 0.01%, Al: 0.03%, N: 0.005%, Cr: 0.2%, Ti: A cold-rolled steel sheet containing 0.02%, B: 0.0022%, Sb: 0.008%, the balance being composed of Fe and inevitable impurities, an Ac3 transformation point of 820 ° C, and a sheet thickness of 1.2 mm was used. .
  • the surface of this cold-rolled steel sheet is electroplated in a plating bath containing 200 g / L nickel sulfate hexahydrate and 0-50 g / L zinc sulfate heptahydrate at a pH of 3.0 and a temperature of 50 ° C.
  • a plating layer I having an Ni content of 100% (mass%) and an adhesion amount of 0.05 g / m 2 was formed.
  • electroplating was performed in a plating bath containing 200 g / L nickel sulfate hexahydrate and 10 to 100 g / L zinc sulfate heptahydrate at a pH of 1.5 and a temperature of 50 ° C.
  • a plating layer II having a content of 12% and an adhesion amount of 60 g / m 2 was formed.
  • the plated steel sheet was heated under the conditions shown in Table 2 by electric heating or furnace heating, and molded and cooled under the same conditions as in Example 1 to produce a hot press-formed body.
  • Example 2 a welding test was performed on the hot press-formed body obtained as described above under the same conditions as in Example 1.
  • the evaluation criteria were expressed as “ ⁇ ” with an appropriate current range of 1 kA or more as “good” weldability, “ ⁇ ” when 1.5 kA or more was further improved as weldability, and “ ⁇ ” when 2.0 kA or more was further improved as weldability.
  • An appropriate current range of less than 1 kA is indicated as “x”. The same as in the first embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Coating With Molten Metal (AREA)

Abstract

 Provided are a hot-press-molded article that has excellent resistance spot weldability, and that does not require a process such as shotblasting to remove oxides; a production method for the same; and a plated steel sheet for use in hot-press molding. The plated hot-press-molded article is obtained by heating a plated steel sheet to a temperature at or above the Ac3 transformation point of the plated steel sheet, and then simultaneously cooling while molding the sheet with a mold. An oxide layer having a network of asperities, having average roughness Ra of at least 2 μm and average thickness of no more than 3 μm, is present on the plated surface, and below the oxide layer is a plated layer having a melting point that is no higher than the aforementioned heating temperature.

Description

熱間プレス成形体およびその製造方法、ならびに熱間プレス成形体用めっき鋼板HOT PRESS FORMED BODY AND ITS MANUFACTURING METHOD
 本発明は、抵抗スポット溶接性に優れた熱間プレス成形体およびその製造方法、ならびに熱間プレス成形体用めっき鋼板に関するものである。 The present invention relates to a hot press-formed body excellent in resistance spot weldability, a manufacturing method thereof, and a plated steel sheet for a hot press-formed body.
 近年、地球環境保全の観点から、自動車車体の軽量化が熱望され、自動車車体に使用される鋼板を高強度化して、その板厚を低減する努力が続けられている。しかしながら、鋼板の高強度化に伴ってプレス成形性が低下するため、鋼板を所望の部材形状に加工することが困難になる場合が多くなっている。 In recent years, from the viewpoint of global environmental protection, weight reduction of automobile bodies has been eagerly awaited, and efforts are being made to increase the strength of steel sheets used in automobile bodies and reduce their thickness. However, since press formability decreases with increasing strength of the steel sheet, it is often difficult to process the steel sheet into a desired member shape.
 上記を受けて、高強度鋼板のような難プレス成形材料をプレス加工する技術として、成形すべき材料を予め加熱して成形する方法がある。 In response to the above, there is a method in which a material to be molded is preliminarily heated and molded as a technique for pressing a difficult-to-press material such as a high-strength steel plate.
 特許文献1には、プレス加工が容易になるように成形すべき材料(鋼板)を予め加熱して軟化させた後、ダイとパンチからなる金型を用いて加熱された鋼板を成形すると同時に急冷を行い(以下、加熱した後、成形すると同時に冷却する工程を熱間プレス成形と称す)、成形の容易化と高強度化の両立を可能にした成形技術が開示されている。しかし、この成形技術では、成形前に鋼板をAc3点以上の高い温度に加熱することがプレス成形後に高い強度を得るために必要となる。このため鋼板表面にはスケール(鉄酸化物)が生成し、そのスケールが熱間プレス成形時に剥離して、金型を損傷させる、または熱間プレス成形後の成形体表面を損傷させるという問題がある。また、成形体表面に残ったスケールは、外観不良や塗装密着性の低下の原因になるだけでなく、電気抵抗が高いために、車体の組み立てにおいて主に用いられる抵抗スポット溶接が困難になるという問題がある。このため、通常は酸洗やショットブラストなどの処理を行って成形体表面のスケールは除去されるが、これは製造工程を複雑にし、生産性の低下を招く。 In Patent Document 1, a material (steel plate) to be formed is preheated and softened so as to facilitate press working, and then the heated steel plate is formed using a die and a die and rapidly cooled at the same time. (Hereinafter, the process of heating and then molding and cooling at the same time is referred to as hot press molding), and a molding technique that makes it easy to mold and achieve high strength is disclosed. However, with this forming technique, heating the steel plate to a high temperature of Ac3 or higher before forming is necessary to obtain high strength after press forming. For this reason, scale (iron oxide) is generated on the surface of the steel sheet, and the scale peels off during hot press forming, damaging the mold or damaging the surface of the compact after hot press forming. is there. In addition, the scale remaining on the surface of the molded body not only causes poor appearance and poor paint adhesion, but also has high electrical resistance, which makes resistance spot welding mainly used in the assembly of car bodies difficult. There's a problem. For this reason, the scale on the surface of the molded body is usually removed by a treatment such as pickling or shot blasting, but this complicates the manufacturing process and causes a decrease in productivity.
 このような問題に対して、成形前の加熱時にスケールの生成を抑制し、酸洗やショットブラストなどの処理なしで、熱間プレス成形後の成形体の塗装性や耐食性を向上させることができ、かつ、抵抗スポット溶接が可能な熱間プレス用鋼板が要望され、そのための表面にめっき層などの被膜を設けた鋼板が従来より提案されている。 For these problems, scale formation can be suppressed during heating before molding, and the paintability and corrosion resistance of the molded product after hot press molding can be improved without treatment such as pickling or shot blasting. In addition, a steel sheet for hot pressing capable of resistance spot welding is desired, and a steel sheet having a coating such as a plating layer on the surface thereof has been proposed.
 従来の熱間プレス用めっき鋼板としては、例えば、特許文献2に記載があるように、Al系めっき鋼板が多く用いられてきた。Al系めっき層の場合、オーステナイト域での加熱時にFeが急速にめっき層中に拡散してAlとFeとの合金層が形成され、酸洗やショットブラストなどの処理を行わずに抵抗スポット溶接が可能となる。しかし、このAl-Fe合金層は硬くて脆いため、加工時に剥離して加工生産性を低下させたり、金型寿命を短くしたりするという問題があった。 As a conventional hot-pressed plated steel sheet, for example, as described in Patent Document 2, an Al-based plated steel sheet has been often used. In the case of an Al-based plating layer, Fe rapidly diffuses into the plating layer when heated in the austenite region to form an alloy layer of Al and Fe, and resistance spot welding is performed without performing pickling or shot blasting. Is possible. However, since the Al—Fe alloy layer is hard and brittle, there are problems in that it is peeled off during processing to reduce processing productivity and shorten the mold life.
 Al系めっき鋼板以外には、Zn系の熱間プレス用めっき鋼板も提案されている。例えば、特許文献3には、ZnまたはZnベース合金を被覆した鋼板を熱間プレス成形体とする際に、加熱時に、腐食や脱炭を防止するとともに、潤滑機能を有するZn-Feベースの化合物やZn-Fe-Alベースの化合物などの合金化合物を鋼板表面に生成させる方法が開示されている。この方法で製造された部材、特に、Zn-50~55質量%Alの被覆された鋼板を用いた部材では、優れた腐食防止効果を得られることが示されている。 In addition to Al-based plated steel sheets, Zn-based hot-pressed plated steel sheets have also been proposed. For example, Patent Document 3 discloses a Zn—Fe-based compound that prevents corrosion and decarburization during heating when a steel sheet coated with Zn or a Zn-based alloy is formed into a hot press-formed body, and has a lubricating function. And a method for producing an alloy compound such as a Zn—Fe—Al based compound on the surface of a steel sheet. It has been shown that a member manufactured by this method, particularly a member using a steel sheet coated with Zn-50 to 55 mass% Al, can obtain an excellent corrosion prevention effect.
 さらに、特許文献4には、合金化溶融Znめっき鋼板を用い、熱間プレス後の部材表面にFe-Zn固溶相を含むめっき層が形成された熱間プレス部材が開示されている。この熱間プレス部材では、優れた熱間プレス加工性(めっき層の密着性)、耐食性、溶接性が得られることが示されている。 Further, Patent Document 4 discloses a hot pressed member in which a plated layer containing a Fe—Zn solid solution phase is formed on the surface of the member after hot pressing using an alloyed hot-dip Zn plated steel sheet. It has been shown that this hot press member can provide excellent hot press workability (coating layer adhesion), corrosion resistance, and weldability.
英国特許第1490535号公報British Patent No. 1490535 特開2003-82436号公報JP 2003-82436 A 特許第3663145号公報Japanese Patent No. 3663145 特許第4039548号公報Japanese Patent No. 4039548
 しかしながら、特許文献3および4に記載のZn系めっきが施されたZnめっき鋼板を熱間プレス成形に適用した場合、以下の問題がある。すなわち、熱間プレス成形では鋼板のAc3点以上に加熱しなければならない。この加熱処理中に、電気抵抗の高い酸化物(ZnO)がめっき表面に形成されるため、抵抗スポット溶接は可能ではあるものの、局部的に過熱された鋼板の一部が溶融飛散する現象である散りが発生しやすく、適正な溶接条件範囲が狭いという問題がある。そのため、ショットブラスト等により酸化物を除去する工程がスポット溶接前に必要になる。 However, when the Zn-plated steel sheet subjected to the Zn-based plating described in Patent Documents 3 and 4 is applied to hot press forming, there are the following problems. That is, in hot press forming, the steel sheet must be heated to the Ac3 point or higher. During this heat treatment, oxide (ZnO) with high electrical resistance is formed on the plating surface, so although resistance spot welding is possible, this is a phenomenon in which a part of the locally overheated steel sheet is melted and scattered. There is a problem that scattering tends to occur and the range of appropriate welding conditions is narrow. For this reason, a step of removing oxides by shot blasting or the like is required before spot welding.
 本発明は、かかる事情に鑑み、ショットブラスト等により酸化物を除去する工程を必要としない抵抗スポット溶接性に優れた熱間プレス成形体およびその製造方法ならびに熱間プレス用めっき鋼板を提供することを目的とする。 In view of such circumstances, the present invention provides a hot press-formed body excellent in resistance spot weldability that does not require a step of removing oxides by shot blasting or the like, a manufacturing method thereof, and a plated steel sheet for hot press. With the goal.
 本発明者らは、上記の課題を解決すべく、鋭意研究を重ねた。その結果、以下の知見を得た。 The present inventors have intensively studied to solve the above problems. As a result, the following knowledge was obtained.
 熱間プレス成形する際の加熱処理において、めっき表面に電気抵抗の高い酸化物層が表面に緻密に形成されている場合は、抵抗スポット溶接において無通電となるか、あるいは、散りが発生しやすく、適正電流範囲が狭いか、あるいは適正電流範囲が得られないことがわかった。これに対して、酸化物層が凹凸形状を示し、かつ、その下に熱間プレス成形時の加熱処理温度よりも融点の低いめっき層を有している場合は、抵抗スポット溶接において広い適正電流範囲が得られることを知見した。 In the heat treatment during hot press forming, if an oxide layer with high electrical resistance is densely formed on the plating surface, it becomes non-energized in resistance spot welding, or scattering is likely to occur. It was found that the appropriate current range is narrow or the appropriate current range cannot be obtained. On the other hand, when the oxide layer has a concavo-convex shape and has a plating layer having a melting point lower than the heat treatment temperature at the time of hot press forming below, a wide appropriate current in resistance spot welding. We found that a range was obtained.
 本発明は、以上の知見に基づきなされたものであり、その要旨は以下の通りである。
[1] めっき鋼板を該めっき鋼板のAc3変態点以上の温度に加熱した後、金型を用いて成形すると同時に冷却することで得られる、めっき付きの熱間プレス成形体であって、
前記めっきの表面には、平均粗さRaが2μm以上であり、厚さの平均値が3μm以下である網目状の凹凸を持つ酸化物層があり、かつ、該酸化物層の下には、融点が前記加熱温度以下であるめっき層を有していることを特徴とする熱間プレス成形体。
[2]前記成形および冷却前のめっき層の密度が前記成形および冷却後にめっき層の表面に形成される酸化物層の密度より高いことを特徴とする上記[1]に記載の熱間プレス成形体。
なお、めっき層の密度とはめっき層を構成する主たる成分の密度で評価する。主たる成分とは重量%で50%を超える成分をいう。酸化物層の密度とは、めっき層を構成する主たる成分から形成される酸化物の密度をいう。
[3]鋼板表面にめっき層を有し、該めっき層の密度がめっき層を構成する主たる成分から形成される酸化物の密度より高いことを特徴とする熱間プレス成形体用めっき鋼板。
[4]上記[3]に記載の熱間プレス成形体用めっき鋼板を、該めっき鋼板のAc3変態点以上の温度で加熱後、金型を用いて成形すると同時に冷却することを特徴とする熱間プレス成形体の製造方法。
[5]前記加熱は、50℃/s以上の平均昇温速度で行うことを特徴とする上記[4]に記載の熱間プレス成形体の製造方法。
[6]前記加熱は、100℃/s以上の平均昇温速度で行うことを特徴とする上記[4]に記載の熱間プレス成形体の製造方法。
[7]前記加熱は、110℃/s以上の平均昇温速度で行うことを特徴とする上記[4]に記載の熱間プレス成形体の製造方法。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] A hot press-molded body with plating obtained by heating a plated steel sheet to a temperature equal to or higher than the Ac3 transformation point of the plated steel sheet, and then simultaneously cooling the plated steel sheet using a mold.
On the surface of the plating, there is an oxide layer having a network-like unevenness with an average roughness Ra of 2 μm or more and an average thickness of 3 μm or less, and under the oxide layer, A hot press-formed body having a plating layer having a melting point equal to or lower than the heating temperature.
[2] The hot press forming according to the above [1], wherein the density of the plating layer before the forming and cooling is higher than the density of the oxide layer formed on the surface of the plating layer after the forming and cooling. body.
In addition, the density of a plating layer is evaluated by the density of main components constituting the plating layer. The main component means a component exceeding 50% by weight. The density of the oxide layer refers to the density of the oxide formed from the main components constituting the plating layer.
[3] A plated steel sheet for hot press-formed bodies, which has a plated layer on the surface of the steel sheet, and the density of the plated layer is higher than the density of oxides formed from the main components constituting the plated layer.
[4] A heat characterized by heating the plated steel sheet for hot press-formed bodies according to the above [3] at a temperature equal to or higher than the Ac3 transformation point of the plated steel sheet and then simultaneously cooling with a mold. A manufacturing method of a press-formed product.
[5] The method for producing a hot press-formed body according to the above [4], wherein the heating is performed at an average temperature rising rate of 50 ° C./s or more.
[6] The method for producing a hot press-molded product according to the above [4], wherein the heating is performed at an average heating rate of 100 ° C./s or more.
[7] The method for producing a hot press-molded product according to the above [4], wherein the heating is performed at an average heating rate of 110 ° C./s or more.
 なお、本発明においては、熱間プレス成形体に用いられるめっき層を有する鋼板を総称して、熱間プレス成形体用めっき鋼板と呼称する。したがって、めっき処理後に合金化処理を施す、施さないにかかわらず、めっき層を有していれば本発明の熱間プレス成形体用めっき鋼板である。すなわち、本発明における熱間プレス成形体用めっき鋼板とは、熱間プレス成形に用いられる、合金化処理を施していない溶融亜鉛めっき鋼板、合金化処理を施した合金化溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板、溶融亜鉛-アルミニウム合金めっき鋼板、アルミニウムめっき鋼板などを含むものである。 In the present invention, a steel sheet having a plating layer used for a hot press-formed body is generically called a hot-press formed body plated steel sheet. Therefore, the plated steel sheet for hot press-formed bodies of the present invention has a plating layer regardless of whether or not the alloying treatment is performed after the plating treatment. That is, the plated steel sheet for hot press-formed body in the present invention is a hot dip galvanized steel sheet that has not been subjected to alloying treatment, an alloyed hot dip galvanized steel sheet that has been alloyed, It includes galvanized steel sheets, hot dip zinc-aluminum alloy plated steel sheets, aluminum plated steel sheets and the like.
 また、成分の含有量を表す「%」は、特に断らない限り「質量%」を意味する。 In addition, “%” representing the content of a component means “mass%” unless otherwise specified.
 本発明によれば、ショットブラスト等により酸化物を除去する工程を必要としない抵抗スポット溶接性に優れた熱間プレス成形体が得られる。
本発明の熱間プレス成形体用めっき鋼板を用いて熱間プレス成形を行うことにより、鋼板のかじりや破断が発生することなく加工が可能となり、ショットブラストなどのスケール除去を行う必要がないためコスト低減が可能となる。
ADVANTAGE OF THE INVENTION According to this invention, the hot press molding excellent in resistance spot weldability which does not require the process of removing an oxide by shot blasting etc. is obtained.
By performing hot press forming using the plated steel sheet for hot press-formed bodies of the present invention, processing can be performed without causing galling or breakage of the steel sheet, and it is not necessary to remove scale such as shot blasting. Cost reduction is possible.
図1は、Zn系めっき鋼板を用いて、不適切な加熱温度にて熱間プレスを行った熱間プレス成形体のめっき層の断面図である。FIG. 1 is a cross-sectional view of a plated layer of a hot press-formed body obtained by hot pressing at an inappropriate heating temperature using a Zn-based plated steel sheet. 図2は、Zn系めっき鋼板を用いた熱間プレス成形体のめっき層の断面図である。FIG. 2 is a cross-sectional view of a plated layer of a hot press-formed body using a Zn-based plated steel sheet. 図3は、Al系めっき鋼板を用いた熱間プレス成形体のめっき層の断面図である。FIG. 3 is a cross-sectional view of a plating layer of a hot press-formed body using an Al-based plated steel sheet. 図4は、プレス成形方法を説明するために用いる図である。FIG. 4 is a diagram used for explaining the press molding method.
 本発明の抵抗スポット溶接性に優れた熱間プレス成形体は、めっき鋼板をめっき鋼板のAc3変態点以上の温度に加熱した後、金型を用いて成形すると同時に冷却することで得られる、めっき付き熱間プレス成形体である。また、めっきの表面には、網目状の凹凸を持つ酸化物層があり、かつ、酸化物層の下には、融点が熱間プレス成形時の加熱温度以下であるめっき層を有してしていることを特徴とする。このような特徴を有することで、本発明の熱間プレス成形体は、抵抗スポット溶接において広い適正電流範囲が得られ抵抗スポット溶接性に優れることになる。 The hot press-formed body excellent in resistance spot weldability according to the present invention is obtained by heating a plated steel sheet to a temperature equal to or higher than the Ac3 transformation point of the plated steel sheet, and then forming it using a mold and cooling it at the same time. It is a hot press-molded product. In addition, the surface of the plating has an oxide layer with mesh-like irregularities, and under the oxide layer, there is a plating layer whose melting point is equal to or lower than the heating temperature during hot press molding. It is characterized by. By having such a feature, the hot press-formed body of the present invention has a wide appropriate current range in resistance spot welding and is excellent in resistance spot weldability.
 網目状の凹凸を持つ酸化物層
熱間プレス成形ではめっき鋼板をめっき鋼板のAc点以上(通常800℃~1000℃)に加熱しなければならず、めっき表面にはめっきの酸化物が形成される。特にZn系のめっきの場合においては、電気抵抗値の高いZnOが表面に厚く形成され、これが原因となり、得られた熱間プレス成形体を抵抗スポット溶接した場合には散りが発生しやすく、抵抗スポット溶接の適正電流範囲が狭い場合がある。例えば、Zn-Niめっき鋼板を840℃まで3分かけて大気雰囲気中で加熱し、直後に金型で焼き入れた熱間プレス材においては、Zn‐Niめっきの融点よりも加熱温度が低いために、めっき表面に平坦なZnO層が形成されており(図1)、この熱間プレス材同士を2枚重ね合わせた板組に抵抗スポット溶接を行おうとしても、ZnO層が鋼板間の通電経路形成を阻害し、無通電となる場合がある。
In oxide layer hot press forming with mesh-like irregularities, the plated steel sheet must be heated to 3 or more points (usually 800 ° C to 1000 ° C) on the plated steel plate, and plating oxide is formed on the plated surface. Is done. In particular, in the case of Zn-based plating, ZnO having a high electric resistance value is formed thick on the surface, and this is the cause, and when the obtained hot press-molded body is resistance spot welded, scattering is likely to occur. The appropriate current range for spot welding may be narrow. For example, in a hot-pressed material in which a Zn-Ni plated steel sheet is heated to 840 ° C for 3 minutes in an air atmosphere and then immediately quenched with a die, the heating temperature is lower than the melting point of Zn-Ni plating. In addition, a flat ZnO layer is formed on the plating surface (Fig. 1), and even if resistance spot welding is performed on a plate assembly in which two hot press materials are stacked, the ZnO layer is energized between the steel plates. Path formation may be hindered and there may be no current flow.
 一方、熱間プレス成形体のめっき表面に形成される酸化物が高い電気抵抗を示す酸化物であっても、めっき表面の酸化物が網目状の凹凸を形成している場合、抵抗スポット溶接が可能となる。これは、以下の理由による。重ね合わせた2枚以上の鋼板の少なくとも1枚に、めっき表面の酸化物が網目状の凹凸を形成している熱間プレス成形体を重ね合わせた板組みを一対の電極によって挟み、加圧力を加えながら抵抗スポット溶接を行う。この場合、電極加圧力が加えられた位置において、凹凸を持った酸化物層が崩壊することで通電経路が形成され、抵抗スポット溶接が可能となる。以上より、本発明では、めっきの表面には、網目状の凹凸を持つ酸化物層を有することとする。 On the other hand, even if the oxide formed on the plating surface of the hot press-molded body is an oxide exhibiting a high electrical resistance, resistance spot welding is performed when the oxide on the plating surface forms a mesh-like unevenness. It becomes possible. This is due to the following reason. A plate assembly in which a hot press-molded body in which the oxide on the plating surface forms a mesh-like unevenness is sandwiched between at least one of the two or more superposed steel sheets is sandwiched between a pair of electrodes, and the pressure is applied. Resistance spot welding is performed while adding. In this case, at the position where the electrode pressing force is applied, the conductive layer is formed by the collapse of the uneven oxide layer, and resistance spot welding becomes possible. From the above, in the present invention, the surface of the plating has an oxide layer having a mesh-like unevenness.
 さらに、網目状の凹凸を持つ酸化物層は、平均粗さRaが2μm以上であり、かつ、厚さの平均値を3μm以下とする。Raが2μm未満では、凹凸が小さく、電極により加圧されても酸化物層が十分には崩れないため、通電経路を確保することが困難となる。さらに好ましいRaは3μm以上である。また、酸化物層の厚さの平均が3μm超えでは、Raが2μm以上の凹凸があったとしても、酸化物層の厚さが厚すぎるために、酸化物層が崩壊しても通電経路を確保することが困難となる。 Furthermore, the oxide layer having mesh-like irregularities has an average roughness Ra of 2 μm or more and an average thickness of 3 μm or less. When Ra is less than 2 μm, the unevenness is small and the oxide layer does not collapse sufficiently even when pressed by an electrode, so that it is difficult to secure an energization path. Further preferable Ra is 3 μm or more. In addition, when the average thickness of the oxide layer exceeds 3 μm, even if there is an unevenness with Ra of 2 μm or more, the thickness of the oxide layer is too thick. It becomes difficult to ensure.
 網目状の凹凸を持つ酸化物層は、めっき鋼板を加熱中にめっきの表面に形成される。この加熱処理中に形成される酸化物層は、その後に続く成形によって高い荷重が加えられる。酸化物層表面に凹凸が存在する場合は、この荷重によって、一部、凹凸が崩壊し不連続な酸化物層となり、抵抗スポット溶接時の通電経路が確保される。その結果、散りが発生しにくくなり、広い適正電流範囲を得ることが可能となり、より抵抗スポット溶接性に優れることになる。よって、めっきの表面には、不連続な酸化物層があることが好ましい。 The oxide layer having mesh-like irregularities is formed on the surface of the plating while heating the plated steel sheet. The oxide layer formed during this heat treatment is subjected to a high load by subsequent molding. When unevenness exists on the surface of the oxide layer, the unevenness partially collapses due to this load to form a discontinuous oxide layer, and an energization path during resistance spot welding is secured. As a result, scattering is less likely to occur, a wide appropriate current range can be obtained, and resistance spot weldability is further improved. Therefore, it is preferable that a discontinuous oxide layer is present on the plating surface.
 このような網目状の凹凸を持つ酸化物層は、例えば、めっき層を構成する主たる成分の密度がめっき層を構成する主たる成分から形成される酸化物の密度よりも高いめっきを用い、かつ、熱間プレスの加熱温度が、めっき層の融点よりも高い温度に加熱することで形成させることができる。 The oxide layer having such network-like irregularities uses, for example, plating in which the density of the main component constituting the plating layer is higher than the density of the oxide formed from the main component constituting the plating layer, and It can be formed by heating the heating temperature of the hot press to a temperature higher than the melting point of the plating layer.
 これは、酸化物が形成される時、すなわち加熱時に、酸化物の密度がめっき層よりも低いと体積膨張が生じる。そして、酸化物層の下のめっき層が溶融すると、酸化物層の体積膨張を吸収するために大きく変形し、網目状の凹凸が形成されるのである。例えば、Zn系のめっきの場合には、Znの密度は7.14 g/cm3(室温)、600℃の溶融状態でも6.81g/cm3、ZnOの密度は5.61 g/cm3(室温)である。この場合、Zn系めっき表面がZnOとなる時、体積膨張が起こり、めっき層の融点よりも高温で加熱した場合は、図2に示されるように、めっき表面にZnOの網目状の凹凸が形成される。 This is because when the oxide is formed, that is, when heated, if the density of the oxide is lower than that of the plating layer, volume expansion occurs. When the plating layer under the oxide layer is melted, it is greatly deformed to absorb the volume expansion of the oxide layer, and network-like irregularities are formed. For example, in the case of a Zn-based plating, the density of Zn is the 7.14 g / cm 3 (room temperature), 600 density of 6.81 g / cm 3, ZnO in the molten state of ℃ is 5.61 g / cm 3 (room temperature) . In this case, when the Zn-based plating surface becomes ZnO, volume expansion occurs, and when heated at a temperature higher than the melting point of the plating layer, as shown in FIG. 2, ZnO network-like irregularities are formed on the plating surface. Is done.
 一方、Al系のめっきの場合はAlの密度は2.70 g/cm3(室温)、Alの密度は3.95 g/cm3(室温)であり、図3に示されるよう、Al系のめっきではZn系のような網目状の凹凸は形成されない。 On the other hand, in the case of Al-based plating, the Al density is 2.70 g / cm 3 (room temperature) and the Al 2 O 3 density is 3.95 g / cm 3 (room temperature). In the plating, no mesh-like irregularities like Zn-based are formed.
 融点が熱間プレス成形時の加熱温度以下であるめっき層
融点が加熱温度よりも低いめっき層を、加熱処理中の酸化や鋼板への拡散等によってなくならずに酸化物層の下に有している場合は、抵抗スポット溶接の通電初期に、めっき層が溶融することで、めっき層上に形成されている電気抵抗の高い酸化物層が崩壊し、さらに溶融しためっきとともに加圧部分から崩壊した酸化物層が吐き出されて安定した広い通電経路が形成される。その結果、散りが発生しにくくなり、広い適正電流範囲を得ることが可能となる。このように、散りが発生しにくく、広い適正電流範囲を得るためには、酸化物層の下に融点が熱間プレス成形の際の加熱温度以下であるめっき層を有していることが必要である。なお、めっき層を有しているとは、任意の10視野のめっき層の断面をSEMの反射電子像で500倍で観察し、酸化物層を除く鋼板表面の50%以上にめっき層が存在していることとする。
A plating layer whose melting point is lower than the heating temperature during hot press forming has a plating layer that is lower than the heating temperature under the oxide layer without being lost due to oxidation during the heat treatment or diffusion to the steel sheet. If the plating layer melts in the initial stage of resistance spot welding, the oxide layer with high electrical resistance formed on the plating layer collapses, and further collapses from the pressurized part with the molten plating. The oxide layer thus discharged is discharged, and a stable wide energization path is formed. As a result, scattering does not easily occur and a wide appropriate current range can be obtained. Thus, in order to prevent scattering and to obtain a wide appropriate current range, it is necessary to have a plating layer having a melting point below the heating temperature in hot press molding under the oxide layer. It is. Note that having a plating layer means observing the cross section of the plating layer of any 10 fields of view with a SEM backscattered electron image at a magnification of 500 times, and the plating layer is present on 50% or more of the steel sheet surface excluding the oxide layer. Suppose you are.
 前述したように、めっき層を構成する主たる成分の密度がめっき層を構成する主たる成分から形成される酸化物の密度よりも高いめっきを用いることで、凹凸をもつ酸化物層を形成することができる。この点から、めっきとしては、Zn系のめっきが好ましい。Zn系のめっきの場合、ZnのFeに対する犠牲防食性により優れた耐食性も持つことができる。めっき層のZn以外の残部に、例えばAl、Mgなどの成分が含まれる場合は、Al、Mgなどの密度はAl、Mgなどの酸化物の密度よりも低く、Al、Mgなどのイオン化傾向がZnよりも大きく酸化しやすいため、Al、Mgなどの成分が先に酸化され、めっき表面に凹凸を形成するうえで不利に働く。そのため、Al、Mgなどの成分はめっき相中に存在する量は少ない方が好ましい。例えば、Alは10%以下が好ましい。さらに好ましくは、Alは0.1%以下である。不可避的不純物としては、Mg:1.0 %未満、Si:1.0%未満であれば許容できる。このように、Mg:1.0%未満、Si:1.0%未満とすることによりドロスの付着が少なくなるとともに、熱間プレス成形時のめっき層の亀裂の発生が少なくなって、加工性が優れるという利点がある。 As described above, an oxide layer having irregularities can be formed by using plating in which the density of the main component constituting the plating layer is higher than the density of the oxide formed from the main component constituting the plating layer. it can. From this point, Zn plating is preferable as the plating. In the case of Zn-based plating, the sacrificial corrosion resistance of Zn to Fe can also have excellent corrosion resistance. In the case where the remainder of the plating layer other than Zn contains components such as Al and Mg, the density of Al and Mg is lower than the density of oxides such as Al and Mg, and there is a tendency to ionize Al and Mg. Since it is larger than Zn and easily oxidizes, components such as Al and Mg are oxidized first, which adversely affects the formation of irregularities on the plating surface. Therefore, it is preferable that the components such as Al and Mg are present in a small amount in the plating phase. For example, Al is preferably 10% or less. More preferably, Al is 0.1% or less. Inevitable impurities are acceptable if Mg: less than 1.0% and Si: less than 1.0%. In this way, Mg: less than 1.0%, Si: less than 1.0%, the adhesion of dross is reduced, the occurrence of cracks in the plating layer during hot press molding is reduced, and the advantage of excellent workability There is.
 好適に用いることができるめっきとしては、質量%でAl:10%以下、Fe:20%以下を含有し、残部がZnおよび不可避的不純物からなるからなるめっきである。 The plating that can be suitably used is a plating containing Al: 10% or less and Fe: 20% or less in mass%, with the balance being made of Zn and inevitable impurities.
 また、好適に用いることができるその他のめっきとしては、Ni:10~25%を含有し、残部がZnおよび不可避的不純物からなるめっきがある。付着量は10~90g/m2が好ましい。Zn以外の残部に含有される成分に、イオン化傾向がZnよりも低くめっき層表面の凹凸の形成を阻害しないNiを含有することで、NiZn11、ZiZn、ZiZn21のいずれかの結晶構造を有する融点が最大881℃ときわめて高いγ相が形成される。これにより加熱過程におけるめっき層表面での過剰な酸化亜鉛形成を抑制することができる。亜鉛酸化層はたとえ凹凸が形成されていても抵抗スポット溶接における通電経路確保を阻害するものであるため、亜鉛酸化層は薄い方が好ましく、過剰な酸化亜鉛形成の抑制により通電経路がより効果的に確保される。さらに、熱間プレス成形完了後にも、めっき層はγ相として残存するため、Znの犠牲防食効果により優れた穴あき耐食性を発揮するとともに、抵抗スポット溶接の通電初期にγ相が溶融し、通電経路の拡大、安定化に寄与する。なお、Ni量が10~25%におけるγ相の形成は、Ni-Zn合金の平衡状態図とは必ずしも一致しないが、これは電気めっき法などで行われるめっき層の形成反応が非平衡で進行するためと考えられる。 Another plating that can be suitably used is a plating containing Ni: 10 to 25%, with the balance being Zn and inevitable impurities. The adhesion amount is preferably 10 to 90 g / m 2 . Any of Ni 2 Zn 11 , ZiZn 3 , and Zi 5 Zn 21 is contained in the component contained in the balance other than Zn by containing Ni that has an ionization tendency lower than that of Zn and does not inhibit the formation of irregularities on the surface of the plating layer. A gamma phase having a crystal structure of 1 and a very high melting point of 881 ° C. is formed. Thereby, excessive zinc oxide formation on the plating layer surface in the heating process can be suppressed. Even if the zinc oxide layer has irregularities, it will hinder the energization path in resistance spot welding, so it is preferable that the zinc oxide layer is thin, and the energization path is more effective by suppressing excessive zinc oxide formation. Secured. Furthermore, since the plating layer remains as a γ phase even after hot press forming is completed, it exhibits excellent perforated corrosion resistance due to the sacrificial anticorrosive effect of Zn, and the γ phase melts at the initial stage of energization of resistance spot welding. Contributes to the expansion and stabilization of routes. Note that the formation of the γ phase at a Ni content of 10 to 25% does not necessarily match the equilibrium diagram of the Ni—Zn alloy, but this is a non-equilibrium progress of the plating layer formation reaction performed by electroplating or the like. It is thought to do.
 さらに好ましくは、鋼板表面から順に、60%以上のNiを含み、残部がZnおよび不可避的不純物からなり、付着量が0.01~5g/m2のめっき層Iと、10~25%のNiを含み、残部がZnおよび不可避的不純物からなり、付着量が10~90g/m2のめっき層IIとを有するめっき層の構成とすることが好ましい。めっき層IのNi量が60%未満ではめっき層のZnが下地鋼板に拡散することを十分には抑制できないために、優れた穴あき耐食性が得られない場合がある。めっき層IのNi量が60%以上では、めっき層のZnの下地鋼板への拡散が抑制され、熱間プレス成形後も多くのγ相が残存し、抵抗スポット溶接の適正電流範囲拡大に寄与する。めっき層IのNi量は100%であることが好ましい。100%未満の場合は、残部は犠牲防食効果を有するZnおよび不可避的不純物とする。 More preferably, in order from the steel sheet surface, it contains 60% or more of Ni, the balance is made of Zn and inevitable impurities, and the coating layer I has an adhesion amount of 0.01-5 g / m 2 and 10-25% Ni. It is preferable that the plating layer has a structure in which the balance is made of Zn and inevitable impurities, and the plating layer II has an adhesion amount of 10 to 90 g / m 2 . If the amount of Ni in the plating layer I is less than 60%, it is not possible to sufficiently suppress the diffusion of Zn in the plating layer into the underlying steel sheet, so that excellent perforated corrosion resistance may not be obtained. When the Ni content of the plating layer I is 60% or more, the diffusion of Zn in the plating layer to the underlying steel sheet is suppressed, and many γ phases remain after hot press forming, contributing to the expansion of the appropriate current range for resistance spot welding. To do. The amount of Ni in the plating layer I is preferably 100%. In the case of less than 100%, the balance is Zn and an unavoidable impurity having a sacrificial anticorrosive effect.
 また、めっき層Iの片面当たりの付着量は、0.01g/m2未満ではZnの下地鋼板への拡散を抑制する効果が十分に発揮されない。5g/m2を超えるとその効果が飽和し、コストアップを招く。よって、0.01~5g/m2とする。 Moreover, if the adhesion amount per one side of the plating layer I is less than 0.01 g / m 2 , the effect of suppressing the diffusion of Zn into the underlying steel sheet is not sufficiently exhibited. If it exceeds 5 g / m 2 , the effect will be saturated and the cost will increase. Therefore, 0.01 to 5 g / m 2 is set.
 めっき層IIは、10~25%のNiを含み、残部がZnおよび不可避的不純物からなるめっき層である。めっき層IIのNi量を10~25%とすることにより、Ni2Zn11、NiZn3、Ni5Zn21のいずれかの結晶構造を有する融点が881℃と高いγ相が形成されるので、加熱過程におけるめっき層表面の過剰な酸化亜鉛形成を抑制することができる。亜鉛酸化層はたとえ凹凸が形成されていても抵抗スポット溶接における通電経路確保を阻害するものであるため、亜鉛酸化層は薄い方が好ましく、過剰な酸化亜鉛形成の抑制により通電経路がより効果的に確保される。さらに、熱間プレス成形完了後にも、めっき層IIはγ相として残存するため、Znの犠牲防食効果により優れた穴あき耐食性を発揮する。なお、Ni量が10~25質量%におけるγ相の形成は、Ni-Zn合金の平衡状態図とは必ずしも一致しない。これは電気めっき法などで行われるめっき層の形成反応が非平衡で進行するためと考えられる。 The plating layer II is a plating layer containing 10 to 25% of Ni and the balance of Zn and inevitable impurities. By setting the Ni content of the plating layer II to 10 to 25%, a γ phase having a high melting point of 881 ° C. having a crystal structure of Ni 2 Zn 11 , NiZn 3 , or Ni 5 Zn 21 is formed. Excessive zinc oxide formation on the plating layer surface during the heating process can be suppressed. Even if the zinc oxide layer has irregularities, it will hinder the energization path in resistance spot welding, so it is preferable that the zinc oxide layer is thin, and the energization path is more effective by suppressing excessive zinc oxide formation. Secured. Furthermore, since the plating layer II remains as a γ phase even after the hot press forming is completed, excellent perforated corrosion resistance is exhibited due to the sacrificial anticorrosive effect of Zn. The formation of the γ phase when the Ni content is 10 to 25% by mass does not necessarily match the equilibrium diagram of the Ni—Zn alloy. This is probably because the formation reaction of the plating layer performed by electroplating or the like proceeds in a non-equilibrium manner.
 めっき層IIの片面当たりの付着量は、10g/m2未満ではZnの犠牲防食効果が十分に発揮されない。90g/m2を超えるとその効果が飽和し、コストアップを招く。よって、10~90g/m2とする。 If the adhesion amount per one side of the plating layer II is less than 10 g / m 2 , the sacrificial anticorrosive effect of Zn is not sufficiently exhibited. If it exceeds 90 g / m 2 , the effect is saturated and the cost is increased. Therefore, it is set to 10 to 90 g / m 2 .
 こうしためっき層Iやめっき層IIの形成方法は特に限定されるものではない。公知の電気めっき法が好適である。 The method for forming such plating layer I and plating layer II is not particularly limited. Known electroplating methods are preferred.
 Ni2Zn11、NiZn3、Ni5Zn21のγ相は、X線回折法やTEM(Transmission Electron Microscopy)を用いた電子線回折法により確認できる。また、めっき層IIのNi量を10~25質量%とすることにより上述のとおりγ相が形成されるが、電気めっきの条件等によっては多少のη相が混在することがある。このとき、加熱過程におけるめっき層表面での酸化亜鉛形成反応を最小限に抑制するために、η相の量は5質量%以下であることが好ましい。η相の量は、めっき層IIの全質量に対するη相の質量比で定義され、例えばアノード溶解法などにより定量することができる。 The γ phase of Ni 2 Zn 11 , NiZn 3 , and Ni 5 Zn 21 can be confirmed by an X-ray diffraction method or an electron beam diffraction method using TEM (Transmission Electron Microscopy). Further, although the γ phase is formed as described above by setting the Ni content of the plating layer II to 10 to 25 mass%, some η phase may be mixed depending on the conditions of electroplating. At this time, in order to minimize the zinc oxide formation reaction on the surface of the plating layer during the heating process, the amount of η phase is preferably 5% by mass or less. The amount of the η phase is defined by the mass ratio of the η phase to the total mass of the plating layer II, and can be quantified by, for example, the anodic dissolution method.
 次に、めっき層の下地鋼板である熱間プレス成形体用めっき鋼板について説明する。 Next, the plated steel sheet for hot press-formed bodies, which is the base steel sheet for the plating layer, will be described.
 本発明の熱間プレス成形体用めっき鋼板は、鋼板表面にめっき層を有し、めっき層の密度がめっき層を構成する主たる成分から形成される酸化物の密度より高いことが好ましい。 The plated steel sheet for hot press-formed bodies of the present invention preferably has a plated layer on the steel sheet surface, and the density of the plated layer is preferably higher than the density of the oxide formed from the main components constituting the plated layer.
 また、前述したように、めっき層は、質量%で、Al:10%以下、Fe:20%以下を含有し、残部がZnおよび不可避的不純物からなることが好ましい。 Moreover, as described above, the plating layer preferably contains, by mass%, Al: 10% or less, Fe: 20% or less, and the balance of Zn and inevitable impurities.
 また、Ni:10~25%を含有し、残部がZnおよび不可避的不純物からなり、付着量が10~90g/m2であることが好ましい。 Further, it is preferable that Ni: 10 to 25% is contained, the balance is made of Zn and inevitable impurities, and the adhesion amount is 10 to 90 g / m 2 .
 また、めっき層が、鋼板表面から順に、質量%で、Ni:60%以上を含有し、残部がZnおよび不可避的不純物からなり、付着量が0.01~5g/m2のめっき層Iと、質量%で、Ni:10~25%を含有し、残部がZnおよび不可避的不純物からなり、付着量が10~90g/m2のめっき層IIとを有することが好ましい。 In addition, the plating layer contains, in order from the steel plate surface, in mass%, Ni: 60% or more, the balance consisting of Zn and unavoidable impurities, and an adhesion amount of 0.01 to 5 g / m 2 and mass. It is preferable to have a plating layer II containing Ni: 10 to 25%, the balance being Zn and inevitable impurities, and having an adhesion amount of 10 to 90 g / m 2 .
 熱間プレス成形体用めっき鋼板としては、熱延鋼板や冷延鋼板を用いることができる。 Hot-rolled steel sheets and cold-rolled steel sheets can be used as the plated steel sheets for hot press-formed bodies.
 成分組成は、質量%で、C:0.15~0.5%、Si:0.05~2.0%、Mn:0.5~3%、P:0.1%以下、S:0.05%以下、Al:0.1%以下、N:0.01%以下を含有し、残部がFeおよび不可避的不純物からなる。好ましくは、質量%で、Cr:0.01~1%、Ti:0.2%以下、B:0.0005~0.08%のうちから選ばれた少なくとも一種や、質量%で、Sb:0.003~0.03%を含有する。このような成分組成とすることで、熱間プレス成形体に980MPa以上の引張強度(以下、TSと称することもある)を付与することができる。 Component composition is mass%, C: 0.15-0.5%, Si: 0.05-2.0%, Mn: 0.5-3%, P: 0.1% or less, S: 0.05% or less, Al: 0.1% or less, N: 0.01 % Or less, with the balance being Fe and inevitable impurities. Preferably, it contains at least one selected from Cr: 0.01 to 1%, Ti: 0.2% or less, and B: 0.0005 to 0.08%, or Sb: 0.003 to 0.03% by mass. By setting it as such a component composition, the tensile strength (henceforth TS may be called) 980 Mpa or more can be provided to a hot press molding.
 各成分元素の好適範囲の限定理由を、以下に説明する。 The reason for limiting the suitable range of each component element will be described below.
 C:0.15~0.5%
 Cは、鋼の強度を向上させる元素であり、熱間プレス成形体のTSを980MPa以上にするには、C量を0.15%以上とする必要がある。一方、C量が0.5%を超えると、素材の鋼板のブランキング加工性が著しく低下する。したがって、C量は0.15~0.5%とする。
C: 0.15-0.5%
C is an element that improves the strength of the steel. In order to increase the TS of the hot-press formed body to 980 MPa or more, the C content needs to be 0.15% or more. On the other hand, if the amount of C exceeds 0.5%, the blanking workability of the steel plate as the material will be significantly reduced. Therefore, the C content is 0.15 to 0.5%.
 Si:0.05~2.0%
 Siは、Cと同様、鋼の強度を向上させる元素であり、熱間プレス成形体のTSを980MPa以上にするには、Si量を0.05%以上とする必要がある。一方、Si量が2.0%を超えると、熱間圧延時に赤スケールと呼ばれる表面欠陥の発生が著しく増大するとともに、圧延荷重が増大し、熱延鋼板の延性の劣化を招く。さらに、Si量が2.0%を超えると、ZnやAlを主体としためっき皮膜を鋼板表面に形成するめっき処理を施す際に、めっき処理性に悪影響を及ぼす場合がある。したがって、Si量は0.05~2.0%とする。
Si: 0.05-2.0%
Si, like C, is an element that improves the strength of steel. In order to increase the TS of a hot-press formed body to 980 MPa or more, the Si amount needs to be 0.05% or more. On the other hand, when the amount of Si exceeds 2.0%, the occurrence of surface defects called red scale during hot rolling significantly increases, the rolling load increases, and the ductility of the hot-rolled steel sheet deteriorates. Furthermore, if the Si content exceeds 2.0%, the plating processability may be adversely affected when a plating process for forming a plating film mainly composed of Zn or Al on the steel sheet surface is performed. Therefore, the Si content is 0.05 to 2.0%.
 Mn:0.5~3.0%
 Mnは、フェライト変態を抑制して焼入れ性を向上させるのに効果的な元素である。また、Ac3変態点を低下させるので、熱間プレス前の加熱温度を低下するにも有効な元素である。このような効果の発現のためには、Mn量を0.5%以上とする必要がある。一方、Mn量が3.0%を超えると、偏析して素材の鋼板および熱間プレス成形体の特性の均一性が低下する。したがって、Mn量は0.5~3.0%とする。
Mn: 0.5-3.0%
Mn is an element effective for suppressing the ferrite transformation and improving the hardenability. In addition, since the Ac3 transformation point is lowered, it is an effective element for lowering the heating temperature before hot pressing. In order to exhibit such an effect, the amount of Mn needs to be 0.5% or more. On the other hand, if the amount of Mn exceeds 3.0%, segregation occurs and the uniformity of the properties of the raw steel plate and hot press-formed product decreases. Therefore, the Mn content is 0.5 to 3.0%.
 P:0.1%以下
 P量が0.1%を超えると、偏析して鋼板および熱間プレス成形体の機械的特性の均一性が低下するとともに、靭性も著しく低下する。したがって、P量は0.1%以下とする。さらに好ましくは、抵抗スポット溶接部の十字引張強さを向上させるために、P量は0.02%以下である。
P: 0.1% or less When the amount of P exceeds 0.1%, segregation occurs and the uniformity of the mechanical properties of the steel sheet and the hot press-formed product decreases, and the toughness also decreases significantly. Therefore, the P content is 0.1% or less. More preferably, in order to improve the cross tensile strength of the resistance spot welded portion, the P content is 0.02% or less.
 S:0.05%以下
 S量が0.05%を超えると、熱間プレス成形体の靭性が低下する。したがって、S量は0.05%以下とする。
S: 0.05% or less If the amount of S exceeds 0.05%, the toughness of the hot press-formed product is lowered. Therefore, the S content is 0.05% or less.
 Al:0.1%以下
 Al量が0.1%を超えると、鋼板のブランキング加工性や焼入れ性を低下させる。したがって、Al量は0.1%以下とする。
Al: 0.1% or less When the Al content exceeds 0.1%, blanking workability and hardenability of the steel sheet are deteriorated. Therefore, the Al content is 0.1% or less.
 N:0.01%以下
 N量が0.01%を超えると、熱間圧延時や熱間プレス前の加熱時にAlNの窒化物を形成し、素材の鋼板のブランキング加工性や焼入れ性を低下させる。したがって、N量は0.01%以下とする。
N: 0.01% or less When the N content exceeds 0.01%, a nitride of AlN is formed during hot rolling or heating before hot pressing, and the blanking workability and hardenability of the steel sheet are reduced. Therefore, the N content is 0.01% or less.
 残部はFeおよび不可避的不純物である。 The balance is Fe and inevitable impurities.
 必要に応じて、適宜、下記目的により以下の元素を含有することができる。
Cr:0.01~1%、Ti:0.2%以下、B:0.0005~0.08%のうちから選ばれた少なくとも一種 および/またはSb:0.003~0.03%
 Cr:0.01~1%
 Crは、鋼を強化するとともに、焼入れ性を向上させるのに有効な元素である。このような効果を発現するためには、Cr量を0.01%以上とすることが好ましい。一方、Cr量が1%を超えると著しいコスト高を招くため、Cr量の上限は1%とすることが好ましい。
If necessary, the following elements can be appropriately contained for the following purposes.
Cr: 0.01 to 1%, Ti: 0.2% or less, B: 0.0005 to 0.08% and / or Sb: 0.003 to 0.03%
Cr: 0.01-1%
Cr is an element effective for strengthening steel and improving hardenability. In order to exhibit such an effect, the Cr content is preferably 0.01% or more. On the other hand, if the Cr content exceeds 1%, the cost is significantly increased, so the upper limit of the Cr content is preferably 1%.
 Ti:0.2%以下
 Tiは、鋼を強化するとともに、細粒化により靭性を向上させるのに有効な元素である。また、Bよりも優先して窒化物を形成して、固溶Bによる焼入れ性の向上効果を発揮させるのに有効な元素でもある。しかし、Ti量が0.2%を超えると、熱間圧延時の圧延荷重が極端に増大し、また、熱間プレス成形体の靭性が低下するので、Ti量の上限は0.2%とすることが好ましい。
Ti: 0.2% or less Ti is an element effective for strengthening steel and improving toughness by refining. It is also an element effective for forming a nitride in preference to B and exhibiting the effect of improving the hardenability by the solid solution B. However, if the amount of Ti exceeds 0.2%, the rolling load during hot rolling is extremely increased, and the toughness of the hot press-formed product is reduced, so the upper limit of the amount of Ti is preferably 0.2%. .
 B:0.0005~0.08%
 Bは、熱間プレス時の焼入れ性や熱間プレス後の靭性向上に有効な元素である。こうした効果の発現のためには、B量を0.0005%以上とすることが好ましい。一方、B量が0.08%を超えると、熱間圧延時の圧延荷重が極端に増大し、また、熱間圧延後にマルテンサイト相やベイナイト相が生じて鋼板の割れなどが生じるので、B量の上限は0.08%とすることが好ましい。
B: 0.0005-0.08%
B is an element effective for improving the hardenability during hot pressing and toughness after hot pressing. In order to exhibit such an effect, the B content is preferably 0.0005% or more. On the other hand, if the amount of B exceeds 0.08%, the rolling load during hot rolling is extremely increased, and a martensite phase and a bainite phase are generated after hot rolling, resulting in cracks in the steel sheet. The upper limit is preferably 0.08%.
 Sb:0.003~0.03%
 Sbは、鋼板を加熱してから熱間プレスの一連の処理によって鋼板を冷却するまでの間に鋼板表層部に生じる脱炭層を抑制する効果を有する。このような効果を発現するためにはSbの量を0.003%以上とすることが好ましい。一方、Sb量が0.03%を超えると、圧延荷重の増大を招き、生産性を低下させる。したがって、Sb量の上限は0.03%とすることが好ましい。
Sb: 0.003-0.03%
Sb has an effect of suppressing a decarburized layer generated in the surface layer portion of the steel plate after the steel plate is heated until the steel plate is cooled by a series of hot press processes. In order to exhibit such an effect, the amount of Sb is preferably 0.003% or more. On the other hand, if the amount of Sb exceeds 0.03%, the rolling load increases and productivity decreases. Accordingly, the upper limit of the Sb amount is preferably 0.03%.
 以上からなる熱間プレス成形体用めっき鋼板を、めっき鋼板のAc3変態点以上の温度で加熱後、金型を用いて成形すると同時に冷却することで抵抗スポット溶接性に優れためっき付き熱間プレス成形体が製造される。加熱は、50℃/s以上の平均昇温速度で行うことが好ましい。より好ましくは、100℃/s以上、さらに好ましくは、110℃/s以上の平均昇温速度である。なお、本発明において、平均昇温速度とは、室温(20℃)から加熱温度までの昇温速度の平均であり、((加熱温度)―室温(20℃))/(昇温時間)で求めることができる。 Hot press-formed hot press with excellent resistance spot weldability by heating the plated steel sheet for hot press-formed body composed of the above at a temperature equal to or higher than the Ac3 transformation point of the plated steel sheet and then forming using a mold. A shaped body is produced. Heating is preferably performed at an average temperature increase rate of 50 ° C./s or more. More preferably, the average rate of temperature increase is 100 ° C./s or more, and still more preferably 110 ° C./s or more. In the present invention, the average rate of temperature increase is the average rate of temperature increase from room temperature (20 ° C.) to the heating temperature, ((heating temperature) −room temperature (20 ° C.)) / (Temperature increasing time). Can be sought.
 Ac3変態点以上に加熱するのは、熱間プレス時の急冷でマルテンサイト相などの硬質相を形成し、熱間プレス成形体の高強度化を図るためである。また、めっき層の融点以上に加熱するのは、めっき層を溶融させ、表面に形成されるめっき層の酸化物に凹凸を形成させるためである。一方、加熱温度が1000℃を超えるとめっき層表面において多量の酸化物層が形成し、さらに酸化物層に凹凸を形成したとしても、抵抗スポット溶接時に通電経路の形成を阻害するきわめて厚い酸化物層を形成する場合がある。よって、加熱温度の上限は1000℃が好ましい。なお、ここでいう加熱温度とは鋼板の最高到達温度のことをいう。 The reason why the heating is performed at a temperature higher than the Ac3 transformation point is to form a hard phase such as a martensite phase by rapid cooling during hot pressing and to increase the strength of the hot press-formed body. The reason why the plating layer is heated to the melting point or higher is to melt the plating layer and form irregularities in the oxide of the plating layer formed on the surface. On the other hand, if the heating temperature exceeds 1000 ° C, a large amount of oxide layer is formed on the surface of the plating layer, and even if unevenness is formed on the oxide layer, it is a very thick oxide that hinders the formation of a current path during resistance spot welding Layers may be formed. Therefore, the upper limit of the heating temperature is preferably 1000 ° C. In addition, the heating temperature here means the highest temperature reached of the steel sheet.
 また、加熱時の平均昇温速度を50℃/s以上にすると、めっき層表面における厚い酸化物層の生成を抑制でき、抵抗スポット溶接性がより向上する。めっき層表面における酸化物層の生成は、鋼板が高温条件下に晒される高温滞留時間が長くなるほど増大するため、平均昇温速度が速いほど、高温滞留時間を短くすることができる。この結果、めっき層表面での酸化物層の生成を抑制できる。なお、最高到達板温における保持時間は特に限定されるものではない。酸化物層の生成を抑制するためには短時間とする方が好適であり、好ましくは300s以下、より好ましくは60s以下、さらに好ましくは10s以下である。 In addition, when the average heating rate during heating is 50 ° C./s or more, the formation of a thick oxide layer on the surface of the plating layer can be suppressed, and resistance spot weldability is further improved. The generation of the oxide layer on the surface of the plating layer increases as the high temperature residence time during which the steel sheet is exposed to high temperature conditions increases. Therefore, the higher the average temperature increase rate, the shorter the high temperature residence time. As a result, generation of an oxide layer on the plating layer surface can be suppressed. In addition, the holding time at the maximum plate temperature is not particularly limited. In order to suppress the formation of the oxide layer, a shorter time is preferable, preferably 300 s or less, more preferably 60 s or less, and still more preferably 10 s or less.
 加熱方法としては、電気炉やガス炉などによる加熱、火炎加熱、通電加熱、高周波加熱、誘導加熱などを例示できる。特に、平均昇温速度を50℃/s以上にするには、通電加熱、高周波加熱、誘導加熱などが好適である。
また、熱間プレス成形後に、熱間プレス成形した成形体を金型より取り出し、液体または気体を用いて冷却することも可能である。
Examples of the heating method include heating by an electric furnace or a gas furnace, flame heating, energization heating, high frequency heating, induction heating, and the like. In particular, energization heating, high-frequency heating, induction heating, and the like are suitable for setting the average temperature rising rate to 50 ° C./s or more.
In addition, after the hot press molding, the hot press molded product can be taken out from the mold and cooled using a liquid or a gas.
 下地鋼板として、質量%で、C:0.23%、Si:0.25%、Mn:1.2%、P:0.01%、S:0.01%、Al:0.03%、N:0.005%、Cr:0.2%、Ti:0.02%、B:0.0022%、Sb:0.008%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、Ac3変態点が820℃で、板厚1.2mmの冷延鋼板を用いた。この冷延鋼板の表面に、表1に記載の7種類のめっき(合金化溶融Znめっき(GA)、溶融Znめっき(GI)、電気純Znめっき(EG)、電気Zn合金メッキ(Zn-Ni)、Zn-Alめっき(Zn-Al)、Zn-Al-Siめっき(Zn-Al-Si)、Al-Si めっき(Al-Si))を施し、熱間プレス成形処理後の抵抗スポット溶接時の適正電流範囲を調査した。なお、合金化溶融Znめっき(GA)の融点は主となるδ1相で約670℃、溶融Znめっき(GI)および電気純Znめっき(EG)の融点は約420℃、電気Zn合金メッキ(Zn-Ni)の融点は約800℃~880℃、Zn-Alめっき(Zn-Al)の融点は約380℃~400℃、Zn-Al-Siめっき(Zn-Al-Si)の融点は約570℃、Al-Si めっき(Al-Si)の融点は主たる成分のAlの融点が約660℃であるが、加熱中にFeと合金化するため1000℃以上となる。 As a base steel plate, C: 0.23%, Si: 0.25%, Mn: 1.2%, P: 0.01%, S: 0.01%, Al: 0.03%, N: 0.005%, Cr: 0.2%, Ti: A cold-rolled steel sheet containing 0.02%, B: 0.0022%, Sb: 0.008%, the balance being composed of Fe and inevitable impurities, an Ac3 transformation point of 820 ° C, and a sheet thickness of 1.2 mm was used. . On the surface of this cold-rolled steel sheet, seven types of plating listed in Table 1 (alloyed hot-dip Zn plating (GA), hot-dip Zn plating (GI), electric pure Zn plating (EG), electric Zn alloy plating (Zn—Ni ), Zn-Al plating (Zn-Al), Zn-Al-Si plating (Zn-Al-Si), Al-Si plating (Al-Si)), and during resistance spot welding after hot press forming The appropriate current range was investigated. The melting point of alloyed hot-dip Zn plating (GA) is about 670 ° C. in the main δ1 phase, the melting point of hot-dip Zn plating (GI) and electric pure Zn plating (EG) is about 420 ° C., and electric Zn alloy plating (Zn -Ni) has a melting point of about 800 ° C to 880 ° C, Zn-Al plating (Zn-Al) has a melting point of about 380 ° C to 400 ° C, and Zn-Al-Si plating (Zn-Al-Si) has a melting point of about 570 The melting point of Al—Si plating (Al—Si) is about 660 ° C., which is about 660 ° C. because it is alloyed with Fe during heating.
 上記鋼板に対して、900℃まで180秒かけて大気中にて加熱し、900℃で保持することなく、炉内から取り出し、大気中にて700℃まで空冷した後、直ちに図4に模式的に示したようなプレス成形方法で絞り加工し、熱間プレス成形体を作製した。なお、絞り加工を行うときのポンチ幅は70mm、加工高さは30mmとした。 The above steel sheet was heated to 900 ° C. in the atmosphere for 180 seconds, removed from the furnace without being held at 900 ° C., air-cooled to 700 ° C. in the atmosphere, and immediately shown in FIG. A hot press-molded body was produced by drawing using a press molding method as shown in FIG. The punch width when drawing was 70 mm and the processing height was 30 mm.
 次いで、上記により得られた熱間プレス成形体の頭部の平坦部から試料を採取し、めっき層表面の網目状の凹凸を持つ酸化層の有無、めっき表面の平均粗さ、酸化物層の厚み、酸化物層の下へのめっき層の残存を確認した。 Next, a sample is taken from the flat part of the head of the hot press-molded body obtained as described above, the presence or absence of an oxide layer having a network-like unevenness on the surface of the plating layer, the average roughness of the plating surface, the oxide layer The remaining thickness of the plating layer under the oxide layer was confirmed.
 めっき層表面の網目状の凹凸の有無は、表面をSEMにて観察し有無を判断した。凹凸がある場合を○、ない場合を×とした。 The presence or absence of mesh-like irregularities on the surface of the plating layer was determined by observing the surface with an SEM. The case where there was unevenness was marked as ◯, and the case where there was no unevenness was marked as x.
 めっき層の平均粗さは、表面粗さ測定器を用いて、適切な10か所について測定した。平均粗さの平均が3μm以上を「〇」、2μm以上3μm未満を「△」、2μm未満を「×」とした。 The average roughness of the plating layer was measured at 10 appropriate locations using a surface roughness measuring instrument. The average average roughness was defined as “◯” when 3 μm or more, “Δ” when 2 μm or more but less than 3 μm, and “x” when less than 2 μm.
 酸化物層の厚みは、めっき層の断面SEM観察により求めた。SEMにて反射電子像を1500倍にて10視野撮影し、撮影した画像から最表面に形成されている酸化物層の厚さの平均値を求めた。3μm以下を「〇」、3μmを超える場合を「×」とした。また、同時に画像からめっき層の残存の有無を確認した。酸化物層を除く鋼板表面の50%以上にめっき層の残存が確認された物を「〇」、50%未満の場合を「×」とした。 The thickness of the oxide layer was determined by cross-sectional SEM observation of the plating layer. The reflected electron image was photographed by SEM at 10 times with 1500 magnifications, and the average value of the thickness of the oxide layer formed on the outermost surface was determined from the photographed image. The case where 3 μm or less is “◯” and the case where it exceeds 3 μm is “×”. At the same time, the presence or absence of the plating layer was confirmed from the image. The product in which the plating layer remained on 50% or more of the steel sheet surface excluding the oxide layer was indicated as “◯”, and the case where it was less than 50% was indicated as “X”.
 上記により得られた熱間プレス成形体に対して、溶接試験を行った。溶接試験はインバータ直流抵抗スポット溶接機を用い、クロム銅製のDR形電極(電極先端径6mm)にて、加圧力450kgf、通電時間340msecで溶接を行い、ナゲット径が4√t(t:板厚(mm))となる電流値から散り発生までで定義する適正電流範囲を求めた。適正電流範囲が1kA以上を溶接性良好とし「○」、1.5kA以上をさらに溶接性良好とし「◎」と表記した。適正電流範囲1kA未満は「×」と表記した。 A welding test was performed on the hot press-formed body obtained as described above. For the welding test, an inverter DC resistance spot welder was used, and welding was performed with a chrome-copper DR electrode (electrode tip diameter: 6 mm) at a pressure of 450 kgf and an energization time of 340 msec. The nugget diameter was 4√t (t: plate thickness) The appropriate current range defined from the current value (mm) to the occurrence of scattering was determined. An appropriate current range of 1 kA or more was indicated as “good”, and “1.5” or higher was indicated as “◎”, indicating an even better weldability. An appropriate current range of less than 1 kA is indicated as “x”.
 以上により得られた結果を、条件と併せて表1に示す。 The results obtained as described above are shown in Table 1 together with the conditions.
Figure JPOXMLDOC01-appb-T000001
 表1より、No.1~5の本発明例では適正電流範囲が1kA以上確保されている。特に、Alを含有しないNo.4は、平均粗さ(Ra)が3μm以上であり、適正溶接電流範囲も1.5kA以上とより優れた抵抗スポット溶接性を示している。
Figure JPOXMLDOC01-appb-T000001
From Table 1, in the present invention examples Nos. 1 to 5, an appropriate current range of 1 kA or more is secured. In particular, No. 4 that does not contain Al has an average roughness (Ra) of 3 μm or more, and an appropriate welding current range of 1.5 kA or more, indicating a superior resistance spot weldability.
 一方で、Al含有量が多いために網目状の凹凸が形成されなかった比較例のNo.6においては適正電流範囲を1kA確保できていない。現在最も多用されているNo.7のAl-Siめっきにおいては、網目状の凹凸は形成されていないが、1kA以上の適正電流範囲が得られている。これは加熱中にめっき層がAl-Fe合金層となり、Al酸化物の形成量は少なく、また、Znが含まれないために、抵抗の高いZnOが形成されないことによる。この場合、溶接性には優れるが、Znの犠牲防食作用が得られないため、耐食性に劣る欠点がある。 On the other hand, in No. 6 of the comparative example in which the net-like unevenness was not formed due to the high Al content, an appropriate current range of 1 kA could not be secured. In No. 7 Al—Si plating, which is most frequently used at present, a network-like unevenness is not formed, but an appropriate current range of 1 kA or more is obtained. This is because the plating layer becomes an Al—Fe alloy layer during heating, the amount of Al oxide formed is small, and Zn is not contained, so that highly resistive ZnO is not formed. In this case, the weldability is excellent, but since the sacrificial anticorrosive action of Zn cannot be obtained, there is a disadvantage that the corrosion resistance is poor.
 下地鋼板として、質量%で、C:0.23%、Si:0.25%、Mn:1.2%、P:0.01%、S:0.01%、Al:0.03%、N:0.005%、Cr:0.2%、Ti:0.02%、B:0.0022%、Sb:0.008%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、Ac3変態点が820℃で、板厚1.2mmの冷延鋼板を用いた。この冷延鋼板の表面に、200g/Lの硫酸ニッケル六水和物および0~50g/Lの硫酸亜鉛七水和物を含有するpH3.0、温度50℃のめっき浴中で、電気めっき処理を施して、Ni含有量100%(質量%)で付着量0.05g/m2のめっき層Iを形成した。次に、200g/Lの硫酸ニッケル六水和物および10~100g/Lの硫酸亜鉛七水和物を含有するpH1.5、温度50℃のめっき浴中で、電気めっき処理を施して、Ni含有量12%、付着量60 g/m2のめっき層IIを形成した。次いで、めっき鋼板は通電加熱または炉加熱にて表2に示す条件で加熱し、実施例1と同様の条件で成形および冷却を行い、熱間プレス成形体を作製した。 As a base steel plate, C: 0.23%, Si: 0.25%, Mn: 1.2%, P: 0.01%, S: 0.01%, Al: 0.03%, N: 0.005%, Cr: 0.2%, Ti: A cold-rolled steel sheet containing 0.02%, B: 0.0022%, Sb: 0.008%, the balance being composed of Fe and inevitable impurities, an Ac3 transformation point of 820 ° C, and a sheet thickness of 1.2 mm was used. . The surface of this cold-rolled steel sheet is electroplated in a plating bath containing 200 g / L nickel sulfate hexahydrate and 0-50 g / L zinc sulfate heptahydrate at a pH of 3.0 and a temperature of 50 ° C. As a result, a plating layer I having an Ni content of 100% (mass%) and an adhesion amount of 0.05 g / m 2 was formed. Next, electroplating was performed in a plating bath containing 200 g / L nickel sulfate hexahydrate and 10 to 100 g / L zinc sulfate heptahydrate at a pH of 1.5 and a temperature of 50 ° C. A plating layer II having a content of 12% and an adhesion amount of 60 g / m 2 was formed. Next, the plated steel sheet was heated under the conditions shown in Table 2 by electric heating or furnace heating, and molded and cooled under the same conditions as in Example 1 to produce a hot press-formed body.
 上記により得られた熱間プレス成形体に対して、実施例1と同様の方法、評価基準で、めっき層表面の網目状の凹凸の有無、めっき表面の平均粗さ、酸化物層の厚み、酸化物層の下へのめっき層の残存を確認した。 With respect to the hot press-formed body obtained as described above, in the same manner as in Example 1, the evaluation criteria, the presence or absence of network irregularities on the surface of the plating layer, the average roughness of the plating surface, the thickness of the oxide layer, The remaining plating layer under the oxide layer was confirmed.
 また、上記により得られた熱間プレス成形体に対して、実施例1と同様の条件で溶接試験を行った。評価基準は、適正電流範囲が1kA以上を溶接性良好とし「○」、1.5kA以上をさらに溶接性良好とし「◎」、2.0kA以上をより一層溶接性良好とし「◎◎」と表記した。適正電流範囲1kA未満は「×」と表記した。
実施例1と同様である。
In addition, a welding test was performed on the hot press-formed body obtained as described above under the same conditions as in Example 1. The evaluation criteria were expressed as “◯” with an appropriate current range of 1 kA or more as “good” weldability, “◎” when 1.5 kA or more was further improved as weldability, and “◎◎” when 2.0 kA or more was further improved as weldability. An appropriate current range of less than 1 kA is indicated as “x”.
The same as in the first embodiment.
 得られた結果を条件と併せて表2に示す。 The results obtained are shown in Table 2 together with the conditions.
Figure JPOXMLDOC01-appb-T000002
 表2より、本発明例においては、適正電流範囲が1kA以上確保できていることがわかる。
目付量が15g/mと少ないNo.1、6、11、16では、めっき層のZn-Niが、酸化および母材への拡散によりなくなりめっき層を有していないため、適正電流範囲1kAを確保できない。目付量が60g/m2であっても保持時間が長いNo.27では、めっき層がなくなっているため、適正電流範囲を確保できていない。加熱温度が840℃と低いNo.21では、めっき層が溶融しないため、酸化物層の凹凸が形成されず、適正電流範囲が確保できていない。
Figure JPOXMLDOC01-appb-T000002
From Table 2, it can be seen that an appropriate current range of 1 kA or more can be secured in the present invention example.
In basis weight is small and 15g / m 2 No.1,6,11,16, since the Zn-Ni plating layer does not have a plated layer disappears by diffusion into the oxide and base metal, the proper current range 1kA Cannot be secured. Even with a basis weight of 60 g / m 2 , No. 27, which has a long holding time, does not have a proper current range because there is no plating layer. In No. 21, where the heating temperature is as low as 840 ° C., the plating layer does not melt, so that the unevenness of the oxide layer is not formed, and an appropriate current range cannot be secured.

Claims (7)

  1.  めっき鋼板を該めっき鋼板のAc3変態点以上の温度に加熱した後、金型を用いて成形すると同時に冷却することで得られる、めっき付きの熱間プレス成形体であって、
    前記めっきの表面には、平均粗さRaが2μm以上であり、厚さの平均値が3μm以下である網目状の凹凸を持つ酸化物層があり、かつ、該酸化物層の下には、融点が前記加熱温度以下であるめっき層を有していることを特徴とする熱間プレス成形体。
    A hot press-molded body with plating, obtained by heating a plated steel sheet to a temperature equal to or higher than the Ac3 transformation point of the plated steel sheet, and then simultaneously cooling the plated steel sheet with a mold,
    On the surface of the plating, there is an oxide layer having a network-like unevenness with an average roughness Ra of 2 μm or more and an average thickness of 3 μm or less, and under the oxide layer, A hot press-formed body having a plating layer having a melting point equal to or lower than the heating temperature.
  2.  前記成形および冷却前のめっき層の密度が前記成形および冷却後にめっき層の表面に形成される酸化物層の密度より高いことを特徴とする請求項1に記載の熱間プレス成形体。 The hot press-formed body according to claim 1, wherein the density of the plating layer before the molding and cooling is higher than the density of the oxide layer formed on the surface of the plating layer after the molding and cooling.
  3.  鋼板表面にめっき層を有し、該めっき層の密度がめっき層を構成する主たる成分から形成される酸化物の密度より高いことを特徴とする熱間プレス成形体用めっき鋼板。 A plated steel sheet for hot press-formed bodies, which has a plated layer on the surface of the steel sheet, and the density of the plated layer is higher than the density of an oxide formed from the main components constituting the plated layer.
  4.  請求項3に記載の熱間プレス成形体用めっき鋼板を、該めっき鋼板のAc3変態点以上の温度で加熱後、金型を用いて成形すると同時に冷却することを特徴とする熱間プレス成形体の製造方法。 A hot press-formed body, wherein the plated steel sheet for hot press-formed body according to claim 3 is heated at a temperature equal to or higher than the Ac3 transformation point of the plated steel sheet, and then simultaneously cooled with a mold. Manufacturing method.
  5.  前記加熱は、50℃/s以上の平均昇温速度で行うことを特徴とする請求項4に記載の熱間プレス成形体の製造方法。 The method for producing a hot press-formed body according to claim 4, wherein the heating is performed at an average temperature increase rate of 50 ° C / s or more.
  6.  前記加熱は、100℃/s以上の平均昇温速度で行うことを特徴とする請求項4に記載の熱間プレス成形体の製造方法。 The method for producing a hot press-formed body according to claim 4, wherein the heating is performed at an average temperature rising rate of 100 ° C / s or more.
  7.  前記加熱は、110℃/s以上の平均昇温速度で行うことを特徴とする請求項4に記載の熱間プレス成形体の製造方法。 The method for producing a hot press-formed body according to claim 4, wherein the heating is performed at an average temperature rising rate of 110 ° C / s or more.
PCT/JP2015/003426 2014-07-10 2015-07-07 Hot-press-molded article and production method for same, and plated steel sheet for use in hot-press molding WO2016006232A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015551289A JP6146482B2 (en) 2014-07-10 2015-07-07 HOT PRESS FORMED BODY, ITS MANUFACTURING METHOD, AND PLATED STEEL STEEL FOR HOT PRESS FORMED BODY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014142047 2014-07-10
JP2014-142047 2014-07-10

Publications (1)

Publication Number Publication Date
WO2016006232A1 true WO2016006232A1 (en) 2016-01-14

Family

ID=55063884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003426 WO2016006232A1 (en) 2014-07-10 2015-07-07 Hot-press-molded article and production method for same, and plated steel sheet for use in hot-press molding

Country Status (2)

Country Link
JP (1) JP6146482B2 (en)
WO (1) WO2016006232A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246801A (en) * 2009-10-28 2011-12-08 Jfe Steel Corp Hot press member and method for manufacturing the same
JP2012197505A (en) * 2011-03-10 2012-10-18 Jfe Steel Corp Steel sheet for hot pressing, and method of producing hot-pressed member utilizing the same
JP2012233247A (en) * 2010-08-04 2012-11-29 Jfe Steel Corp Steel sheet for hot pressing, and method for production of hot press member using the same
US20130125607A1 (en) * 2010-05-12 2013-05-23 Voestalpine Stahl Gmbh Method for producing a structural part from an iron-manganese steel sheet
JP2014014834A (en) * 2012-07-09 2014-01-30 Nippon Steel & Sumitomo Metal Method of manufacturing high strength steel formed member

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106756697B (en) * 2012-04-23 2020-03-13 株式会社神户制钢所 Method for producing galvanized steel sheet for hot stamping

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246801A (en) * 2009-10-28 2011-12-08 Jfe Steel Corp Hot press member and method for manufacturing the same
US20130125607A1 (en) * 2010-05-12 2013-05-23 Voestalpine Stahl Gmbh Method for producing a structural part from an iron-manganese steel sheet
JP2012233247A (en) * 2010-08-04 2012-11-29 Jfe Steel Corp Steel sheet for hot pressing, and method for production of hot press member using the same
JP2012197505A (en) * 2011-03-10 2012-10-18 Jfe Steel Corp Steel sheet for hot pressing, and method of producing hot-pressed member utilizing the same
JP2014014834A (en) * 2012-07-09 2014-01-30 Nippon Steel & Sumitomo Metal Method of manufacturing high strength steel formed member

Also Published As

Publication number Publication date
JP6146482B2 (en) 2017-06-14
JPWO2016006232A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6566128B2 (en) Hot stamping body
US11427880B2 (en) High-strength galvanized steel sheet and method for manufacturing same
KR101705999B1 (en) Zinc-plated steel sheet for hot press molding
JP4825882B2 (en) High-strength quenched molded body and method for producing the same
JP6540909B2 (en) Hot pressed member, method for producing the same, cold rolled steel sheet for hot pressing, and method for producing the same
WO2014162984A1 (en) Hot-stamp-molded article, cold-rolled steel sheet, and method for manufacturing hot-stamp-molded article
JP5708884B2 (en) Alloyed hot-dip galvanized steel sheet and manufacturing method thereof
JP2005113233A (en) Zn-BASED PLATED STEEL FOR HOT PRESS
CN108430662B (en) Hot press molded article having excellent corrosion resistance and method for producing same
WO2019003542A1 (en) Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same
WO2018179397A1 (en) Surface-treated steel sheet
WO2020158285A1 (en) Hot-pressed member, cold-rolled steel sheet for hot-pressed member, and methods respectively for producing these products
JP2022095819A (en) Joint component, and production method of the same
JP5589269B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing alloyed hot-dip galvanized steel sheet
US20210017621A1 (en) Alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet production method
JP7160203B2 (en) Galvanized steel sheet for hot stamping, method for producing galvanized steel sheet for hot stamping, and hot stamped compact
JP5516380B2 (en) Cold-rolled steel sheet for resistance welding and method for producing the same
JP6610788B2 (en) High strength hot rolled galvanized steel sheet
US11384407B2 (en) High-strength galvannealed steel sheet
WO2022091351A1 (en) Zn-plated hot-stamped molded article
JP6146482B2 (en) HOT PRESS FORMED BODY, ITS MANUFACTURING METHOD, AND PLATED STEEL STEEL FOR HOT PRESS FORMED BODY
CN111936659B (en) High-strength alloyed hot-dip galvanized steel sheet and method for producing same
JP7173368B2 (en) HOT PRESS MEMBER, HOT PRESS STEEL STEEL, AND METHOD FOR MANUFACTURING HOT PRESS MEMBER
JP7160204B2 (en) hot stamped body
JP2011006766A (en) Cold rolled steel sheet for resistance welding, and method for producing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015551289

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15819642

Country of ref document: EP

Kind code of ref document: A1