JP2014012870A - Carbonitriding component excellent in surface fatigue strength due to hydrogen embrittlement - Google Patents

Carbonitriding component excellent in surface fatigue strength due to hydrogen embrittlement Download PDF

Info

Publication number
JP2014012870A
JP2014012870A JP2012150268A JP2012150268A JP2014012870A JP 2014012870 A JP2014012870 A JP 2014012870A JP 2012150268 A JP2012150268 A JP 2012150268A JP 2012150268 A JP2012150268 A JP 2012150268A JP 2014012870 A JP2014012870 A JP 2014012870A
Authority
JP
Japan
Prior art keywords
less
concentration
surface layer
hydrogen embrittlement
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012150268A
Other languages
Japanese (ja)
Other versions
JP5999485B2 (en
Inventor
Toshiya Kinami
俊哉 木南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2012150268A priority Critical patent/JP5999485B2/en
Publication of JP2014012870A publication Critical patent/JP2014012870A/en
Application granted granted Critical
Publication of JP5999485B2 publication Critical patent/JP5999485B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbonitriding component that ensures excellent surface fatigue strength even when hydrogen embrittlement peeling occurs.SOLUTION: A carbonitriding component contains, by mass%, C:0.30 to 1.30%, Si:0.05 to 0.35%, Mn:0.40 to 1.50%, P:0.030% or less, S:0.030% or less, Cr:1.50 to 3.00%, Al:0.050% or less, O:0.0015% or less, N:0.025% or less, Mn+Cr:2.50 to 4.00% and the balance Fe with inevitable impurities and has a surface layer C concentration after a temper treatment of 0.80 to 1.50 mass%, a surface layer N concentration of 0.10 to 1.00 mass% and a surface hardness of HRC 58 to 64, a percentage of the number of Cr nitrides and Mn nitrides having a particle diameter of less than 300 nm to all nitrides dispersed with dispersion over surface layer of 70% or more, the number of the Cr nitrides and Mn nitrides of 10/mmor more, and a surface layer compressive residual stress of 600 MPa or more.

Description

本発明は、水素脆性型の面疲労強度に優れた浸炭窒化部品に関する。   The present invention relates to a carbonitrided part excellent in surface fatigue strength of a hydrogen embrittlement type.

近年、自動車や産業機器に用いられる歯車、新しい変速機構であるCVT、軸受部品等の面疲労負荷を受ける部品は高性能化、高速化に伴って使用条件が過酷化しており、更にCVTをはじめ使用される潤滑油の種類も多様化しており、こうした状況の下で従来とは異なる剥離形態による早期剥離を起す問題が生じている。   In recent years, gears used in automobiles and industrial equipment, CVT, which is a new speed change mechanism, and parts that are subject to surface fatigue load such as bearing parts have become severer in terms of use due to higher performance and higher speed. The types of lubricating oils used are also diversifying, and under such circumstances, there is a problem of causing early peeling due to a different peeling form.

例えば、自動車のオルタネータ用軸受で、従来型の組織変化であるヘルツ応力場に起因した、傾きを有するホワイトバンド(30°バンド、80°バンド)とは異なる樹木状の白色層の組織変化を伴う早期剥離が生じる場合がある。これは、高振動、高荷重、急加減速等の厳しい負荷条件下で油膜厚さが不十分となって一部で金属接触を生じ、潤滑油が分解して転走面に水素が発生し、これが内部に侵入することにより水素脆性剥離が生じたためと考えられている。オルタネータ用軸受では潤滑油を変えることにより、この早期剥離に対処してきた。
しかし、単に潤滑油を変えるだけでは水素起因の早期剥離を抑制できなくなりつつあり、水素脆性に優れた材料開発が求められていた。
For example, a bearing for a car alternator is accompanied by a change in the structure of a tree-like white layer different from a white band having an inclination (30 ° band, 80 ° band) due to the Hertzian stress field, which is a conventional structure change. Early peeling may occur. This is because the oil film thickness becomes insufficient under severe load conditions such as high vibration, high load, sudden acceleration / deceleration, etc., resulting in metal contact in part, and the lubricating oil decomposes and hydrogen is generated on the rolling surface. This is thought to be because hydrogen brittle exfoliation occurred due to the penetration into the inside. Alternator bearings have dealt with this early peeling by changing the lubricating oil.
However, by simply changing the lubricating oil, it is becoming impossible to suppress the early peeling due to hydrogen, and there has been a demand for the development of a material with excellent hydrogen embrittlement.

本出願人は、下記特許文献1に示されるように、バナジウム(以下V)を添加することによりV系炭化物による水素トラップ技術を用いて水素脆性型の面疲労強度を改善した高炭素高クロム軸受鋼を既に開発している。
また、下記特許文献2に示されるように、鋼材の初期炭素量を下げ、Vとモリブデン(以下Mo)を複合添加することにより、水素脆性型の面疲労強度に優れ、かつ歯車、CVT部品等の幅広い部品に適用可能な肌焼鋼を開発している。
さらに、下記特許文献3に示されるように、Cr系窒化物及びMo系窒化物の水素トラップを用いた水素脆性型の面疲労強度に優れた浸炭窒化用鋼を開発している。
The present applicant, as shown in the following Patent Document 1, has improved the hydrogen embrittlement type surface fatigue strength using a V-type carbide hydrogen trap technology by adding vanadium (hereinafter referred to as V). Steel has already been developed.
Further, as shown in Patent Document 2 below, by reducing the initial carbon content of the steel material and adding V and molybdenum (hereinafter referred to as Mo) in combination, the hydrogen embrittlement type surface fatigue strength is excellent, and gears, CVT parts, etc. Is developing case-hardened steel applicable to a wide range of parts.
Furthermore, as shown in Patent Document 3 below, a carbon steel for carbonitriding that has excellent surface fatigue strength of a hydrogen embrittlement type using a hydrogen trap of Cr-based nitride and Mo-based nitride has been developed.

特開2006−213981号公報JP 2006-213981 A 特開2008−280583号公報JP 2008-280583 A 特開2011−225936号公報JP 2011-225936 A

しかし、同様の水素起因の早期剥離現象は、CVTのトラクション油を用いた場合にも発生しており、面疲労負荷を受ける部品の高速回転化と高負荷化、使用条件の過酷化及び潤滑油の多様化等により、水素脆性による早期剥離が発生する部品や環境条件が増加する傾向にある。このため、水素脆性型の面疲労破壊を未だ十分には防止できておらず、水素脆性型の面疲労強度により一層優れた材料の開発が求められていた。
一方、上記特許文献3に記載されたような鋼材中のC量が0.2%程度の肌焼鋼は、表層に所定のC濃度分布を形成するために長時間の浸炭処理が不可欠である。鋼材中のC量が高い炭素鋼ではこの長時間の浸炭処理を省略できるため、コストメリットが大きい。ところが、鋼材中のC量が高い炭素鋼では所定量のCr,Moを添加して浸炭窒化を行っても、水素脆性型の面疲労強度が向上しない場合があるという問題があった。
However, the same phenomenon of early peeling due to hydrogen occurs even when CVT traction oil is used. High-speed rotation and high-loading of parts subject to surface fatigue load, severe use conditions, and lubricating oil As a result of diversification, the parts and environmental conditions that cause early peeling due to hydrogen embrittlement tend to increase. For this reason, the surface fatigue failure of the hydrogen embrittlement type has not been sufficiently prevented, and the development of a material more excellent in the surface fatigue strength of the hydrogen embrittlement type has been demanded.
On the other hand, the case-hardened steel having a C content of about 0.2% in the steel as described in Patent Document 3 requires a long-time carburizing treatment in order to form a predetermined C concentration distribution on the surface layer. . Carbon steel with a high amount of C in the steel material can omit this long-time carburizing treatment, and therefore has a great cost merit. However, carbon steel having a high C content in the steel material has a problem that even if carbon nitride is performed by adding a predetermined amount of Cr and Mo, the surface fatigue strength of the hydrogen embrittlement type may not be improved.

本発明は以上のような事情を背景としてなされたものであり、その目的は長時間の浸炭処理を省略可能なC量が高い炭素鋼をベースとして浸炭窒化処理を行うことにより、使用条件によって水素脆性剥離が生じるような場合においても優れた面疲労強度を確保し得る浸炭窒化部品を提供することにある。   The present invention has been made in the background as described above. The purpose of the present invention is to perform carbonitriding on the basis of carbon steel with a high C content that can omit carburizing treatment for a long time. An object of the present invention is to provide a carbonitrided part capable of ensuring excellent surface fatigue strength even in the case where brittle peeling occurs.

本発明者らは上記問題の原因を調査した結果、鋼材中のC量が高い炭素鋼では、浸炭窒化処理後の表層からのC濃度分布が小さくなる場合があり、この場合には表層圧縮残留応力が低くなることに起因して水素脆性型の面疲労寿命が低下するものと考えた。そこで、鋼材中のC量が高い種々の炭素鋼を用いて、浸炭窒化処理により、あるいは浸炭窒化処理後にショットピーニング処理を行うことにより、それぞれ水素脆性型の面疲労寿命に及ぼす圧縮残留応力の影響について調査した。   As a result of investigating the cause of the above problems, the present inventors have found that the carbon concentration distribution from the surface layer after carbonitriding may be small in carbon steel having a high C content in the steel material. It was thought that the surface fatigue life of the hydrogen embrittlement type decreased due to the lower stress. Therefore, the effect of compressive residual stress on the surface fatigue life of hydrogen embrittlement by carbon nitriding or by shot peening after carbonitriding using various carbon steels with high C content in steel. Was investigated.

その結果、鋼材中のC量が高い炭素鋼において表層からのC濃度分布が小さい場合でも、ショットピーニング処理により表層圧縮残留応力を付与することで、表層からのC濃度分布が大きい場合と同程度に水素脆性型の面疲労寿命が向上すること、そして表層圧縮残留応力が600MPa以上であると十分な水素脆性型の面疲労寿命が得られることを見出した。なお、上記調査では、ショットピーニング処理によって表層圧縮残留応力を付与したが、ショットピーニング処理に限らず、例えばコイニングなどの圧力付与による表層部の塑性変形や、高周波焼入れによる表層からの硬度分布を利用しても、上記と同様に表層圧縮残留応力を付与できるものと考える。   As a result, even when the C concentration distribution from the surface layer is small in carbon steel with a high amount of C in the steel material, by applying a surface layer compressive residual stress by shot peening, it is about the same as when the C concentration distribution from the surface layer is large In addition, it was found that the surface fatigue life of the hydrogen embrittlement type is improved, and that the surface fatigue life of the hydrogen embrittlement type is sufficient when the surface compressive residual stress is 600 MPa or more. In the above investigation, surface compressive residual stress was applied by shot peening treatment, but not limited to shot peening treatment, for example, plastic deformation of the surface layer portion by applying pressure such as coining, or hardness distribution from the surface layer by induction hardening is used. Even so, it is considered that surface compressive residual stress can be applied in the same manner as described above.

表層圧縮残留応力が水素脆性型の面疲労寿命を向上させる機構は以下のように考えられる。面疲労剥離は、せん断応力の影響を大きく受け、図1(A)に示されるように、表層から約0.2mmの深さ位置に生じる最大せん断応力により剥離が発生する。水素脆性型の剥離は、この剥離自体が水素によって加速され極めて早期に発生する。具体的には、転位との相互作用等によって水素が応力の高い位置(破損高応力部)に移動し、最大せん断応力位置に水素が集積し、早期剥離を引き起こす。   The mechanism by which the surface compressive residual stress improves the surface fatigue life of the hydrogen embrittlement type is considered as follows. Surface fatigue peeling is greatly affected by shear stress, and peeling occurs due to the maximum shear stress generated at a depth of about 0.2 mm from the surface layer as shown in FIG. The hydrogen embrittlement type delamination occurs very early because the delamination itself is accelerated by hydrogen. Specifically, hydrogen moves to a high stress position (fracture high stress portion) due to interaction with dislocations, etc., and hydrogen accumulates at the maximum shear stress position, causing early peeling.

そして、図1(B)に示されるように、最表層に高い残留応力を付与すると、表層から侵入した水素が表層の転位や応力場にトラップされ、破壊起点である最大せん断応力深さ位置への移動が抑制されるので、水素脆性型の面疲労寿命が向上することとなる。   As shown in FIG. 1B, when a high residual stress is applied to the outermost layer, hydrogen that has penetrated from the outer layer is trapped in the dislocations and stress field of the outer layer, and reaches the maximum shear stress depth position, which is a fracture starting point. Therefore, the surface fatigue life of the hydrogen embrittlement type is improved.

以上の知見に基づいた、本発明の水素脆性型の面疲労強度に優れた浸炭窒化部品は、質量%で、C:0.30〜1.30%、Si:0.05〜0.35%、Mn:0.40〜1.50%、P:0.030%以下、S:0.030%以下、Cr:1.50〜3.00%、Al:0.050%以下、O:0.0015%以下、N:0.025%以下、Mn+Cr:2.50〜4.00%、残部がFe及び不可避不純物からなる、浸炭窒化焼入れ焼戻し処理された浸炭窒化部品であって、焼戻し処理後の表層C濃度が0.80〜1.50質量%、表層N濃度が0.10〜1.00質量%で表面硬さがHRC58以上64未満であり、表層に分散析出した全窒化物に対する粒径300nm未満のCr窒化物及びMn窒化物の個数割合が70%以上かつ該個数が10個/mm以上であり、表層圧縮残留応力が600MPa以上であることを特徴とする。この場合、質量%で、Mo:0.50%以下、Ni:0.50%未満、Ti:0.500%以下、Nb:0.100%以下、のうちいずれか1種又は2種以上を更に含有している構成とすることもできる。また、焼戻し処理後の表層C濃度と鋼材C濃度(鋼材中(心部)のC量)との差が、質量%で0.40%以上である構成とすることもできる。 Based on the above knowledge, the carbon-nitrided part excellent in surface fatigue strength of the hydrogen embrittlement type of the present invention is mass%, C: 0.30 to 1.30%, Si: 0.05 to 0.35%. , Mn: 0.40 to 1.50%, P: 0.030% or less, S: 0.030% or less, Cr: 1.50 to 3.00%, Al: 0.050% or less, O: 0 Carbonitriding parts that have been subjected to carbonitriding, quenching and tempering treatment, and comprising tempering treatment, comprising N.0.025% or less, N: 0.025% or less, Mn + Cr: 2.50 to 4.00%, the balance being Fe and inevitable impurities The surface layer C concentration is 0.80 to 1.50% by mass, the surface layer N concentration is 0.10 to 1.00% by mass, the surface hardness is HRC58 or more and less than 64, and the grains with respect to all nitrides dispersed and precipitated on the surface layer The number ratio of Cr nitride and Mn nitride having a diameter of less than 300 nm is 70% or more and Number does not exceed 10 4 / mm 2 or more, the surface layer compressive residual stress, characterized in that at least 600 MPa. In this case, by mass%, Mo: 0.50% or less, Ni: less than 0.50%, Ti: 0.500% or less, Nb: 0.100% or less, one or more of them Furthermore, it can also be set as the structure contained. Further, the difference between the surface layer C concentration after tempering treatment and the steel material C concentration (the amount of C in the steel material (core)) may be 0.40% or more by mass%.

本発明の浸炭窒化部品によれば、上述したとおり、最表層に付与される高い圧縮残留応力により、表層から侵入した水素が表層の転位や応力場にトラップされ、破壊起点である最大せん断応力深さ位置への移動が抑制されるため、水素脆性型の面疲労強度を従来技術に比してより一層向上させることができる。   According to the carbonitrided part of the present invention, as described above, the high compressive residual stress applied to the outermost layer traps hydrogen that has penetrated from the outer layer into the dislocations and stress field of the outer layer, and the maximum shear stress depth that is the starting point of fracture. Since the movement to the vertical position is suppressed, the surface fatigue strength of the hydrogen embrittlement type can be further improved as compared with the prior art.

(A)は水素脆性型の面疲労剥離に際して最大せん断応力位置に水素が集積する状態を示す説明図。(B)は圧縮残留応力により水素が表層の転位や応力場にトラップされる状態を示す説明図。(A) is explanatory drawing which shows the state where hydrogen accumulates in the maximum shearing stress position at the time of hydrogen embrittlement type surface fatigue peeling. (B) is explanatory drawing which shows the state by which hydrogen is trapped by the dislocation and stress field of a surface layer by compressive residual stress. 浸炭窒化焼入れ焼もどし処理における温度、保持時間、カーボンポテンシャル、アンモニア濃度及び冷却条件の一例を示した説明図。Explanatory drawing which showed an example of the temperature, holding time, carbon potential, ammonia concentration, and cooling conditions in a carbonitriding quenching tempering process. 転動疲労試験方法の説明図。Explanatory drawing of a rolling fatigue test method. 2円筒ころがり疲労試験方法の説明図。Explanatory drawing of the 2 cylindrical rolling fatigue test method.

以下、本発明の水素脆性型の面疲労強度に優れた浸炭窒化部品の各化学成分の添加理由及び限定理由について説明する。   Hereinafter, the reason for addition and limitation of each chemical component of the carbonitrided part excellent in surface fatigue strength of the hydrogen embrittlement type of the present invention will be described.

(1)C:0.30〜1.30%
C(鋼材C濃度)は、通常必要とされる心部強度に応じて添加する。浸炭処理を長時間実施しなくても0.80%以上の表層C濃度が得られるようにするためには0.30%以上含有させる必要があるため、C含有量の下限を0.30%に規定した。一方、C量を1.30%を超えて含有させた場合、鍛造や旋削加工等の製造性を低下させるため、C含有量の上限を1.30%とした。好ましくは0.60〜1.10%である。
(1) C: 0.30 to 1.30%
C (steel C concentration) is added according to the core strength that is usually required. In order to obtain a surface layer C concentration of 0.80% or more without performing carburizing treatment for a long time, it is necessary to contain 0.30% or more, so the lower limit of the C content is 0.30%. Stipulated. On the other hand, when the C content exceeds 1.30%, the upper limit of the C content is set to 1.30% in order to reduce manufacturability such as forging and turning. Preferably it is 0.60 to 1.10%.

(2)Si:0.05〜0.35%
Siは鋼を製造する際に脱酸剤として用いられる。Siは鋼の強度、転動疲労寿命を向上させるために0.05%以上含有させる。一方、Siは鋼の靭性を低下させるとともに熱間加工性を低下させ、水素脆性感受性を高める。0.35%を超えて添加すると水素脆性型の転動疲労寿命が低下するため、Si含有量の上限を0.35%とした。
(2) Si: 0.05 to 0.35%
Si is used as a deoxidizer when manufacturing steel. Si is contained in an amount of 0.05% or more in order to improve the strength and rolling fatigue life of the steel. On the other hand, Si reduces the toughness of the steel and decreases the hot workability and increases the sensitivity to hydrogen embrittlement. If added over 0.35%, the rolling fatigue life of the hydrogen-brittle type decreases, so the upper limit of the Si content was set to 0.35%.

(3)Mn:0.40〜1.50%
Mnは本発明において重要な添加元素である。Mnは浸炭窒化によりMn窒化物、Mn複合窒化物(例えばMnSiNなど)を形成して水素トラップサイトとして働き、水素脆性型面疲労強度を改善する。また、Mnは鋼を製造する際に脱酸に用いられる元素であるとともに、焼入れ性を改善する元素である。これらの効果を得るためにはMnを0.40%以上含有させる必要がある。一方、1.50%を超えて多量にMnを含有させると鍛造や旋削加工等の製造性を低下させるため、Mn含有量の上限を1.50%とした。好ましくは0.80〜1.50%である。
(3) Mn: 0.40 to 1.50%
Mn is an important additive element in the present invention. Mn forms Mn nitride and Mn composite nitride (for example, MnSiN 2 etc.) by carbonitriding to serve as a hydrogen trap site and improve hydrogen embrittlement surface fatigue strength. Further, Mn is an element used for deoxidation when manufacturing steel, and is an element that improves hardenability. In order to obtain these effects, it is necessary to contain 0.40% or more of Mn. On the other hand, when Mn is contained in a large amount exceeding 1.50%, manufacturability such as forging and turning is lowered, so the upper limit of Mn content is set to 1.50%. Preferably it is 0.80 to 1.50%.

(4)P:0.030%以下
Pは鋼のオーステナイト粒界に偏析し、靭性や転動疲労寿命の低下を招く。特に水素脆性型転動疲労の特徴である粒界強度を大きく低下させるため、P含有量の上限を0.030%とした。
(4) P: 0.030% or less P segregates at the austenite grain boundaries of the steel, leading to a reduction in toughness and rolling fatigue life. In particular, the upper limit of the P content is set to 0.030% in order to greatly reduce the grain boundary strength, which is a characteristic of hydrogen embrittlement type rolling fatigue.

(5)S:0.030%以下
Sは鋼の熱間加工性を害し、鋼中での非金属介在物を形成して靭性や転動寿命を低下させ、水素脆性型転動疲労強度を低下させるので、可及的に少なくすることが望ましい。このため、S含有量の上限を0.030%とした。一方、Sは切削加工性を向上させる効果も有しているため、好ましくは下限を0.010%とする。
(5) S: 0.030% or less S impairs the hot workability of steel, forms non-metallic inclusions in the steel, reduces toughness and rolling life, and increases hydrogen embrittlement rolling fatigue strength. It is desirable to reduce as much as possible. For this reason, the upper limit of the S content is set to 0.030%. On the other hand, since S also has an effect of improving the machinability, the lower limit is preferably set to 0.010%.

(6)Cr:1.50〜3.00%
Crは本発明において重要な添加元素である。Crは浸炭窒化により窒化物を形成して水素トラップサイトとして働き、水素脆性型面疲労強度を改善する。また、Crは焼入れ性の改善と炭化物による硬さの確保と転動寿命改善とのために添加される。所定の炭窒化物を得るためには1.50%以上の添加が必要であるため、Cr含有量の下限を1.50%に規定した。一方、3.00%を超えて多量にCrを含有させると浸炭性を劣化させ、大型の炭窒化物を生成して転動疲労寿命を低下させるため、Cr含有量の上限を3.00%とした。好ましくは2.00〜3.00%である。
(6) Cr: 1.50 to 3.00%
Cr is an important additive element in the present invention. Cr forms nitrides by carbonitriding and acts as a hydrogen trap site, improving the hydrogen embrittlement surface fatigue strength. Further, Cr is added for improving hardenability, ensuring hardness by carbide and improving rolling life. In order to obtain a predetermined carbonitride, addition of 1.50% or more is necessary, so the lower limit of the Cr content is defined as 1.50%. On the other hand, if Cr is contained in a large amount exceeding 3.00%, the carburizing property is deteriorated and a large carbonitride is formed to reduce the rolling fatigue life. Therefore, the upper limit of Cr content is 3.00%. It was. Preferably it is 2.00 to 3.00%.

(7)Al:0.050%以下
Alは鋼の製造時の脱酸剤として使用されるが、硬質の非金属介在物を生成し、転動疲労寿命を低下させるため低減することが望ましい。0.050%を超えてAlを多量に含有させると顕著な転動疲労寿命の低下が認められるため、Al含有量の上限を0.050%とした。なお、Al含有量を0.005%未満にすると鋼材のコストが上昇するため、Al含有量の下限を0.005%とすることが好ましい。
(7) Al: 0.050% or less Although Al is used as a deoxidizer during the production of steel, it is desirable to reduce it because it generates hard non-metallic inclusions and reduces the rolling fatigue life. When a large amount of Al is contained exceeding 0.050%, a significant decrease in rolling fatigue life is observed, so the upper limit of the Al content was set to 0.050%. In addition, since the cost of steel materials will raise when Al content is made less than 0.005%, it is preferable to make the minimum of Al content into 0.005%.

(8)O:0.0015%以下、N:0.025%以下
O及びNは鋼中に酸化物、窒化物を形成し非金属介在物として疲労破壊の起点となり、転動疲労寿命を低下させるため、O含有量の上限を0.0015%とし、N含有量の上限を0.025%とした。
(8) O: 0.0015% or less, N: 0.025% or less O and N form oxides and nitrides in steel and become the starting point of fatigue failure as non-metallic inclusions, reducing the rolling fatigue life. Therefore, the upper limit of the O content is 0.0015% and the upper limit of the N content is 0.025%.

(9)Mn+Cr:2.50〜4.00%
MnとCrは単独添加でも水素脆性型の面疲労強度を改善するが、十分な効果を得るためには両者を適正に複合添加することが必要である。Mn+Crの含有量が2.50%未満では水素脆性に対する改善効果を十分に得ることができないため、下限を2.50%とした。一方、Mn+Crの含有量が4.00%を超えると鍛造や旋削加工等の製造性が低下するため、上限を4.00%とした。好ましくは2.80〜4.00%である。
(9) Mn + Cr: 2.50 to 4.00%
Even if Mn and Cr are added alone, the surface fatigue strength of the hydrogen embrittlement type is improved, but in order to obtain a sufficient effect, it is necessary to add both appropriately and in combination. If the Mn + Cr content is less than 2.50%, a sufficient improvement effect on hydrogen embrittlement cannot be obtained, so the lower limit was made 2.50%. On the other hand, if the content of Mn + Cr exceeds 4.00%, productivity such as forging and turning decreases, so the upper limit was made 4.00%. Preferably it is 2.80 to 4.00%.

(10)表面硬さ:HRC58以上64未満
焼戻し後の表面硬さと転動疲労寿命には相関が認められ、表面硬さが高いほど転動疲労寿命は長くなる傾向がある。特に、焼戻し処理後の表面硬さがHRC58未満になると急激に転動疲労寿命が低下し、寿命のばらつきも大きくなるため、焼戻し処理後の表面硬さをHRC58以上とした。一方、表面硬さが高くなると水素脆性に対する感受性が高くなり、表面硬さがHRC64以上になると水素脆性型の面疲労強度が著しく低下するため、HRC64未満とした。なお、Hv硬さに換算すると約650Hv以上800Hv未満に相当する。
(10) Surface hardness: HRC 58 or more and less than 64 There is a correlation between the surface hardness after tempering and the rolling fatigue life, and the higher the surface hardness, the longer the rolling fatigue life. In particular, when the surface hardness after the tempering treatment is less than HRC58, the rolling fatigue life is drastically reduced and the variation in the life is increased. Therefore, the surface hardness after the tempering treatment is set to HRC58 or more. On the other hand, when the surface hardness is increased, the sensitivity to hydrogen embrittlement is increased, and when the surface hardness is HRC64 or more, the surface fatigue strength of the hydrogen embrittlement type is significantly decreased. In terms of Hv hardness, this corresponds to about 650 Hv or more and less than 800 Hv.

(11)粒径300nm未満のCr窒化物及びMn窒化物の個数割合、個数:全窒化物の70%以上、10個/mm以上
窒化物のうち、水素トラップに有効な窒化物はCr窒化物であるCrNと、Mn窒化物であるMnSiNである。全窒化物に対するCr窒化物及びMn窒化物の個数割合が70%未満になると水素トラップの効果が低下し、水素脆性型面疲労強度の改善効果が得られなくなる。このため、上記個数割合を70%以上とした。
窒化物は水素をトラップすることにより、水素脆性型の面疲労剥離を抑制する効果がある。その効果を得るためには、微細な窒化物を多数析出させる必要がある。窒化物生成数が少ない場合や、粒径300nm以上の窒化物が多数生成することで粒径300nm未満の微細な窒化物が10個/mm未満となる場合には、水素トラップによる水素脆性型面疲労強度の改善効果が急速に低下する。このため、粒径300nm未満の窒化物を10個/mm以上含有させることとした。
(11) Number ratio of Cr nitride and Mn nitride having a particle size of less than 300 nm, number: 70% or more of all nitrides, 10 4 pieces / mm 2 or more Among nitrides, nitrides effective for hydrogen trap are Cr CrN that is a nitride and MnSiN 2 that is a Mn nitride. When the ratio of the number of Cr nitrides and Mn nitrides to the total nitrides is less than 70%, the effect of hydrogen traps is reduced, and the effect of improving the hydrogen embrittlement surface fatigue strength cannot be obtained. Therefore, the number ratio is set to 70% or more.
Nitride has an effect of suppressing hydrogen embrittlement type surface fatigue peeling by trapping hydrogen. In order to obtain the effect, it is necessary to deposit a large number of fine nitrides. If nitrides number generated is small and, when the fine nitrides below this size 300nm by particle diameter 300nm or more nitrides produces many of 10 less than 4 / mm 2, the hydrogen embrittlement by the hydrogen trapping The effect of improving the mold surface fatigue strength decreases rapidly. For this reason, 10 4 pieces / mm 2 or more of nitrides having a particle diameter of less than 300 nm are included.

(12)表層C濃度:0.80〜1.50%
Cは転がり軸受として強度を確保するために必須の元素であり、所定の熱処理後硬さを維持するためには0.80%以上含有させる必要があるため、C含有量の下限を0.80%に規定する。一方、C含有量が1.50%を超えて含有された場合、大型の炭化物が生成し、転動疲労寿命の低下が生じることが判明したため、C含有量の上限を1.50%とした。
(12) Surface layer C concentration: 0.80 to 1.50%
C is an essential element for securing strength as a rolling bearing, and in order to maintain the hardness after a predetermined heat treatment, it is necessary to contain 0.80% or more, so the lower limit of the C content is 0.80. %. On the other hand, when the C content exceeds 1.50%, it has been found that large carbides are generated and the rolling fatigue life is reduced, so the upper limit of the C content is 1.50%. .

(13)表層N濃度:0.10〜1.00%
Nは鋼の軟化抵抗性を改善することにより転動寿命を向上させる。また、微細な窒化物を表層に生成することにより水素トラップサイトとして働き、耐水素脆性を改善する。これらの効果を得るためにはNを0.10%以上含有させる必要があるため、下限を0.10%とした。一方、N含有量が1.00%を超えると残留オーステナイトγの生成により表面硬さを低下させ、所定の表面硬さが得られなくなるため、N含有量の上限を1.00%とした。
(13) Surface layer N concentration: 0.10 to 1.00%
N improves the rolling life by improving the softening resistance of the steel. In addition, by forming fine nitride on the surface layer, it works as a hydrogen trap site and improves hydrogen embrittlement resistance. In order to obtain these effects, it is necessary to contain 0.10% or more of N, so the lower limit was made 0.10%. On the other hand, when the N content exceeds 1.00%, the surface hardness is lowered due to the formation of retained austenite γ, and a predetermined surface hardness cannot be obtained. Therefore, the upper limit of the N content is set to 1.00%.

(14)表層圧縮残留応力:600MPa以上
表層圧縮残留応力の増加は水素脆性型面疲労強度の改善に効果がある。これは、圧縮残留応力によって亀裂の発生や伝播が抑制されるとともに、表層から侵入した水素の破壊起点部への拡散が抑制されると考えられるからである。この効果を得るためには表層圧縮残留応力が少なくとも600MPa以上必要であるため、表層圧縮残留応力の下限を600MPaとした。好ましくは700MPa以上である。
(14) Surface layer compressive residual stress: 600 MPa or more An increase in surface layer compressive residual stress is effective in improving the hydrogen embrittlement surface fatigue strength. This is because the compressive residual stress suppresses the generation and propagation of cracks and suppresses the diffusion of hydrogen that has entered from the surface layer to the fracture starting point. In order to obtain this effect, the surface layer compressive residual stress is required to be at least 600 MPa, so the lower limit of the surface layer compressive residual stress was set to 600 MPa. Preferably it is 700 MPa or more.

本発明では、更に以下の化学成分の1種又は2種以上を添加することができる。
(15)Mo:0.50%以下
Moは粒界破壊を抑制することにより、水素脆性型の面疲労強度を向上させる。また、Moは鋼の焼入れ性を改善するとともに、炭化物中に固溶することにより、焼戻し時の硬さの低下を抑制する効果がある。一方、0.50%を超えて多量にMoを含有させると鋼材のコストが上昇する他、鍛造や旋削加工等の製造性が低下するため、Moの上限を0.50%とした。
In the present invention, one or more of the following chemical components can be added.
(15) Mo: 0.50% or less Mo improves the surface fatigue strength of the hydrogen embrittlement type by suppressing grain boundary fracture. Further, Mo improves the hardenability of the steel and has the effect of suppressing the decrease in hardness during tempering by dissolving in the carbide. On the other hand, when Mo is contained in a large amount exceeding 0.50%, the cost of the steel material is increased, and the productivity of forging, turning and the like is lowered. Therefore, the upper limit of Mo is set to 0.50%.

(16)Ni:0.50%未満
Niは転動疲労過程での組織変化を抑制し、転動疲労寿命を向上させる。また、Niの添加は靭性および耐食性の改善にも効果がある。一方、0.50%を超えて多量にNiを含有させると鋼の焼入れ時に多量の残留オーステナイトγを生成し、所定の硬さが得られなくなるとともに、鋼材のコストが上昇するため、Ni含有量を0.50%未満とした。
(16) Ni: less than 0.50% Ni suppresses structural changes in the rolling fatigue process and improves the rolling fatigue life. Further, the addition of Ni is effective in improving toughness and corrosion resistance. On the other hand, if Ni is contained in a large amount exceeding 0.50%, a large amount of retained austenite γ is generated at the time of quenching of the steel, and a predetermined hardness cannot be obtained. Was less than 0.50%.

(17)Ti:0.500%以下
Tiの炭化物は微細であり、水素トラップサイトとして有効に働くことにより、水素脆性型の面疲労強度が改善する。一方、Tiは鋼中に酸化物、窒化物を形成し、非金属介在物として疲労破壊の起点となり、転動疲労寿命を低下させるため、Ti含有量の上限を0.500%とした。
(17) Ti: 0.500% or less Ti carbide is fine and effectively acts as a hydrogen trap site, thereby improving the surface fatigue strength of the hydrogen embrittlement type. On the other hand, Ti forms oxides and nitrides in the steel and becomes a starting point of fatigue failure as a non-metallic inclusion, and lowers the rolling fatigue life. Therefore, the upper limit of Ti content is set to 0.500%.

(18)Nb:0.100%以下
Nbの炭化物も微細であり、水素トラップサイトとして有効に働くことにより、水素脆性型の面疲労強度が改善する。また、Nbは結晶粒の粗大化を抑制する。そして結晶粒の微細化により耐水素脆性の改善に有効である。一方、0.100%を超えて多量にNbを含有させてもその効果が飽和するため、Nb含有量の上限を0.100%とした。
(18) Nb: 0.100% or less Nb carbide is also fine and effectively acts as a hydrogen trap site, thereby improving the surface fatigue strength of the hydrogen embrittlement type. Nb suppresses the coarsening of crystal grains. And it is effective in improving hydrogen embrittlement resistance by refining crystal grains. On the other hand, even if Nb is contained in a large amount exceeding 0.100%, the effect is saturated, so the upper limit of Nb content is set to 0.100%.

(19)焼戻し処理後の表層C濃度と鋼材C濃度との差:0.40%以上
焼戻し処理後の表層C濃度と鋼材C濃度との差は表層からのC分布及び硬さ分布を決めるもので、表層C濃度が鋼材C濃度に比べて高いほど表層には高い圧縮残留応力を付与することができる。このため水素脆性寿命の改善に有効である。この効果を得るためには、焼戻し処理後の表層C濃度と鋼材C濃度との差を質量%で0.40%以上にする必要があるため、下限値を0.40%とした。好ましくは0.50%以上である。
(19) Difference between surface layer C concentration and steel material C concentration after tempering: 0.40% or more The difference between surface layer C concentration and steel material C concentration after tempering determines C distribution and hardness distribution from the surface layer. Thus, as the surface C concentration is higher than the steel C concentration, higher compressive residual stress can be applied to the surface layer. Therefore, it is effective for improving the hydrogen embrittlement life. In order to obtain this effect, the difference between the surface layer C concentration and the steel material C concentration after the tempering process needs to be 0.40% or more by mass%, so the lower limit value was set to 0.40%. Preferably it is 0.50% or more.

(20)残部:Fe及び不可避不純物
ここでの不可避不純物(不可避的不純物)は、表1のNi,Moに代表される不純物レベルの化学成分を意味する。
(20) Remainder: Fe and inevitable impurities The inevitable impurities here (inevitable impurities) mean impurity-level chemical components represented by Ni and Mo in Table 1.

以下、本発明の実施例について説明する。
表1に示す化学成分(表1中のNi、Moの欄の「−」は不純物レベルを示す。また表1において残部はFeである)の材料50kgを真空溶解で溶製し、熱間鍛造により直径28mmの棒鋼を製造した。この後、焼ならし処理として920℃に加熱し、2時間保持した後空冷した。さらに、球状化焼なまし処理として760℃に加熱し、3時間保持した後、−15℃/時間で650℃まで冷却した後空冷し、各試験の素材とした。
Examples of the present invention will be described below.
50 kg of a material having chemical components shown in Table 1 ("-" in the columns of Ni and Mo in Table 1 indicates an impurity level. The balance is Fe in Table 1) is melted by vacuum melting, and hot forged. Thus, a steel bar having a diameter of 28 mm was manufactured. Then, it heated to 920 degreeC as a normalization process, and it air-cooled after hold | maintaining for 2 hours. Furthermore, as a spheroidizing annealing treatment, it was heated to 760 ° C., held for 3 hours, then cooled to 650 ° C. at −15 ° C./hour, and then air-cooled to obtain materials for each test.

その素材から直径25mm、長さ100mmの試験片を削り出し、種々の浸炭窒化条件で処理を行った。浸炭窒化処理は、浸炭ガス(ここではRXガスを使用)にアンモニアガスを加えた混合雰囲気中で各種浸炭窒化条件(浸炭窒化温度、浸炭窒化時間、カーボンポテンシャル、アンモニア濃度)で処理を行い、焼入れ焼戻し処理を行った。図2は浸炭窒化条件の一例を示している。図2中CPはカーボンポテンシャルを、OQは油焼入れを、ACは空冷をそれぞれ表している。   A test piece having a diameter of 25 mm and a length of 100 mm was cut out from the material and treated under various carbonitriding conditions. Carbonitriding is performed under various carbonitriding conditions (carbonitriding temperature, carbonitriding time, carbon potential, ammonia concentration) in a mixed atmosphere in which ammonia gas is added to carburizing gas (RX gas is used here) and quenched. A tempering treatment was performed. FIG. 2 shows an example of carbonitriding conditions. In FIG. 2, CP represents carbon potential, OQ represents oil quenching, and AC represents air cooling.

Figure 2014012870
Figure 2014012870

上記浸炭窒化焼入れ焼戻し処理を行った各試験片に対して、ショットピーニング処理を行った。ショットピーニング処理は、種々の条件(投射材、カバレージ(圧痕面積と被加工物の総面積との比)、投射圧)で行った。一例として、硬さ約700Hv、粒径約0.8mmの投射材を用いて、投射圧0.2MPaで行った場合は、約0.6mmAのアークハイト(試験板の反りの大きさ)であった。   A shot peening treatment was performed on each test piece subjected to the carbonitriding quenching and tempering treatment. The shot peening treatment was performed under various conditions (projection material, coverage (ratio of indentation area to total area of workpiece), projection pressure). As an example, when a projection material having a hardness of about 700 Hv and a particle size of about 0.8 mm is used and the projection pressure is 0.2 MPa, the arc height is about 0.6 mmA (the warpage of the test plate). It was.

ショットピーニング処理を行った各試験片に対して、外周を深さ0.1mm研削し、5点平均でロックウェル硬さ(JIS Z2245に準拠)を求めた。その後、同試験片の縦断面を埋め込んで研磨仕上げし、表層部の表層C濃度と表層N濃度をEPMAで分析した。ここで、表層C濃度と表層N濃度は、最表層から深さ10μmの位置までのC濃度、N濃度の最大値(ピーク値)とした。   For each test piece subjected to shot peening treatment, the outer periphery was ground to a depth of 0.1 mm, and the Rockwell hardness (conforming to JIS Z2245) was obtained with an average of 5 points. Thereafter, the longitudinal section of the test piece was embedded and polished, and the surface layer C concentration and the surface layer N concentration in the surface layer portion were analyzed by EPMA. Here, the surface layer C concentration and the surface layer N concentration were set to the maximum value (peak value) of the C concentration and N concentration from the outermost layer to a depth of 10 μm.

さらに、X線残留応力測定装置を用いて、各試験片の周方向と軸方向の圧縮残留応力を測定した。測定法は並傾法は用い、特性X線はCr管球を用い、照射面積1mmで測定した。また、イオンミリング(イオンビームを使った試料作製方法)を行って薄膜を作製し、透過型電子顕微鏡を用いて表層の窒化物のマッピングを行い、一定領域に存在する粒径10nm以上300nm未満の窒化物を全て同定し、観察領域の面積で除して、粒径300nm未満の微細な窒化物の個数密度(個/mm)を求めた。また、EDX分析により窒化物の組成分析を行い、Cr窒化物、Cr複合窒化物、Mn窒化物、Mn複合窒化物(例えばMnSiNなど)、Si窒化物、Si複合窒化物、Al窒化物、Al複合窒化物あるいはその他の窒化物であるかを判定し、Cr窒化物、Cr複合窒化物、Mn窒化物及びMn複合窒化物の個数割合を求めた。 Furthermore, the compressive residual stress of the circumferential direction and the axial direction of each test piece was measured using the X-ray residual stress measuring apparatus. As the measuring method, the parallel tilt method was used, and the characteristic X-ray was measured using a Cr tube with an irradiation area of 1 mm. In addition, ion milling (sample preparation method using an ion beam) is performed to produce a thin film, and nitride of the surface layer is mapped using a transmission electron microscope, and a particle size of 10 nm or more and less than 300 nm existing in a certain region. All the nitrides were identified and divided by the area of the observation region to obtain the number density (pieces / mm 2 ) of fine nitrides having a particle size of less than 300 nm. Also, nitride composition analysis is performed by EDX analysis, Cr nitride, Cr composite nitride, Mn nitride, Mn composite nitride (eg MnSiN 2 etc.), Si nitride, Si composite nitride, Al nitride, It was judged whether it was Al composite nitride or other nitrides, and the number ratio of Cr nitride, Cr composite nitride, Mn nitride and Mn composite nitride was determined.

また、同素材から直径12.2mm、長さ22.6mmの転動疲労試験片を粗加工し、各鋼種をそれぞれ前述と同じ浸炭窒化処理条件で浸炭窒化焼入れ焼戻し処理を行い、ショットピーニング処理後に試験表面を直径12mmに研削仕上げし、長さ22mmの試験片を作製した。同試験片を3%塩化ナトリウム溶液1L中に3gのチオシアン酸アンモニウム溶解した電解液を用い、電流密度0.2mA/cmで24時間の陰極チャージを行った。水素チャージ後、10分以内に転動疲労試験を開始した。 In addition, a rolling fatigue test piece having a diameter of 12.2 mm and a length of 22.6 mm is roughly processed from the same material, and each steel type is subjected to carbonitriding and quenching tempering under the same carbonitriding conditions as described above, and after shot peening The test surface was ground to a diameter of 12 mm to prepare a test piece having a length of 22 mm. Using the electrolytic solution obtained by dissolving 3 g of ammonium thiocyanate in 1 L of 3% sodium chloride solution, the test piece was subjected to cathodic charging at a current density of 0.2 mA / cm 2 for 24 hours. The rolling fatigue test was started within 10 minutes after hydrogen charging.

転動疲労試験は、図3(A),3(B)に示されるように、試験片10に対してSUJ2製のボール12を相手球として2個所定の面圧で押し付け、ガイドローラ14によるガイドの下で、駆動ローラ16により試験片10を転動させるものである。試験条件は、面圧5.9GPaで、潤滑はタービン#68を飛沫給油し、負荷速度46240rpmで試験を行った。同一条件で10点の試験を行い、ワイブル分布の累積破損確率が10%となるL10寿命を求めて評価寿命とした。なお、水素脆性型の面疲労はすべりに伴い、潤滑油の分解、新生面の生成等により水素侵入することが原因と考えられている。水素を陰極チャージした試験片10を用いた転動疲労試験で、水素脆性型の早期剥離現象を再現できることが確認されている。 In the rolling fatigue test, as shown in FIGS. 3 (A) and 3 (B), two SUJ2 balls 12 are pressed against the test piece 10 with a predetermined surface pressure by using a guide roller 14. The test piece 10 is rolled by the driving roller 16 under the guide. The test conditions were a surface pressure of 5.9 GPa, and the lubrication was performed by spraying turbine # 68 and applying a load speed of 46240 rpm. Were tested at 10 points under the same conditions, the cumulative failure probability of the Weibull distribution was evaluated life seeking 10% become L 10 life. The surface fatigue of the hydrogen embrittlement type is considered to be caused by intrusion of hydrogen due to decomposition of the lubricating oil, generation of a new surface, etc. due to slippage. In a rolling fatigue test using the test piece 10 charged with cathode of hydrogen, it has been confirmed that the hydrogen brittle type early peeling phenomenon can be reproduced.

また、同素材から粗加工後、各鋼種を各々前述と同じ浸炭窒化処理後にショットピーニング処理を行い、試験面直径26mmの円筒試験片を作製し、その試験片を用いて、2円筒ころがり疲労試験を行った。2円筒ころがり疲労試験は、図4に示されるように、円筒形状の試験片18に対して相手円筒20を所定面圧で押し付け、その状態でモータ22により軸部24を介して試験片18を回転させるとともに、モータ22の回転をギア26,28を介して軸30に伝達して、相手円筒20を回転させるものである。相手円筒20は、SUJ2製の焼入れ焼戻し材からなり、軸方向に曲率半径150mmのクラウニングを有する直径130mmの形状に形成されている。   In addition, after rough machining from the same material, each steel type is subjected to the same carbonitriding treatment as described above, followed by shot peening treatment to produce a cylindrical test piece having a test surface diameter of 26 mm, and a two-cylinder rolling fatigue test using the test piece. Went. In the two-cylinder rolling fatigue test, as shown in FIG. 4, the mating cylinder 20 is pressed against the cylindrical test piece 18 with a predetermined surface pressure, and the test piece 18 is pushed by the motor 22 via the shaft portion 24 in this state. While rotating, the rotation of the motor 22 is transmitted to the shaft 30 via the gears 26 and 28 to rotate the counterpart cylinder 20. The counterpart cylinder 20 is made of a quenching and tempering material made of SUJ2, and is formed into a shape with a diameter of 130 mm having a crowning with a curvature radius of 150 mm in the axial direction.

試験条件は、水素脆性型の面疲労剥離を再現する条件で行った。具体的には、水素脆性の生じる潤滑油を用い、水素脆性型の早期転動疲労破壊が生じる試験条件(油温90℃、すべり率−60%、面圧3GPa、回転数1500rpm)で試験を行った。ここで、すべり率とは、試験片18と相手円筒20の周速の差と、試験片18の周速との比率である。試験は同一条件で4点行い、平均寿命を求めた。表2に試験結果を示す。   The test conditions were such that the hydrogen embrittlement type surface fatigue peeling was reproduced. Specifically, using hydrogen-brittle lubricating oil, the test was conducted under test conditions (oil temperature 90 ° C., slip rate -60%, surface pressure 3 GPa, rotation speed 1500 rpm) in which hydrogen brittle type early rolling fatigue failure occurs. went. Here, the slip ratio is a ratio of the difference between the peripheral speeds of the test piece 18 and the counterpart cylinder 20 and the peripheral speed of the test piece 18. The test was performed at four points under the same conditions, and the average life was obtained. Table 2 shows the test results.

Figure 2014012870
Figure 2014012870

発明例は、いずれも表面硬さHRC58以上64未満であり、粒径300nm未満の微細な窒化物を10個/mm以上含有する。表層C濃度は0.80〜1.50質量%の範囲、表層N量は0.10〜1.00質量%の範囲である。 Each of the inventive examples has a surface hardness of HRC 58 or more and less than 64, and contains 10 4 pieces / mm 2 or more of fine nitrides having a particle size of less than 300 nm. The surface layer C concentration is in the range of 0.80 to 1.50 mass%, and the surface layer N amount is in the range of 0.10 to 1.00 mass%.

発明例の水素チャージ材の転動疲労のL10寿命は、31.0×10回(鋼種No.5)〜51.2×10回(鋼種No.7)と優れる。一方、比較例では、同L10寿命は0.7×10回(鋼種No.7)〜8.5×10回(鋼種No.13)と、いずれも水素脆性型の早期転動疲労破壊が生じて低寿命である。本発明により水素脆性型の転動寿命が1オーダ程度改善していることが分かる。 The L 10 life of rolling fatigue of the hydrogen charge material of the invention example is excellent at 31.0 × 10 7 times (steel type No. 5) to 51.2 × 10 7 times (steel type No. 7). On the other hand, in the comparative example, the L 10 life and 0.7 × 10 7 times (steels No.7) ~8.5 × 10 7 times (steel type No.13), both early rolling fatigue hydrogen embrittlement type Destruction occurs and has a low life. It can be seen that the rolling life of the hydrogen embrittlement type is improved by about one order according to the present invention.

また、発明例の2円筒試験の平均寿命は、25.6×10回(鋼種No.3)〜39.5×10回(鋼種No.8)と優れる。一方、比較例では、同平均寿命は0.2×10回(鋼種No.5)〜7.2×10回(鋼種No.12)と、いずれも水素脆性により低寿命である。本発明により水素脆性型の転動寿命が1オーダ程度改善していることが分かる。 Moreover, the average life of the two-cylinder test of the invention example is excellent at 25.6 × 10 6 times (steel type No. 3) to 39.5 × 10 6 times (steel type No. 8). On the other hand, in the comparative example, the average life is 0.2 × 10 6 times (steel type No. 5) to 7.2 × 10 6 times (steel type No. 12), both of which have a low life due to hydrogen embrittlement. It can be seen that the rolling life of the hydrogen embrittlement type is improved by about one order according to the present invention.

表2において、比較例の鋼種No.12,14はCr量が低いため、鋼種No.13はMn+Cr量が低いため、いずれも低寿命となった例である。また、比較例の鋼種No.1〜No.7は、化学成分は請求範囲内にあるが以下の理由により低寿命となった例である。すなわち、鋼種No.1,3,4,6は、鋼材C濃度が高いものの、表層C濃度と鋼材C濃度との差が小さく、ショットピーニング処理等を行わなかったために表層圧縮残留応力が600MPa未満となり、低寿命となった例である。   In Table 2, since the steel types No. 12 and 14 of the comparative example have a low Cr amount, the steel type No. 13 has a low Mn + Cr amount, so both are examples of low life. Moreover, steel types No. 1 to No. 7 of the comparative examples are examples in which the chemical components are within the claimed range but have a low life due to the following reasons. That is, steel types Nos. 1, 3, 4, and 6 have a high steel material C concentration, but the difference between the surface layer C concentration and the steel material C concentration is small, and the shot peening treatment or the like was not performed, so the surface layer compressive residual stress was less than 600 MPa. This is an example of a low life.

ここで、鋼種No.4は表層C濃度と鋼材C濃度とをほぼ同じ大きさに設定したものであるが、この鋼種No.4を用いた発明例と比較例とでは、表層圧縮残留応力以外の条件である、表面硬さ、表層C濃度、表層N濃度、粒径300nm未満のCr窒化物及びMn窒化物の個数割合や個数がほぼ同じであるにもかかわらず、水素チャージ材の転動疲労のL10寿命及び2円筒試験の平均寿命に顕著な差が生じた。これにより、鋼材C濃度が高く、かつ表層C濃度と鋼材C濃度との差が小さい場合でもショットピーニング処理等を行って600MPa以上の表層圧縮残留応力を付与すれば、上記両寿命を良好に向上させ得ることが分かる。 Here, the steel type No. 4 has the surface layer C concentration and the steel material C concentration set to substantially the same magnitude, but the invention example using this steel type No. 4 and the comparative example have other than the surface layer compressive residual stress. Although the surface hardness, the surface layer C concentration, the surface layer N concentration, and the number ratio and number of Cr nitride and Mn nitride having a particle size of less than 300 nm are almost the same, the rolling of the hydrogen charge material remarkable difference occurs in the fatigue of L 10 life and life expectancy of second cylindrical test. As a result, even when the steel material C concentration is high and the difference between the surface layer C concentration and the steel material C concentration is small, if the surface layer compressive residual stress of 600 MPa or more is applied by performing a shot peening process, both the above-mentioned lifetimes are improved. You can see that

また、比較例の鋼種No.2,5は浸炭窒化条件が適性でないため、表層の300nm未満の窒化物が10個/mm未満であり、低寿命となった例である。この鋼種No.2は表層N濃度が適正な条件を満たしているものの、窒化物が大径化し、300nm未満の窒化物個数が不足した例である。また、鋼種No.7は表層C濃度が低いため、低寿命となった例である。 Steel types No. 2 and 5 of the comparative example are examples in which the carbonitriding conditions are not suitable, and thus the surface layer has less than 10 4 nitrides / mm 2 of less than 300 nm, resulting in a low life. This steel type No. 2 is an example in which the surface layer N concentration satisfies an appropriate condition, but the diameter of the nitride is increased and the number of nitrides less than 300 nm is insufficient. Steel type No. 7 is an example of a low life because the surface layer C concentration is low.

上述したように、鋼種No.1,3,6を用いた比較例は、鋼材C濃度が高いものの、表層C濃度と鋼材C濃度との差が小さく、ショットピーニング処理等を行わなかったために表層圧縮残留応力が600MPaに達しなかったものであるが、これらの鋼種No.1,3,6を用いてショットピーニング処理等は行わずに、表層C濃度と鋼材C濃度との差を大きくする浸炭窒化処理を行い、表層圧縮残留応力と上記両寿命との関係を求める試験を行った。表3に試験結果を示す。   As described above, the comparative example using the steel types Nos. 1, 3, and 6 has a high steel material C concentration, but the difference between the surface layer C concentration and the steel material C concentration is small, and shot peening treatment or the like was not performed. Although the residual compressive stress did not reach 600 MPa, the carburization that increases the difference between the surface layer C concentration and the steel material C concentration without performing shot peening using these steel types No. 1, 3, 6 A nitriding treatment was performed, and a test was performed to obtain the relationship between the surface layer compressive residual stress and the above-mentioned both lifetimes. Table 3 shows the test results.

Figure 2014012870
Figure 2014012870

表3からショットピーニング処理等を行わなくても、浸炭窒化時の表層C濃度を高め、表層C濃度と鋼材C濃度との差を0.40%以上にすると、表層圧縮残留応力が600MPa以上となって、水素チャージ材の転動疲労のL10寿命及び2円筒試験の平均寿命が改善することが分かる。 Even if shot peening treatment or the like is not performed from Table 3, when the surface layer C concentration during carbonitriding is increased and the difference between the surface layer C concentration and the steel material C concentration is 0.40% or more, the surface layer compressive residual stress is 600 MPa or more. Thus, it can be seen that the L 10 life of rolling fatigue of the hydrogen charge material and the average life of the two-cylinder test are improved.

以上の説明からも明らかなように、最表層での圧縮残留応力を高めるようにした本発明の浸炭窒化部品によれば、水素脆性型の面疲労強度を従来技術に比してより一層向上させることができる。   As is clear from the above description, according to the carbonitrided component of the present invention in which the compressive residual stress at the outermost layer is increased, the surface fatigue strength of the hydrogen embrittlement type is further improved as compared with the prior art. be able to.

10,18 試験片 10,18 Specimen

Claims (3)

質量%で、
C:0.30〜1.30%、
Si:0.05〜0.35%、
Mn:0.40〜1.50%、
P:0.030%以下、
S:0.030%以下、
Cr:1.50〜3.00%、
Al:0.050%以下、
O:0.0015%以下、
N:0.025%以下、
Mn+Cr:2.50〜4.00%、
残部がFe及び不可避不純物からなる、浸炭窒化焼入れ焼戻し処理された浸炭窒化部品であって、焼戻し処理後の表層C濃度が0.80〜1.50質量%、表層N濃度が0.10〜1.00質量%で表面硬さがHRC58以上64未満であり、表層に分散析出した全窒化物に対する粒径300nm未満のCr窒化物及びMn窒化物の個数割合が70%以上かつ該個数が10個/mm以上であり、表層圧縮残留応力が600MPa以上であることを特徴とする水素脆性型の面疲労強度に優れた浸炭窒化部品。
% By mass
C: 0.30 to 1.30%
Si: 0.05 to 0.35%,
Mn: 0.40 to 1.50%,
P: 0.030% or less,
S: 0.030% or less,
Cr: 1.50 to 3.00%,
Al: 0.050% or less,
O: 0.0015% or less,
N: 0.025% or less,
Mn + Cr: 2.50 to 4.00%
Carbonitriding and quenching and tempering carbonitriding parts consisting of Fe and inevitable impurities, the surface C concentration after tempering being 0.80 to 1.50% by mass, and the surface layer N concentration being 0.10 to 1 The number ratio of Cr nitride and Mn nitride having a particle size of less than 300 nm to the total nitride dispersed and deposited on the surface layer is 70% or more and the number is 10 4. pieces / mm 2 or more, carbonitriding component surface compressive residual stress is excellent in surface fatigue strength of the hydrogen embrittlement type, characterized in that at least 600 MPa.
請求項1において、質量%で、
Mo:0.50%以下、
Ni:0.50%未満、
Ti:0.500%以下、
Nb:0.100%以下、
のうちいずれか1種又は2種以上を更に含有していることを特徴とする水素脆性型の面疲労強度に優れた浸炭窒化部品。
In claim 1, in mass%,
Mo: 0.50% or less,
Ni: less than 0.50%,
Ti: 0.500% or less,
Nb: 0.100% or less,
A carbon-nitrided part excellent in surface fatigue strength of a hydrogen embrittlement type, further comprising any one or more of them.
請求項1又は2において、焼戻し処理後の表層C濃度と鋼材C濃度との差が、質量%で0.40%以上であることを特徴とする水素脆性型の面疲労強度に優れた浸炭窒化部品。   The carbonitriding excellent in surface fatigue strength of the hydrogen embrittlement type according to claim 1 or 2, wherein the difference between the surface layer C concentration and the steel material C concentration after tempering is 0.40% or more by mass%. parts.
JP2012150268A 2012-07-04 2012-07-04 Carbon nitrided parts with excellent surface fatigue strength of hydrogen embrittlement type Active JP5999485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012150268A JP5999485B2 (en) 2012-07-04 2012-07-04 Carbon nitrided parts with excellent surface fatigue strength of hydrogen embrittlement type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012150268A JP5999485B2 (en) 2012-07-04 2012-07-04 Carbon nitrided parts with excellent surface fatigue strength of hydrogen embrittlement type

Publications (2)

Publication Number Publication Date
JP2014012870A true JP2014012870A (en) 2014-01-23
JP5999485B2 JP5999485B2 (en) 2016-09-28

Family

ID=50108710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012150268A Active JP5999485B2 (en) 2012-07-04 2012-07-04 Carbon nitrided parts with excellent surface fatigue strength of hydrogen embrittlement type

Country Status (1)

Country Link
JP (1) JP5999485B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185379A (en) * 2013-03-25 2014-10-02 Nachi Fujikoshi Corp Hydrogen-brittle type carbonitrided bearing part excellent in surface fatigue strength
WO2017170435A1 (en) * 2016-03-30 2017-10-05 大同特殊鋼株式会社 Environment-resistant bearing steel excellent in producibility and resistance to hydrogen embrittlement
WO2019026909A1 (en) * 2017-08-03 2019-02-07 アイシン精機株式会社 Method for manufacturing steel component, and steel component

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1122733A (en) * 1997-07-01 1999-01-26 Nippon Seiko Kk Rolling bearing
JP2007307568A (en) * 2006-05-16 2007-11-29 Aichi Steel Works Ltd Plastically joined member, and its manufacturing method
JP2008151236A (en) * 2006-12-15 2008-07-03 Nsk Ltd Rolling bearing
JP2008267403A (en) * 2007-04-16 2008-11-06 Nsk Ltd Rolling device
JP2009293780A (en) * 2008-06-09 2009-12-17 Honda Motor Co Ltd Ball for constant velocity universal joint and method for producing the same
JP2011225936A (en) * 2010-04-20 2011-11-10 Daido Steel Co Ltd Carbonitrided steel of hydrogen embrittlement type having excellent surface fatigue strength

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1122733A (en) * 1997-07-01 1999-01-26 Nippon Seiko Kk Rolling bearing
JP2007307568A (en) * 2006-05-16 2007-11-29 Aichi Steel Works Ltd Plastically joined member, and its manufacturing method
JP2008151236A (en) * 2006-12-15 2008-07-03 Nsk Ltd Rolling bearing
JP2008267403A (en) * 2007-04-16 2008-11-06 Nsk Ltd Rolling device
JP2009293780A (en) * 2008-06-09 2009-12-17 Honda Motor Co Ltd Ball for constant velocity universal joint and method for producing the same
JP2011225936A (en) * 2010-04-20 2011-11-10 Daido Steel Co Ltd Carbonitrided steel of hydrogen embrittlement type having excellent surface fatigue strength

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185379A (en) * 2013-03-25 2014-10-02 Nachi Fujikoshi Corp Hydrogen-brittle type carbonitrided bearing part excellent in surface fatigue strength
WO2017170435A1 (en) * 2016-03-30 2017-10-05 大同特殊鋼株式会社 Environment-resistant bearing steel excellent in producibility and resistance to hydrogen embrittlement
JP2017179501A (en) * 2016-03-30 2017-10-05 大同特殊鋼株式会社 Environmental bearing steel excellent in manufacturability and hydrogen embrittlement resistance
WO2019026909A1 (en) * 2017-08-03 2019-02-07 アイシン精機株式会社 Method for manufacturing steel component, and steel component
JPWO2019026909A1 (en) * 2017-08-03 2020-06-25 アイシン精機株式会社 Steel part manufacturing method and steel part

Also Published As

Publication number Publication date
JP5999485B2 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
JP5644166B2 (en) Carbon nitrided steel with excellent surface fatigue strength of hydrogen brittle type
JP2008280583A (en) Case-hardening steel excellent in surface fatigue strength due to hydrogen embrittlement
JP5094126B2 (en) Rolling and sliding parts and manufacturing method thereof
US20050045248A1 (en) Contact pressure-resistant member and method of making the same
JPWO2012056785A1 (en) Steel for machine structural use for surface hardening, steel parts for machine structural use and manufacturing method thereof
WO2013084800A1 (en) Rolling bearing and method for producing same
JP2013011010A (en) Rolling bearing and method of manufacturing the same
JP6040700B2 (en) Rolling bearing
JP5728844B2 (en) Rolling bearing
JP4998054B2 (en) Rolling bearing
JP2008001943A (en) Rolling and/or sliding parts and manufacturing method thereof
JP5999485B2 (en) Carbon nitrided parts with excellent surface fatigue strength of hydrogen embrittlement type
JP6007562B2 (en) Rolling bearing
JP6027925B2 (en) Carbon nitride bearing parts with excellent surface fatigue strength of hydrogen embrittlement type
JP2019167551A (en) Steel component excellent in rolling fatigue characteristics
JP6238124B2 (en) Carbon nitrided steel with excellent surface fatigue strength and carbonitrided parts using the same
JP2012031456A (en) Rolling bearing
JP5076274B2 (en) Rolling bearing
JP6448405B2 (en) Carbon nitride bearing parts with excellent surface fatigue strength of hydrogen embrittlement type
JP2018021654A (en) Rolling slide member, its manufacturing method, carburization steel material and rolling bearing
WO2022092210A1 (en) Rolling member and rolling bearing
JP5991026B2 (en) Manufacturing method of rolling bearing
WO2017170435A1 (en) Environment-resistant bearing steel excellent in producibility and resistance to hydrogen embrittlement
JP2019056141A (en) Steel material for carbonitriding and carbonitrided bearing part
JP7379955B2 (en) Carbonitriding steel and carbonitriding parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160818

R150 Certificate of patent or registration of utility model

Ref document number: 5999485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150