JP2014008693A - Method of manufacturing polishing pad molding die, polishing pad molding die manufactured by the same method, and polishing pad manufactured by the same die - Google Patents

Method of manufacturing polishing pad molding die, polishing pad molding die manufactured by the same method, and polishing pad manufactured by the same die Download PDF

Info

Publication number
JP2014008693A
JP2014008693A JP2012147442A JP2012147442A JP2014008693A JP 2014008693 A JP2014008693 A JP 2014008693A JP 2012147442 A JP2012147442 A JP 2012147442A JP 2012147442 A JP2012147442 A JP 2012147442A JP 2014008693 A JP2014008693 A JP 2014008693A
Authority
JP
Japan
Prior art keywords
polishing pad
mold
die
molding die
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012147442A
Other languages
Japanese (ja)
Other versions
JP5154705B1 (en
Inventor
Yasunori Tashiro
康典 田代
Masato Takada
正人 高田
Toshiaki Naka
利明 中
Masaaki Matsuo
正昭 松尾
Takahiro Ito
高廣 伊藤
Yoshitomo Suzuki
恵友 鈴木
Keiichi Kimura
景一 木村
Panart Khajornrungruang
パナート カチョーンルンルアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Mishima Kosan Co Ltd
Original Assignee
Kyushu Institute of Technology NUC
Mishima Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC, Mishima Kosan Co Ltd filed Critical Kyushu Institute of Technology NUC
Priority to JP2012147442A priority Critical patent/JP5154705B1/en
Application granted granted Critical
Publication of JP5154705B1 publication Critical patent/JP5154705B1/en
Priority to TW102120728A priority patent/TWI538777B/en
Priority to US13/921,821 priority patent/US20140004780A1/en
Priority to KR1020130073607A priority patent/KR20140002512A/en
Priority to CN201310265355.9A priority patent/CN103522165B/en
Publication of JP2014008693A publication Critical patent/JP2014008693A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a polishing pad molding die in which a polishing pad that performs a flattening work highly accurately and highly efficiently is manufactured, a polishing pad molding die manufactured by the method, and a polishing pad manufactured by the die.SOLUTION: A method of manufacturing a polishing pad molding die 10 for a polishing pad 13 on which a micro pattern α having fine protrusions 12 arranged thereon has: a master die fabrication process of fabricating a master die 26, on which a micro pattern β having an inverted concavo-convex relationship with the micro pattern α is formed, on one side of a substrate 21; a positive slave die fabrication process of fabricating a positive slave die 27, on the surface layer of which a micro pattern γ is formed, by using the master die 26; a negative slave die fabrication process of fabricating a negative slave die 18, on the surface layer of which a micro pattern δ is formed, by using the positive slave die 27; and an assembly process of arraying and fixing the negative slave die 18 on a base 17 while facing the surface layer on which the micro pattern δ is formed upward to constitute the polishing pad molding die 10.

Description

本発明は、半導体基板等の平坦性が高度に要求される部材の平坦加工を高精密かつ高効率に行う研磨パッドを製造する研磨パッド成形金型の製造方法、その方法で製造される研磨パッド成形金型、及びその金型で製造した研磨パッドに関する。 The present invention relates to a method of manufacturing a polishing pad molding die for manufacturing a polishing pad that performs high-precision and high-efficiency flat processing of a member requiring high flatness such as a semiconductor substrate, and a polishing pad manufactured by the method. The present invention relates to a molding die and a polishing pad manufactured with the die.

従来、半導体基板用の研磨パッドは、例えば、発泡ウレタン樹脂を型枠に流し込み硬化させて発泡ウレタンのブロックを形成し、得られたブロックから所定厚さ(例えば、1mm)の平板を切り出すことにより研磨パッドを製造していた。このため、製造された研磨パッドは高い平坦性を有しておらず、研磨を開始する前に、ダイヤモンド砥石等を用いたドレッシング(コンディショニングともいう)を行って、研磨用パッドに高い平坦性を具備させていた。しかし、ドレッシング後のパッド表面状態が不安定かつ変動し易く、更に、加工後の研磨パッドの表面状態がプロセス間で大きく変動すること等の問題がある。また、ドレッシングにより研磨パッド表面に形成される微細凹凸パターンは、研磨パッド表面上での研磨材を含んだスラリーの保持と、半導体基板の被研磨面への新鮮なスラリーの供給という作用を支配する要因になっているが、ドレッシングによる方法では、研磨パッドの表面に常に一定の微細凹凸パターンを形成することができず、半導体基板に高精密な平坦加工を安定して行うことができないという問題がある。 Conventionally, a polishing pad for a semiconductor substrate is formed, for example, by pouring urethane foam into a mold and curing it to form a foamed urethane block, and then cutting a flat plate having a predetermined thickness (for example, 1 mm) from the obtained block. A polishing pad was manufactured. For this reason, the manufactured polishing pad does not have high flatness, and before starting polishing, dressing (also called conditioning) using a diamond grindstone or the like is performed to make the polishing pad have high flatness. It was equipped. However, the pad surface state after dressing is unstable and easily fluctuates, and further, the surface state of the polishing pad after processing varies greatly between processes. The fine uneven pattern formed on the surface of the polishing pad by dressing dominates the operation of holding the slurry containing the abrasive on the surface of the polishing pad and supplying fresh slurry to the surface to be polished of the semiconductor substrate. Although this is a factor, the dressing method cannot always form a uniform fine uneven pattern on the surface of the polishing pad, and the semiconductor substrate cannot be stably subjected to high-precision flat processing. is there.

更に、発泡ウレタンであることに起因して研磨パッドの表層部に現れる穴には、研磨中に研磨材や削りかす等が溜まってくるため、半導体基板から生じた削りかすの除去性能が徐々に低下し、これに伴って半導体基板の被研磨面への新鮮なスラリーの供給性能が低下するため、研磨速度が低下するという問題が生じる。このため、研磨パッドの表面を定期的に研削して新しい表面を形成することが行われているが、発泡ウレタン内の空洞はサイズにばらつきが存在すると共に、均一に分散していないため、研磨パッドの表面を研削して新たな表面を形成する度に、表面に現れる穴のサイズ分布や分散状態が変化し、研磨パッドの研磨性能を常に一定に保つことができないという問題もある。 Furthermore, since the abrasive material and shavings accumulate during polishing in the holes that appear in the surface layer of the polishing pad due to the urethane foam, the removal performance of the shavings generated from the semiconductor substrate gradually increases. As a result, the supply performance of fresh slurry to the surface to be polished of the semiconductor substrate is lowered, which causes a problem that the polishing rate is lowered. For this reason, the surface of the polishing pad is periodically ground to form a new surface, but the cavities in the urethane foam vary in size and are not evenly distributed. Each time the surface of the pad is ground to form a new surface, the size distribution and dispersion state of the holes appearing on the surface change, and the polishing performance of the polishing pad cannot always be kept constant.

そこで、例えば、特許文献1には、研磨パッドの母体を、スラリーとの親和性に優れた素材からなる無発泡部材で形成し、この母体の表面にフォトリソグラフィ技術を用いて微細凹凸パターンを形成することにより研磨パッドを製造することが開示されている。無発泡部材で研磨パッドを形成するため、研磨中に研磨材や削りかす等が表層部に溜まる虞がなく、研磨パッドの表面の微細凹凸パターンがフォトリソグラフィ技術を用いて形成されているため、常に一定の微細凹凸パターンを形成することができ、研磨パッド表面上でのスラリーの保持性と、半導体基板の被研磨面への新鮮なスラリーの供給性を安定して達成することができる。 Therefore, for example, in Patent Document 1, the base of the polishing pad is formed of a non-foamed member made of a material excellent in affinity with the slurry, and a fine concavo-convex pattern is formed on the surface of the base using photolithography technology. It is disclosed that a polishing pad is manufactured by doing so. Since the polishing pad is formed with a non-foamed member, there is no possibility that abrasives or shavings may accumulate in the surface layer part during polishing, and the fine uneven pattern on the surface of the polishing pad is formed using photolithography technology. A constant fine concavo-convex pattern can always be formed, and the retention of the slurry on the surface of the polishing pad and the supply of fresh slurry to the surface to be polished of the semiconductor substrate can be stably achieved.

特許第4845347号公報Japanese Patent No. 4845347

しかし、特許文献1の研磨パッドは、製造する研磨パッド1枚毎に、その表層部にフォトリソグラフィ技術を用いて微細凹凸パターンを形成するので、研磨パッドの生産性が著しく低下するという問題が生じる。また、研磨パッドの製造工程が、研磨パッドの本体を製造する工程と本体の表面に微細凹凸パターンを形成する工程から構成されるため、製造工程が煩雑になり、製造に時間を要すると共に、製造コストが上昇するという問題がある。 However, the polishing pad of Patent Document 1 has a problem that the productivity of the polishing pad is remarkably reduced because a fine uneven pattern is formed on the surface layer portion of each polishing pad to be manufactured using a photolithography technique. . Moreover, since the manufacturing process of a polishing pad is comprised from the process of manufacturing the main body of a polishing pad, and the process of forming a fine unevenness | corrugation pattern in the surface of a main body, a manufacturing process becomes complicated, manufacturing requires time, and manufacture There is a problem that costs increase.

そこで、半導体基板に使用する単結晶のシリコンウエハの表面にMEMS(マイクロエレクトロメカニカルシステム)技術を活用して微細凹凸パターンの一例として、逆ピラミッド状(例えば、一辺が7μmの正方形で、深さが4.9μmの正四角錐状)の穴が一定間隔(例えば、5μm)で並んだパターンを形成し、このシリコンウエハを研磨パッドを製造する成形金型として使用することが考えられる。即ち、逆ピラミッド状の穴が並べて形成されたシリコンウエハに樹脂板(例えば、ウレタン樹脂板)を押し当て、加圧しながら加熱して、軟化状態とした樹脂板の表層部の材料の一部を逆ピラミッド状の穴に進入させることにより、樹脂板の表層部にピラミッド状の突出部が一定間隔で並んだ微小凹凸パターンを形成することができる。しかしながら、使用できる単結晶のシリコンウエハの寸法は、半導体基板製造用に供給される単結晶シリコンロッドの寸法に制限されるため、研磨パッドとして要求される寸法の樹脂板には微小凹凸パターンを形成することができないという問題、シリコンウエハは硬く脆いため、繰り返し使用するには耐久性に劣るという問題がある。 Therefore, as an example of a fine uneven pattern on the surface of a single crystal silicon wafer used for a semiconductor substrate by utilizing MEMS (microelectromechanical system) technology, an inverted pyramid (for example, a square having a side of 7 μm and a depth of 7 μm) is used. It is conceivable to form a pattern in which 4.9 μm regular quadrangular pyramid holes are arranged at regular intervals (for example, 5 μm), and to use this silicon wafer as a molding die for manufacturing a polishing pad. That is, a resin plate (for example, a urethane resin plate) is pressed against a silicon wafer formed with side-by-side pyramid-shaped holes, and heated while being pressed to partially soften the surface layer of the resin plate. By entering the reverse pyramid-shaped hole, it is possible to form a micro uneven pattern in which pyramidal protrusions are arranged at regular intervals on the surface layer portion of the resin plate. However, since the size of a single crystal silicon wafer that can be used is limited to the size of a single crystal silicon rod supplied for manufacturing a semiconductor substrate, a micro uneven pattern is formed on a resin plate having a size required as a polishing pad. There is a problem that silicon wafers are hard and brittle, so that they are inferior in durability for repeated use.

本発明はかかる事情に鑑みてなされたもので、半導体基板等の平坦性が高度に要求される部材の平坦加工を高精密かつ高効率に行う研磨パッドを容易かつ安価に製造することが可能な研磨パッド成形金型の製造方法、その方法で製造される研磨パッド成形金型、及びその金型で製造した研磨パッドを提供することを目的とする。 The present invention has been made in view of such circumstances, and it is possible to easily and inexpensively manufacture a polishing pad that performs high-precision and high-efficiency flat processing of a member that requires high flatness, such as a semiconductor substrate. It is an object of the present invention to provide a method for producing a polishing pad molding die, a polishing pad molding die produced by the method, and a polishing pad produced by the die.

前記目的に沿う第1の発明に係る研磨パッド成形金型の製造方法は、板状の被研磨材の平坦加工を行う際に使用され、一方の表面側に微細凸部Pが、設定された間隔で分散配置されたマイクロパターンαが形成された研磨パッドの製造に使用される研磨パッド成形金型の製造方法であって、
単結晶の基板の一方の表面側に、前記マイクロパターンαの前記微細凸部Pの配置に合わせて、該微細凸部Pの底部と同一寸法の孔が形成されたレジストマスクを設け、該レジストマスクを介して前記基板の一方の表面側にエッチングを行って、該基板の一方の表面側に前記微細凸部Pと凹凸関係が反転した微細凹部Qが前記マイクロパターンαの前記微細凸部Pの配置に合わせて分散配置されたマイクロパターンβが形成された親型を作製する親型作製工程と、
前記親型の前記マイクロパターンβを転写して、前記微細凹部Qに対応する位置に、該微細凹部Qと同一寸法で凹凸関係が反転した微細凸部Rが分散配置されたマイクロパターンγが形成されたポジ子型を作製するポジ子型作製工程と、
前記ポジ子型の前記マイクロパターンγを転写して、前記微細凸部Rに対応する位置に、該微細凸部Rと同一寸法で凹凸関係が反転した微細凹部Sが分散配置されたマイクロパターンδが形成されたネガ子型を作製するネガ子型作製工程と、
前記ネガ子型を、前記マイクロパターンδが形成された表層側を表にし、該ネガ子型の側部同士を当接させながら基盤上に並べて固定して前記研磨パッド成形金型を構成する組立て工程とを有する。
The manufacturing method of the polishing pad molding die according to the first invention that meets the above-mentioned object is used when performing flat processing of a plate-like workpiece, and a fine convex portion P is set on one surface side. A manufacturing method of a polishing pad molding die used for manufacturing a polishing pad in which micropatterns α arranged in a dispersed manner are formed,
A resist mask having a hole having the same size as the bottom of the fine projection P is provided on one surface side of the single crystal substrate in accordance with the arrangement of the fine projection P of the micropattern α. Etching is performed on one surface side of the substrate through a mask, and the fine concave portion Q in which the concave-convex relationship is reversed on the one surface side of the substrate is the fine convex portion P of the micropattern α. A parent mold production step of producing a parent mold in which micropatterns β are distributed and arranged in accordance with the arrangement of
The micro pattern β of the parent mold is transferred to form a micro pattern γ in which fine convex portions R having the same dimensions as the fine concave portions Q and having the concave and convex relations reversed are arranged at positions corresponding to the fine concave portions Q. A positive mold production process for producing a positive mold,
The positive pattern micropattern γ is transferred, and micropatterns δ having the same dimensions as the microprotrusions R and having the concave and convex relations inverted are dispersedly arranged at positions corresponding to the microprotrusions R. A negative child mold production process for producing a negative child mold formed with
Assembling to form the polishing pad molding die by placing the negative mold on the surface side where the micropattern δ is formed, and arranging and fixing the negative molds side by side on the base. Process.

第1の発明に係る研磨パッド成形金型の製造方法において、前記ネガ子型は、前記ポジ子型の前記マイクロパターンγが形成された表面側を下地面にしてめっきにより形成された平板状金属部材を有し、前記ネガ子型が固定される前記基盤は平板とすることができる。 In the method for producing a polishing pad molding die according to the first invention, the negative mold is a flat metal formed by plating with the surface side of the positive mold on which the micropattern γ is formed as a base surface. The board | substrate which has a member and to which the said negative child type | mold is fixed can be made into a flat plate.

第1の発明に係る研磨パッド成形金型の製造方法において、前記ネガ子型は、前記ポジ子型の前記マイクロパターンγが形成された表面側を半径方向内側にして円弧状に湾曲させ、該マイクロパターンγが形成された表面側を下地面にしてめっきにより形成された円弧状金属部材を有し、前記ネガ子型が固定される前記基盤は、前記円弧状金属部材の半径方向内側の曲率と同一の曲率を有するロールとすることができる。 In the method for manufacturing a polishing pad molding die according to the first invention, the negative mold is curved in an arc shape with the surface side of the positive pattern on which the micropattern γ is formed being radially inward, An arc-shaped metal member formed by plating with the surface side on which the micropattern γ is formed as a base surface, and the base to which the negative mold is fixed is a curvature on the radially inner side of the arc-shaped metal member And a roll having the same curvature.

前記目的に沿う第2の発明に係る研磨パッド成形金型は、第1の発明に係る研磨パッド成形金型の製造方法により製造される。 The polishing pad molding die according to the second invention that meets the above object is manufactured by the method for manufacturing a polishing pad molding die according to the first invention.

前記目的に沿う第3の発明に係る研磨パッドは、第2の発明に係る研磨パッド成形金型を用いて製造される。 The polishing pad according to the third aspect of the invention that meets the above object is manufactured using the polishing pad molding die according to the second aspect of the invention.

第3の発明に係る研磨パッドにおいて、前記基板は、[100]方向に成長した単結晶シリコンのロッドから(100)面を切り出し面として切り出したシリコン平板であって、前記レジストマスクは前記シリコン平板の(100)面に設けられ、前記微細凸部Pは正四角錐状微細突起であって、該正四角錐状微細突起の底面の1辺の長さは0.1〜30μm、隣り合う該正四角錐状微細突起間の距離は1〜30μmであることが好ましい。 In the polishing pad according to a third aspect of the invention, the substrate is a silicon flat plate obtained by cutting a (100) plane from a single crystal silicon rod grown in the [100] direction, and the resist mask is the silicon flat plate. The fine convex portion P is a regular quadrangular pyramidal microprojection, and the length of one side of the bottom surface of the regular quadrangular pyramidal microprojection is 0.1 to 30 μm, and the adjacent regular quadrangular pyramid The distance between the fine projections is preferably 1 to 30 μm.

第1の発明に係る研磨パッド成形金型の製造方法においては、微細凹部Qは、微細凸部Pの配置に合わせて、微細凸部Pの底部と同一寸法の孔が形成されたレジストマスクを介したエッチングにより形成するので、親型にはマイクロパターンαを正確に反転したマイクロパターンβを形成することができる。そして、親型のマイクロパターンβを転写して作製するポジ子型には、マイクロパターンβが正確に反転したマイクロパターンγ(従って、マイクロパターンαと同一)が形成され、ポジ子型のマイクロパターンγを転写して作製するネガ子型には、マイクロパターンγが正確に反転した正確なマイクロパターンδ(従って、マイクロパターンβと同一)が形成されるので、親型からポジ子型を介して作製した複数のネガ子型を所望の面積を有する基盤上に並べて固定することにより、所望の面積に亘って正確なマイクロパターンδ(マイクロパターンβ)を形成することができる。その結果、所望の面積を有する研磨パッドを成形するための研磨パッド成形金型を容易かつ安価に作製することができる。 In the method for manufacturing a polishing pad molding die according to the first invention, the fine concave portion Q is a resist mask in which holes having the same dimensions as the bottom of the fine convex portion P are formed in accordance with the arrangement of the fine convex portions P. Therefore, a micro pattern β obtained by accurately inverting the micro pattern α can be formed on the parent mold. A positive pattern formed by transferring the parent micropattern β is formed with a micropattern γ (and therefore identical to the micropattern α) in which the micropattern β is accurately inverted. In the negative mold produced by transferring γ, an accurate micro pattern δ (and therefore identical to the micro pattern β) in which the micro pattern γ is accurately inverted is formed. By arranging and fixing a plurality of negative molds produced on a substrate having a desired area, an accurate micropattern δ (micropattern β) can be formed over the desired area. As a result, a polishing pad molding die for molding a polishing pad having a desired area can be easily and inexpensively manufactured.

第1の発明に係る研磨パッド成形金型の製造方法において、ネガ子型が、ポジ子型のマイクロパターンγが形成された表面側を下地面にしてめっきにより形成された平板状金属部材を有する場合、正確なマイクロパターンδを備えた耐久性のあるネガ子型を効率的かつ安価に作製することができる。そして、ネガ子型が固定される基盤が平板である場合、大型の研磨パッドの製造が可能な研磨パッド成形金型を容易かつ安価に製造することができる。 In the method for manufacturing a polishing pad molding die according to the first invention, the negative mold has a flat metal member formed by plating with the surface side on which the positive micropattern γ is formed as a base surface. In this case, a durable negative child mold having an accurate micro pattern δ can be produced efficiently and inexpensively. And when the base | substrate to which a negative mold is fixed is a flat plate, the polishing pad shaping die which can manufacture a large sized polishing pad can be manufactured easily and cheaply.

第1の発明に係る研磨パッド成形金型の製造方法において、ネガ子型が、ポジ子型のマイクロパターンγが形成された表面側を半径方向内側にして円弧状に湾曲させ、マイクロパターンγが形成された表面側を下地面にしてめっきにより形成された円弧状金属部材を有する場合、正確なマイクロパターンδを備えた耐久性のあるネガ子型を効率的かつ安価に作製することができる。そして、ネガ子型が固定される基盤が、円弧状金属部材の半径方向内側の曲率と同一の曲率を有するロールである場合、所望の幅を有する長尺(帯状)の研磨パッドの製造が可能な研磨パッド成形金型を容易かつ安価に製造することができる。 In the method for manufacturing a polishing pad molding die according to the first invention, the negative mold is curved in an arc shape with the surface side on which the positive micropattern γ is formed radially inward, and the micropattern γ In the case of having an arc-shaped metal member formed by plating with the formed surface side as a base surface, a durable negative mold having an accurate micropattern δ can be produced efficiently and inexpensively. And, when the base on which the negative mold is fixed is a roll having the same curvature as the curvature of the arcuate metal member in the radial direction, it is possible to manufacture a long (band-shaped) polishing pad having a desired width. A simple polishing pad mold can be easily and inexpensively manufactured.

第2の発明に係る研磨パッド成形金型においては、所望の寸法を有する研磨パッド用の素材の一方の表面側に、微細凸部Pが設定された間隔で分散配置されたマイクロパターンαを容易かつ効率的に形成することができるので、平坦加工を高精密かつ高効率に行うことが可能な所望寸法の研磨パッドを安価に製造することができる。 In the polishing pad molding die according to the second invention, micropatterns α in which fine convex portions P are dispersed and arranged at intervals set on one surface side of a polishing pad material having a desired dimension can be easily provided. In addition, since it can be formed efficiently, it is possible to manufacture a polishing pad having a desired dimension capable of performing flat processing with high precision and high efficiency at a low cost.

第3の発明に係る研磨パッドにおいては、正確なマイクロパターンαを有するので、被研磨材に研磨パッドを押し当てて研磨を行う場合、研磨パッドは、被研磨材の研磨面に研磨パッドに形成された微細凸部Pの頂部を介して接触することになって、微細凸部Pの間の隙間に存在する研磨材を含んだスラリーを、被研磨材の研磨面に効率的に接触させることができる。更に、スラリーを研磨中に連続的に供給すると、供給されたスラリーは微細凸部Pの隙間を通過していくため、被研磨材の研磨面に常に新鮮なスラリーを接触させることができると共に、研磨時に発生した削りかすをスラリーの流れに混入させて除去することができる。その結果、被研磨材の平坦加工を高精密かつ高効率に行うことができる。
Since the polishing pad according to the third invention has an accurate micro pattern α, when polishing is performed by pressing the polishing pad against the material to be polished, the polishing pad is formed on the polishing pad on the polishing surface of the material to be polished. The slurry containing the abrasive present in the gaps between the fine protrusions P is brought into contact with the polishing surface of the material to be polished efficiently through contact with the top of the fine protrusion P. Can do. Furthermore, when the slurry is continuously supplied during polishing, the supplied slurry passes through the gaps of the fine protrusions P, so that fresh slurry can always be brought into contact with the polishing surface of the material to be polished, The shavings generated at the time of polishing can be removed by mixing in the slurry flow. As a result, it is possible to perform the flat processing of the material to be polished with high precision and high efficiency.

第3の発明に係る研磨パッドにおいて、基板が、[100]方向に成長した単結晶シリコンのロッドから(100)面を切り出し面として切り出したシリコン平板であって、レジストマスクがシリコン平板の(100)面に設けられ、微細凸部Pは正四角錐状微細突起であって、正四角錐状微細突起の底面の1辺の長さが0.1〜30μm、隣り合う正四角錐状微細突起間の距離が1〜30μmである場合、隣り合う正四角錐状微細突起で囲まれた隙間に存在するスラリーを正四角錐状微細突起の斜面に沿って移動させることができ、被研磨材の研磨面に効率的に新鮮なスラリーを接触させることができる。その結果、被研磨面全体を均一に研磨することができる。 In the polishing pad according to the third aspect of the invention, the substrate is a silicon flat plate obtained by cutting a (100) plane from a single crystal silicon rod grown in the [100] direction, with the resist mask being a (100 ) Provided on the surface, and the fine convex portion P is a regular quadrangular pyramidal microprojection, the length of one side of the bottom surface of the regular quadrangular pyramidal microprojection is 0.1 to 30 μm, and the distance between adjacent regular quadrangular pyramidal microprojections Is 1-30 μm, the slurry present in the gap surrounded by the adjacent regular quadrangular pyramidal microprotrusions can be moved along the slope of the regular quadrangular pyramidal microprotrusions, which is efficient for the polishing surface of the material to be polished. Can be contacted with fresh slurry. As a result, the entire surface to be polished can be uniformly polished.

本発明の第1の実施の形態に係る研磨パッド成形金型とその金型で製造した研磨パッドの説明図である。It is explanatory drawing of the polishing pad mold which concerns on the 1st Embodiment of this invention, and the polishing pad manufactured with the metal mold | die. (A)は研磨パッドの平面図、(B)は研磨パッドに形成された微細凸部の斜視図である。(A) is a top view of a polishing pad, (B) is a perspective view of the fine convex part formed in the polishing pad. 研磨パッドを用いた研磨時の状況を示す説明図である。It is explanatory drawing which shows the condition at the time of grinding | polishing using a polishing pad. (A)、(B)は同研磨パッド成形金型の製造方法における親型作製工程の説明図である。(A), (B) is explanatory drawing of the parent mold preparation process in the manufacturing method of the same polishing pad molding die. (A)〜(C)はそれぞれ、同研磨パッド成形金型の製造方法におけるポジ子型作製工程、ネガ子型作製工程、組立て工程の説明図である。(A)-(C) are explanatory drawings of the positive child mold production process, the negative child mold production process, and the assembly process in the manufacturing method of the same polishing pad molding die, respectively. 本発明の第2の実施の形態に係る研磨パッド成形金型とその金型で製造した研磨パッドの説明図である。It is explanatory drawing of the polishing pad mold which concerns on the 2nd Embodiment of this invention, and the polishing pad manufactured with the metal mold | die. (A)、(B)は同研磨パッド成形金型の製造方法における親型作製工程の説明図である。(A), (B) is explanatory drawing of the parent mold preparation process in the manufacturing method of the same polishing pad molding die. (A)〜(C)はそれぞれ、同研磨パッド成形金型の製造方法におけるポジ子型作製工程、ネガ子型作製工程、組立て工程の説明図である。(A)-(C) are explanatory drawings of the positive child mold production process, the negative child mold production process, and the assembly process in the manufacturing method of the same polishing pad molding die, respectively.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
本発明の第1の実施の形態に係る研磨パッド成形金型10は、図1〜図3に示すように、板状の被研磨材の一例である半導体基板11(例えば、シリコンウエハ)の平坦加工を行う際に用いられ、一方の表面側(平坦加工時に半導体基板11の被加工面に接触する側)に、例えば、頂部の高さHが0.1〜20μmの微細凸部Pの一例である正四角錐状微細突起12(斜面角度θ=30〜80度)を、隣り合う正四角錐状微細突起12の頂部の間隔Dを1.1〜60μm、正四角錐状微細突起12の底面の1辺の長さLを0.1〜30μm、隣り合う正四角錐状微細突起12の底面間の間隔Gを1〜30μmとして並べて配置(分散配置)して構成したマイクロパターンαが形成された研磨パッド13を製造する金型である。以下、詳細に説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIGS. 1 to 3, the polishing pad molding die 10 according to the first embodiment of the present invention is a flat surface of a semiconductor substrate 11 (for example, a silicon wafer) that is an example of a plate-like object to be polished. An example of a fine protrusion P having a top height H of 0.1 to 20 μm, for example, on one surface side (the side in contact with the surface to be processed of the semiconductor substrate 11 during flat processing) used when processing. The regular quadrangular pyramidal microprotrusions 12 (slope angle θ = 30 to 80 degrees), the distance D between the apexes of adjacent regular quadrangular pyramidal microprojections 12 is 1.1 to 60 μm, and the bottom of the regular quadrangular pyramidal microprojections 12 is 1 A polishing pad on which a micropattern α formed by arranging (distributed arrangement) side by side with a length L of 0.1 to 30 μm and an interval G between the bottom surfaces of adjacent regular quadrangular pyramidal microprotrusions 1 to 30 μm is formed. 13 is a mold for manufacturing 13. Details will be described below.

研磨パッド成形金型10は、研磨パッド13の素材となる塑性加工可能な平板(例えば、熱可塑性樹脂の一例であるポリエーテルエーテルケトン(PEEK)板を加熱して軟化状態にしたもの)を、上下方向から挟んで加圧して、平板の一方側、例えば、上面側にマイクロパターンαを形成する上型14と、平板を載置して支持する下型15とを有している。ここで、上型14は、平板の上面を押圧して、上面側にマイクロパターンαを塑性加工により形成するパターン成形部16と、パターン成形部16を保持する上型本体17とを有している。更に、パターン成形部16は、側部を互いに密接させた状態で上型本体17にそれぞれ配置(固定)され、平板を一体的に押圧してマイクロパターンαを形成する複数のネガ子型18を有している。 The polishing pad molding die 10 is a plastic workable flat plate (for example, a polyether ether ketone (PEEK) plate, which is an example of a thermoplastic resin, which is softened), which is a material of the polishing pad 13, An upper die 14 that forms a micropattern α on one side of the flat plate, for example, an upper surface side, and a lower die 15 that places and supports the flat plate is provided. Here, the upper die 14 has a pattern forming portion 16 that presses the upper surface of the flat plate to form the micropattern α on the upper surface side by plastic working, and an upper die main body 17 that holds the pattern forming portion 16. Yes. Further, the pattern forming portion 16 is arranged (fixed) on the upper die main body 17 with the side portions being in close contact with each other, and a plurality of negative die dies 18 that press the flat plate integrally to form the micropattern α. Have.

各ネガ子型18には、微細凹部Sの一例であり、正四角錐状微細突起12と凹凸関係が反転した形状となって、底部の深さKが0.1〜20μmの正四角錐状微細窪み19が、隣り合う正四角錐状微細窪み19の底部の間隔Eを1.1〜60μmとして並べて配置して構成されるマイクロパターンδ(マイクロパターンαに対して凹凸関係が反転したパターン)が形成されている。また、ネガ子型18(パターン成形部16)の表面側(上型14の下面側)に並んで存在している正四角錐状微細窪み19の開口20の1辺の長さMは0.1〜30μm、開口20の間隔Jは1〜30μmである。 Each negative mold 18 is an example of a fine recess S, and has a shape in which the concavo-convex relationship with the regular quadrangular pyramidal microprotrusions 12 is inverted, and a regular quadrangular pyramid fine depression having a bottom depth K of 0.1 to 20 μm. A micro pattern δ (a pattern in which the concavo-convex relationship is reversed with respect to the micro pattern α) is formed, in which 19 is arranged side by side with an interval E between the bottoms of the adjacent regular quadrangular pyramid-shaped fine depressions 19 being 1.1 to 60 μm. ing. Moreover, the length M of one side of the opening 20 of the regular quadrangular pyramid-shaped fine recess 19 existing side by side on the surface side (the lower surface side of the upper die 14) of the negative die 18 (pattern forming portion 16) is 0.1. The interval J between the openings 20 is 1 to 30 μm.

以上の構成とすることにより、下型15上に載置された軟化状態の平板に、上方から上型14を押し当てると、平板を構成している素材の一部が、マイクロパターンδを構成する各正四角錐状微細窪み19の開口20から正四角錐状微細窪み19内に進入するので、正四角錐状微細窪み19内を平板を構成している素材の一部で満たした後、上型14を上方に移動させて平板から離すと、平板の上表面側には正四角錐状微細窪み19内に進入した素材から形成された正四角錐状微細突起12が並べて配置されることになり、マイクロパターンαが形成される。そして、マイクロパターンαが形成された平板を冷却して硬化状態にすることで研磨パッド13が得られる。
なお、平板に上型14を押し当てた際に、下型15の上面と上型14の下面との距離を一定にすることで、各正四角錐状微細突起12の頂部と研磨パッド13の下面との間の距離を一定値(研磨パッド13の厚みを均一)にすることができる。これによって、半導体基板11と研磨パッド13を接触させた際、研磨パッド13の下面に対して半導体基板11の研磨パッド13との接触面を平行にすることができる。
With the above configuration, when the upper die 14 is pressed against the softened flat plate placed on the lower die 15 from above, a part of the material constituting the flat plate constitutes the micro pattern δ. Since the regular quadrangular pyramid-shaped fine depression 19 enters the regular quadrangular pyramid-shaped fine depression 19 from the opening 20 of each regular quadrangular pyramid-shaped recess 19, the upper die 14 is filled after the inside of the regular quadrangular pyramid-shaped fine depression 19 is filled with a part of the material constituting the flat plate. Is moved upward and away from the flat plate, the regular quadrangular pyramidal microprotrusions 12 formed from the material entering the regular quadrangular pyramid-shaped recess 19 are arranged side by side on the upper surface side of the flat plate. α is formed. And the polishing pad 13 is obtained by cooling the flat plate in which the micro pattern (alpha) was formed to a hardening state.
When the upper die 14 is pressed against the flat plate, the distance between the upper surface of the lower die 15 and the lower surface of the upper die 14 is made constant so that the top of each regular quadrangular pyramidal fine protrusion 12 and the lower surface of the polishing pad 13 are fixed. Can be a constant value (the thickness of the polishing pad 13 is uniform). Thereby, when the semiconductor substrate 11 and the polishing pad 13 are brought into contact with each other, the contact surface of the semiconductor substrate 11 with the polishing pad 13 can be made parallel to the lower surface of the polishing pad 13.

次に、本発明の第1の実施の形態に係る研磨パッド成形金型10の製造方法について説明する。
図4(A)、(B)に示すように、研磨パッド成形金型10の製造方法は、単結晶の基板、例えば、[100]方向に成長した単結晶シリコンのロッドから(100)面を切り出し面として切り出したシリコン平板21の一方側に、マイクロパターンαの正四角錐状微細突起12の底面に対応する領域に底面と同一サイズの正方形状の孔22が形成されたレジストマスク23を設け、レジストマスク23を介して、シリコン平板21の結晶面毎に決まる除去加工速度の差を利用したエッチングを行って、微細凹部Qの一例であり、正四角錐状微細突起12と凹凸関係が反転した、底部の深さが0.1〜20μmのエッチピットからなる正四角錐状微細窪み24(斜面角度φが30〜80度)が、隣り合う正四角錐状微細窪み24の底部の間隔Eを1.1〜60μm、正四角錐状微細窪み24の開口25の1辺の長さMを0.1〜30μm、開口25の間隔Jを1〜30μmとして並んで、マイクロパターンαと凹凸関係が反転したマイクロパターンβが形成された親型26を作製する親型作製工程を有している。マイクロパターンβでは、マイクロパターンαの正四角錐状微細突起12の配置に合わせて、正四角錐状微細窪み24が分配配置されている。
Next, a method for manufacturing the polishing pad mold 10 according to the first embodiment of the present invention will be described.
As shown in FIGS. 4A and 4B, the manufacturing method of the polishing pad molding die 10 is performed using a single crystal substrate, for example, a (100) plane from a single crystal silicon rod grown in the [100] direction. A resist mask 23 in which a square hole 22 having the same size as the bottom surface is formed in a region corresponding to the bottom surface of the regular quadrangular pyramidal fine protrusions 12 of the micro pattern α is provided on one side of the silicon flat plate 21 cut out as a cutting surface; Etching utilizing the difference in removal processing speed determined for each crystal plane of the silicon flat plate 21 is performed through the resist mask 23, which is an example of the fine concave portion Q, and the concave-convex relationship with the regular quadrangular pyramidal fine protrusion 12 is inverted. A regular quadrangular pyramid-shaped depression 24 (slope angle φ is 30 to 80 degrees) composed of etch pits having a depth of 0.1 to 20 μm at the bottom is the distance E between the bottoms of adjacent regular quadrangular pyramid-shaped depressions 24. The side-to-side length M of the opening 25 of the regular quadrangular pyramid-shaped fine depression 24 is 0.1 to 30 μm and the interval J of the opening 25 is 1 to 30 μm. A parent mold manufacturing step for manufacturing the parent mold 26 on which the micropattern β is formed. In the micro pattern β, the regular quadrangular pyramidal micro-dents 24 are distributed and arranged in accordance with the arrangement of the regular quadrangular pyramidal microprotrusions 12 of the micro pattern α.

また、研磨パッド成形金型10の製造方法は、図5(A)〜(C)に示すように、親型26を用いて成形され、マイクロパターンβが転写されて(マイクロパターンβと凹凸関係が反転して)微細凸部Rの一例である正四角錐状微細突起29が分散配置されたマイクロパターンγが一方の表層に形成された平板状の樹脂部材からなるポジ子型27を作製するポジ子型作製工程を有している。更に、研磨パッド成形金型10の製造方法は、ポジ子型27のマイクロパターンγが形成された表層上にめっきにより形成され、マイクロパターンγと凹凸関係が反転した正四角錐状微細窪み19で構成されたマイクロパターンδが表層に形成された平板状金属部材の一例であるめっき金属部31(例えば、ニッケル、コバルト、コバルト−ニッケル合金、コバルト−リン合金等)を有するネガ子型18を作製するネガ子型作製工程と、ネガ子型18を、マイクロパターンδが形成された表層を上にしてネガ子型18の側部同士を当接させながら基盤の一例である平板からなる上型本体17(例えば、ステンレス鋼板、普通鋼板、合金鋼板、鋳鉄板、アルミニウム等の非鉄金属板等)上に並べて固定して研磨パッド成形金型10の上型14を構成する組立て工程とを有している。以下、詳細に説明する。 In addition, as shown in FIGS. 5A to 5C, the manufacturing method of the polishing pad molding die 10 is molded using the parent mold 26, and the micropattern β is transferred (the micropattern β and the uneven relationship). And a positive die 27 made of a plate-like resin member in which micropatterns γ in which regular tetragonal pyramidal fine projections 29, which are an example of the fine convex portions R, are arranged on one surface layer are formed. It has a child mold manufacturing process. Further, the manufacturing method of the polishing pad molding die 10 is constituted by a regular quadrangular pyramid-shaped fine recess 19 formed by plating on the surface layer of the positive die 27 on which the micropattern γ is formed, and having the concavo-convex relationship reversed with the micropattern γ. The negative mold 18 having a plated metal part 31 (for example, nickel, cobalt, cobalt-nickel alloy, cobalt-phosphorus alloy, etc.), which is an example of a flat metal member having the micropattern δ formed on the surface layer, is produced. The negative mold producing process and the upper mold main body 17 made of a flat plate which is an example of a base while the negative mold 18 is brought into contact with the sides of the negative mold 18 with the surface layer on which the micropattern δ is formed facing up. The upper die 14 of the polishing pad molding die 10 is formed by arranging and fixing on a stainless steel plate, a plain steel plate, an alloy steel plate, a cast iron plate, a non-ferrous metal plate such as aluminum, etc. And a assembling step of. Details will be described below.

(1)親型作製工程
図4(A)に示すように、切り出したシリコン平板21の一方の(100)面上に、レジスト層(例えば、アクリル系樹脂、エポキシ系樹脂等)を形成し、リソグラフィ技術を用いて孔22を形成することによりレジストマスク23を形成する。なお、シリコン平板21の他方の(100)面上及び側部にもレジスト層を形成する。次いで、シリコン平板21の一方の(100)面に、レジストマスク23を介してエッチング液を接触させる。なお、エッチング液には、例えば、水酸化カリウム、水酸化テトラメチルアンモニウム等を使用する。エッチング液は、レジストマスク23の孔22から露出するシリコン平板21の露出部に接触し、露出部ではエッチング液との反応により形成された水酸化シリコンがエッチング液に溶解することによりエッチングが進行し、エッチピットが形成される。
(1) Parent mold manufacturing process As shown in FIG. 4A, a resist layer (for example, acrylic resin, epoxy resin, etc.) is formed on one (100) surface of the cut silicon flat plate 21; A resist mask 23 is formed by forming the holes 22 using a lithography technique. A resist layer is also formed on the other (100) surface and the side of the silicon flat plate 21. Next, an etching solution is brought into contact with one (100) surface of the silicon flat plate 21 through a resist mask 23. For example, potassium hydroxide or tetramethylammonium hydroxide is used as the etching solution. The etching solution comes into contact with the exposed portion of the silicon flat plate 21 exposed from the hole 22 of the resist mask 23. In the exposed portion, the silicon hydroxide formed by the reaction with the etching solution dissolves in the etching solution, so that etching proceeds. Etch pits are formed.

ここで、シリコン平板21の(100)面のエッチングを行う場合、シリコン原子が細密充填している(111)のエッチング速度が一番遅いため、エッチングは(111)のエッチング速度に律速されながら進行する。このため、形成されるエッチピットの形状は、底部の1辺の長さが正方形状の孔22の1辺の長さと同値で、斜面が(111)面からなる正四角錐状となる。そして、所定時間エッチングを行った後、シリコン平板21からエッチング液を除去し、シリコン平板21を洗浄することにより、シリコン平板21の一方の(100)面上に正四角錐状微細突起12と凹凸関係が反転した正四角錐状微細窪み24からなるマイクロパターンβを形成することができる。次いで、レジストマスク23を薬品(例えば、TMAH(テトラメチルアンモニウムヒドロキシ溶液)、KOH(水酸化カリウム溶液)、EDP(エチレンジアミン・ピロカテコール溶液)等)に溶解させて除去することにより、図4(B)に示すように、親型26が得られる。 Here, when the (100) plane of the silicon flat plate 21 is etched, since the etching rate of (111) in which silicon atoms are densely packed is the slowest, the etching proceeds while being controlled by the etching rate of (111). To do. For this reason, the shape of the formed etch pit is a regular quadrangular pyramid with the length of one side of the bottom being the same as the length of one side of the square-shaped hole 22 and the inclined surface having the (111) plane. Then, after etching for a predetermined time, the etching solution is removed from the silicon flat plate 21 and the silicon flat plate 21 is washed, so that the concave-convex relationship between the regular quadrangular pyramidal fine protrusions 12 on one (100) surface of the silicon flat plate 21 is obtained. Can be formed. The micropattern β is formed of the regular quadrangular pyramid-shaped fine depressions 24 in which are inverted. Next, the resist mask 23 is dissolved and removed in a chemical (for example, TMAH (tetramethylammonium hydroxy solution), KOH (potassium hydroxide solution), EDP (ethylenediamine / pyrocatechol solution), etc.), thereby removing FIG. ), The parent mold 26 is obtained.

(2)ポジ子型作製工程
図5(A)に示すように、親型26を用いて平板状の樹脂部材からポジ子型27を作製する際、樹脂部材として熱可塑性樹脂(例えば、シリコーン、フッ素系樹脂、PEEK(ポリエーテルエーテルケトン)等)を使用する場合は、軟化状態となる温度まで加熱した平板状の樹脂部材を図示しない成形台に上に載置し、親型26を上方から押し当てる。樹脂部材として熱硬化性樹脂(例えば、エポキシ系樹脂、ウレタン系樹脂、ポリエステル系樹脂等)を使用する場合は、加熱なしで樹脂部材を図示しない成形台上に流し込み、親型26を上方から押し当てる。これにより、平板状の樹脂部材の一部が、正四角錐状微細窪み24の開口25から正四角錐状微細窪み24内に進入するので、正四角錐状微細窪み24内を樹脂部材の一部で満たした後、親型26を上方に移動させて樹脂部材から離すと、樹脂部材の上表面側には正四角錐状微細窪み24内に進入した樹脂部材から形成され、正四角錐状微細窪み24と凹凸関係が反転した正四角錐状微細突起29(従って、正四角錐状微細突起12と同一形状)が並べて配置(分散配置)されることになり、マイクロパターンγを備えたポジ子型27が形成される。
(2) Positive mold manufacturing process As shown in FIG. 5A, when the positive mold 27 is manufactured from a flat resin member using the parent mold 26, a thermoplastic resin (for example, silicone, When using fluororesin, PEEK (polyetheretherketone), etc., a flat resin member heated to a softening temperature is placed on a molding table (not shown), and the parent mold 26 is placed from above. Press. When a thermosetting resin (for example, epoxy resin, urethane resin, polyester resin, etc.) is used as the resin member, the resin member is poured onto a molding table (not shown) without heating, and the master mold 26 is pushed from above. Hit it. As a result, a part of the flat resin member enters the regular square pyramid-shaped fine recess 24 from the opening 25 of the regular quadrangular pyramid-shaped recess 24, so that the inside of the regular quadrangular pyramid-shaped recess 24 is filled with a part of the resin member. Then, when the parent mold 26 is moved upward and separated from the resin member, the upper surface side of the resin member is formed from the resin member that has entered the regular quadrangular pyramid-shaped fine recess 24, and the regular quadrangular pyramid-shaped recess 24 and the unevenness are formed. The regular quadrangular pyramidal microprotrusions 29 (and therefore the same shape as the regular quadrangular pyramidal microprotrusions 12) whose relations are reversed are arranged side by side (distributed arrangement), and the positive die 27 having the micropattern γ is formed. .

また、樹脂部材として硬化型樹脂(例えば、シリコーン、フッ素系樹脂)、光硬化型樹脂(例えば、紫外線の照射で硬化するアクリル系樹脂)を使用する場合は、親型26を用いて鋳型(図示せず)を構成し、鋳型内に樹脂部材を注入して、樹脂部材の一部を正四角錐状微細窪み24の開口25から正四角錐状微細窪み24内に進入させ、樹脂部材を硬化させた後、鋳型から樹脂部材を取り出すと、樹脂部材の上表面側には正四角錐状微細窪み24内に進入した樹脂部材から形成された正四角錐状微細突起29が並べて配置されることになり、マイクロパターンγを備えたポジ子型27が形成される。 Further, when a curable resin (for example, silicone, fluorine resin) or a photocurable resin (for example, an acrylic resin that is cured by irradiation with ultraviolet rays) is used as the resin member, a mold (FIG. (Not shown), a resin member was injected into the mold, a part of the resin member was caused to enter the regular quadrangular pyramid-shaped fine recess 24 through the opening 25 of the regular quadrangular pyramid-shaped recess 24, and the resin member was cured. Thereafter, when the resin member is taken out from the mold, the regular quadrangular pyramidal microprotrusions 29 formed from the resin member that has entered the regular quadrangular pyramid-shaped recess 24 are arranged side by side on the upper surface side of the resin member. A positive die 27 having a pattern γ is formed.

(3)ネガ子型作製工程
図5(B)に示すように、ポジ子型27からネガ子型18を作製する場合、先ず、ポジ子型27のマイクロパターンγが形成された表層上に金属からなる電極層30を、PVD(例えば、蒸着)により形成する。ここで、電極層30を構成する金属は、ネガ子型18を構成するめっき金属部31との接着性が良好であることが必要で、例えば、ニッケル、金、銀、銅等を使用することができる。次いで、電極層30の上に(電極層30の表面を下地面として)、電気めっきにより厚さが、例えば、0.1〜5mmのめっき金属部31を形成することにより、ネガ子型18が得られる。
(3) Negative child mold production process As shown in FIG. 5B, when producing the negative child mold 18 from the positive mold 27, first, a metal is formed on the surface layer on which the micro pattern γ of the positive mold 27 is formed. The electrode layer 30 made of is formed by PVD (for example, vapor deposition). Here, the metal constituting the electrode layer 30 needs to have good adhesion to the plated metal portion 31 constituting the negative mold 18, and for example, nickel, gold, silver, copper, or the like is used. Can do. Next, on the electrode layer 30 (using the surface of the electrode layer 30 as a base surface), a negative metal mold 18 is formed by forming a plated metal portion 31 having a thickness of, for example, 0.1 to 5 mm by electroplating. can get.

そして、ネガ子型18をポジ子型27から分離した後、めっき金属部31の表面(電極層30の反対側の面)側を研磨してネガ子型18の厚みを調節する。ここで、ポジ子型27上に形成する電極層30には、ポジ子型27のマイクロパターンγが転写されるので、ネガ子型18には、正四角錐状微細突起29(正四角錐状微細突起12)と凹凸関係が反転した形状となって、底部の深さKが0.1〜20μm、開口20の1辺の長さMが0.1〜30μm、開口20の間隔Jが1〜30μmの正四角錐状微細窪み19が、隣り合う正四角錐状微細窪み19の底部の間隔Eを1.1〜60μmとして並べて配置されており(即ち、正四角錐状微細突起29に対応する位置に、正四角錐状微細突起29と同一寸法で、正四角錐状微細窪み19が分散配置されており)、マイクロパターンδが形成される。 Then, after the negative mold 18 is separated from the positive mold 27, the surface of the plated metal portion 31 (the surface opposite to the electrode layer 30) is polished to adjust the thickness of the negative mold 18. Here, since the micro pattern γ of the positive die 27 is transferred to the electrode layer 30 formed on the positive die 27, the negative quadrangle fine protrusions 29 (positive square pyramidal fine protrusions) are transferred to the negative die 18. 12) and the concave-convex relationship is inverted, the bottom depth K is 0.1 to 20 μm, the length M of one side of the opening 20 is 0.1 to 30 μm, and the distance J between the openings 20 is 1 to 30 μm. Are arranged side by side with an interval E between 1.1 to 60 μm (that is, at the position corresponding to the regular quadrangular pyramidal microprotrusions 29). The same size as the pyramidal fine protrusions 29 and the regular quadrangular pyramid-shaped depressions 19 are dispersed and arranged), and the micropattern δ is formed.

(4)組立て工程
図5(C)に示すように、ネガ子型18から上型14を構成する場合、ネガ子型18を、マイクロパターンδが形成された表層を上にして、ネガ子型18の側部同士を当接させながら上型本体17の下面上に並べて固定する。ここで、上型本体17にネガ子型18を密接させて配置する場合、隣り合うネガ子型18の境界を挟んで、隣り合う正四角錐状微細窪み19の底部の間隔Eが、ネガ子型18内の隣り合う正四角錐状微細窪み19の底部の間隔E´と同値となるように調整する。これによって、隣り合うネガ子型18間で、マイクロパターンδの連続性を確保できる。
(4) Assembly process As shown in FIG. 5C, when the upper mold 14 is constructed from the negative mold 18, the negative mold 18 is placed with the surface layer on which the micropattern δ is formed facing upward. The 18 side parts are arranged side by side on the lower surface of the upper die main body 17 and fixed. Here, when the negative mold 18 is placed in close contact with the upper mold body 17, the interval E between the bottoms of the adjacent regular quadrangular pyramid-shaped depressions 19 across the boundary between the adjacent negative molds 18 is the negative mold. It adjusts so that it may become the same value as the space | interval E 'of the bottom part of the adjacent regular square pyramid-shaped fine dent 19 in 18. Thereby, the continuity of the micro pattern δ can be ensured between the adjacent negative molds 18.

続いて、研磨パッド成形金型10を用いて作製した研磨パッド13の作用について説明する。
研磨パッド13は、塑性加工可能な平板を、上型14及び下型15を用いて上下方向から挟んで加圧成形により製造されるので、高い平坦性を備えている。また、図2(A)、(B)、図3に示すように、研磨パッド13の一面側には、頂部の高さHが0.1〜20μm、底面の1辺の長さLが0.1〜30μmの正四角錐状微細突起12(斜面角度θ=30〜80度)が、隣り合う正四角錐状微細突起12の頂部の間隔Dを1.1〜60μm、隣り合う正四角錐状微細突起12の間隔Gを1〜30μmとして並べて配置されたマイクロパターンαが形成されている。このため、従来のように、研磨パッド用の素材から研磨パッドの母材となる平板を切り出し、熟練を要するドレッシング(研磨パッドの平坦性の確保と微細凹凸パターンの形成)を行うという一連の作業が不要になる。その結果、半導体基板11の平坦加工を迅速に行うことができると共に、研磨パッド13の研磨性能を常に一定に保つことができる。
Next, the operation of the polishing pad 13 produced using the polishing pad molding die 10 will be described.
Since the polishing pad 13 is manufactured by pressure molding by sandwiching a plastically workable flat plate from above and below using the upper mold 14 and the lower mold 15, the polishing pad 13 has high flatness. Further, as shown in FIGS. 2A, 2B, and 3, on one side of the polishing pad 13, the height H of the top is 0.1 to 20 μm, and the length L of one side of the bottom is 0. .1-30 μm regular quadrangular pyramidal microprotrusions 12 (slope angle θ = 30-80 degrees), the distance D between the apexes of adjacent regular quadrangular pyramidal microprojections 12 is 1.1-60 μm, and adjacent regular quadrangular pyramidal microprotrusions There are formed micropatterns α arranged so that 12 intervals G are 1 to 30 μm. For this reason, as in the past, a series of operations in which a flat plate that is the base material of the polishing pad is cut out from the material for the polishing pad and dressing that requires skill (ensuring the flatness of the polishing pad and forming a fine uneven pattern) is performed. Is no longer necessary. As a result, the semiconductor substrate 11 can be flattened quickly and the polishing performance of the polishing pad 13 can always be kept constant.

そして、半導体基板11の平坦加工を行う場合、半導体基板11は、研磨パッド13のマイクロパターンαを構成している正四角錐状微細突起12の頂部で支持され、正四角錐状微細突起12間の隙間には、研磨パッド13の中央部の上方から滴下されるスラリー(研磨材が含有されている)が存在しているので、半導体基板11の下面(被研磨面)に常時スラリーを接触させることができる。また、正四角錐状微細突起12間の隙間は連続しているので、研磨時に発生した削りかすは、研磨パッド13に新しいスラリーを供給することに伴って、使用済のスラリーと共に研磨パッド13の外周部に移動し、研磨パッド13の外部に排出することができる。なお、研磨パッド13を形成している素材には気孔は存在しないので、削りかすは研磨パッド13内に侵入しない。その結果、半導体基板11の被研磨面への新鮮なスラリーの供給と被研磨面からの削りかすの除去を効率的に行うことができ、研磨速度を高位に維持しながら、半導体基板11に高精密な平坦加工を安定して行うことが可能になる。 When the semiconductor substrate 11 is flattened, the semiconductor substrate 11 is supported by the tops of the regular quadrangular pyramidal microprotrusions 12 constituting the micropattern α of the polishing pad 13, and the gap between the regular quadrangular pyramidal microprotrusions 12. Since there is a slurry (containing an abrasive) dripped from above the central portion of the polishing pad 13, it is always possible to bring the slurry into contact with the lower surface (surface to be polished) of the semiconductor substrate 11. it can. Further, since the gaps between the regular quadrangular pyramidal microprotrusions 12 are continuous, the shavings generated during the polishing are supplied with new slurry to the polishing pad 13 and the outer periphery of the polishing pad 13 together with the used slurry. Can be discharged to the outside of the polishing pad 13. Note that since the pores do not exist in the material forming the polishing pad 13, the shavings do not enter the polishing pad 13. As a result, the supply of fresh slurry to the surface to be polished of the semiconductor substrate 11 and the removal of shavings from the surface to be polished can be efficiently performed, and the semiconductor substrate 11 has a high level while maintaining the polishing rate high. Precise flat processing can be performed stably.

本発明の第2の実施の形態に係る研磨パッド成形金型32は、図6に示すように、板状の被研磨材の一例である半導体基板11(図3参照)の平坦加工を行う際に用いられ、一方側(半導体基板11の被加工面に接触する側)に、頂部の高さHが0.1〜20μmの微細凸部Pの一例である正四角錐状微細突起33(斜面角度θ=30〜80度)を、隣り合う正四角錐状微細突起33の頂部の間隔Dを1.1〜60μm、正四角錐状微細突起33の底面の1辺の長さLを0.1〜30μm、隣り合う正四角錐状微細突起33の底面間の間隔Gを1〜30μmとして並べて配置して構成したマイクロパターンαが形成された帯状研磨パッド34を製造する金型である。以下、詳細に説明する。 As shown in FIG. 6, the polishing pad molding die 32 according to the second embodiment of the present invention performs flat processing of a semiconductor substrate 11 (see FIG. 3) that is an example of a plate-like object to be polished. The regular quadrangular pyramidal microprotrusions 33 (slope angle), which is an example of the fine convex portion P having a top height H of 0.1 to 20 μm, on one side (the side in contact with the surface to be processed of the semiconductor substrate 11). θ = 30 to 80 degrees), the distance D between the tops of adjacent regular quadrangular pyramidal projections 33 is 1.1 to 60 μm, and the length L of one side of the bottom surface of the regular quadrangular pyramidal projections 33 is 0.1 to 30 μm. This is a mold for manufacturing a belt-like polishing pad 34 on which a micropattern α formed by arranging and arranging the gaps G between the bottom surfaces of adjacent regular quadrangular pyramidal microprotrusions 1 to 1 to 30 μm. Details will be described below.

研磨パッド成形金型32は、帯状研磨パッド34の素材となる塑性加工可能な帯板35(例えば、熱可塑性樹脂の一例であるポリエーテルエーテルケトン(PEEK)帯板を加熱して軟化状態にしたもの)を上下方向から挟んで加圧して、帯板35の一方側、例えば、上面側にマイクロパターンαを形成する1対の上、下ロール36、37を有している。ここで、上、下ロール36、37間には帯状研磨パッド34の厚みに相当する距離の隙間が設けられ、加圧時にはそれぞれ反対方向に回転する。そして、上ロール36は、帯板35の上面を押圧して、上面側にマイクロパターンαを塑性加工により形成するパターン成形部38と、パターン成形部38を保持するロール本体39とを有している。更に、パターン成形部38は、側部を互いに密接させた状態でロール本体39の外周部にそれぞれ配置(固定)され、帯板35を一体的に押圧してマイクロパターンαを形成する複数のネガ子型40を有している。 The polishing pad molding die 32 is a softened state by heating a plastically workable belt plate 35 (for example, a polyether ether ketone (PEEK) belt plate which is an example of a thermoplastic resin) as a material of the belt-like polishing pad 34. A pair of upper and lower rolls 36 and 37 that form a micropattern α on one side of the band plate 35, for example, the upper surface side. Here, a gap having a distance corresponding to the thickness of the belt-like polishing pad 34 is provided between the upper and lower rolls 36 and 37 and rotates in opposite directions at the time of pressurization. The upper roll 36 includes a pattern forming portion 38 that presses the upper surface of the band plate 35 to form the micropattern α on the upper surface side by plastic working, and a roll body 39 that holds the pattern forming portion 38. Yes. Further, the pattern forming portion 38 is disposed (fixed) on the outer peripheral portion of the roll main body 39 with the side portions being in close contact with each other, and a plurality of negatives forming the micropattern α by pressing the strip plate 35 integrally. A child mold 40 is provided.

ネガ子型40には、微細凹部Sの一例であって、正四角錐状微細突起33と凹凸関係が反転した形状となって、底部の深さKが0.1〜20μmの正四角錐状微細窪み41が、隣り合う正四角錐状微細窪み41の底部の間隔Eを1.1〜60μmとして並べて配置して構成するマイクロパターンδ(マイクロパターンαに対して凹凸関係が反転したパターン)が形成されている。また、ネガ子型40(パターン成形部38)の表面側(上ロール36の外周部)に並んで存在している正四角錐状微細窪み41の開口42の1辺の長さMは0.1〜30μm、開口42の間隔Jは1〜30μmである。 The negative mold 40 is an example of a fine recess S, and has a shape in which the concavo-convex relationship with the regular quadrangular pyramidal microprotrusions 33 is inverted, and a regular quadrangular pyramid-shaped depression having a bottom depth K of 0.1 to 20 μm. 41 is formed, and a micro pattern δ (a pattern in which the concavo-convex relationship is inverted with respect to the micro pattern α) is formed by arranging and arranging the interval E between the bottoms of the adjacent regular quadrangular pyramidal micro dents 41 with 1.1 to 60 μm. Yes. Moreover, the length M of one side of the opening 42 of the regular quadrangular pyramid-shaped fine depression 41 existing side by side on the surface side of the negative die 40 (pattern forming portion 38) (the outer peripheral portion of the upper roll 36) is 0.1. The interval J between the openings 42 is 1 to 30 μm.

以上の構成とすることにより、互いに反対方向に回転している上、下ロール35、36間に挿入された軟化状態の帯板35に、上方から上ロール36を押し当てると、帯板35を構成している素材の一部が、マイクロパターンδを構成している正四角錐状微細窪み41の開口42から正四角錐状微細窪み41内に進入するので、上、下ロール35、36間を通過した帯板35の上表面側には正四角錐状微細窪み41内に進入した素材から形成された正四角錐状微細突起33が並べて配置されることになり、マイクロパターンαが形成される。そして、マイクロパターンαが形成された帯板35(帯状研磨パッド34)を冷却して硬化させた後、所定のサイズに裁断することにより研磨パッド34aが得られる。
なお、上、下ロール35、36間の隙間の距離を一定にすることで、各正四角錐状微細突起33の頂部と帯状研磨パッド34の下面との間の距離を一定値(従って、研磨パッド34aの厚みを均一)にすることができる。これによって、半導体基板11と研磨パッド34aを接触させた際、研磨パッド34aの下面に対して半導体基板11の研磨パッド34aとの接触面を平行にすることができる。
With the above configuration, when the upper roll 36 is pressed against the softened strip 35 inserted between the lower rolls 35 and 36 while rotating in opposite directions, the strip 35 is Since a part of the constituent material enters the regular quadrangular pyramid fine depression 41 from the opening 42 of the regular quadrangular pyramid fine depression 41 constituting the micro pattern δ, it passes between the upper and lower rolls 35 and 36. On the upper surface side of the strip 35, the regular quadrangular pyramidal microprojections 33 formed from the material that has entered the regular quadrangular pyramidal micro dent 41 are arranged side by side, and the micropattern α is formed. And after cooling and hardening the strip | belt board 35 (strip-shaped polishing pad 34) in which the micro pattern (alpha) was formed, the polishing pad 34a is obtained by cutting to a predetermined size.
The distance between the upper and lower rolls 35 and 36 is made constant, so that the distance between the top of each regular quadrangular pyramidal fine protrusion 33 and the lower surface of the belt-like polishing pad 34 is constant (accordingly, the polishing pad). 34a can be made uniform). Accordingly, when the semiconductor substrate 11 and the polishing pad 34a are brought into contact with each other, the contact surface of the semiconductor substrate 11 with the polishing pad 34a can be made parallel to the lower surface of the polishing pad 34a.

次に、本発明の第2の実施の形態に係る研磨パッド成形金型32の製造方法について説明する。
図7(A)、(B)に示すように、研磨パッド成形金型32の製造方法は、単結晶の基板、例えば、[100]方向に成長した単結晶シリコンのロッドから(100)面を切り出し面として切り出したシリコン平板43の一方側に、マイクロパターンαの正四角錐状微細突起33の底面に対応する領域に底面と同一サイズの正方形状の孔44が形成されたレジストマスク45を設け、レジストマスク45を介して、シリコン平板43の結晶面毎に決まる除去加工速度の差を利用したエッチングを行って、微細凹部Qの一例であり、正四角錐状微細突起33と凹凸関係が反転した、底部の深さが0.1〜20μmのエッチピットからなる正四角錐状微細窪み46(斜面角度φが30〜80度)が、隣り合う正四角錐状微細窪み46の底部の間隔Eを1.1〜60μm、正四角錐状微細窪み46の開口47の1辺の長さMを0.1〜30μm、開口47の間隔Jを1〜30μmとして並んで、マイクロパターンαと凹凸関係が反転したマイクロパターンβが形成された親型48を作製する親型作製工程を有している。
Next, a method for manufacturing the polishing pad molding die 32 according to the second embodiment of the present invention will be described.
As shown in FIGS. 7A and 7B, the manufacturing method of the polishing pad molding die 32 is performed using a single crystal substrate, for example, a (100) plane from a single crystal silicon rod grown in the [100] direction. On one side of the silicon flat plate 43 cut out as a cut-out surface, a resist mask 45 in which a square hole 44 having the same size as the bottom surface is formed in a region corresponding to the bottom surface of the regular quadrangular pyramidal microprojections 33 of the micro pattern α, Etching utilizing the difference in removal processing speed determined for each crystal plane of the silicon flat plate 43 through the resist mask 45 is an example of the fine concave portion Q, and the concave-convex relationship with the regular quadrangular pyramidal microprotrusion 33 is inverted. A regular quadrangular pyramid-shaped fine recess 46 (slope angle φ is 30 to 80 degrees) composed of etch pits having a depth of 0.1 to 20 μm at the bottom is the distance E between the bottoms of adjacent regular quadrangular pyramid-shaped recesses 46. The micropattern α and the concavo-convex relationship are reversed by arranging the length M of the side 47 of the opening 47 of the regular quadrangular pyramid 46 from 0.1 to 30 μm and the interval J of the opening 47 from 1 to 30 μm. A parent mold manufacturing step for manufacturing the parent mold 48 on which the micropattern β is formed.

更に、研磨パッド成形金型32の製造方法は、図8(A)〜(C)に示すように、親型48を用いて成形され、マイクロパターンβが転写された(マイクロパターンβと凹凸関係が反転した)マイクロパターンγが一方の表層に形成された平板状の樹脂部材からなるポジ子型49を作製するポジ子型作製工程と、得られたポジ子型49を、マイクロパターンγが形成された表層側を半径方向内側にして湾曲させて半径方向内側の表層上にめっきにより形成され、マイクロパターンγと凹凸関係が反転したマイクロパターンδが表層に形成された円弧状金属部材の一例であるめっき金属部53(例えば、ニッケル、コバルト、コバルト−ニッケル合金、ニッケル−リン合金等)を有するネガ子型40を作製するネガ子型作製工程と、ネガ子型40を、マイクロパターンδが形成された表層を上にしてネガ子型40の側部同士を当接させながら基盤の一例であるロール本体39(例えば、ステンレス鋼製ロール、普通鋼製ロール、合金鋼製ロール、鋳鉄製ロール、アルミニウム等の非鉄金属製ロール等)上に並べて固定して研磨パッド成形金型32の上ロール36を構成する組立て工程とを有している。以下、詳細に説明する。 Further, as shown in FIGS. 8A to 8C, the manufacturing method of the polishing pad molding die 32 is molded using the parent mold 48, and the micropattern β is transferred (the micropattern β and the concavo-convex relationship). The positive pattern forming step of manufacturing a positive mold 49 made of a flat resin member in which a micro pattern γ is formed on one surface layer, and the micro pattern γ is formed from the obtained positive mold 49. An example of an arc-shaped metal member in which a micropattern δ formed by plating on the surface layer on the radially inner side is curved with the surface layer side formed inward in the radial direction and the concavo-convex relationship with the micropattern γ is reversed is formed on the surface layer A negative mold producing process for producing a negative mold 40 having a certain plated metal portion 53 (for example, nickel, cobalt, cobalt-nickel alloy, nickel-phosphorus alloy, etc.); A roll body 39 which is an example of a base (for example, a stainless steel roll, a plain steel roll, an alloy steel roll, while the side portions of the negative mold 40 are brought into contact with each other with the surface layer on which the micropattern δ is formed facing up. A roll made of cast iron, a roll made of non-ferrous metal such as aluminum, etc.) and assembling the upper pad 36 of the polishing pad molding die 32 by fixing them side by side. Details will be described below.

(1)親型作製工程
図7(A)に示すように、切り出したシリコン平板43の一方の(100)面上に、レジスト層(例えば、アクリル系樹脂、エポキシ系樹脂等)を形成し、リソグラフィ技術を用いて孔44を形成することによりレジストマスク45を形成する。なお、シリコン平板43の他方の(100)面上及びシリコン平板43の側部にもレジスト層を形成する。次いで、シリコン平板43の一方の(100)面に、レジストマスク45を介してエッチング液を接触させる。なお、エッチング液には、例えば、水酸化カリウム、水酸化テトラメチルアンモニウム等を使用する。エッチング液は、レジストマスク45の孔44から露出するシリコン平板43の露出部に接触し、露出部ではエッチング液との反応により形成された水酸化シリコンがエッチング液に溶解することによりエッチングが進行し、エッチピットが形成される。
(1) Parent mold production process As shown in FIG. 7A, a resist layer (for example, acrylic resin, epoxy resin, etc.) is formed on one (100) surface of the cut silicon flat plate 43, A resist mask 45 is formed by forming the hole 44 using a lithography technique. A resist layer is also formed on the other (100) plane of the silicon flat plate 43 and on the side portions of the silicon flat plate 43. Next, an etching solution is brought into contact with one (100) surface of the silicon flat plate 43 through a resist mask 45. For example, potassium hydroxide or tetramethylammonium hydroxide is used as the etching solution. The etching solution comes into contact with the exposed portion of the silicon flat plate 43 exposed from the hole 44 of the resist mask 45, and etching proceeds as silicon hydroxide formed by the reaction with the etching solution dissolves in the exposed portion. Etch pits are formed.

ここで、シリコン平板43の(100)面のエッチングを行う場合、(111)のエッチング速度が一番遅いため、エッチングは(111)のエッチング速度に律速されながら進行する。このため、形成されるエッチピットの形状は、底部の1辺の長さが正方形状の孔44の1辺の長さと同値で、斜面が(111)面からなる正四角錐状となる。そして、所定時間エッチングを行った後、シリコン平板43からエッチング液を除去し、シリコン平板43を洗浄することにより、シリコン平板43の一方の(100)面上に、マイクロパターンαを構成する正四角錐状微細突起33と凹凸関係が反転した正四角錐状微細窪み46から構成されるマイクロパターンβを形成することができる。次いで、レジストマスク45を有機溶剤(例えば、アセトン等)に溶解させて除去することにより、図7(B)に示すように、親型48が得られる。 Here, when the (100) plane of the silicon flat plate 43 is etched, the etching speed of (111) is the slowest, so that the etching proceeds while being controlled by the etching speed of (111). For this reason, the shape of the formed etch pits is a regular quadrangular pyramid with one side at the bottom equal to the length of one side of the square-shaped hole 44 and the inclined surface having the (111) plane. Then, after performing etching for a predetermined time, the etching solution is removed from the silicon flat plate 43 and the silicon flat plate 43 is washed, so that a regular quadrangular pyramid constituting the micro pattern α is formed on one (100) plane of the silicon flat plate 43. It is possible to form a micro pattern β composed of a regular quadrangular pyramid-shaped depression 46 in which the concavo-convex relationship is reversed with the fine projection 33. Next, by removing the resist mask 45 by dissolving it in an organic solvent (for example, acetone or the like), a parent mold 48 is obtained as shown in FIG.

(2)ポジ子型作製工程
図8(A)に示すように、親型48を用いて平板状の樹脂部材からポジ子型49を作製する際、樹脂部材として熱可塑性樹脂(例えば、シリコーン、フッ素系樹脂、PEEK(ポリエーテルエーテルケトン)等)を使用する場合は、軟化状態となる温度まで加熱した平板状の樹脂部材を図示しない成形台に上に載置し、親型48を上方から押し当てる。これにより、平板状の樹脂部材の一部が、正四角錐状微細窪み46の開口47から正四角錐状微細窪み46内に進入するので、正四角錐状微細窪み46内を樹脂部材の一部で満たした後、親型48を上方に移動させて樹脂部材から離すと、樹脂部材の上表面側には正四角錐状微細窪み46内に進入した樹脂部材から形成され、微細凸部Rの一例であって、マイクロパターンβを構成する正四角錐状微細窪み46と凹凸関係が反転した正四角錐状微細突起51(従って、正四角錐状微細突起33と同一形状)が並べて配置されることになり、マイクロパターンγを備えたポジ子型49が形成される。
(2) Positive mold fabrication process As shown in FIG. 8A, when fabricating the positive mold 49 from a flat resin member using the master mold 48, a thermoplastic resin (for example, silicone, When using a fluorine-based resin, PEEK (polyether ether ketone), etc., a plate-like resin member heated to a temperature at which it becomes softened is placed on a molding table (not shown), and the parent mold 48 is placed from above. Press. As a result, a part of the flat resin member enters into the regular quadrangular pyramid fine recess 46 from the opening 47 of the regular quadrangular pyramid fine recess 46, so that the inside of the regular quadrangular pyramid fine recess 46 is filled with a part of the resin member. Then, when the parent mold 48 is moved upward and separated from the resin member, the upper surface side of the resin member is formed from the resin member that has entered the regular quadrangular pyramid-shaped fine recess 46, and is an example of the fine convex portion R. Thus, the regular quadrangular pyramid-shaped depressions 46 constituting the micropattern β and the regular quadrangular pyramid-shaped projections 51 whose concavo-convex relationship is reversed (the same shape as the regular quadrangular pyramid-shaped projections 33) are arranged side by side. A positive die 49 with γ is formed.

また、樹脂部材として硬化型樹脂(例えば、シリコーン、フッ素系樹脂)、光硬化型樹脂(例えば、紫外線の照射で硬化するアクリル系樹脂)を使用する場合は、親型48を用いて鋳型(図示せず)を構成し、鋳型内に樹脂部材を注入して、樹脂部材の一部を正四角錐状微細窪み46の開口47から正四角錐状微細窪み46内に進入させ、樹脂部材を硬化させた後、鋳型から樹脂部材を取り出すと、樹脂部材の上表面側には、マイクロパターンβを構成する正四角錐状微細窪み46内に進入した樹脂部材から形成された正四角錐状微細突起51が並べて配置されることになり、マイクロパターンγを備えたポジ子型49が形成される。 When a curable resin (for example, silicone, fluorine resin) or a photocurable resin (for example, an acrylic resin that is cured by irradiation with ultraviolet rays) is used as the resin member, a mold (see FIG. (Not shown), a resin member was injected into the mold, a part of the resin member was caused to enter the regular quadrangular pyramid-shaped fine recess 46 from the opening 47 of the regular quadrangular pyramid-shaped recess 46, and the resin member was cured. Thereafter, when the resin member is taken out from the mold, the regular quadrangular pyramidal microprotrusions 51 formed from the resin member that has entered the regular quadrangular pyramid-shaped recess 46 constituting the micropattern β are arranged side by side on the upper surface side of the resin member. As a result, a positive die 49 having a micro pattern γ is formed.

(3)ネガ子型作製工程
図8(B)に示すように、ポジ子型49からネガ子型40を作製する場合、先ず、ポジ子型49のマイクロパターンγが形成された表層側を半径方向内側にして湾曲させ、表層上に金属からなる電極層52を、PVD(例えば、蒸着)により形成する。ここで、電極層52を構成する金属は、ネガ子型40を構成するめっき金属部53との接着性が良好であることが必要で、例えば、ニッケル、金、銀、銅等を使用することができる。次いで、電極層52を下地層として、電気めっきにより厚さが、例えば、0.1〜5mmのめっき金属部53を形成することにより、ネガ子型40が得られる。
(3) Negative child mold manufacturing process As shown in FIG. 8B, when the negative child mold 40 is manufactured from the positive mold 49, first, the surface layer side of the positive mold 49 on which the micropattern γ is formed has a radius. An electrode layer 52 made of metal is formed on the surface layer by PVD (for example, vapor deposition). Here, the metal constituting the electrode layer 52 needs to have good adhesion to the plated metal portion 53 constituting the negative mold 40, and for example, nickel, gold, silver, copper, or the like is used. Can do. Next, the negative mold 40 is obtained by forming a plated metal portion 53 having a thickness of, for example, 0.1 to 5 mm by electroplating using the electrode layer 52 as a base layer.

そして、ネガ子型40をポジ子型49から分離した後、めっき金属部53の表面(電極層52の反対側の面)側を研磨してネガ子型40の厚みを調節する。ここで、ポジ子型49上に形成する電極層52には、ポジ子型49のマイクロパターンγが転写されるので、ネガ子型40には、正四角錐状微細突起51(正四角錐状微細突起33)と凹凸関係が反転した形状となって、底部の深さKが0.1〜20μm、開口42の1辺の長さMが0.1〜30μm、開口42の間隔Jが1〜30μmの正四角錐状微細窪み41が、隣り合う正四角錐状微細窪み41の底部の間隔Eを1.1〜60μmとして並べて配置されており、マイクロパターンδが形成される。 Then, after separating the negative mold 40 from the positive mold 49, the surface of the plated metal portion 53 (the surface opposite to the electrode layer 52) is polished to adjust the thickness of the negative mold 40. Here, since the micro pattern γ of the positive die 49 is transferred to the electrode layer 52 formed on the positive die 49, the negative quadrilateral fine protrusions 51 (positive quadrangular pyramidal fine protrusions) are transferred to the negative die 40. 33) and the concavo-convex relationship is reversed, the depth K of the bottom is 0.1 to 20 μm, the length M of one side of the opening 42 is 0.1 to 30 μm, and the interval J of the openings 42 is 1 to 30 μm. Are arranged side by side with an interval E of 1.1 to 60 μm between adjacent bottoms of the regular pyramid-shaped fine dents 41, and a micro pattern δ is formed.

(4)組立て工程
図8(C)に示すように、ネガ子型40から上ロール36を構成する場合、ネガ子型40を、マイクロパターンδが形成された表層を上にして、ネガ子型40の側部同士を当接させながらロール本体39の下面上に並べて固定する。ここで、ロール本体39の半径は、ネガ子型40(めっき金属部53)の半径方向内側の曲率と同一の曲率となるように調節されており、ロール本体39にネガ子型40を密接させて配置する場合、隣り合うネガ子型40の境界を挟んで、隣り合う正四角錐状微細窪み41の底部の間隔E´が、ネガ子型40内の隣り合う正四角錐状微細窪み41の底部の間隔Eと同値となるように調整する。これによって、隣り合うネガ子型40間で、マイクロパターンδの連続性を確保できる。
なお、研磨パッド成形金型32を用いて作製した研磨パッド34a作用は、研磨パッド成形金型10を用いて作製した研磨パッド13の作用と同一なので、説明は省略する。
(4) Assembly process As shown in FIG. 8C, when the upper roll 36 is constructed from the negative mold 40, the negative mold 40 is formed with the surface layer on which the micropattern δ is formed facing upward. The side portions of the 40 are abutted and fixed on the lower surface of the roll body 39. Here, the radius of the roll main body 39 is adjusted so as to have the same curvature as the curvature inside the negative die 40 (plated metal portion 53) in the radial direction, and the negative die 40 is brought into close contact with the roll main body 39. In the case of disposing, the interval E ′ between the bottoms of the adjacent regular quadrangular fine pits 41 across the boundary of the adjacent negative child molds 40 is equal to the bottom of the adjacent regular quadrangular pyramidal micro dents 41 in the negative child mold 40. Adjustment is made so as to be equal to the interval E. Thereby, the continuity of the micro pattern δ can be secured between the adjacent negative molds 40.
The action of the polishing pad 34a produced using the polishing pad molding die 32 is the same as the action of the polishing pad 13 produced using the polishing pad molding die 10, and the description thereof will be omitted.

[100]方向に成長した単結晶シリコンのロッドから(100)面を切り出し面として、縦200mm、横200mm、厚さ3mmのシリコン平板を切り出し、シリコン平板の一方側に、作製しようとする研磨パッドに設けるマイクロパターンαの正四角錐状微細突起の底面の形状と分布にそれぞれ合わせて形成された複数の正方形状の孔を有するレジストマスクをPLP−30(市販品:AZエレクトロニクスマテリアルズ社製)を用いて形成する。ここで、孔の1辺の長さは7μm、孔と孔の間隔は5μmとした。次いで、シリコン平板をエッチング液(2.38wt%の水酸化テトラメチルアンモニウム水溶液)に所定時間浸漬してエッチングを行い、深さ4.94μm、斜面角度が55度の正四角錐状微細窪みを形成した。そして、シリコン平板をエッチング液から取り出し洗浄した後、レジストマスクをアセトンで溶解除去することにより、正四角錐状微細窪みの開口の1辺の長さが7μm、隣り合う正四角錐状微細窪みの開口の間隔が5μmとして並んだマイクロパターンβ(マイクロパターンαと凹凸関係が反転したもの)が形成された親型を得た。 A polishing pad to be produced on one side of a silicon flat plate by cutting a silicon flat plate having a length of 200 mm, a width of 200 mm, and a thickness of 3 mm from the rod of single crystal silicon grown in the [100] direction as a cut surface. PLP-30 (commercially available product: manufactured by AZ Electronics Materials) is a resist mask having a plurality of square holes formed in accordance with the shape and distribution of the bottom surface of the regular quadrangular pyramidal microprotrusions of the micropattern α provided in Use to form. Here, the length of one side of the hole was 7 μm, and the distance between the holes was 5 μm. Next, etching was performed by immersing the silicon flat plate in an etching solution (2.38 wt% tetramethylammonium hydroxide aqueous solution) for a predetermined time to form a regular quadrangular pyramid-shaped fine depression having a depth of 4.94 μm and a slope angle of 55 degrees. . Then, after removing the silicon flat plate from the etching solution and cleaning it, the resist mask is dissolved and removed with acetone, whereby the length of one side of the opening of the regular quadrangular pyramid-shaped depression is 7 μm, A parent mold was obtained in which micropatterns β (in which the concavo-convex relationship with the micropattern α was inverted) arranged at intervals of 5 μm were formed.

次いで、150〜250℃に加熱して可塑性状態としたポリプロピレン樹脂板を成形台に上に載置し、親型を上方から押し当て、ポリプロピレン樹脂板の上面側にマイクロパターンβを転写することによりマイクロパターンγを形成して、縦200mm、横200mm、厚さ3mmのポジ子型を作製した。
そして、ポジ子型のマイクロパターンγが形成された表層上にニッケルからなる電極層を蒸着により形成した後、電気めっきにより厚さ1mmのニッケルからなるめっき金属部を形成することにより、縦200mm、横200mm、厚さ1mmのサイズでマイクロパターンδが形成されたネガ子型を作製した。
続いて、作製したネガ子型を、マイクロパターンδが形成された表層を上にして、ネガ子型の側部同士を当接させながらステンレス鋼製の上型本体の下面上に並べて固定して、縦1000mm、横1000mmのパターン成形部を有する上型を作製した。そして、上型と対となるサイズでステンレス鋼製の下型を作製することにより、研磨パッド成形金型を得た。
Next, a polypropylene resin plate heated to 150 to 250 ° C. and placed in a plastic state is placed on a molding table, the parent mold is pressed from above, and the micro pattern β is transferred to the upper surface side of the polypropylene resin plate. A micro pattern γ was formed to produce a positive mold having a length of 200 mm, a width of 200 mm, and a thickness of 3 mm.
And after forming the electrode layer which consists of nickel by vapor deposition on the surface layer in which positive type micro pattern γ was formed, by forming the plating metal part which consists of nickel of thickness 1mm by electroplating, length 200mm, A negative child mold with a micro pattern δ formed in a size of 200 mm in width and 1 mm in thickness was produced.
Subsequently, the produced negative child molds are fixed side by side on the lower surface of the upper mold body made of stainless steel with the surface layer on which the micropattern δ is formed facing up and the side parts of the negative child molds being in contact with each other. An upper mold having a pattern forming portion having a length of 1000 mm and a width of 1000 mm was produced. And the polishing pad molding die was obtained by producing the lower die made of stainless steel with the size which becomes a pair with the upper die.

400℃に加熱して軟化状態となったポリエーテルエーテルケトン板(縦1000mm、横1000、厚さ4mm)を研磨パッド成形金型の下型上に載置し、上下方向から下降させた上型で挟んで加圧し、ポリエーテルエーテルケトン板の上面側にマイクロパターンδを転写することにより、正四角錐状微細突起から構成されるマイクロパターンαが形成された縦1000mm、横1000mm、厚さ3mmの研磨パッドを成形した。
得られた研磨パッドに形成されたマイクロパターンαの正四角錐状微細突起の形状を測定したところ、正四角錐状微細突起の高さは、目標4.94μmに対して4.8〜5.1μm、正四角錐状微細突起の底辺の1辺の長さは、目標7μmに対して6.8〜7.2μm、正四角錐状微細突起の間隔は、目標5μmに対して4.8〜5.2μmであった。
An upper die placed on a lower die of a polishing pad molding die on a polyether ether ketone plate (length 1000 mm, width 1000, thickness 4 mm) softened by heating to 400 ° C. And pressurizing and transferring the micro pattern δ to the upper surface side of the polyether ether ketone plate, thereby forming a micro pattern α composed of regular quadrangular pyramidal microprotrusions having a length of 1000 mm, a width of 1000 mm, and a thickness of 3 mm. A polishing pad was molded.
When the shape of the regular quadrangular pyramidal microprojections of the micropattern α formed on the obtained polishing pad was measured, the height of the regular quadrangular pyramidal microprojections was 4.8 to 5.1 μm with respect to the target of 4.94 μm, The length of one side of the base of the regular quadrangular pyramidal projections is 6.8 to 7.2 μm with respect to the target 7 μm, and the interval between the regular quadrangular pyramidal projections is 4.8 to 5.2 μm with respect to the target 5 μm. there were.

得られた研磨パッドを用いて小型研磨機でSiO付のシリコンウエハ(直径20mm)の研磨を行った。研磨は、シリコンウエハの上面に研磨パッドのマイクロパターンαが形成された面を34.5kPaの圧力で自転自在に接触させ、シリコンウエハを、回転速度60rpmで回転させながら、pH11に調整した水酸化カリウム水溶液にシリカ微粒子(研磨材)を12.5mass%分散させたスラリーを100ミリリットル/分で供給しながら行った。このときの研磨レートは60nm/minであった。 Using the obtained polishing pad, a silicon wafer with SiO 2 (diameter 20 mm) was polished with a small polishing machine. In the polishing, the surface of the silicon wafer on which the micropattern α of the polishing pad is formed is brought into contact with rotation at a pressure of 34.5 kPa, and the silicon wafer is rotated at a rotation speed of 60 rpm and adjusted to pH 11. This was carried out while supplying a slurry in which 12.5 mass% of silica fine particles (abrasive) was dispersed in a potassium aqueous solution at 100 ml / min. The polishing rate at this time was 60 nm / min.

また、市販の研磨パッドを使用して、同一サイズのシリコンウエハの研磨を同一の研磨条件で行ったところ、研磨レートは50nm/minであり、本発明の研磨パッドとほぼ同等の性能であった。 When a commercially available polishing pad was used to polish a silicon wafer of the same size under the same polishing conditions, the polishing rate was 50 nm / min, which was almost the same performance as the polishing pad of the present invention. .

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載した構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。
更に、本実施の形態とその他の実施の形態や変形例にそれぞれ含まれる構成要素を組合わせたものも、本発明に含まれる。
例えば、単結晶の基板として[100]方向に成長した単結晶シリコンのロッドから切り出した平板を用いたが、例えば、単結晶石英のブロックから切り出した平板、サファイヤのブロックから切り出した平板を使用することもできる。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above-described embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included.
Further, the present invention also includes a combination of components included in the present embodiment and other embodiments and modifications.
For example, as a single crystal substrate, a flat plate cut out from a single crystal silicon rod grown in the [100] direction is used. For example, a flat plate cut out from a single crystal quartz block or a flat plate cut out from a sapphire block is used. You can also.

10:研磨パッド成形金型、11:半導体基板、12:正四角錐状微細突起、13:研磨パッド、14:上型、15:下型、16:パターン成形部、17:上型本体、18:ネガ子型、19:正四角錐状微細窪み、20:開口、21:シリコン平板、22:孔、23:レジストマスク、24:正四角錐状微細窪み、25:開口、26:親型、27:ポジ子型、29:正四角錐状微細突起、30:電極層、31:めっき金属部、32:研磨パッド成形金型、33:正四角錐状微細突起、34:帯状研磨パッド、34a:研磨パッド、35:帯板、36:上ロール、37:下ロール、38:パターン成形部、39:ロール本体、40:ネガ子型、41:正四角錐状微細窪み、42:開口、43:シリコン平板、44:孔、45:レジストマスク、46:正四角錐状微細窪み、47:開口、48:親型、49:ポジ子型、51:正四角錐状微細突起、52:電極層、53:めっき金属部 10: Polishing pad molding die, 11: Semiconductor substrate, 12: Regular pyramid-shaped fine protrusion, 13: Polishing pad, 14: Upper die, 15: Lower die, 16: Pattern molding part, 17: Upper die body, 18: Negative child type, 19: regular quadrangular pyramidal fine depression, 20: opening, 21: silicon flat plate, 22: hole, 23: resist mask, 24: regular quadrangular pyramidal fine depression, 25: opening, 26: parent mold, 27: positive Child mold, 29: regular quadrangular pyramidal microprotrusions, 30: electrode layer, 31: plated metal part, 32: polishing pad molding die, 33: regular quadrangular pyramidal microprotrusions, 34: strip-shaped polishing pad, 34a: polishing pad, 35 : Band plate, 36: Upper roll, 37: Lower roll, 38: Pattern forming part, 39: Roll body, 40: Negative child type, 41: Regular quadrangular pyramid fine depression, 42: Opening, 43: Silicon flat plate, 44: Hole, 45: resist mask, 6: depressions regular quadrangular pyramid shape fine, 47: opening, 48: parental, 49: Pojiko type, 51: regular quadrangular pyramid shape fine protrusions, 52: electrode layer, 53: plated metal part

Claims (6)

板状の被研磨材の平坦加工を行う際に使用され、一方の表面側に微細凸部Pが、設定された間隔で分散配置されたマイクロパターンαが形成された研磨パッドの製造に使用される研磨パッド成形金型の製造方法であって、
単結晶の基板の一方の表面側に、前記マイクロパターンαの前記微細凸部Pの配置に合わせて、該微細凸部Pの底部と同一寸法の孔が形成されたレジストマスクを設け、該レジストマスクを介して前記基板の一方の表面側にエッチングを行って、該基板の一方の表面側に前記微細凸部Pと凹凸関係が反転した微細凹部Qが前記マイクロパターンαの前記微細凸部Pの配置に合わせて分散配置されたマイクロパターンβが形成された親型を作製する親型作製工程と、
前記親型の前記マイクロパターンβを転写して、前記微細凹部Qに対応する位置に、該微細凹部Qと同一寸法で凹凸関係が反転した微細凸部Rが分散配置されたマイクロパターンγが形成されたポジ子型を作製するポジ子型作製工程と、
前記ポジ子型の前記マイクロパターンγを転写して、前記微細凸部Rに対応する位置に、該微細凸部Rと同一寸法で凹凸関係が反転した微細凹部Sが分散配置されたマイクロパターンδが形成されたネガ子型を作製するネガ子型作製工程と、
前記ネガ子型を、前記マイクロパターンδが形成された表層側を表にし、該ネガ子型の側部同士を当接させながら基盤上に並べて固定して前記研磨パッド成形金型を構成する組立て工程とを有することを特徴とする研磨パッド成形金型の製造方法。
Used for flat processing of a plate-like material to be polished, and used for manufacturing a polishing pad in which micro-protrusions P are formed on one surface side and formed with micropatterns α dispersed and arranged at set intervals. A method of manufacturing a polishing pad molding die comprising:
A resist mask having a hole having the same size as the bottom of the fine projection P is provided on one surface side of the single crystal substrate in accordance with the arrangement of the fine projection P of the micropattern α. Etching is performed on one surface side of the substrate through a mask, and the fine concave portion Q in which the concave-convex relationship is reversed on the one surface side of the substrate is the fine convex portion P of the micropattern α. A parent mold production step of producing a parent mold in which micropatterns β are distributed and arranged in accordance with the arrangement of
The micro pattern β of the parent mold is transferred to form a micro pattern γ in which fine convex portions R having the same dimensions as the fine concave portions Q and having the concave and convex relations reversed are arranged at positions corresponding to the fine concave portions Q. A positive mold production process for producing a positive mold,
The positive pattern micropattern γ is transferred, and micropatterns δ having the same dimensions as the microprotrusions R and having the concave and convex relations inverted are dispersedly arranged at positions corresponding to the microprotrusions R. A negative child mold production process for producing a negative child mold formed with
Assembling to form the polishing pad molding die by placing the negative mold on the surface side where the micropattern δ is formed, and arranging and fixing the negative molds side by side on the base. And a method for producing a polishing pad molding die.
請求項1記載の研磨パッド成形金型の製造方法において、前記ネガ子型は、前記ポジ子型の前記マイクロパターンγが形成された表面側を下地面にしてめっきにより形成された平板状金属部材を有し、前記ネガ子型が固定される前記基盤は平板であることを特徴とする研磨パッド成形金型の製造方法。 2. The method of manufacturing a polishing pad molding die according to claim 1, wherein the negative die is a flat metal member formed by plating with the surface side of the positive die on which the micropattern γ is formed as a base surface. And the base on which the negative mold is fixed is a flat plate. 請求項1記載の研磨パッド成形金型の製造方法において、前記ネガ子型は、前記ポジ子型の前記マイクロパターンγが形成された表面側を半径方向内側にして円弧状に湾曲させ、該マイクロパターンγが形成された表面側を下地面にしてめっきにより形成された円弧状金属部材を有し、前記ネガ子型が固定される前記基盤は、前記円弧状金属部材の半径方向内側の曲率と同一の曲率を有するロールであることを特徴とする研磨パッド成形金型の製造方法。 2. The method of manufacturing a polishing pad molding die according to claim 1, wherein the negative die is curved in an arc shape with a surface side of the positive die on which the micropattern γ is formed being radially inward. An arc-shaped metal member formed by plating with the surface side on which the pattern γ is formed as a base surface, and the base to which the negative mold is fixed has a curvature on the radially inner side of the arc-shaped metal member, A method for producing a polishing pad mold, wherein the rolls have the same curvature. 請求項1〜3のいずれか1項に記載の研磨パッド成形金型の製造方法により製造されることを特徴とする研磨パッド成形金型。 It manufactures with the manufacturing method of the polishing pad molding die of any one of Claims 1-3, The polishing pad molding die characterized by the above-mentioned. 請求項4記載の研磨パッド成形金型を用いて製造されることを特徴とする研磨パッド。 A polishing pad manufactured using the polishing pad molding die according to claim 4. 請求項5記載の研磨パッドにおいて、前記基板は、[100]方向に成長した単結晶シリコンのロッドから(100)面を切り出し面として切り出したシリコン平板であって、前記レジストマスクは前記シリコン平板の(100)面に設けられ、前記微細凸部Pは正四角錐状微細突起であって、該正四角錐状微細突起の底面の1辺の長さは0.1〜30μm、隣り合う該正四角錐状微細突起間の距離は1〜30μmであることを特徴とする研磨パッド。
6. The polishing pad according to claim 5, wherein the substrate is a silicon flat plate cut out from a single crystal silicon rod grown in a [100] direction with a (100) plane as a cut surface, and the resist mask is made of the silicon flat plate. Provided on the (100) plane, the fine convex portion P is a regular quadrangular pyramidal microprojection, and the length of one side of the bottom surface of the regular quadrangular pyramidal microprojection is 0.1 to 30 μm, and the adjacent regular quadrangular pyramid shape A polishing pad, wherein the distance between the fine protrusions is 1 to 30 μm.
JP2012147442A 2012-06-29 2012-06-29 Manufacturing method of polishing pad molding die, polishing pad molding die manufactured by the method, and polishing pad manufactured by the die Active JP5154705B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012147442A JP5154705B1 (en) 2012-06-29 2012-06-29 Manufacturing method of polishing pad molding die, polishing pad molding die manufactured by the method, and polishing pad manufactured by the die
TW102120728A TWI538777B (en) 2012-06-29 2013-06-11 Method of manufacturing polishing pad mold, polishing pad mold manufactured by the method, and polishing pad manufactured by the mold
US13/921,821 US20140004780A1 (en) 2012-06-29 2013-06-19 Method of manufacturing polishing pad mold, polishing pad mold manufactured by the method, and polishing pad manufactured by the mold
KR1020130073607A KR20140002512A (en) 2012-06-29 2013-06-26 Method of manufacturing polishing pad mold, polishing pad mold manufactured by the method, and polishing pad manufactured by the mold
CN201310265355.9A CN103522165B (en) 2012-06-29 2013-06-28 The manufacture method of grinding pad mould, grinding pad mould and grinding pad

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012147442A JP5154705B1 (en) 2012-06-29 2012-06-29 Manufacturing method of polishing pad molding die, polishing pad molding die manufactured by the method, and polishing pad manufactured by the die

Publications (2)

Publication Number Publication Date
JP5154705B1 JP5154705B1 (en) 2013-02-27
JP2014008693A true JP2014008693A (en) 2014-01-20

Family

ID=47890644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012147442A Active JP5154705B1 (en) 2012-06-29 2012-06-29 Manufacturing method of polishing pad molding die, polishing pad molding die manufactured by the method, and polishing pad manufactured by the die

Country Status (1)

Country Link
JP (1) JP5154705B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016157849A (en) * 2015-02-25 2016-09-01 三島光産株式会社 Manufacturing method of protrusion arrangement member, protrusion arrangement member obtained by that manufacturing method, and manufacturing method of protrusion arrangement member molding die using protrusion arrangement member

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5442892B1 (en) * 2013-07-03 2014-03-12 三島光産株式会社 Precision polishing method
CN111319175B (en) * 2019-01-15 2022-06-07 陈龙 Earphone shell and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061818A (en) * 1998-08-26 2000-02-29 Nikon Corp Polishing pad
JP2004327974A (en) * 2003-04-09 2004-11-18 Jsr Corp Polishing pad, its manufacturing method and die, and polishing method of semiconductor wafer
US7300479B2 (en) * 2003-09-23 2007-11-27 3M Innovative Properties Company Compositions for abrasive articles
JP4845347B2 (en) * 2004-05-17 2011-12-28 東洋ゴム工業株式会社 Polishing pad and manufacturing method thereof
JP2011119447A (en) * 2009-12-03 2011-06-16 Dainippon Printing Co Ltd Method for measuring release force of transfer material for nano imprint

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016157849A (en) * 2015-02-25 2016-09-01 三島光産株式会社 Manufacturing method of protrusion arrangement member, protrusion arrangement member obtained by that manufacturing method, and manufacturing method of protrusion arrangement member molding die using protrusion arrangement member

Also Published As

Publication number Publication date
JP5154705B1 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP5442892B1 (en) Precision polishing method
KR102588457B1 (en) Rectangular substrate for imprint lithography and making method
JP4977604B2 (en) Method for generating in-situ grooves during chemical mechanical planarization (CMP) PAD and novel CMPPAD design
TWI538777B (en) Method of manufacturing polishing pad mold, polishing pad mold manufactured by the method, and polishing pad manufactured by the mold
JP5154705B1 (en) Manufacturing method of polishing pad molding die, polishing pad molding die manufactured by the method, and polishing pad manufactured by the die
JP2015029032A (en) Substrate for square mold
KR101304143B1 (en) Method for fabricating polishing pad
TWI569920B (en) The manufacturing method of the grinding dresser
TWI629297B (en) Polishing layer and method of forming the same and polishing method
TWI614118B (en) Mold-forming substrate and inspection method
JP5154704B1 (en) Manufacturing method of polishing pad molding die, polishing pad molding die manufactured by the method, and polishing pad manufactured by the die
JP4646705B2 (en) Mold manufacturing method and molded product manufacturing method
KR100646488B1 (en) Polishing pad manufacturing method for chemicalmechanical polish
CN104046986A (en) Manufacturing method for three-dimension controllable silicon based mold
JP3975444B2 (en) Manufacturing method of replica mold for microlens array
KR101530365B1 (en) Method of manufacturing the polishing pad conditioner
JP2010253582A (en) Polisher manufacturing method and polisher
JPWO2017069136A1 (en) Electrical contact
JP5872865B2 (en) Optical element processing tool, optical element processing tool manufacturing method, and optical element manufacturing method
CN113997201A (en) Novel polishing pad dressing disc assembling method and manufacturing tool
KR20170136214A (en) Polishing pad manufacturing method forchemicalmechanical polish
JP2013244573A (en) Optical element machining tool, grind stone holding tool, method for manufacturing and using optical element machining tool, and method for manufacturing optical member
KR20200042039A (en) Method of manufacturing polymer microlens array based Microfabrication technology
TW201929072A (en) Conditioning disc and conditioning disc manufacturing method
JP2005053121A (en) Core for mold, mold and mold manufacturing method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5154705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250