JP2014008555A - Polishing method of glass substrate - Google Patents

Polishing method of glass substrate Download PDF

Info

Publication number
JP2014008555A
JP2014008555A JP2012145336A JP2012145336A JP2014008555A JP 2014008555 A JP2014008555 A JP 2014008555A JP 2012145336 A JP2012145336 A JP 2012145336A JP 2012145336 A JP2012145336 A JP 2012145336A JP 2014008555 A JP2014008555 A JP 2014008555A
Authority
JP
Japan
Prior art keywords
polishing
glass substrate
polishing pad
attached
surface plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012145336A
Other languages
Japanese (ja)
Inventor
Yusuke Hirabayashi
佑介 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2012145336A priority Critical patent/JP2014008555A/en
Publication of JP2014008555A publication Critical patent/JP2014008555A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a polishing method for a glass substrate, which is configured to, when polishing the glass substrate by using a double-sided polishing device, suppress adsorption of the glass substrate to an abrasive pad mounted on an upper surface plate and prevent occurrence of undulation onto a substrate surface.SOLUTION: An abrasive pad 24 mounted on upper and lower surface plates of a double-sided polishing device 10 has a degree of hardness (Shore A hardness) of 70 or less and a surface roughness (Ra) of 50 μm or less. At least one is selected out of an average opening diameter, numerical aperture per unit area, numerical aperture, opening ratio, and surface roughness for a polishing surface of a lower side abrasive pad and an upper side abrasive pad, in such a manner that a relationship shown in the following formula is satisfied by adsorption power F(N) of the polishing surface of the abrasive pad mounted on the lower surface plate 14 and a main surface of the glass substrate, and by adsorption power Fof the abrasive pad mounted on the upper surface plate 12. F>F-w×g (w is a mass (g) of the glass substrate, and g is gravity acceleration (m/s)).

Description

本発明は、ガラス基板の研磨方法に関する。より具体的には、研磨後のガラス基板表面における100μm〜100mmの波長域におけるPV値が30nm以下となることが求められる用途のガラス基板の研磨方法に関する。
本発明のガラス基板の研磨方法は、EUV(Extreme Ultra Violet:極端紫外)光を用いたリソグラフィ(以下、「EUVL」と略する)の際に使用される反射型マスクや反射型ミラーの基材として使用されるガラス基板(以下、「EUVL光学基材用ガラス基板」と略する。)として使用されるガラス基板の研磨に好適である。
本発明のガラス基板の研磨方法は、KrFエキシマレーザ(波長248nm)、ArFエキシマレーザ(波長193nm)、F2エキシマレーザ(波長157nm)を光源として用いる透過型マスクの基材と使用されるガラス基板の研磨に用いることもできる。
The present invention relates to a method for polishing a glass substrate. More specifically, the present invention relates to a method for polishing a glass substrate for use in which a PV value in a wavelength range of 100 μm to 100 mm on the polished glass substrate surface is required to be 30 nm or less.
The glass substrate polishing method of the present invention includes a reflective mask and a reflective mirror substrate used in lithography (hereinafter abbreviated as “EUVL”) using EUV (Extreme Ultra Violet) light. It is suitable for polishing a glass substrate used as a glass substrate (hereinafter abbreviated as “a glass substrate for EUVL optical base material”).
The glass substrate polishing method of the present invention includes a transparent mask base material using a KrF excimer laser (wavelength 248 nm), an ArF excimer laser (wavelength 193 nm), and an F 2 excimer laser (wavelength 157 nm) as a light source. It can also be used for polishing.

従来から、半導体製造工程においては、ウェハ上に微細な回路パターンを転写して集積回路を製造するための露光装置が広く使用されている。近年、半導体集積回路の高集積化、高機能化に伴い、集積回路の微細化が進み、回路パターンをウェハ面上に正確に結像させるために、露光装置のフォトマスクに使用される光学基材用ガラス基板は高度の平坦性と平滑性が求められている。   Conventionally, in a semiconductor manufacturing process, an exposure apparatus for manufacturing an integrated circuit by transferring a fine circuit pattern onto a wafer has been widely used. In recent years, along with the higher integration and higher functionality of semiconductor integrated circuits, the miniaturization of integrated circuits has progressed, and an optical substrate used in a photomask of an exposure apparatus to accurately form a circuit pattern on a wafer surface. The glass substrate for materials is required to have high flatness and smoothness.

さらに、このような技術動向にあって、次の世代の露光光源としてEUV光を使用したリソグラフィ技術(すなわち、EUVL技術)が、45nm以降の複数の世代にわたって適用可能と見られ注目されている。EUV光とは軟X線領域または真空紫外域の波長帯の光を指し、具体的には波長が0.2〜100nm程度の光のことである。現時点では、リソグラフィ光源として13.5nmの波長光の使用が検討されている。このEUVLの露光原理は、投影光学系を用いてマスクパターンを転写する点では、従来のリソグラフィと同じであるが、EUV光のエネルギー領域では光を透過する材料がないために屈折光学系は用いることができず、反射光学系を用いることとなり、反射型マスクや反射型ミラーが用いられる(特許文献1参照)。   Further, in such a technical trend, a lithography technique using EUV light as a next generation exposure light source (ie, EUVL technique) is considered to be applicable over a plurality of generations of 45 nm and after, and has attracted attention. EUV light refers to light in the wavelength band of the soft X-ray region or the vacuum ultraviolet region, specifically, light having a wavelength of about 0.2 to 100 nm. At present, the use of 13.5 nm wavelength light as a lithography light source is being studied. The EUVL exposure principle is the same as that of conventional lithography in that a mask pattern is transferred using a projection optical system, but a refractive optical system is used because there is no material that transmits light in the EUV light energy region. Therefore, a reflective optical system is used, and a reflective mask or a reflective mirror is used (see Patent Document 1).

EUVLに用いられる反射型マスクは、(1)基材、(2)基材上に形成された反射多層膜、(3)反射多層膜上に形成された吸収体層から基本的に構成される。反射型ミラーの場合は、(1)基材、(2)基材上に形成された反射多層膜から基本的に構成される。
反射型マスクや反射型ミラーの製造に用いられる基材(EUVL光学基材)としては、EUV光照射の下においても歪みが生じないよう低熱膨張係数を有する材料が必要とされ、低熱膨張係数を有するガラスや結晶化ガラスで作製されたガラス基板(EUVL光学基材用ガラス基板)が検討されている。EUVL光学基材用ガラス基板は、これらガラスや結晶化ガラスの素材を、高精度に研磨、洗浄することによって製造される。
A reflective mask used for EUVL basically includes (1) a base material, (2) a reflective multilayer film formed on the base material, and (3) an absorber layer formed on the reflective multilayer film. . In the case of a reflective mirror, it is basically composed of (1) a base material and (2) a reflective multilayer film formed on the base material.
As a base material (EUVL optical base material) used for manufacturing a reflective mask or a reflective mirror, a material having a low thermal expansion coefficient is required so that distortion does not occur even under EUV light irradiation. A glass substrate (a glass substrate for EUVL optical base material) made of glass or crystallized glass has been studied. The glass substrate for EUVL optical base material is manufactured by polishing and washing these glass and crystallized glass materials with high accuracy.

一般に、磁気記録媒体用基板や半導体用基板などを平滑度の高い表面に研磨する方法は知られている。例えば、特許文献2には、メモリーハードディスクの仕上げ研磨や半導体素子用基板などの研磨について、研磨後の被研磨物の表面粗さが小さく、かつ微小突起(凸状欠点)を低減させる研磨方法として、水、研磨材、酸化合物を含有してなり、pHが酸性かつ研磨材の濃度が10重量%未満である研磨液組成物と、研磨パッドと、を用いて機械研磨することが記載されている。そして、研磨材として酸化アルミニウム、シリカ、酸化セリウム、酸化ジルコニウムなどが、またpHを酸性にするための酸として硝酸、硫酸、塩酸や有機酸などがそれぞれ例示されている。   In general, a method for polishing a magnetic recording medium substrate, a semiconductor substrate, or the like to a highly smooth surface is known. For example, Patent Document 2 discloses a polishing method for finishing polishing of a memory hard disk and polishing of a substrate for a semiconductor element, etc., in which the surface roughness of the polished object is small and fine protrusions (convex defects) are reduced. And polishing with a polishing composition comprising water, an abrasive and an acid compound, having an acidic pH and an abrasive concentration of less than 10% by weight, and a polishing pad. Yes. Examples of the abrasive include aluminum oxide, silica, cerium oxide, and zirconium oxide, and examples of acids for making the pH acidic include nitric acid, sulfuric acid, hydrochloric acid, and organic acids.

EUVL光学基材用ガラス基板についても、特定の研磨スラリーと、研磨パッドと、を用いて機械研磨することによって、基板表面の凸欠点や凹欠点を減少させて、ガラス基板の表面平滑性を向上させる方法が特許文献3に記載されている。
ガラス基板表面の凸欠点や凹欠点を減少させることが求められるのは、凸欠点や凹欠点が存在するガラス基板表面上に反射多層膜を形成すると、反射多層膜の周期構造が乱され、位相欠陥を生じるからである。
The glass substrate for EUVL optical substrate is also mechanically polished with a specific polishing slurry and a polishing pad to reduce convex defects and concave defects on the substrate surface and improve the surface smoothness of the glass substrate. The method of making it is described in Patent Document 3.
It is required to reduce convex defects and concave defects on the surface of a glass substrate. When a reflective multilayer film is formed on a glass substrate surface where convex defects and concave defects exist, the periodic structure of the reflective multilayer film is disturbed, and the phase This is because defects are produced.

EUVL光学基材用ガラス基板(以下、単に「ガラス基板」と記載する場合がある。)を機械研磨する場合、研磨に要する時間を短縮できる、表裏面の基板平坦度を同時に確保できる、板厚偏差(TTV)を小さくできる等の理由から、また、片面研磨では非研磨面をチャッキングする必要があり、非研磨面となる基板表面でパーティクル付着が発生する等の理由から、通常は両面研磨装置が使用される(特許文献3)。
両面研磨装置を用いてガラス基板を研磨する場合、特許文献3に示すように、それぞれ研磨パッドが取り付けられた上定盤と、下定盤と、で、キャリアに保持されたガラス基板を挟持し、上下定盤の研磨パッドと、ガラス基板と、の間に研磨液(研磨スラリー)を供給しつつ、ガラス基板を保持するキャリアを公転および自転させながら、ガラス基板の両主表面を同時に研磨する。
When mechanically polishing a glass substrate for EUVL optical base material (hereinafter sometimes simply referred to as “glass substrate”), the time required for polishing can be shortened, and the flatness of the substrate on the front and back surfaces can be secured at the same time. Double-side polishing is usually used because the deviation (TTV) can be reduced, and because non-polished surfaces need to be chucked in single-side polishing, and particle adhesion occurs on the non-polished substrate surface. A device is used (Patent Document 3).
When polishing a glass substrate using a double-side polishing apparatus, as shown in Patent Document 3, the glass substrate held by the carrier is sandwiched between an upper surface plate and a lower surface plate each having a polishing pad attached thereto, While supplying polishing liquid (polishing slurry) between the polishing pad of the upper and lower surface plates and the glass substrate, both main surfaces of the glass substrate are simultaneously polished while revolving and rotating the carrier holding the glass substrate.

両面研磨装置を用いてガラス基板を研磨した際、研磨終了時には、上下定盤のいずれかに取り付けられた研磨パッドにガラス基板が吸着することがある。
一般に、ガラス基板の下面が自重により下定盤に取り付けられた研磨パッドに吸着しやすいが、ガラス基板の上面が上定盤に取り付けられた研磨パッドに吸着する場合がある。この場合、上定盤に取り付けられた研磨パッドに吸着したガラス基板が落下して破損するおそれがある。
When a glass substrate is polished using a double-side polishing apparatus, the glass substrate may be adsorbed to a polishing pad attached to one of the upper and lower surface plates at the end of polishing.
In general, the lower surface of the glass substrate tends to be adsorbed to the polishing pad attached to the lower surface plate by its own weight, but the upper surface of the glass substrate may be adsorbed to the polishing pad attached to the upper surface plate. In this case, the glass substrate adsorbed on the polishing pad attached to the upper surface plate may fall and be damaged.

両面研磨実施時において、上定盤に取り付けられた研磨パッドへの研磨対象物の貼り付き(吸着)を防止する方法としては、研磨面に格子状の溝を設けることや、研磨パッドの回転中心から放射状に延びる複数の溝を設けることが知られている(特許文献4参照)。   When performing double-sided polishing, methods of preventing the object to be adhered (adsorption) to the polishing pad attached to the upper surface plate include providing a grid-like groove on the polishing surface or rotating the polishing pad at the center of rotation. It is known to provide a plurality of grooves extending radially from (see Patent Document 4).

特表2003−505891号公報Japanese translation of PCT publication No. 2003-505891 特開2003−211351号公報JP 2003-211351 A 特開2005−59184号公報JP 2005-59184 A 特開2009−88027号公報JP 2009-88027 A

しかしながら、研磨面に溝を設けた研磨パッドを使用すると、ガラス基板の被研磨面にうねりが生じることが明らかとなった。このようなうねりは、基板表面に凸欠点を生じさせるため問題となる。   However, it has been found that when a polishing pad having a groove on the polishing surface is used, waviness occurs on the surface to be polished of the glass substrate. Such waviness is problematic because it causes convex defects on the substrate surface.

本発明は、上記した従来技術の問題点を解決するため、両面研磨装置を用いてガラス基板を研磨する際に、上定盤に取り付けられた研磨パッドへのガラス基板の吸着を抑制し、かつ、基板表面へのうねりの発生を防止することができるガラス基板の研磨方法を提供することを目的とする。   In order to solve the problems of the prior art described above, the present invention suppresses the adsorption of the glass substrate to the polishing pad attached to the upper surface plate when polishing the glass substrate using a double-side polishing apparatus, and An object of the present invention is to provide a glass substrate polishing method capable of preventing the occurrence of undulation on the substrate surface.

本発明は、両面研磨装置の上下定盤に取り付けられた研磨パッドの研磨面で、キャリアに保持されたガラス基板を挟持し、上下両定盤の両研磨面の少なくとも一方に設けられている1つ、または、複数の供給孔から研磨粒子を含む流体を供給しつつ、前記上下定盤と、前記キャリアに保持された前記ガラス基板と、を相対的に移動させて前記ガラス基板の両主表面を研磨するガラス基板の研磨方法であって、
前記上下定盤に取り付けられる研磨パッドが、硬度(ショアA硬度)が70以下であり、表面粗さ(Ra)が50μm以下であり、
下定盤に取り付けられる研磨パッド(a)の研磨面と前記ガラス基板の主表面との吸着力F1(N)、および、上定盤に取り付けられる研磨パッド(b)の研磨面と前記ガラス基板の主表面との吸着力F2が、下記式(1)に示す関係を満たすように、前記研磨パッド(a)および前記研磨パッド(b)の研磨面における、平均開口径、単位面積当たりの開口数、開口率、および、表面粗さ(Ra)のうち、少なくとも1つを調整することを特徴とするガラス基板の研磨方法(1)を提供する。
1 > F2 − w×g (1)
(式中、wはガラス基板の質量(g)であり、gは重力加速度(m/s2)である。)
The present invention provides a polishing surface of a polishing pad attached to an upper and lower surface plate of a double-side polishing apparatus, sandwiching a glass substrate held by a carrier, and is provided on at least one of both polishing surfaces of the upper and lower surface plates. Or both main surfaces of the glass substrate by relatively moving the upper and lower platen and the glass substrate held by the carrier while supplying a fluid containing abrasive particles from one or a plurality of supply holes A method of polishing a glass substrate for polishing
The polishing pad attached to the upper and lower surface plates has a hardness (Shore A hardness) of 70 or less and a surface roughness (Ra) of 50 μm or less.
Adsorption force F 1 (N) between the polishing surface of the polishing pad (a) attached to the lower surface plate and the main surface of the glass substrate, and the polishing surface of the polishing pad (b) attached to the upper surface plate and the glass substrate So that the adsorbing force F 2 with the main surface satisfies the relationship represented by the following formula (1), the average opening diameter per unit area on the polishing surface of the polishing pad (a) and the polishing pad (b) Provided is a glass substrate polishing method (1), wherein at least one of a numerical aperture, an aperture ratio, and a surface roughness (Ra) is adjusted.
F 1 > F 2 −w × g (1)
(Wherein, w is the mass (g) of the glass substrate, and g is the gravitational acceleration (m / s 2 ).)

また、本発明は、両面研磨装置の上下定盤に取り付けられた研磨パッドの研磨面で、キャリアに保持されたガラス基板を挟持し、上下両定盤の両研磨面の少なくとも一方に設けられている1つ、または、複数の供給孔から研磨粒子を含む流体を供給しつつ、前記上下定盤と、前記キャリアに保持された前記ガラス基板と、を相対的に移動させて前記ガラス基板の両主表面を研磨するガラス基板の研磨方法であって、
前記上下定盤に取り付けられる研磨パッドが、硬度(ショアA硬度)が70以下であり、表面粗さ(Ra)が50μm以下であり、
下定盤に取り付けられる研磨パッド(a)の研磨面と前記ガラス基板の主表面との吸着力F1(N)、および、上定盤に取り付けられる研磨パッド(b)の研磨面と前記ガラス基板の主表面との吸着力F2が、下記式(1)に示す関係を満たすように、前記研磨パッド(a)および前記研磨パッド(b)の研磨面における、平均開口径、単位面積当たりの開口数、開口率、および、表面粗さ(Ra)のうち、少なくとも1つを互いに異なるものとすることを特徴とするガラス基板の研磨方法(2)を提供する。
1 > F2 − w×g (1)
(式中、wはガラス基板の質量(g)であり、gは重力加速度(m/s2)である。)
Further, the present invention provides a polishing surface of a polishing pad attached to an upper and lower surface plate of a double-side polishing apparatus, sandwiching a glass substrate held by a carrier, and is provided on at least one of both polishing surfaces of the upper and lower surface plates. While the fluid containing abrasive particles is supplied from one or a plurality of supply holes, the upper and lower platen and the glass substrate held by the carrier are relatively moved to move both of the glass substrates. A method for polishing a glass substrate for polishing a main surface,
The polishing pad attached to the upper and lower surface plates has a hardness (Shore A hardness) of 70 or less and a surface roughness (Ra) of 50 μm or less.
Adsorption force F 1 (N) between the polishing surface of the polishing pad (a) attached to the lower surface plate and the main surface of the glass substrate, and the polishing surface of the polishing pad (b) attached to the upper surface plate and the glass substrate So that the adsorbing force F 2 with the main surface satisfies the relationship represented by the following formula (1), the average opening diameter per unit area on the polishing surface of the polishing pad (a) and the polishing pad (b) Provided is a glass substrate polishing method (2), wherein at least one of a numerical aperture, an aperture ratio, and a surface roughness (Ra) is different from each other.
F 1 > F 2 −w × g (1)
(Wherein, w is the mass (g) of the glass substrate, and g is the gravitational acceleration (m / s 2 ).)

本発明のガラス基板の研磨方法(1),(2)において、上下定盤に取り付けられる研磨パッドの研磨面における平均開口径が、1〜100μmの範囲であり、
上定盤に取り付けられる研磨パッド(b)の研磨面における平均開口径に対する、下定盤に取り付けられる研磨パッド(a)の研磨面における平均開口径の比が0.95以下であることが好ましい。
In the glass substrate polishing method (1), (2) of the present invention, the average opening diameter on the polishing surface of the polishing pad attached to the upper and lower surface plates is in the range of 1 to 100 μm,
The ratio of the average opening diameter on the polishing surface of the polishing pad (a) attached to the lower surface plate to the average opening diameter on the polishing surface of the polishing pad (b) attached to the upper surface plate is preferably 0.95 or less.

本発明のガラス基板の研磨方法(1),(2)において、上定盤に取り付けられる研磨パッド(b)の研磨面における単位面積当たりの開口数に対する、下定盤に取り付けられる研磨パッド(a)の研磨面における単位面積当たりの開口数の比が、0.95以下であることが好ましい。   In the polishing methods (1) and (2) of the glass substrate of the present invention, the polishing pad (a) attached to the lower surface plate with respect to the numerical aperture per unit area on the polishing surface of the polishing pad (b) attached to the upper surface plate The ratio of the numerical aperture per unit area on the polished surface is preferably 0.95 or less.

本発明のガラス基板の研磨方法(1),(2)において、上定盤に取り付けられる研磨パッド(b)の研磨面における開口率に対する、下定盤に取り付けられる研磨パッド(a)の研磨面における開口率 の比が、0.95以下であることが好ましい。   In the polishing methods (1) and (2) of the glass substrate of the present invention, the polishing rate of the polishing pad (a) attached to the lower surface plate relative to the aperture ratio of the polishing surface of the polishing pad (b) attached to the upper surface plate The ratio of the aperture ratio is preferably 0.95 or less.

本発明のガラス基板の研磨方法(1),(2)において、上定盤に取り付けられる研磨パッド(b)の研磨面における表面粗さ(Ra)に対する、下定盤に取り付けられる研磨パッド(a)の研磨面における表面粗さ(Ra)の比が、0.95以下であることが好ましい。   In the polishing methods (1) and (2) of the glass substrate of the present invention, the polishing pad (a) attached to the lower surface plate with respect to the surface roughness (Ra) on the polishing surface of the polishing pad (b) attached to the upper surface plate It is preferable that the ratio of the surface roughness (Ra) on the polished surface is 0.95 or less.

本発明のガラス基板の研磨方法(1),(2)において、前記上下両定盤の研磨面による研磨荷重が0.1〜12kPaであることが好ましい。   In the glass substrate polishing methods (1) and (2) of the present invention, it is preferable that the polishing load by the polishing surfaces of the upper and lower surface plates is 0.1 to 12 kPa.

本発明のガラス基板の研磨方法(1),(2)において、前記研磨粒子がコロイダルシリカまたは酸化セリウムであることが好ましい。   In the glass substrate polishing methods (1) and (2) of the present invention, the abrasive particles are preferably colloidal silica or cerium oxide.

本発明によれば、両面研磨装置を用いてガラス基板を研磨する際に、上定盤に取り付けられた研磨パッドへガラス基板が吸着するのを抑制できる。
また、本発明によれば、研磨後のガラス基板表面にうねりが発生するのを防止できる。このため、研磨後のガラス基板表面が平滑性に優れており、100μm〜100mmの波長域におけるPV値が30nm以下となる。
ADVANTAGE OF THE INVENTION According to this invention, when grind | polishing a glass substrate using a double-side polish apparatus, it can suppress that a glass substrate adsorb | sucks to the polishing pad attached to the upper surface plate.
Moreover, according to this invention, it can prevent that a wave | undulation generate | occur | produces on the glass substrate surface after grinding | polishing. For this reason, the glass substrate surface after grinding | polishing is excellent in smoothness, and PV value in the wavelength range of 100 micrometers-100 mm will be 30 nm or less.

図1は、本発明のガラス基板研磨方法に用いる両面研磨装置の一構成例を示した側断面図である。FIG. 1 is a side sectional view showing an example of the configuration of a double-side polishing apparatus used in the glass substrate polishing method of the present invention. 図2は、図1に示す両面研磨装置10内におけるガラス基板22の配置の一構成例を示した図である。FIG. 2 is a diagram showing a configuration example of the arrangement of the glass substrates 22 in the double-side polishing apparatus 10 shown in FIG. 図3は、図1に示す両面研磨装置10における上定盤12の一構成を示す図である。FIG. 3 is a view showing one configuration of the upper surface plate 12 in the double-side polishing apparatus 10 shown in FIG. 図4は、本発明のガラス基板研磨方法に用いる研磨パッドの一例を示した模式図であり、研磨面側を研削して微多孔を開口させる前の状態を示している。FIG. 4 is a schematic view showing an example of a polishing pad used in the glass substrate polishing method of the present invention, and shows a state before the polishing surface side is ground to open micropores. 図5は、図4と同様の図面であり、研磨パッドの研磨面側を研削して微多孔を開口させた後の状態を示している。FIG. 5 is a view similar to FIG. 4 and shows a state after the polishing surface side of the polishing pad is ground to open the micropores.

以下、図面を参照して本発明のガラス基板研磨方法を説明する。
本発明のガラス基板研磨方法では、両面研磨装置を用いてガラス基板の両主表面を研磨する。ここで、ガラス基板の主表面とは使用時に基板として機能する面を指し、具体的には端面を除く表裏面である。以下、本明細書において、ガラス基板の両面研磨といった場合、ガラス基板の両主表面、すなわち、ガラス基板の表裏面を研磨することを指す。
両面研磨装置には様々な構成のものがあるが、上下定盤の研磨面でキャリアに保持されたガラス基板を挟持し、上定盤に設けられた供給孔から研磨粒子を含む流体(以下、本明細書において、「研磨スラリー」という。)を供給しつつ、上下定盤と、キャリアに保持されたガラス基板と、を相対的に移動させることにより、ガラス基板の両面を研磨する点では共通である。
以下、図面を参照して両面研磨装置について説明するが、本発明の基板研磨方法に用いる両面研磨装置は上記を満たすものであればよく、両面研磨装置の構成、動作機構、両面研磨装置でのガラス基板の配置等はこれに限定されない。
The glass substrate polishing method of the present invention will be described below with reference to the drawings.
In the glass substrate polishing method of the present invention, both main surfaces of the glass substrate are polished using a double-side polishing apparatus. Here, the main surface of a glass substrate refers to the surface which functions as a substrate at the time of use, specifically the front and back surfaces excluding the end surfaces. Hereinafter, in this specification, in the case of double-side polishing of a glass substrate, it refers to polishing both main surfaces of the glass substrate, that is, the front and back surfaces of the glass substrate.
There are various configurations of the double-side polishing apparatus, but the glass substrate held by the carrier is sandwiched between the polishing surfaces of the upper and lower surface plates, and a fluid containing abrasive particles (hereinafter, referred to as a supply hole provided in the upper surface plate). In this specification, it is common in that both surfaces of the glass substrate are polished by relatively moving the upper and lower surface plates and the glass substrate held by the carrier while supplying “polishing slurry”). It is.
Hereinafter, a double-side polishing apparatus will be described with reference to the drawings, but the double-side polishing apparatus used in the substrate polishing method of the present invention only needs to satisfy the above requirements. The arrangement of the glass substrate is not limited to this.

図1は、本発明のガラス基板研磨方法に用いる両面研磨装置の一構成例を示した側断面図である。
図1に示す両面研磨装置10は、ガラス基板22の両面を研磨する遊星歯車方式の研磨装置である。図1に示す両面研磨装置10は、上定盤12、下定盤14、太陽歯車16、及び内歯歯車18を備える。詳しくは後述するが、太陽歯車16及び内歯歯車18は、上下両定盤(上定盤12、下定盤14)と、キャリア20に保持されたガラス基板22と、を相対的に移動させる手段である。太陽歯車16及び内歯歯車18の形状は歯車形状が一般的であるが、歯車の代わりにピンが複数立っているものでも代用することができる。ピンにキャリア20の歯車をかませてキャリア20を移動させることで上下両定盤(上定盤12、下定盤14)と、キャリア20に保持されたガラス基板22と、を相対的に移動させることができる。(以下、本明細書において、歯車形状、ピン形状を区別せず「歯車」という。)
上下両定盤(上定盤12、下定盤14)は、中心部に空洞12a,14aを有するドーナツ状である。
FIG. 1 is a side sectional view showing an example of the configuration of a double-side polishing apparatus used in the glass substrate polishing method of the present invention.
A double-side polishing apparatus 10 shown in FIG. 1 is a planetary gear type polishing apparatus that polishes both surfaces of a glass substrate 22. A double-side polishing apparatus 10 shown in FIG. 1 includes an upper surface plate 12, a lower surface plate 14, a sun gear 16, and an internal gear 18. As will be described in detail later, the sun gear 16 and the internal gear 18 are means for relatively moving the upper and lower surface plates (upper surface plate 12, lower surface plate 14) and the glass substrate 22 held by the carrier 20. It is. The shape of the sun gear 16 and the internal gear 18 is generally a gear shape, but a configuration in which a plurality of pins stand in place of the gear can be substituted. By moving the carrier 20 by pinching the gear of the carrier 20 to the pins, the upper and lower surface plates (upper surface plate 12, lower surface plate 14) and the glass substrate 22 held by the carrier 20 are relatively moved. be able to. (Hereinafter, in the present specification, the gear shape and the pin shape are not distinguished and are referred to as “gear”.)
Both the upper and lower surface plates (upper surface plate 12, lower surface plate 14) have a donut shape having cavities 12a and 14a at the center.

図2は、図1に示す両面研磨装置10内におけるガラス基板22の配置の一構成例を示した図であり、下定盤14上にガラス基板22を保持したキャリア20を配置した状態を示している。図2において、下定盤14上(実際には、上下両定盤(上定盤12、下定盤14)の間)には、複数のキャリア20が配置されている。複数のキャリア20は、例えば、図1における太陽歯車16と内歯歯車18との間のドーナツ状の領域において、下定盤14(実際には上定盤12及び下定盤14)の円周方向へ並べて配置される。
また、キャリア20は、ガラス基板22を収容する4角穴状の貫通部を中央に有する円板状体であり、外周に歯車が設けられており、外周部において太陽歯車16及び内歯歯車18と噛み合う。各キャリア20は、ガラス基板22をそれぞれ1枚保持する。なお、図2では、各キャリア20は、ガラス基板22をそれぞれ1枚保持しているが、各キャリアが複数のガラス基板を保持していてもよい。
FIG. 2 is a diagram showing a configuration example of the arrangement of the glass substrate 22 in the double-side polishing apparatus 10 shown in FIG. 1, and shows a state in which the carrier 20 holding the glass substrate 22 is arranged on the lower surface plate 14. Yes. In FIG. 2, a plurality of carriers 20 are arranged on the lower surface plate 14 (in practice, between the upper and lower surface plates (the upper surface plate 12 and the lower surface plate 14)). For example, in a donut-shaped region between the sun gear 16 and the internal gear 18 in FIG. 1, the plurality of carriers 20 are arranged in the circumferential direction of the lower surface plate 14 (actually, the upper surface plate 12 and the lower surface plate 14). Arranged side by side.
The carrier 20 is a disk-like body having a square hole-shaped through-hole that accommodates the glass substrate 22 in the center, and a gear is provided on the outer periphery. The sun gear 16 and the internal gear 18 are provided on the outer periphery. Mesh with. Each carrier 20 holds one glass substrate 22. In FIG. 2, each carrier 20 holds one glass substrate 22, but each carrier may hold a plurality of glass substrates.

上定盤12及び下定盤14は、ガラス基板22の上側及び下側の定盤である。上定盤12及び下定盤14は、ドーナツ状体であり、これらのドーナツ状体の中心軸である定盤中心軸102を中心にして、キャリア20に保持されたガラス基板22をその研磨面(上下両定盤(上定盤12、下定盤14)の研磨面))の間に挟みつつ、上下定盤のうち一方または両方を回転させることで、上下定盤と、キャリアに保持されたガラス基板と、を相対的に移動させる。
上定盤12及び下定盤14は、基板22と対向する面に研磨パッド24が取り付けられている。本明細書において、上下両定盤(上定盤12、下定盤14)の研磨面と言った場合、上下両定盤(上定盤12、下定盤14)に取り付けられた研磨パッド24のパッド表面を指す。
The upper surface plate 12 and the lower surface plate 14 are upper and lower surface plates of the glass substrate 22. The upper surface plate 12 and the lower surface plate 14 are donut-shaped bodies, and the glass substrate 22 held by the carrier 20 is polished on its polishing surface (centered on the surface plate center axis 102 which is the central axis of these donut-shaped bodies). The glass held by the upper and lower surface plates and the carrier by rotating one or both of the upper and lower surface plates while sandwiching between the upper and lower surface plates (polishing surfaces of the upper surface plate 12 and the lower surface plate 14)) The substrate is moved relatively.
The upper surface plate 12 and the lower surface plate 14 have a polishing pad 24 attached to the surface facing the substrate 22. In this specification, when the polishing surfaces of the upper and lower surface plates (upper surface plate 12, lower surface plate 14) are referred to, the pads of the polishing pad 24 attached to the upper and lower surface plates (upper surface plate 12, lower surface plate 14). Refers to the surface.

図3は、図1に示す両面研磨装置10における上定盤12の一構成例を示す図である。図3に示すように、上定盤12には、研磨スラリーの供給孔30が設けられている。これにより、両面研磨装置10は、上定盤12及び下定盤14の研磨面に設けられた研磨パッド24と、基板22と、の間に、研磨スラリーを供給する。図3において、上定盤12には、複数の供給孔30が設けられている。なお、図3では、上定盤12における供給孔30を示しているが、上定盤12の研磨面に設けられた研磨パッドにも、図3と同様の供給孔が存在する。
複数の供給孔30は、上定盤12の回転軸側から外側に、かつ上定盤12の回転方向の進行側に向かって、螺旋状に等間隔で配置されている。但し、図3は、上定盤12における研磨スラリー供給孔30の配置の一構成例を示したものであり、上定盤12における研磨スラリー供給孔30の配置はこれに限定されない。
また、図3では、上定盤12に複数の供給孔30が設けられているが、上定盤に設けられる供給孔の数は1つでもよい。
また、上定盤ではなく、下定盤に研磨スラリーの供給孔が設けられていてもよく、上定盤と下定盤の両方に研磨スラリーの供給孔が設けられていてもよい。
FIG. 3 is a diagram showing a configuration example of the upper surface plate 12 in the double-side polishing apparatus 10 shown in FIG. As shown in FIG. 3, a polishing slurry supply hole 30 is provided in the upper surface plate 12. Thus, the double-side polishing apparatus 10 supplies the polishing slurry between the polishing pad 24 provided on the polishing surfaces of the upper surface plate 12 and the lower surface plate 14 and the substrate 22. In FIG. 3, the upper surface plate 12 is provided with a plurality of supply holes 30. 3 shows the supply holes 30 in the upper surface plate 12, the same supply holes as in FIG. 3 also exist in the polishing pad provided on the polishing surface of the upper surface plate 12.
The plurality of supply holes 30 are arranged at regular intervals in a spiral manner from the rotation axis side of the upper surface plate 12 to the outside and toward the traveling side in the rotation direction of the upper surface plate 12. However, FIG. 3 shows a configuration example of the arrangement of the polishing slurry supply holes 30 in the upper surface plate 12, and the arrangement of the polishing slurry supply holes 30 in the upper surface plate 12 is not limited to this.
In FIG. 3, a plurality of supply holes 30 are provided in the upper surface plate 12, but the number of supply holes provided in the upper surface plate may be one.
Further, not the upper surface plate but the lower surface plate may be provided with polishing slurry supply holes, and both the upper surface plate and lower surface plate may be provided with polishing slurry supply holes.

太陽歯車16及び内歯歯車18は、キャリア20の外周面と噛み合うギアである。太陽歯車16は、上定盤12及び下定盤14の中心側からキャリア20と接する外歯の歯車であり、上下両定盤(上定盤12及び下定盤14)中心部の空洞12a,14aに備えられ、上下両定盤(上定盤12及び下定盤14)の回転軸である定盤中心軸102と同心の回転軸で回転する。また、内歯歯車18は、上定盤12及び下定盤14の外周側からキャリア20と接する内歯の歯車である。内歯歯車18は、リング状で内側に歯車を有する歯車であり、上下両定盤(上定盤12及び下定盤14)の外周に備えられ、定盤の回転軸である定盤中心軸102と同心の回転軸で回転する。   The sun gear 16 and the internal gear 18 are gears that mesh with the outer peripheral surface of the carrier 20. The sun gear 16 is an externally toothed gear that comes into contact with the carrier 20 from the center side of the upper surface plate 12 and the lower surface plate 14, and is formed in the cavities 12 a and 14 a at the center of the upper and lower surface plates (upper surface plate 12 and lower surface plate 14). It is provided and rotates about a rotation axis concentric with the center axis 102 of the surface plate which is the rotation axis of the upper and lower surface plates (upper surface plate 12 and lower surface plate 14). The internal gear 18 is an internal gear that contacts the carrier 20 from the outer peripheral side of the upper surface plate 12 and the lower surface plate 14. The internal gear 18 is a ring-shaped gear having a gear inside, and is provided on the outer periphery of both upper and lower surface plates (upper surface plate 12 and lower surface plate 14), and a surface plate central axis 102 that is a rotation axis of the surface plate. Rotate on a concentric rotation axis.

そして、太陽歯車16と内歯歯車18は、キャリア20の歯車と噛み合うことによって、キャリア20を回転させる。また、これにより、太陽歯車16及び内歯歯車18は、上定盤12と下定盤14との間において、ガラス基板22を保持するキャリア20を公転及び自転させることにより、ガラス基板20の両面を研磨する。   The sun gear 16 and the internal gear 18 are engaged with the gear of the carrier 20 to rotate the carrier 20. Moreover, by this, the sun gear 16 and the internal gear 18 revolve and rotate the carrier 20 holding the glass substrate 22 between the upper surface plate 12 and the lower surface plate 14, so that both surfaces of the glass substrate 20 are rotated. Grind.

上述したように、両面研磨装置10を用いてガラス基板20の両面を研磨した際、研磨終了時には、上下定盤(上定盤12及び下定盤14)のいずれかに取り付けられた研磨パッド24にガラス基板が吸着することがある。
一般に、ガラス基板20の下面が自重により下定盤14に取り付けられた研磨パッド24に吸着しやすいが、ガラス基板20の上面が上定盤12に取り付けられた研磨パッド24に吸着する場合がある。この場合、上定盤12に取り付けられた研磨パッド24に吸着したガラス基板20が落下して破損するおそれがある。
このため、研磨終了時において、ガラス基板20の上面が上定盤12に取り付けられた研磨パッド24に吸着するのを抑制するため、ガラス基板20の下面が下定盤14に取り付けられた研磨パッド24に吸着させることが望ましい。
As described above, when both surfaces of the glass substrate 20 are polished using the double-side polishing apparatus 10, the polishing pad 24 attached to one of the upper and lower surface plates (upper surface plate 12 and lower surface plate 14) is attached at the end of the polishing. The glass substrate may be adsorbed.
In general, the lower surface of the glass substrate 20 is easily adsorbed to the polishing pad 24 attached to the lower surface plate 14 by its own weight, but the upper surface of the glass substrate 20 may be adsorbed to the polishing pad 24 attached to the upper surface plate 12 in some cases. In this case, the glass substrate 20 adsorbed on the polishing pad 24 attached to the upper surface plate 12 may fall and be damaged.
Therefore, at the end of polishing, in order to prevent the upper surface of the glass substrate 20 from adsorbing to the polishing pad 24 attached to the upper surface plate 12, the lower surface of the glass substrate 20 is attached to the lower surface plate 14. It is desirable to adsorb to.

本発明のガラス基板の研磨方法では、下定盤14に取り付けられる研磨パッド24の研磨面とガラス基板20の主表面との吸着力F1(N)、および、上定盤12に取り付けられる研磨パッド24の研磨面とガラス基板20の主表面との吸着力F2が、下記式(1)に示す関係を満たすように、研磨パッド24の研磨面における、平均開口径、単位面積当たりの開口数、開口率、および、表面粗さ(Ra)のうち、少なくとも1つを調整する。
1 > F2 − w×g (1)
上記式(1)中、wはガラス基板20の質量(g)であり、gは重力加速度(m/s2)である。
なお、上記F1およびF2が式(1)に示す関係を満たすように、研磨パッド24の研磨面における、平均開口径、単位面積当たりの開口数、開口率、および、表面粗さ(Ra)のうち、少なくとも1つを調整する具体的な手段としては、後述するように。上下定盤に取り付けられる研磨パッドとして、平均開口径、単位面積当たりの開口数、開口率、および、表面粗さ(Ra)のうち、少なくとも1つが互いに異なる研磨パッドを用いる手段がある。
In the glass substrate polishing method of the present invention, the adsorption force F 1 (N) between the polishing surface of the polishing pad 24 attached to the lower surface plate 14 and the main surface of the glass substrate 20, and the polishing pad attached to the upper surface plate 12. The average opening diameter and the number of numerical apertures per unit area on the polishing surface of the polishing pad 24 so that the adsorption force F 2 between the polishing surface 24 and the main surface of the glass substrate 20 satisfies the relationship represented by the following formula (1). , At least one of the aperture ratio and the surface roughness (Ra) is adjusted.
F 1 > F 2 −w × g (1)
In said formula (1), w is the mass (g) of the glass substrate 20, and g is a gravitational acceleration (m / s < 2 >).
In addition, the average opening diameter, the numerical aperture per unit area, the numerical aperture, and the surface roughness (Ra) on the polishing surface of the polishing pad 24 so that the above F 1 and F 2 satisfy the relationship represented by the formula (1). ) Will be described later as a specific means for adjusting at least one. As a polishing pad attached to the upper and lower surface plates, there is a means that uses a polishing pad in which at least one of the average opening diameter, the numerical aperture per unit area, the opening ratio, and the surface roughness (Ra) is different from each other.

上記式(1)における研磨パッドの研磨面とガラス基板の主表面との吸着力F1,F2は、研磨終了時と同様に、研磨パッドの研磨面とガラス基板の主表面との間に、研磨スラリーが存在する状態で、主表面を研磨パッドの研磨面に吸着させたガラス基板を、研磨面と直交方向に引き剥がすのに必要な最小限の力を指す。
なお、上下定盤(上定盤12、下定盤14)に取り付けられた研磨パッド24の研磨面と、ガラス基板20の主表面(上面、下面)と、の吸着力とはせず、上下定盤(上定盤12、下定盤14)に取り付けられる研磨パッド24の研磨面と、ガラス基板20の主表面と、の吸着力としているのは、ガラス基板の自重による影響を排除するため、上下定盤(上定盤12、下定盤14)に取り付ける前の研磨パッド24について、主表面を吸着させるガラス基板20の向きが同一にした状態(例えば、研磨パッド24に対し、ガラス基板20の下面を吸着させた状態)で吸着力を評価するためである。
In the above formula (1), the adsorption forces F 1 and F 2 between the polishing surface of the polishing pad and the main surface of the glass substrate are similar to those between the polishing surface of the polishing pad and the main surface of the glass substrate as in the end of polishing. The minimum force required to peel off the glass substrate having the main surface adsorbed on the polishing surface of the polishing pad in the direction perpendicular to the polishing surface in the presence of the polishing slurry.
Note that the upper and lower surface plates (upper surface plate 12, lower surface plate 14) are not attracted to the polishing surface of the polishing pad 24 and the main surface (upper surface, lower surface) of the glass substrate 20. The adsorbing force between the polishing surface of the polishing pad 24 attached to the board (upper surface plate 12 and lower surface plate 14) and the main surface of the glass substrate 20 is the upper and lower sides in order to eliminate the influence of the weight of the glass substrate. The polishing pad 24 before being attached to the surface plate (upper surface plate 12, lower surface plate 14) is in a state in which the orientation of the glass substrate 20 that adsorbs the main surface is the same (for example, the lower surface of the glass substrate 20 with respect to the polishing pad 24). This is because the adsorbing force is evaluated in a state in which the adsorbing agent is adsorbed.

上下定盤(上定盤12及び下定盤14)に取り付けられる研磨パッド24の研磨面と、ガラス基板20の主表面と、の吸着力F1,F2が、上記式(1)に示す関係を満たしていれば、研磨終了時において、ガラス基板20の下面が下定盤14に取り付けられた研磨パッド24に吸着する傾向が高くなり、ガラス基板20の上面が上定盤12に取り付けられた研磨パッド24に吸着することが抑制される。 The attraction forces F 1 and F 2 between the polishing surface of the polishing pad 24 attached to the upper and lower surface plates (upper surface plate 12 and lower surface plate 14) and the main surface of the glass substrate 20 are represented by the relationship expressed by the above formula (1). If the above condition is satisfied, at the end of polishing, the lower surface of the glass substrate 20 tends to be adsorbed to the polishing pad 24 attached to the lower surface plate 14, and the upper surface of the glass substrate 20 is polished to the upper surface plate 12. Adsorption to the pad 24 is suppressed.

研磨パッドの研磨面と、ガラス基板の主表面と、の吸着力は、種々の要因が影響を及ぼす。上下定盤に取り付けられる研磨パッドで、このような要因を調節することで、上記式(1)に示す関係を満たすことができる。しかしながら、これにより、研磨終了時点におけるガラス基板の表面性状に影響が及ぶことに留意する必要がある。
研磨パッドの研磨面における平均開口径、単位面積当たりの開口数、開口率、および、表面粗さについては、本発明のガラス基板研磨方法において、研磨終了後のガラス基板の表面性状を達成するうえで、研磨パッドが満たすべき範囲である限り、上下定盤に取り付けられる研磨パッドで差を付けても、研磨終了時点におけるガラス基板の表面性状への影響は軽微であり、無視できる。
Various factors influence the adsorption force between the polishing surface of the polishing pad and the main surface of the glass substrate. By adjusting such factors with the polishing pad attached to the upper and lower surface plates, the relationship represented by the above formula (1) can be satisfied. However, it should be noted that this affects the surface properties of the glass substrate at the end of polishing.
Regarding the average opening diameter, the number of openings per unit area, the opening ratio, and the surface roughness on the polishing surface of the polishing pad, the glass substrate polishing method of the present invention achieves the surface properties of the glass substrate after polishing is completed. As long as the polishing pad is within the range to be filled, even if a difference is made between the polishing pads attached to the upper and lower surface plates, the influence on the surface properties of the glass substrate at the end of polishing is negligible and can be ignored.

本発明のガラス基板研磨方法に使用する研磨パッドが満たすべき特性を以下に示す。   The characteristics to be satisfied by the polishing pad used in the glass substrate polishing method of the present invention are shown below.

ガラス基板の研磨に使用する研磨パッドの硬度が高すぎると、研磨スラリー粒子の押し込みにより、研磨されるガラス基板表面にキズが生じるおそれがある。このため、本発明のガラス基板研磨方法では、硬度(ショアA硬度)が70以下の研磨パッドを使用する。
研磨パッドの硬度(ショアA硬度)は、60以下が好ましく、50以下がより好ましい。
ガラス基板の研磨に使用する研磨パッドの硬度の下限は特に限定されないが、研磨パッドの硬度が低すぎると、研磨効率が低下し十分な研磨速度が得られなくなるおそれがある。また、研磨されるガラス基板の平坦度の制御性が悪化するおそれがある。
そのため、研磨パッドの硬度(ショアA硬度)は、5以上が好ましく、10以上がより好ましい。
When the hardness of the polishing pad used for polishing the glass substrate is too high, the surface of the glass substrate to be polished may be scratched due to the pressing of the polishing slurry particles. For this reason, in the glass substrate polishing method of the present invention, a polishing pad having a hardness (Shore A hardness) of 70 or less is used.
The hardness (Shore A hardness) of the polishing pad is preferably 60 or less, and more preferably 50 or less.
The lower limit of the hardness of the polishing pad used for polishing the glass substrate is not particularly limited. However, if the hardness of the polishing pad is too low, the polishing efficiency may decrease and a sufficient polishing rate may not be obtained. In addition, the controllability of the flatness of the glass substrate to be polished may be deteriorated.
Therefore, the hardness (Shore A hardness) of the polishing pad is preferably 5 or more, and more preferably 10 or more.

ガラス基板の研磨に使用する研磨パッドの表面粗さが大きすぎると、研磨荷重の分布や研磨スラリー粒子の偏りが生じるため、研磨されるガラス基板表面に凹欠点が生じるおそれがあり、また、均一な研磨が達成しにくくなる。このため、本発明のガラス基板研磨方法では、表面粗さ(Ra)が50μm以下の研磨パッドを使用する。
研磨パッドの表面粗さ(Ra)は、20μm以下が好ましく、15μm以下がより好ましく、10μm以下がさらに好ましい。
If the surface roughness of the polishing pad used for polishing the glass substrate is too large, there will be a distribution of polishing load and unevenness of the polishing slurry particles, which may cause concave defects on the surface of the glass substrate being polished. Polishing is difficult to achieve. For this reason, in the glass substrate polishing method of the present invention, a polishing pad having a surface roughness (Ra) of 50 μm or less is used.
The surface roughness (Ra) of the polishing pad is preferably 20 μm or less, more preferably 15 μm or less, and even more preferably 10 μm or less.

ここで、研磨パッドの研磨面の表面粗さ(Ra)と、ガラス基板の主表面との吸着力と、の関係をみた場合、研磨面の表面粗さが大きいほど吸着力が大きくなり、表面粗さが小さいほど吸着力が小さくなる。
本発明のガラス基板研磨方法において、上下定盤に取り付けられる研磨パッドの表面粗さ(Ra)に差を付けることで上記式(1)に示す関係を満たす場合は、上定盤に取り付けられる研磨パッドの研磨面における表面粗さ(Ra)に対する、下定盤に取り付けられる研磨パッドの研磨面における表面粗さ(Ra)の比が、0.95以下であることが好ましく、0.9以下であることがより好ましく、0.85以下であることがさらに好ましい。下限は特にないが、両者の比が0.01以上であることが好ましい。
Here, when the relationship between the surface roughness (Ra) of the polishing surface of the polishing pad and the adsorption force with the main surface of the glass substrate is considered, the adsorption force increases as the surface roughness of the polishing surface increases. The smaller the roughness, the smaller the adsorption force.
In the glass substrate polishing method of the present invention, when the relationship shown in the above formula (1) is satisfied by making a difference in the surface roughness (Ra) of the polishing pad attached to the upper and lower surface plates, the polishing attached to the upper surface plate The ratio of the surface roughness (Ra) on the polishing surface of the polishing pad attached to the lower surface plate to the surface roughness (Ra) on the polishing surface of the pad is preferably 0.95 or less, and is 0.9 or less. Is more preferable, and it is further more preferable that it is 0.85 or less. There is no particular lower limit, but the ratio between the two is preferably 0.01 or more.

ガラス基板の研磨に使用する研磨パッドの平均開口径が大きすぎると、研磨荷重の分布が生じ、所定の研磨品質を維持することが困難になるおそれがある。このため、本発明のガラス基板研磨方法では、平均開口径が100μm以下の研磨パッドを使用することが好ましい。研磨パッドの平均開口径は、40μm以下がより好ましく、30μm以下がさらに好ましく、25μm以下がさらに好ましい。
一方、ガラス基板の研磨に使用する研磨パッドの平均開口径が小さすぎると、研磨スラリーを保持してムラなく研磨することができなくなるおそれがある。このため、本発明のガラス基板研磨方法では、平均開口径が1μm以上の研磨パッドを使用することが好ましい。
なお、研磨面における平均開口径は、CCDカメラを用いて研磨面を観察することで求めることができる。
If the average opening diameter of the polishing pad used for polishing the glass substrate is too large, a distribution of polishing load is generated, and it may be difficult to maintain a predetermined polishing quality. For this reason, in the glass substrate grinding | polishing method of this invention, it is preferable to use the polishing pad whose average opening diameter is 100 micrometers or less. The average opening diameter of the polishing pad is more preferably 40 μm or less, further preferably 30 μm or less, and further preferably 25 μm or less.
On the other hand, if the average opening diameter of the polishing pad used for polishing the glass substrate is too small, there is a possibility that the polishing slurry cannot be held and polished without unevenness. For this reason, in the glass substrate grinding | polishing method of this invention, it is preferable to use the polishing pad whose average opening diameter is 1 micrometer or more.
The average opening diameter on the polished surface can be obtained by observing the polished surface using a CCD camera.

ここで、研磨パッドの研磨面における開口径と、ガラス基板の主表面との吸着力と、の関係をみた場合、開口径が小さいほど吸着力が大きくなり、開口径が大きいほど吸着力小さくなる。
本発明のガラス基板研磨方法において、上下定盤に取り付けられる研磨パッドの平均開口径に差を付けることで上記式(1)に示す関係を満たす場合は、上定盤に取り付けられる研磨パッドの研磨面における平均開口径に対する、下定盤に取り付けられる研磨パッドの研磨面における平均開口径の比が、0.95以下であることが好ましく、0.9以下であることがより好ましく、0.85以下であることがさらに好ましい。下限は特にないが、両者の比が0.01以上であることが好ましい。
Here, when the relationship between the opening diameter on the polishing surface of the polishing pad and the adsorption force with the main surface of the glass substrate is considered, the adsorption force increases as the opening diameter decreases, and the adsorption force decreases as the opening diameter increases. .
In the glass substrate polishing method of the present invention, when the relationship shown in the above formula (1) is satisfied by making a difference in the average opening diameter of the polishing pad attached to the upper and lower surface plates, the polishing of the polishing pad attached to the upper surface plate is performed. The ratio of the average opening diameter at the polishing surface of the polishing pad attached to the lower surface plate to the average opening diameter at the surface is preferably 0.95 or less, more preferably 0.9 or less, and 0.85 or less. More preferably. There is no particular lower limit, but the ratio between the two is preferably 0.01 or more.

ここで、研磨パッドの研磨面における単位面積当たりの開口数と、ガラス基板の主表面との吸着力と、の関係をみた場合、単位面積当たりの開口数が少ないほど吸着力が大きくなり、開口数が多いほど吸着力が小さくなる。
本発明のガラス基板研磨方法において、上下定盤に取り付けられる研磨パッドの単位面積当たりの開口数に差を付けることで上記式(1)に示す関係を満たす場合は、上定盤に取り付けられる研磨パッドの研磨面における単位面積当たりの開口数に対する、下定盤に取り付けられる研磨パッドの研磨面における単位面積当たりの開口数の比が、0.95以下であることが好ましく、0.9以下であることがより好ましく、0.85以下であることがさらに好ましい。下限は特にないが、両者の比が0.01以上であることが好ましい。
なお、研磨面における開口数は、CCDカメラを用いて研磨面を観察することで求めることができる。
Here, when looking at the relationship between the numerical aperture per unit area on the polishing surface of the polishing pad and the adsorption force with the main surface of the glass substrate, the smaller the numerical aperture per unit area, the greater the adsorption force. The larger the number, the smaller the adsorption power.
In the glass substrate polishing method of the present invention, when the relationship shown in the above formula (1) is satisfied by making a difference in the numerical aperture per unit area of the polishing pad attached to the upper and lower surface plates, the polishing attached to the upper surface plate The ratio of the numerical aperture per unit area on the polishing surface of the polishing pad attached to the lower surface plate to the numerical aperture per unit area on the polishing surface of the pad is preferably 0.95 or less, and preferably 0.9 or less. Is more preferable, and it is further more preferable that it is 0.85 or less. There is no particular lower limit, but the ratio between the two is preferably 0.01 or more.
The numerical aperture on the polished surface can be obtained by observing the polished surface using a CCD camera.

ここで、研磨パッドの研磨面における開口率と、ガラス基板の主表面との吸着力と、の関係をみた場合、開口率が低いほど吸着力が大きくなり、開口率が高いほど吸着力が小さくなる。
本発明のガラス基板研磨方法において、上下定盤に取り付けられる研磨パッドの開口率に差を付けることで上記式(1)に示す関係を満たす場合は、上定盤に取り付けられる研磨パッドの研磨面における開口率に対する、下定盤に取り付けられる研磨パッドの研磨面における開口率の比が、0.95以下であることが好ましく、0.9以下であることがより好ましく、0.85以下であることがさらに好ましい。下限は特にないが、両者の比が0.01以上であることが好ましい。
なお、研磨面における開口率とは、研磨面のある一定の単位面積に対する開口部の面積の比を指す。研磨面における開口率は、CCDカメラを用いて研磨面を観察することで求めることができる。
Here, when looking at the relationship between the aperture ratio on the polishing surface of the polishing pad and the adsorption force with the main surface of the glass substrate, the lower the aperture ratio, the greater the adsorption force, and the higher the aperture ratio, the smaller the adsorption force. Become.
In the glass substrate polishing method of the present invention, when the relationship expressed by the above formula (1) is satisfied by making a difference in the aperture ratio of the polishing pad attached to the upper and lower surface plates, the polishing surface of the polishing pad attached to the upper surface plate The ratio of the aperture ratio at the polishing surface of the polishing pad attached to the lower surface plate to the aperture ratio at is preferably 0.95 or less, more preferably 0.9 or less, and 0.85 or less. Is more preferable. There is no particular lower limit, but the ratio between the two is preferably 0.01 or more.
Note that the aperture ratio in the polished surface refers to the ratio of the area of the opening to a certain unit area of the polished surface. The aperture ratio on the polished surface can be obtained by observing the polished surface using a CCD camera.

本発明のガラス基板研磨方法では、上下定盤に取り付けられる研磨パッドとして、平均開口径、単位面積当たりの開口数、開口率、および、表面粗さ(Ra)のうち、少なくとも1つが互いに異なる研磨パッドを用いる。
平均開口径が互いに異なる研磨パッドを作製するのに好適な研磨パッドの構成例を以下に示す。
図4は、平均開口径が互いに異なる研磨パッドを作製するのに好適な研磨パッドの構成例を示した模式図である。但し、図4の研磨パッド1は、研磨面Pを含む表面層2の部分のみを示している。図4に示す研磨パッド1は、研磨面Pを含む表面層2に微多孔4が形成されている。研磨パッド1の使用時には、表面層2の研磨面P側を研削することにより、図5に示すように、微多孔4を開口5させる。
微多孔4の断面形状が丸みを帯びた略三角形状であるため、その径が表面層2の厚さ方向において変化している。そのため、表面層2の研削量を変えることで、研磨パッド1の開口径を変えることができ、平均開口径が互いに異なる研磨パッドを作製できる。
In the glass substrate polishing method of the present invention, as a polishing pad attached to the upper and lower surface plates, at least one of the average opening diameter, the numerical aperture per unit area, the opening ratio, and the surface roughness (Ra) is different from each other. Use a pad.
A configuration example of a polishing pad suitable for producing polishing pads having different average opening diameters is shown below.
FIG. 4 is a schematic view showing a configuration example of a polishing pad suitable for producing polishing pads having different average opening diameters. However, the polishing pad 1 in FIG. 4 shows only the portion of the surface layer 2 including the polishing surface P. In the polishing pad 1 shown in FIG. 4, micropores 4 are formed in the surface layer 2 including the polishing surface P. When the polishing pad 1 is used, the microporous 4 is opened 5 as shown in FIG. 5 by grinding the polishing surface P side of the surface layer 2.
Since the cross-sectional shape of the microporous 4 is a rounded substantially triangular shape, the diameter thereof changes in the thickness direction of the surface layer 2. Therefore, by changing the grinding amount of the surface layer 2, the opening diameter of the polishing pad 1 can be changed, and polishing pads having different average opening diameters can be produced.

本発明のガラス基板研磨方法に使用する研磨パッドは、硬度(ショアA硬度)が70以下であることが求められること、および、図4に示す研磨パッド1のように、表面層2に微多孔4が形成されていることが好ましいことから、少なくとも表面層2の構成材料が、ポリウレタン樹脂であることが好ましい。   The polishing pad used in the glass substrate polishing method of the present invention is required to have a hardness (Shore A hardness) of 70 or less, and the surface layer 2 is microporous as in the polishing pad 1 shown in FIG. 4 is preferably formed, at least the constituent material of the surface layer 2 is preferably a polyurethane resin.

本発明のガラス基板研磨方法における好ましい態様を以下に示す。   The preferable aspect in the glass substrate grinding | polishing method of this invention is shown below.

[ガラス基板]
本発明のガラス基板研磨方法を用いて研磨するガラス基板は、研磨後のガラス基板表面における100μm〜100mmの波長域におけるPV値が30nm以下となることが求められる用途のガラス基板である。このような用途の代表例としては、EUVL光学基材用ガラス基板が挙げられる。
EUVL光学基材用ガラス基板を構成するガラスは、熱膨張係数が小さくかつそのばらつきの小さいガラスであることが好ましい。具体的には20℃における熱膨張係数が0±30ppb/℃の低膨張ガラスが好ましく、20℃における熱膨張係数が0±10ppb/℃の超低膨張ガラスがより好ましく、20℃における熱膨張係数が0±5ppb/℃の超低膨張ガラスがさらに好ましい。
上記低膨張ガラスおよび超低膨張ガラスとしては、SiO2を主成分とするガラス、典型的には石英ガラスが使用できる。具体的には例えばSiO2を主成分とし1〜12質量%のTiO2を含有する合成石英ガラス、ULE(登録商標:コーニングコード7972)を挙げることができる。ガラス基板は通常四角形状の板状体で研磨されるが、形状はこれに限定されない。
[Glass substrate]
The glass substrate polished using the glass substrate polishing method of the present invention is a glass substrate for applications in which a PV value in a wavelength range of 100 μm to 100 mm on the polished glass substrate surface is required to be 30 nm or less. A typical example of such a use is a glass substrate for EUVL optical base material.
The glass constituting the glass substrate for an EUVL optical substrate is preferably a glass having a small coefficient of thermal expansion and small variations. Specifically, a low expansion glass having a thermal expansion coefficient at 20 ° C. of 0 ± 30 ppb / ° C. is preferable, an ultra low expansion glass having a thermal expansion coefficient at 20 ° C. of 0 ± 10 ppb / ° C. is more preferable, and a thermal expansion coefficient at 20 ° C. Is more preferably an ultra low expansion glass having a 0 ± 5 ppb / ° C.
As the low expansion glass and ultra low expansion glass, glass mainly composed of SiO 2 , typically quartz glass can be used. Synthetic quartz glass in particular containing 1 to 12 wt% of TiO 2 as a main component, for example, SiO 2, ULE (registered trademark Corning Code 7972) can be mentioned. The glass substrate is usually polished with a rectangular plate-like body, but the shape is not limited thereto.

なお、本発明のガラス基板の研磨方法は、KrFエキシマレーザ(波長248nm)、ArFエキシマレーザ(波長193nm)、F2エキシマレーザ(波長157nm)を光源として用いる透過型マスクの基材と使用されるガラス基板の研磨にも使用できる。 The glass substrate polishing method of the present invention is used as a base material for a transmission mask using a KrF excimer laser (wavelength 248 nm), an ArF excimer laser (wavelength 193 nm), or an F 2 excimer laser (wavelength 157 nm) as a light source. It can also be used for polishing glass substrates.

[研磨スラリー]
上述したように、本発明における研磨スラリーとは、研磨粒子を含む流体である。
研磨粒子としては、コロイダルシリカ又は酸化セリウムなどが好ましい。コロイダルシリカを使用した場合には、より精密にガラス基板を研磨することが可能になり、その結果、より良好な精度で、凹状の欠陥が低減された又は除去されたガラス基板を得ることができるので、特に好ましい。
[Polishing slurry]
As described above, the polishing slurry in the present invention is a fluid containing abrasive particles.
As the abrasive particles, colloidal silica or cerium oxide is preferable. When colloidal silica is used, it becomes possible to polish a glass substrate more precisely, and as a result, a glass substrate in which concave defects are reduced or removed can be obtained with better accuracy. Therefore, it is particularly preferable.

コロイダルシリカを用いる場合、平均一次粒子径は、好ましくは、1nm以上100nm以下である。より好ましくは10nm以上50nm以下である。ここで、コロイダルシリカの平均一次粒子径が、1nm以上である場合には、ガラス基板の研磨効率を向上させることが可能になる。一方、コロイダルシリカの平均一次粒子径が、100nm以下である場合には、研磨スラリーを用いて研磨された基板の表面粗さを低減することが可能になる。
一方、酸化セリウムを用いる場合、平均一次粒子径は、10〜5000nmであることが好ましく、100〜3000nmがより好ましく、500〜2000nmがさらに好ましい。
When using colloidal silica, the average primary particle size is preferably 1 nm or more and 100 nm or less. More preferably, it is 10 nm or more and 50 nm or less. Here, when the average primary particle diameter of colloidal silica is 1 nm or more, it becomes possible to improve the polishing efficiency of a glass substrate. On the other hand, when the average primary particle diameter of colloidal silica is 100 nm or less, it becomes possible to reduce the surface roughness of the substrate polished with the polishing slurry.
On the other hand, when cerium oxide is used, the average primary particle size is preferably 10 to 5000 nm, more preferably 100 to 3000 nm, and even more preferably 500 to 2000 nm.

研磨スラリーにおけるコロイダルシリカの含有率は、好ましくは、1質量%以上40質量%以下である。より好ましくは、10質量%以上30質量%以下である。研磨スラリーにおけるコロイダルシリカの含有率が、1質量%以上である場合には、ガラス基板の研磨効率を向上させることが可能になる。一方、研磨スラリーにおけるコロイダルシリカの含有率が、40質量%以下である場合には、研磨されたガラス基板の洗浄の効率を向上させることが可能になる。
一方、研磨スラリーにおける酸化セリウムの含有率は、1〜50質量%が好ましく、5〜40質量%がより好ましく、10〜30質量%がさらに好ましい。
The content of colloidal silica in the polishing slurry is preferably 1% by mass or more and 40% by mass or less. More preferably, it is 10 mass% or more and 30 mass% or less. When the content of colloidal silica in the polishing slurry is 1% by mass or more, the polishing efficiency of the glass substrate can be improved. On the other hand, when the content of the colloidal silica in the polishing slurry is 40% by mass or less, it is possible to improve the cleaning efficiency of the polished glass substrate.
On the other hand, the content of cerium oxide in the polishing slurry is preferably 1 to 50% by mass, more preferably 5 to 40% by mass, and still more preferably 10 to 30% by mass.

研磨スラリーにおける流体とは、研磨粒子の分散媒体である。分散媒としては、水、有機溶剤が挙げられる。   The fluid in the polishing slurry is a dispersion medium of abrasive particles. Examples of the dispersion medium include water and organic solvents.

[研磨荷重]
本発明のガラス基板研磨方法を実施する際、上下両定盤の研磨面による研磨荷重を0.1〜12kPaとすることが、ガラス基板を凹状欠点が少なく表面平滑性の優れる表面に研磨できることから好ましい。研磨荷重が0.1kPa未満では、研磨パッドの荷重制御が困難になるとともに、研磨効果が実質的に得られなくなるおそれがある。また、12kPaより大きい研磨荷重では、凹状欠点の発生を抑え表面粗さの改善を図ることが困難になる。
また、本発明のガラス基板研磨方法の実施時における研磨荷重は一定であってもよく、徐々にまたは段階的に変化させてもよい。例えば、研磨開始時は大きい荷重とし、徐々にまたは段階的に研磨荷重を下げ、研磨終了時は小さい荷重としてもよい。逆に、研磨開始時は小さい荷重とし、徐々にまたは段階的に研磨荷重を上げ、研磨終了時は大きい荷重としてもよい。
例えば、研磨荷重5〜12kPaで、好ましくは、5〜10kPaで研磨を開始し、徐々にまたは段階的に研磨荷重を下げ、研磨終了時の荷重を0.5〜5kPaで、より好ましくは、0.5〜2kPaとすることができる。また、逆に、研磨開始時は荷重を0.5〜5kPa、より好ましくは、0.5〜2kPaとして、徐々にまたは段階的に研磨荷重を上げ、荷重5〜12kPaで、好ましくは、5〜10kPaで研磨を終了してもよい。
また、例えば、5〜12kPa、好ましくは、5〜10kPaの一定荷重で研磨することもできる。
[Polishing load]
When carrying out the glass substrate polishing method of the present invention, the polishing load by the polishing surfaces of the upper and lower surface plates is set to 0.1 to 12 kPa because the glass substrate can be polished to a surface with few concave defects and excellent surface smoothness. preferable. When the polishing load is less than 0.1 kPa, it is difficult to control the load of the polishing pad and the polishing effect may not be substantially obtained. Further, when the polishing load is larger than 12 kPa, it becomes difficult to suppress the generation of concave defects and improve the surface roughness.
Further, the polishing load at the time of carrying out the glass substrate polishing method of the present invention may be constant or may be changed gradually or stepwise. For example, the load may be a large load at the start of polishing, the polishing load may be reduced gradually or stepwise, and the load may be reduced at the end of polishing. Conversely, the load may be small at the start of polishing, the polishing load may be increased gradually or stepwise, and the load may be increased at the end of polishing.
For example, polishing is started at a polishing load of 5 to 12 kPa, preferably 5 to 10 kPa, the polishing load is lowered gradually or stepwise, and the load at the end of polishing is 0.5 to 5 kPa, more preferably 0. .5 to 2 kPa. Conversely, at the start of polishing, the load is 0.5 to 5 kPa, more preferably 0.5 to 2 kPa, and the polishing load is increased gradually or stepwise, and the load is 5 to 12 kPa, preferably 5 to 5 kPa. Polishing may be terminated at 10 kPa.
Further, for example, polishing can be performed with a constant load of 5 to 12 kPa, preferably 5 to 10 kPa.

本発明のガラス基板研磨方法によれば、ガラス基板の主表面をきわめて平滑に研磨することができる。具体的には、研磨後のガラス基板表面における100μm〜100mmの波長域におけるPV値が30nm以下となる。なお、本明細書において、100μm〜100mmの波長域におけるPV値といった場合、100μm〜100mmの全波長域におけるPV値に加えて、100μm〜100mmの波長域のうち、一部の波長域におけるPV値を包含する。たとえば、後述する実施例では、5mm〜20mmの波長域におけるPV値を評価した。   According to the glass substrate polishing method of the present invention, the main surface of the glass substrate can be polished extremely smoothly. Specifically, the PV value in the wavelength region of 100 μm to 100 mm on the polished glass substrate surface is 30 nm or less. In addition, in this specification, in the case of the PV value in the wavelength range of 100 μm to 100 mm, in addition to the PV value in the entire wavelength range of 100 μm to 100 mm, the PV value in a part of the wavelength range of 100 μm to 100 mm Is included. For example, in Examples described later, PV values in a wavelength range of 5 mm to 20 mm were evaluated.

本発明のガラス基板研磨方法は、たとえば、ガラス基板を研磨度の異なる複数の研磨工程で研磨するときの最後に行う仕上げ研磨やそのひとつ前の研磨として特に適している。研磨工程の初期段階であれば、ガラス基板の研磨パッドへの吸着を防ぐために、たとえば研磨面に溝を設けた研磨パッドを使用して、その結果、ガラス基板の被研磨面にうねりが生じても、その後の研磨工程で修正が可能である。   The glass substrate polishing method of the present invention is particularly suitable, for example, as final polishing performed at the end when a glass substrate is polished in a plurality of polishing steps having different degrees of polishing, and polishing immediately before that. In the initial stage of the polishing process, in order to prevent the glass substrate from adsorbing to the polishing pad, for example, a polishing pad provided with a groove on the polishing surface is used. As a result, the surface to be polished of the glass substrate is wavy. However, it can be corrected in the subsequent polishing step.

たとえば、ガラス基板の研磨工程では、複数回、予備研磨を行い、ついで仕上げ研磨を行う。この予備研磨において、ガラス基板を所定の厚さに粗研磨し、端面研磨と面取り加工を行い、更にその両主表面を表面粗さ、および、平坦度が一定以下になるように予備研磨しておく。この予備研磨は、複数回、たとえば2〜3回に工程がわたってもよい。予備研磨方法は限定されないで公知の方法によってできる。例えば、複数の両面ラップ研磨装置を連続して設置し、研磨材や研磨条件を変えながら該研磨装置で順次研磨することにより、ガラス基板の両主表面を所定の表面粗さおよび平坦度に予備研磨できる。   For example, in the glass substrate polishing step, preliminary polishing is performed a plurality of times, and then final polishing is performed. In this preliminary polishing, the glass substrate is roughly polished to a predetermined thickness, end face polishing and chamfering are performed, and both the main surfaces are preliminary polished so that the surface roughness and flatness are not more than a certain level. deep. This preliminary polishing may be performed a plurality of times, for example, two to three times. The preliminary polishing method is not limited and can be performed by a known method. For example, a plurality of double-sided lapping machines are installed in succession, and the two main surfaces of the glass substrate are preliminarily maintained at a predetermined surface roughness and flatness by sequentially polishing with the polishing machine while changing the polishing material and polishing conditions. Can be polished.

仕上げ研磨として、本発明のガラス基板研磨方法を使用する場合、予備研磨後の表面粗さ(Rms)としては、1nm以下が好ましく、0.5nm以下がより好ましい。   When the glass substrate polishing method of the present invention is used as final polishing, the surface roughness (Rms) after preliminary polishing is preferably 1 nm or less, and more preferably 0.5 nm or less.

以下に、実施例を用いて本発明を詳細に説明する。ただし、本発明はこれに限定されるものではない。
(実施例1)
表面層が図4に示す構造の研磨パッド1を準備した。研磨パッド1としては、市販の発泡ポリウレタン製の研磨パッド(カネボウ社製K7512、ショアA硬度30)を使用した。
研磨パッド1の表面層2には、断面形状が丸みを帯びた略三角形状の微多孔4が形成されている。研磨パッド1の表面層2をサンドペーパーで研削(バフがけ)して、図5に示すように、微多孔4を開口5させた。
両面研磨装置の上定盤に取り付けられる研磨パッドAは、#320のサンドペーパーを用いて200μmバフがけした。両面研磨装置の下定盤に取り付けられる研磨パッドBは#320のサンドペーパーを用いて50μmバフがけした。
CCDカメラを用いて研磨パッドA,Bの研磨面を観察して、研磨面における平均開口径、単位面積当たりの開口数、および、開口率を求めた。結果は以下の通り。
研磨パッドA
平均開口径:46μm
単位面積当たり(1.2mm2当たり)の開口数:175
開口率:27%
研磨パッドB
平均開口径:23μm
単位面積当たり(1.2mm2当たり)の開口数:390
開口率:15%
なお、研磨パッドA,Bの表面粗さRaはいずれも4.6μmであった。
研磨パッドA,Bについて、研磨パッドの研磨面とガラス基板の主表面との吸着力を下記手順で求めた。
研磨面に研磨スラリーを散布した研磨パッド上にガラス基板を載置した。ガラス基板の上面に吸盤を貼付し、ばねばかりを介してガラス基板を上方に引き上げた。ガラス基板が研磨パッドから引き剥がされた際のばねばかりの読みから基板の自重を差し引くことで、研磨パッドの研磨面とガラス基板の主表面との吸着力を求めた。なお、研磨スラリーとガラス基板は、後述するものを用いた。
研磨パッドAの吸着力は67Nであり、研磨パッドBの吸着力は91Nであった。
Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to this.
Example 1
A polishing pad 1 having a surface layer structure shown in FIG. 4 was prepared. As the polishing pad 1, a commercially available polishing pad made of polyurethane foam (K7512 manufactured by Kanebo, Shore A hardness 30) was used.
The surface layer 2 of the polishing pad 1 is formed with a substantially triangular microporous 4 having a rounded cross-sectional shape. The surface layer 2 of the polishing pad 1 was ground (buffed) with sandpaper to open the micropores 4 as shown in FIG.
The polishing pad A attached to the upper surface plate of the double-side polishing apparatus was buffed by 200 μm using # 320 sandpaper. The polishing pad B attached to the lower surface plate of the double-side polishing apparatus was buffed by 50 μm using # 320 sandpaper.
The polishing surfaces of the polishing pads A and B were observed using a CCD camera, and the average aperture diameter, the numerical aperture per unit area, and the aperture ratio on the polishing surface were determined. The results are as follows.
Polishing pad A
Average opening diameter: 46 μm
Numerical aperture per unit area (per 1.2 mm 2 ): 175
Opening ratio: 27%
Polishing pad B
Average opening diameter: 23 μm
Numerical aperture per unit area (per 1.2 mm 2 ): 390
Opening ratio: 15%
The surface roughness Ra of each of the polishing pads A and B was 4.6 μm.
For the polishing pads A and B, the adsorption force between the polishing surface of the polishing pad and the main surface of the glass substrate was determined by the following procedure.
A glass substrate was placed on a polishing pad in which polishing slurry was dispersed on the polishing surface. A suction cup was affixed to the upper surface of the glass substrate, and the glass substrate was pulled upward through only the spring. The adsorption force between the polishing surface of the polishing pad and the main surface of the glass substrate was determined by subtracting the weight of the substrate from the reading of only the spring when the glass substrate was peeled off from the polishing pad. In addition, what was mentioned later was used for the polishing slurry and the glass substrate.
The suction force of the polishing pad A was 67N, and the suction force of the polishing pad B was 91N.

次に、10枚のガラス基板(合成石英ガラス製(TiO27質量%含有)、152mm角(厚さ6.35mm)を準備し、両面研磨装置のキャリアに該ガラス基板を設置し、下記条件でガラス基板の両主表面の研磨を実施した。
研磨条件
上下定盤の回転数:35rpm
研磨時間:60分
研磨荷重:4.9kPa
研磨スラリー:平均一次粒子径50nm未満のコロイダルシリカを純水(0.1μm以上異物濾過)に20質量%含有させたものを使用。
スラリー流量:10リットル/min
上記の手順を10回実施し、合計100枚のガラス基板を研磨した。研磨終了後、上定盤に取り付けられた研磨パッドAに吸着したガラス基板の割合が1%であった(100枚のガラス基板のうち、1枚のみが研磨パッドAに吸着した。)
また、両面研磨装置のキャリアから取り出したガラス基板を洗浄した後、ガラス基板の両主表面にはうねりが存在しなかった。該両主表面について、5mm〜20mmの波長域におけるPV値を、フィゾー型レーザ干渉式平坦度測定機を用いて測定したところ、PV値は10nmであった。
Next, ten glass substrates (made of synthetic quartz glass (containing 7% by mass of TiO 2 ), 152 mm square (thickness 6.35 mm)) were prepared, and the glass substrate was set on a carrier of a double-side polishing apparatus. Then, both main surfaces of the glass substrate were polished.
Polishing conditions <br/> Number of rotations of upper and lower surface plates: 35 rpm
Polishing time: 60 minutes Polishing load: 4.9 kPa
Polishing slurry: Use of colloidal silica having an average primary particle diameter of less than 50 nm contained in 20% by mass of pure water (0.1 μm or more foreign matter filtration).
Slurry flow rate: 10 liters / min
The above procedure was performed 10 times, and a total of 100 glass substrates were polished. After polishing, the ratio of the glass substrate adsorbed to the polishing pad A attached to the upper surface plate was 1% (only one of the 100 glass substrates adsorbed to the polishing pad A).
Moreover, after washing | cleaning the glass substrate taken out from the carrier of a double-side polish apparatus, the wave | undulation did not exist in both main surfaces of a glass substrate. When the PV value in the wavelength range of 5 mm to 20 mm was measured using a Fizeau laser interference flatness measuring machine, the PV value was 10 nm.

(実施例2)
本実施例では、両面研磨装置の上定盤に取り付けられる研磨パッドCは、#100のサンドペーパーを用いて200μmバフがけし、下定盤に取り付けられる研磨パッドDは#320のサンドペーパーを用いて200μmバフがけした。
研磨パッドC,Dの研磨面の表面粗さRaを触針式表面粗さ計を用いて測定したところ、研磨パッドCの表面粗さRaは5.2μmであり、研磨パッドDの表面粗さRaは4.6μmであった。
CCDカメラを用いて研磨パッドC,Dの研磨面を観察して、研磨面における平均開口径、単位面積当たりの開口数、および、開口率を求めたところ、いずれも、平均開口径が46μm、単位面積当たり(1.2mm2当たり)の開口数が175、開口率が27%であった。
実施例1と同様の手順で、研磨パッドの研磨面とガラス基板の主表面との吸着力を求めたところ、研磨パッドCの吸着力は59Nであり、研磨パッドDの吸着力は67Nであった。
実施例1と同様の手順で、両面研磨装置を用いてガラス基板の両主表面を研磨した。
研磨終了後、上定盤に取り付けられた研磨パッドCに吸着したガラス基板の割合が3%であった(100枚のガラス基板のうち、3枚が研磨パッドCに吸着した。)
また、両面研磨装置のキャリアから取り出したガラス基板を洗浄した後、ガラス基板の両主表面にはうねりが存在しなかった。該両主表面について、5mm〜20mmの波長域におけるPV値を、フィゾー型レーザ干渉式平坦度測定機を用いて測定したところ、PV値は10nmであった。
(Example 2)
In this embodiment, the polishing pad C attached to the upper surface plate of the double-side polishing apparatus is buffed with 200 μm using # 100 sandpaper, and the polishing pad D attached to the lower surface plate is used with # 320 sandpaper. 200 μm buffed.
When the surface roughness Ra of the polishing surfaces of the polishing pads C and D was measured using a stylus type surface roughness meter, the surface roughness Ra of the polishing pad C was 5.2 μm, and the surface roughness of the polishing pad D was Ra was 4.6 μm.
When the polishing surfaces of the polishing pads C and D were observed using a CCD camera and the average opening diameter, the numerical aperture per unit area, and the opening ratio were determined, the average opening diameter was 46 μm. The numerical aperture per unit area (per 1.2 mm 2 ) was 175, and the aperture ratio was 27%.
When the adsorption force between the polishing surface of the polishing pad and the main surface of the glass substrate was determined in the same procedure as in Example 1, the adsorption force of the polishing pad C was 59 N, and the adsorption force of the polishing pad D was 67 N. It was.
In the same procedure as in Example 1, both main surfaces of the glass substrate were polished using a double-side polishing apparatus.
After the polishing, the ratio of the glass substrate adsorbed to the polishing pad C attached to the upper surface plate was 3% (3 out of 100 glass substrates adsorbed to the polishing pad C).
Moreover, after washing | cleaning the glass substrate taken out from the carrier of a double-side polish apparatus, the wave | undulation did not exist in both main surfaces of a glass substrate. When the PV value in the wavelength range of 5 mm to 20 mm was measured using a Fizeau laser interference flatness measuring machine, the PV value was 10 nm.

(比較例1)
比較例1では、上下定盤に取り付けられる研磨パッドE,Fのいずれも、#320のサンドペーパーを用いて200μmバフがけした。但し、上定盤に取り付けられる研磨パッドEの研磨面には、30mmピッチで幅5mmの格子状の溝が形成されている。
CCDカメラを用いて研磨パッドE,Fの研磨面を観察して、研磨面における平均開口径、単位面積当たりの開口数、および、開口率を求めたところ、いずれも、平均開口径が46μm、単位面積当たり(1.2mm2当たり)の開口数が175、開口率が27%であった。
研磨パッドE,Fの研磨面の表面粗さRaを触針式表面粗さ計を用いて測定したところ、研磨パッドEの表面粗さRaは4.6μmであり、研磨パッドFの表面粗さRaは4.6μmであった。
実施例1と同様の手順で、研磨パッドの研磨面とガラス基板の主表面との吸着力を求めたところ、研磨パッドEの吸着力は50Nであり、研磨パッドFの吸着力は67Nであった。
実施例1と同様の手順で、両面研磨装置を用いてガラス基板の両主表面を研磨した。
研磨終了後、上定盤に取り付けられた研磨パッドEに吸着したガラス基板の割合が2%であった(100枚のガラス基板のうち、2枚が研磨パッドEに吸着した。)
また、両面研磨装置のキャリアから取り出したガラス基板を洗浄した後、ガラス基板の両主表面を観察したところ、研磨パッドEで研磨されたガラス基板表面に30mm周期のうねりが存在していた。該両主表面について、5mm〜20mmの波長域におけるPV値を、フィゾー型レーザ干渉式平坦度測定機を用いて測定したところ、研磨パッドEで研磨されたガラス基板表面のPV値は35nmであり、研磨パッドFで研磨されたガラス基板表面のPV値は10nmであった。
(Comparative Example 1)
In Comparative Example 1, both polishing pads E and F attached to the upper and lower surface plates were buffed by 200 μm using # 320 sandpaper. However, lattice-like grooves having a width of 30 mm and a width of 5 mm are formed on the polishing surface of the polishing pad E attached to the upper surface plate.
When the polishing surfaces of the polishing pads E and F were observed using a CCD camera and the average opening diameter, the numerical aperture per unit area, and the opening ratio were obtained, the average opening diameter was 46 μm. The numerical aperture per unit area (per 1.2 mm 2 ) was 175, and the aperture ratio was 27%.
When the surface roughness Ra of the polishing surfaces of the polishing pads E and F was measured using a stylus type surface roughness meter, the surface roughness Ra of the polishing pad E was 4.6 μm, and the surface roughness of the polishing pad F was Ra was 4.6 μm.
When the adsorption force between the polishing surface of the polishing pad and the main surface of the glass substrate was determined in the same procedure as in Example 1, the adsorption force of the polishing pad E was 50 N, and the adsorption force of the polishing pad F was 67 N. It was.
In the same procedure as in Example 1, both main surfaces of the glass substrate were polished using a double-side polishing apparatus.
After polishing, the ratio of the glass substrate adsorbed on the polishing pad E attached to the upper surface plate was 2% (2 out of 100 glass substrates adsorbed on the polishing pad E).
Further, when the glass substrate taken out from the carrier of the double-side polishing apparatus was washed and both main surfaces of the glass substrate were observed, undulations with a period of 30 mm were present on the surface of the glass substrate polished with the polishing pad E. When the PV value in the wavelength range of 5 mm to 20 mm was measured for both the main surfaces using a Fizeau laser interference flatness measuring machine, the PV value of the glass substrate surface polished with the polishing pad E was 35 nm. The PV value of the glass substrate surface polished with the polishing pad F was 10 nm.

(比較例2)
比較例2では、両面研磨装置の上定盤に取り付けられる研磨パッドGは、#320のサンドペーパーを用いて50μmバフがけし、下定盤に取り付けられる研磨パッドHは#320のサンドペーパーを用いて200μmバフがけした。
CCDカメラを用いて研磨パッドG,Hの研磨面を観察して、研磨面における平均開口径、単位面積当たりの開口数、および、開口率を求めた。結果は以下の通り。
研磨パッドG
平均開口径:23μm
単位面積当たり(1.2mm2当たり)の開口数:390
開口率:15%
研磨パッドH
平均開口径:46μm
単位面積当たり(1.2mm2当たり)の開口数:175
開口率:27%
なお、研磨パッドG,Hの表面粗さRaはいずれも4.6μmであった。
実施例1と同様の手順で、研磨パッドの研磨面とガラス基板の主表面との吸着力を求めたところ、研磨パッドGの吸着力は91Nであり、研磨パッドHの吸着力は67Nであった。
実施例1と同様の手順で、両面研磨装置を用いてガラス基板の両主表面を研磨した。
研磨終了後、上定盤に取り付けられた研磨パッドGに吸着したガラス基板の割合が66%であった(100枚のガラス基板のうち、66枚が研磨パッドGに吸着した。)
また、両面研磨装置のキャリアから取り出したガラス基板を洗浄した後、ガラス基板の両主表面にはうねりが存在しなかった。該両主表面について、5mm〜20mmの波長域におけるPV値を、フィゾー型レーザ干渉式平坦度測定機を用いて測定したところ、PV値は10nmであった。
(Comparative Example 2)
In Comparative Example 2, the polishing pad G attached to the upper surface plate of the double-sided polishing apparatus is buffed by 50 μm using # 320 sandpaper, and the polishing pad H attached to the lower surface plate is # 320 sandpaper. 200 μm buffed.
The polishing surfaces of the polishing pads G and H were observed using a CCD camera, and the average aperture diameter, the numerical aperture per unit area, and the aperture ratio on the polishing surface were determined. The results are as follows.
Polishing pad G
Average opening diameter: 23 μm
Numerical aperture per unit area (per 1.2 mm 2 ): 390
Opening ratio: 15%
Polishing pad H
Average opening diameter: 46 μm
Numerical aperture per unit area (per 1.2 mm 2 ): 175
Opening ratio: 27%
The surface roughness Ra of each of the polishing pads G and H was 4.6 μm.
When the adsorption force between the polishing surface of the polishing pad and the main surface of the glass substrate was determined in the same procedure as in Example 1, the adsorption force of the polishing pad G was 91 N, and the adsorption force of the polishing pad H was 67 N. It was.
In the same procedure as in Example 1, both main surfaces of the glass substrate were polished using a double-side polishing apparatus.
After polishing, the ratio of the glass substrate adsorbed to the polishing pad G attached to the upper surface plate was 66% (out of 100 glass substrates, 66 adsorbed to the polishing pad G).
Moreover, after washing | cleaning the glass substrate taken out from the carrier of a double-side polish apparatus, the wave | undulation did not exist in both main surfaces of a glass substrate. When the PV value in the wavelength range of 5 mm to 20 mm was measured using a Fizeau laser interference flatness measuring machine, the PV value was 10 nm.

(比較例3)
比較例3では、上下定盤に取り付けられる研磨パッドI,Jのいずれも、#320のサンドペーパーを用いて50μmバフがけした。
CCDカメラを用いて研磨パッドI,Jの研磨面を観察して、研磨面における平均開口径、単位面積当たりの開口数、および、開口率を求めたところ、いずれも、平均開口径が23μm、単位面積当たり(1.2mm2当たり)の開口数が390、開口率が15%であった。なお、研磨パッドI,Jの表面粗さRaはいずれも4.6μmであった。
実施例1と同様の手順で、研磨パッドの研磨面とガラス基板の主表面との吸着力を求めたところ、研磨パッドIの吸着力は91Nであり、研磨パッドJの吸着力は91Nであった。
実施例1と同様の手順で、両面研磨装置を用いてガラス基板の両主表面を研磨した。
研磨終了後、上定盤に取り付けられた研磨パッドIに吸着したガラス基板の割合が38%であった(100枚のガラス基板のうち、38枚が研磨パッドIに吸着した。)
また、両面研磨装置のキャリアから取り出したガラス基板を洗浄した後、ガラス基板の両主表面にはうねりが存在しなかった。該両主表面について、5mm〜20mmの波長域におけるPV値を、フィゾー型レーザ干渉式平坦度測定機を用いて測定したところ、PV値は10nmであった。
(Comparative Example 3)
In Comparative Example 3, the polishing pads I and J attached to the upper and lower surface plates were buffed by 50 μm using # 320 sandpaper.
When the polishing surfaces of the polishing pads I and J were observed using a CCD camera and the average opening diameter, the numerical aperture per unit area, and the opening ratio were determined, the average opening diameter was 23 μm. The numerical aperture per unit area (per 1.2 mm 2 ) was 390, and the aperture ratio was 15%. The surface roughness Ra of each of the polishing pads I and J was 4.6 μm.
When the adsorption force between the polishing surface of the polishing pad and the main surface of the glass substrate was determined in the same procedure as in Example 1, the adsorption force of the polishing pad I was 91 N, and the adsorption force of the polishing pad J was 91 N. It was.
In the same procedure as in Example 1, both main surfaces of the glass substrate were polished using a double-side polishing apparatus.
After polishing, the ratio of the glass substrate adsorbed on the polishing pad I attached to the upper surface plate was 38% (38 out of 100 glass substrates adsorbed on the polishing pad I).
Moreover, after washing | cleaning the glass substrate taken out from the carrier of a double-side polish apparatus, the wave | undulation did not exist in both main surfaces of a glass substrate. When the PV value in the wavelength range of 5 mm to 20 mm was measured using a Fizeau laser interference flatness measuring machine, the PV value was 10 nm.

1:研磨パッド
2:表面層
4:微多孔
5:開孔
10:両面研磨装置
12:上定盤
12a:空洞
14:下定盤
14a:空洞
16:太陽歯車
18:内歯歯車
20:キャリア
22:ガラス基板
24:研磨パッド
30:研磨スラリー供給孔
102:定盤中心軸
104:キャリアの回転軸
1: Polishing pad 2: Surface layer 4: Microporous 5: Opening 10: Double-side polishing apparatus 12: Upper surface plate 12a: Cavity 14: Lower surface plate 14a: Cavity 16: Sun gear 18: Internal gear 20: Carrier 22: Glass substrate 24: Polishing pad 30: Polishing slurry supply hole 102: Surface plate central axis 104: Carrier rotation axis

Claims (8)

両面研磨装置の上下定盤に取り付けられた研磨パッドの研磨面で、キャリアに保持されたガラス基板を挟持し、上下両定盤の両研磨面の少なくとも一方に設けられている1つ、または、複数の供給孔から研磨粒子を含む流体を供給しつつ、前記上下定盤と、前記キャリアに保持された前記ガラス基板と、を相対的に移動させて前記ガラス基板の両主表面を研磨するガラス基板の研磨方法であって、
前記上下定盤に取り付けられる研磨パッドが、硬度(ショアA硬度)が70以下であり、表面粗さ(Ra)が50μm以下であり、
下定盤に取り付けられる研磨パッド(a)の研磨面と前記ガラス基板の主表面との吸着力F1(N)、および、上定盤に取り付けられる研磨パッド(b)の研磨面と前記ガラス基板の主表面との吸着力F2が、下記式(1)に示す関係を満たすように、前記研磨パッド(a)および前記研磨パッド(b)の研磨面における、平均開口径、単位面積当たりの開口数、開口率、および、表面粗さ(Ra)のうち、少なくとも1つを調整することを特徴とするガラス基板の研磨方法。
1 > F2 − w×g (1)
(式中、wはガラス基板の質量(g)であり、gは重力加速度(m/s2)である。)
The polishing surface of the polishing pad attached to the upper and lower surface plates of the double-side polishing apparatus sandwiches the glass substrate held by the carrier, and one provided on at least one of both polishing surfaces of the upper and lower surface plates, or Glass that polishes both main surfaces of the glass substrate by relatively moving the upper and lower surface plates and the glass substrate held by the carrier while supplying a fluid containing abrasive particles from a plurality of supply holes. A method for polishing a substrate,
The polishing pad attached to the upper and lower surface plates has a hardness (Shore A hardness) of 70 or less and a surface roughness (Ra) of 50 μm or less.
Adsorption force F 1 (N) between the polishing surface of the polishing pad (a) attached to the lower surface plate and the main surface of the glass substrate, and the polishing surface of the polishing pad (b) attached to the upper surface plate and the glass substrate So that the adsorbing force F 2 with the main surface satisfies the relationship represented by the following formula (1), the average opening diameter per unit area on the polishing surface of the polishing pad (a) and the polishing pad (b) A method for polishing a glass substrate, comprising adjusting at least one of a numerical aperture, an aperture ratio, and a surface roughness (Ra).
F 1 > F 2 −w × g (1)
(Wherein, w is the mass (g) of the glass substrate, and g is the gravitational acceleration (m / s 2 ).)
両面研磨装置の上下定盤に取り付けられた研磨パッドの研磨面で、キャリアに保持されたガラス基板を挟持し、上下両定盤の両研磨面の少なくとも一方に設けられている1つ、または、複数の供給孔から研磨粒子を含む流体を供給しつつ、前記上下定盤と、前記キャリアに保持された前記ガラス基板と、を相対的に移動させて前記ガラス基板の両主表面を研磨するガラス基板の研磨方法であって、
前記上下定盤に取り付けられる研磨パッドが、硬度(ショアA硬度)が70以下であり、表面粗さ(Ra)が50μm以下であり、
下定盤に取り付けられる研磨パッド(a)の研磨面と前記ガラス基板の主表面との吸着力F1(N)、および、上定盤に取り付けられる研磨パッド(b)の研磨面と前記ガラス基板の主表面との吸着力F2が、下記式(1)に示す関係を満たすように、前記研磨パッド(a)および前記研磨パッド(b)の研磨面における、平均開口径、単位面積当たりの開口数、開口率、および、表面粗さ(Ra)のうち、少なくとも1つを互いに異なるものとすることを特徴とするガラス基板の研磨方法。
1 > F2 − w×g (1)
(式中、wはガラス基板の質量(g)であり、gは重力加速度(m/s2)である。)
The polishing surface of the polishing pad attached to the upper and lower surface plates of the double-side polishing apparatus sandwiches the glass substrate held by the carrier, and one provided on at least one of both polishing surfaces of the upper and lower surface plates, or Glass that polishes both main surfaces of the glass substrate by relatively moving the upper and lower surface plates and the glass substrate held by the carrier while supplying a fluid containing abrasive particles from a plurality of supply holes. A method for polishing a substrate,
The polishing pad attached to the upper and lower surface plates has a hardness (Shore A hardness) of 70 or less and a surface roughness (Ra) of 50 μm or less.
Adsorption force F 1 (N) between the polishing surface of the polishing pad (a) attached to the lower surface plate and the main surface of the glass substrate, and the polishing surface of the polishing pad (b) attached to the upper surface plate and the glass substrate So that the adsorbing force F 2 with the main surface satisfies the relationship represented by the following formula (1), the average opening diameter per unit area on the polishing surface of the polishing pad (a) and the polishing pad (b) A method for polishing a glass substrate, wherein at least one of a numerical aperture, an aperture ratio, and a surface roughness (Ra) is different from each other.
F 1 > F 2 −w × g (1)
(Wherein, w is the mass (g) of the glass substrate, and g is the gravitational acceleration (m / s 2 ).)
上下定盤に取り付けられる研磨パッドの研磨面における平均開口径が、1〜100μmの範囲であり、
上定盤に取り付けられる研磨パッド(b)の研磨面における平均開口径に対する、下定盤に取り付けられる研磨パッド(a)の研磨面における平均開口径の比が0.95以下である、請求項1または2に記載のガラス基板の研磨方法。
The average opening diameter on the polishing surface of the polishing pad attached to the upper and lower surface plates is in the range of 1 to 100 μm,
The ratio of the average opening diameter at the polishing surface of the polishing pad (a) attached to the lower surface plate to the average opening diameter at the polishing surface of the polishing pad (b) attached to the upper surface plate is 0.95 or less. Or the grinding | polishing method of the glass substrate of 2.
上定盤に取り付けられる研磨パッド(b)の研磨面における単位面積当たりの開口数に対する、下定盤に取り付けられる研磨パッド(a)の研磨面における単位面積当たりの開口数の比が0.95以下である、請求項1〜3のいずれかに記載のガラス基板の研磨方法。   The ratio of the numerical aperture per unit area on the polishing surface of the polishing pad (a) attached to the lower surface plate to the numerical aperture per unit area on the polishing surface of the polishing pad (b) attached to the upper surface plate is 0.95 or less The method for polishing a glass substrate according to claim 1, wherein 上定盤に取り付けられる研磨パッド(b)の研磨面における開口率に対する、下定盤に取り付けられる研磨パッド(a)の研磨面における開口率の比が0.95以下である、請求項1〜4のいずれかに記載のガラス基板の研磨方法。   The ratio of the opening ratio of the polishing surface of the polishing pad (a) attached to the lower surface plate to the opening ratio of the polishing pad (b) attached to the upper surface plate is 0.95 or less. The glass substrate polishing method according to any one of the above. 上定盤に取り付けられる研磨パッド(b)の研磨面における表面粗さ(Ra)に対する、下定盤に取り付けられる研磨パッド(a)の研磨面における表面粗さ(Ra)の比が0.95以下である、請求項1〜5のいずれかに記載のガラス基板の研磨方法。   The ratio of the surface roughness (Ra) of the polishing surface of the polishing pad (a) attached to the lower surface plate to the surface roughness (Ra) of the polishing pad (b) attached to the upper surface plate is 0.95 or less. The method for polishing a glass substrate according to claim 1, wherein 前記上下両定盤の研磨面による研磨荷重が0.1〜12kPaである、請求項1〜6のいずれかに記載のガラス基板の研磨方法。   The polishing method of the glass substrate in any one of Claims 1-6 whose polishing load by the polishing surface of the said upper and lower surface plates is 0.1-12 kPa. 前記研磨粒子が、コロイダルシリカまたは酸化セリウムである、請求項1〜7のいずれかに記載のガラス基板の研磨方法。   The method for polishing a glass substrate according to claim 1, wherein the abrasive particles are colloidal silica or cerium oxide.
JP2012145336A 2012-06-28 2012-06-28 Polishing method of glass substrate Withdrawn JP2014008555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012145336A JP2014008555A (en) 2012-06-28 2012-06-28 Polishing method of glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012145336A JP2014008555A (en) 2012-06-28 2012-06-28 Polishing method of glass substrate

Publications (1)

Publication Number Publication Date
JP2014008555A true JP2014008555A (en) 2014-01-20

Family

ID=50105689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012145336A Withdrawn JP2014008555A (en) 2012-06-28 2012-06-28 Polishing method of glass substrate

Country Status (1)

Country Link
JP (1) JP2014008555A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076227A1 (en) * 2013-11-20 2015-05-28 旭硝子株式会社 Glass plate manufacturing method
WO2018181347A1 (en) * 2017-03-31 2018-10-04 古河電気工業株式会社 Polishing pad

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002264006A (en) * 2001-03-13 2002-09-18 Toray Coatex Co Ltd Polishing pad
JP2004001169A (en) * 2001-12-12 2004-01-08 Toyobo Co Ltd Abrasive pad for semiconductor wafer polishing
JP2006159353A (en) * 2004-12-08 2006-06-22 Shin Etsu Chem Co Ltd Polishing method
JP2007111852A (en) * 2005-09-26 2007-05-10 Hoya Corp Manufacturing method for glass substrate for magnetic disk, manufacturing method for magnetic disk, and abrasive cloth
JP2007122849A (en) * 2005-09-28 2007-05-17 Hoya Corp Method of manufacturing glass substrate for magnetic disk and method of manufacturing magnetic disk
JP2010042508A (en) * 2009-11-25 2010-02-25 Shin-Etsu Chemical Co Ltd Polishing method
JP2011104713A (en) * 2009-11-17 2011-06-02 Asahi Glass Co Ltd Dressing tool for glass substrate polishing pad
JP2011224845A (en) * 2010-04-19 2011-11-10 Teijin Cordley Ltd Method for producing porous sheet-like object
JP2011224701A (en) * 2010-04-19 2011-11-10 Teijin Cordley Ltd Method of manufacturing material for polishing pad
JP2012020377A (en) * 2010-07-15 2012-02-02 Asahi Glass Co Ltd Polishing liquid and method of manufacturing glass substrate for magnetic disk
JP2012056828A (en) * 2010-09-13 2012-03-22 Asahi Glass Co Ltd Method for manufacturing glass

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002264006A (en) * 2001-03-13 2002-09-18 Toray Coatex Co Ltd Polishing pad
JP2004001169A (en) * 2001-12-12 2004-01-08 Toyobo Co Ltd Abrasive pad for semiconductor wafer polishing
JP2006159353A (en) * 2004-12-08 2006-06-22 Shin Etsu Chem Co Ltd Polishing method
JP2007111852A (en) * 2005-09-26 2007-05-10 Hoya Corp Manufacturing method for glass substrate for magnetic disk, manufacturing method for magnetic disk, and abrasive cloth
JP2007122849A (en) * 2005-09-28 2007-05-17 Hoya Corp Method of manufacturing glass substrate for magnetic disk and method of manufacturing magnetic disk
JP2011104713A (en) * 2009-11-17 2011-06-02 Asahi Glass Co Ltd Dressing tool for glass substrate polishing pad
JP2010042508A (en) * 2009-11-25 2010-02-25 Shin-Etsu Chemical Co Ltd Polishing method
JP2011224845A (en) * 2010-04-19 2011-11-10 Teijin Cordley Ltd Method for producing porous sheet-like object
JP2011224701A (en) * 2010-04-19 2011-11-10 Teijin Cordley Ltd Method of manufacturing material for polishing pad
JP2012020377A (en) * 2010-07-15 2012-02-02 Asahi Glass Co Ltd Polishing liquid and method of manufacturing glass substrate for magnetic disk
JP2012056828A (en) * 2010-09-13 2012-03-22 Asahi Glass Co Ltd Method for manufacturing glass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076227A1 (en) * 2013-11-20 2015-05-28 旭硝子株式会社 Glass plate manufacturing method
WO2018181347A1 (en) * 2017-03-31 2018-10-04 古河電気工業株式会社 Polishing pad

Similar Documents

Publication Publication Date Title
JP5332249B2 (en) Glass substrate polishing method
JP4858154B2 (en) A method for polishing a glass substrate for mask blanks.
JP5090633B2 (en) Glass substrate polishing method
EP1758962B1 (en) Polishing method for glass substrate, and glass substrate
JP5598371B2 (en) Glass substrate polishing method
JPWO2011115131A1 (en) Substrate for EUV lithography optical member and method for producing the same
JP2006011434A (en) Manufacturing method for mask blank substrate, mask blank and transfer mask
JP6252098B2 (en) Square mold substrate
JP6206831B2 (en) Manufacturing method of mask blank substrate for EUV lithography, manufacturing method of substrate with multilayer reflective film for EUV lithography, manufacturing method of mask blank for EUV lithography, and manufacturing method of transfer mask for EUV lithography
JP5399109B2 (en) Mask blank substrate manufacturing method, mask blank manufacturing method, and mask manufacturing method
JP2014008555A (en) Polishing method of glass substrate
JP2005066781A (en) Manufacturing method for glass substrate for electronic device, manufacturing method for mask blank, and manufacturing method for transfer mask
JP2013071212A (en) Method for manufacturing substrate, method for manufacturing mask blank, method for manufacturing mask for transfer, and correction carrier
JP2013043238A (en) Method for polishing glass substrate
JP5688820B2 (en) Polishing equipment
JP2015136773A (en) Method for polishing glass substrate
JP2005301304A (en) Substrate for mask blank, mask blank, and mask for transfer
JP5607227B2 (en) Polishing equipment
JP3974535B2 (en) Polishing apparatus and mask blank substrate manufacturing method
JP5379461B2 (en) Mask blank substrate manufacturing method, mask blank manufacturing method, and mask manufacturing method
JP4283061B2 (en) Manufacturing method of glass substrate for electronic device, manufacturing method of mask blanks, and manufacturing method of transfer mask
JP4435500B2 (en) Substrate double-side polishing method, double-side polishing guide ring and substrate double-side polishing apparatus
JP2008116571A (en) Method of manufacturing substrate for mask blank and method of manufacturing mask blank, and method of manufacturing transfer mask
JP4887073B2 (en) Square substrate carrier, double-side polishing apparatus for square substrate, and method for polishing square substrate
JP2004255530A (en) Polishing device and polishing method, manufacturing method of substrate for mask blank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20160118