JP2014008483A - Sublimation refining method, and sublimation refining apparatus - Google Patents

Sublimation refining method, and sublimation refining apparatus Download PDF

Info

Publication number
JP2014008483A
JP2014008483A JP2012148248A JP2012148248A JP2014008483A JP 2014008483 A JP2014008483 A JP 2014008483A JP 2012148248 A JP2012148248 A JP 2012148248A JP 2012148248 A JP2012148248 A JP 2012148248A JP 2014008483 A JP2014008483 A JP 2014008483A
Authority
JP
Japan
Prior art keywords
sublimation purification
treated
substance
sublimation
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012148248A
Other languages
Japanese (ja)
Inventor
Kazuhiro Niwa
和裕 丹羽
Shinji Yoshida
真司 吉田
Yoshihiro Inamoto
吉宏 稲本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012148248A priority Critical patent/JP2014008483A/en
Publication of JP2014008483A publication Critical patent/JP2014008483A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PROBLEM TO BE SOLVED: To know a coagulation quantity of a treatment object substance without having influence on a temperature of an inner wall surface of a sublimation refining pipe, during sublimation refining.SOLUTION: A sublimation refining apparatus 1 comprises a sublimation refining pipe 4 having an inflow port 2 and an outflow port 3, decompression means 5, heating means 6a and 6b, inert gas supply means 7 and an ultraviolet ray absorbance measuring device 8. In the inside of the sublimation refining pipe 4 at a reduced pressure, a treatment object substance 11 is heated to be sublimated; and the sublimated treatment object substance 11 is carried by inert gas 12 that is discharged from the outflow port 3 after being supplied to the sublimation refining pipe 4 from the inflow port 2 by the inert gas supply means 7. On an inner wall surface of the sublimation refining pipe 4, heated to provide temperature gradient along the carrying direction of the inert gas 12, the carried treatment object substance 11 is coagulated. The ultraviolet ray absorbance of the sublimation refining pipe 4 is measured by the ultraviolet ray absorbance measuring device 8, and the degree of coagulation of the treatment object substance 11 can be known from a change in the ultraviolet ray absorbance during the sublimation refining.

Description

本発明は、昇華性を有する有機化合物などを被処理物質として含有する混合物から昇華温度の違いを利用して、被処理物質を精製、分離する昇華精製方法および昇華精製装置に関するものである。   The present invention relates to a sublimation purification method and a sublimation purification apparatus for purifying and separating a substance to be treated using a difference in sublimation temperature from a mixture containing a sublimable organic compound as a substance to be treated.

従来の昇華精製方法および昇華精製装置として、有機化合物の粉末を昇華した後に昇華精製管の内部で凝結させることで昇華精製を行う方法が知られている(例えば特許文献1参照)。   As a conventional sublimation purification method and sublimation purification apparatus, a method of performing sublimation purification by sublimating an organic compound powder and then condensing it inside a sublimation purification tube is known (see, for example, Patent Document 1).

以下、その昇華精製装置について図7を参照しながら説明する。   Hereinafter, the sublimation purification apparatus will be described with reference to FIG.

図7に示すように、昇華精製装置101は昇華精製管102と減圧手段103と加熱手段104a、104bと不活性ガス供給手段105からなり、昇華精製管102は流入口106と流出口107を備えている。減圧手段103により減圧した昇華精製管102の内部において、加熱手段104aにより被処理物質108を加熱することで被処理物質108を昇華させる。さらに不活性ガス供給手段105により流入口106から昇華精製管102に供給されて流出口107より排出される不活性ガス109により、昇華された被処理物質108を搬送し、不活性ガス109の搬送方向に沿って温度勾配を有するように加熱手段104bにより加熱した昇華精製管102の内壁面に、搬送された被処理物質108を凝結させる。   As shown in FIG. 7, the sublimation purification apparatus 101 includes a sublimation purification pipe 102, a decompression means 103, heating means 104a and 104b, and an inert gas supply means 105. The sublimation purification pipe 102 includes an inlet 106 and an outlet 107. ing. In the sublimation purification tube 102 decompressed by the decompression means 103, the material to be treated 108 is sublimated by heating the material 108 to be treated by the heating means 104a. Further, an inert gas 109 supplied from the inlet 106 to the sublimation purification pipe 102 by the inert gas supply means 105 and discharged from the outlet 107 is used to transfer the sublimated material 108 and transfer the inert gas 109. The material to be treated 108 is condensed on the inner wall surface of the sublimation purification tube 102 heated by the heating means 104b so as to have a temperature gradient along the direction.

このような従来の昇華精製装置においては、不純物を含む被処理物質を精製するために、減圧下において被処理物質を加熱すると固体から気体へ昇華する特性を利用している。つまり、被処理物質と被処理物質に含まれる不純物の昇華温度が異なることから、一定温度で被処理物質を昇華させると、昇華温度の高い不純物は昇華されることがないので、昇華された被処理物質を別の場所で凝結させると、純度の高い被処理物質を得ることができる。また、被処理物質よりも凝結温度の低い不純物は、被処理物質が凝結する場所では凝結しないので、被処理物質が凝結した場所だけから被処理物質を回収することで純度の高い被処理物質を得ることができる。   In such a conventional sublimation purification apparatus, in order to purify the material to be treated containing impurities, the property of sublimation from solid to gas is utilized when the material to be treated is heated under reduced pressure. In other words, since the sublimation temperature of the impurity to be treated differs from that of the substance to be treated, if the substance to be treated is sublimated at a constant temperature, impurities having a high sublimation temperature are not sublimated. When the treatment substance is condensed in another place, a substance to be treated with high purity can be obtained. In addition, impurities with a condensation temperature lower than that of the material to be treated do not condense at the place where the material to be treated condenses, so that the material to be treated is recovered only from the place where the material to be treated has condensed, so Can be obtained.

すなわち、昇華精製方法は被処理物質に含まれる不純物と被処理物質の昇華温度または凝結温度の違いを利用して、昇華精製管の内壁面に純度の高い被処理物質を凝結させるものであり、昇華精製管の内壁面の温度は被処理物質の凝結温度以下で安定していることが重要である。したがって、昇華精製中に被処理物質を凝結させる昇華精製管の内壁面の温度を安定させるために、昇華精製管の全周にわたって加熱手段を備える構成となっている。   That is, the sublimation purification method is to condense a high-purity treated substance on the inner wall surface of the sublimation purification tube using the difference between the impurities contained in the treated substance and the sublimation temperature or condensation temperature of the treated substance. It is important that the temperature of the inner wall surface of the sublimation purification tube is stable below the condensation temperature of the material to be treated. Therefore, in order to stabilize the temperature of the inner wall surface of the sublimation purification tube that condenses the substance to be treated during sublimation purification, the heating means is provided over the entire circumference of the sublimation purification tube.

有機半導体や有機色素のように昇華精製方法を適用する被処理物質は、酸素または水分を含む雰囲気下では分解されやすい特性であることが多く、不活性ガスを充填した状態で昇華精製する。   Substances to be treated to which a sublimation purification method is applied, such as organic semiconductors and organic dyes, often have a characteristic of being easily decomposed in an atmosphere containing oxygen or moisture, and are purified by sublimation in a state filled with an inert gas.

また、従来の昇華精製方法では加熱手段により昇華された被処理物質を不活性ガスにより搬送しているが、搬送速度を高める目的で不活性ガスの流量を増加すると昇華精製管の真空度が低下するため、被処理物質がその分解温度以下で昇華することができなくなり、被処理物質の分解を招くことになる。そのため、不活性ガスの流量は数十mL/min.程度に制限され、被処理物質の搬送速度を高めることができず、昇華精製が完了するまでに数時間を要することがある。また、昇華精製の完了のタイミングは昇華精製管の内壁面における被処理物質の凝結量により判断している。   In addition, in the conventional sublimation purification method, the material to be treated sublimated by the heating means is conveyed by inert gas, but the vacuum degree of the sublimation purification tube decreases when the flow rate of the inert gas is increased for the purpose of increasing the conveyance speed. For this reason, the substance to be treated cannot sublimate below its decomposition temperature, leading to decomposition of the substance to be treated. Therefore, the flow rate of the inert gas is several tens mL / min. It is limited to a certain extent, and the conveyance speed of the substance to be treated cannot be increased, and it may take several hours to complete the sublimation purification. Further, the timing of completion of sublimation purification is determined by the amount of condensation of the substance to be treated on the inner wall surface of the sublimation purification tube.

特開2007−246424号公報JP 2007-246424 A

すなわち、長時間におよぶ昇華精製方法において、昇華精製管の内壁面における被処理物質の凝結量を把握するために、昇華精製管を目視できるように昇華精製管から加熱手段を取り外す必要があるが、加熱手段を取り外すことにより昇華精製管の内壁面の温度は所望の温度から低下することになり、被処理物質以外の不純物が凝結する可能性がある。そのため、実際は昇華精製中に加熱手段を取り外すことは避けたほうがよく、過去の経験からの類推で昇華精製の完了時間を推定することになり、余剰に時間をかけて昇華精製を実施することや、昇華精製が不十分なまま昇華精製を完了することがあった。   That is, in the sublimation purification method over a long period of time, it is necessary to remove the heating means from the sublimation purification tube so that the sublimation purification tube can be visually observed in order to grasp the amount of the substance to be treated on the inner wall surface of the sublimation purification tube. By removing the heating means, the temperature of the inner wall surface of the sublimation purification tube is lowered from a desired temperature, and impurities other than the material to be treated may condense. Therefore, in practice, it is better to avoid removing the heating means during sublimation purification, and the completion time of sublimation purification will be estimated by analogy from past experience. In some cases, sublimation purification was completed while sublimation purification was insufficient.

つまり、従来の昇華精製方法は、昇華精製中は昇華精製管の内壁を目視することができず、昇華精製中に昇華精製管の内壁面の温度に影響を与えることなく被処理物質の凝結量を把握することができないという課題を有していた。   In other words, the conventional sublimation purification method cannot visually observe the inner wall of the sublimation purification tube during sublimation purification, and does not affect the temperature of the inner wall surface of the sublimation purification tube during sublimation purification. Had the problem of not being able to grasp.

そこで本発明は、上記従来の課題を解決するものであり、昇華精製中に昇華精製管の内壁面の温度に影響を与えることなく被処理物質の凝結量を把握することができる昇華精製装置を提供することを目的とする。   Therefore, the present invention solves the above-described conventional problems, and provides a sublimation purification apparatus that can grasp the amount of condensation of the substance to be treated without affecting the temperature of the inner wall surface of the sublimation purification tube during sublimation purification. The purpose is to provide.

そして、この目的を達成するために、本発明は、昇華精製管の紫外線吸光度を測定することで、昇華精製中に昇華精製管の内壁面の温度に影響を与えることなく被処理物質の凝結量を把握する昇華精製方法としたものであり、これにより所期の目的を達成するものである。   And in order to achieve this object, the present invention measures the ultraviolet absorbance of the sublimation purification tube, and does not affect the temperature of the inner wall surface of the sublimation purification tube during sublimation purification. This is a sublimation purification method for grasping the above, thereby achieving the intended purpose.

本発明によれば、昇華精製中に昇華精製管の紫外線吸光度を測定するという構成にしたことにより、昇華精製管の内壁面に凝結した被処理物質により紫外線が吸収されるので、紫外線吸光度を測定することで、昇華精製中に昇華精製管の内壁面の温度に影響を与えることなく、昇華精製管の内壁における被処理物質の凝結量を把握することができるという効果を得ることができる。   According to the present invention, the ultraviolet absorbance of the sublimation purification tube is measured during the sublimation purification, so that the ultraviolet rays are absorbed by the substance to be treated condensed on the inner wall surface of the sublimation purification tube. By doing so, it is possible to obtain an effect that it is possible to grasp the condensation amount of the substance to be treated on the inner wall of the sublimation purification tube without affecting the temperature of the inner wall surface of the sublimation purification tube during the sublimation purification.

本発明の実施の形態1の昇華精製装置の概略断面図Schematic sectional view of the sublimation purification apparatus of Embodiment 1 of the present invention 本発明の実施の形態2の昇華精製装置の概略断面図Schematic sectional view of the sublimation purification apparatus of Embodiment 2 of the present invention 本発明の実施の形態3の昇華精製装置の概略断面図Schematic sectional view of a sublimation purification apparatus according to Embodiment 3 of the present invention. 本発明の実施の形態4の昇華精製装置の概略断面図Schematic sectional view of a sublimation purification apparatus according to Embodiment 4 of the present invention. 本発明の実施の形態4の昇華精製装置における紫外線吸収スペクトルを示すグラフThe graph which shows the ultraviolet absorption spectrum in the sublimation purification apparatus of Embodiment 4 of this invention. 本発明の実施の形態4の昇華精製装置における紫外線吸収スペクトルを示すグラフThe graph which shows the ultraviolet absorption spectrum in the sublimation purification apparatus of Embodiment 4 of this invention. 従来の昇華精製装置の概略断面図Schematic sectional view of a conventional sublimation purification device

本発明の請求項1記載の昇華精製方法は、内部を減圧した昇華精製管内で昇華させた被処理物質を不活性ガスにより搬送し、温度勾配を有するように加熱した前記昇華精製管の内壁面に昇華した前記被処理物質を凝結させる昇華精製方法であって、前記昇華精製管の紫外線吸光度を測定することで、前記被処理物質の凝結量を把握する昇華精製方法である。これにより、昇華精製管の内壁面に凝結する被処理物質が紫外線を吸収することによる紫外線吸光度の減衰度合いから被処理物質の凝結量を把握することが可能となるので、昇華精製中に昇華精製管の内壁面の温度に影響を与えることなく被処理物質の凝結量を把握できるという効果を奏する。   In the sublimation purification method according to claim 1 of the present invention, the inner wall surface of the sublimation purification tube heated to have a temperature gradient is conveyed by an inert gas through a sublimation purification tube having a reduced pressure inside. A sublimation purification method for condensing the material to be treated which has been sublimated to the surface, wherein the amount of condensation of the material to be treated is determined by measuring the ultraviolet absorbance of the sublimation purification tube. As a result, it becomes possible to grasp the amount of condensation of the substance to be treated from the degree of attenuation of ultraviolet light absorption by the substance to be treated condensed on the inner wall surface of the sublimation purification tube, so that the sublimation purification can be performed during sublimation purification. There is an effect that the amount of condensation of the substance to be treated can be grasped without affecting the temperature of the inner wall surface of the pipe.

また、流入口と流出口を有する昇華精製管と減圧手段と加熱手段と不活性ガス供給手段を備え、前記減圧手段により減圧した前記昇華精製管の内部において、前記加熱手段により被処理物質を加熱することで被処理物質を昇華させ、さらに前記不活性ガス供給手段により前記流入口から前記昇華精製管に供給されて前記流出口より排出される不活性ガスにより、昇華された前記被処理物質を搬送し、不活性ガスの搬送方向に沿って温度勾配を有するように前記加熱手段により加熱した前記昇華精製管の内壁面に、搬送された前記被処理物質を凝結させる昇華精製装置であって、紫外線吸光度測定装置により前記昇華精製管の紫外線吸光度を測定し、昇華精製中の紫外線吸光度の変化から前記被処理物質の凝結量を把握する昇華精製装置という構成にしてもよい。これにより、昇華精製管の内壁面に凝結する被処理物質が紫外線を吸収することによる紫外線吸光度の減衰度合いから被処理物質の凝結量を把握することが可能となるので、昇華精製中に昇華精製管の内壁面の温度に影響を与えることなく被処理物質の凝結量を把握できるという効果を奏する。   Further, a sublimation purification pipe having an inlet and an outlet, a decompression means, a heating means, and an inert gas supply means are provided, and the substance to be treated is heated by the heating means inside the sublimation purification pipe decompressed by the decompression means. The substance to be treated is sublimated, and further, the substance to be treated sublimated by the inert gas supplied from the inlet to the sublimation purification pipe and discharged from the outlet by the inert gas supply means. A sublimation purification apparatus for condensing the substance to be treated, which is conveyed, on the inner wall surface of the sublimation purification pipe heated by the heating means so as to have a temperature gradient along the conveyance direction of the inert gas; A sublimation purification device that measures the ultraviolet absorbance of the sublimation purification tube with an ultraviolet absorbance measurement device and grasps the amount of condensation of the substance to be treated from the change in ultraviolet absorbance during sublimation purification. It may be formed. As a result, it becomes possible to grasp the amount of condensation of the substance to be treated from the degree of attenuation of ultraviolet light absorption by the substance to be treated condensed on the inner wall surface of the sublimation purification tube, so that the sublimation purification can be performed during sublimation purification. There is an effect that the amount of condensation of the substance to be treated can be grasped without affecting the temperature of the inner wall surface of the pipe.

また、光プローブを有する紫外線吸光度測定装置により、昇華精製管の紫外線吸光度を測定することで、被処理物質の凝結量を把握する昇華精製装置という構成にしてもよい。これにより、昇華精製管の内壁面に凝結する被処理物質が紫外線を吸収することから光プローブを経由して受発光される紫外線の吸光度が変化するので、吸光度の変化度合いから被処理物質の凝結量を把握することが可能となるので、昇華精製中に昇華精製管の内壁面の温度に影響を与えることなく被処理物質の凝結量を把握できるという効果を奏する。   Further, a configuration of a sublimation purification apparatus that grasps the amount of coagulation of the substance to be treated by measuring the ultraviolet absorbance of the sublimation purification tube with an ultraviolet absorbance measurement apparatus having an optical probe may be adopted. As a result, the substance to be treated that condenses on the inner wall surface of the sublimation purification tube absorbs ultraviolet rays, so that the absorbance of the ultraviolet rays received and emitted via the optical probe changes. Since the amount can be ascertained, there is an effect that the amount of condensation of the substance to be treated can be grasped without affecting the temperature of the inner wall surface of the sublimation purification tube during sublimation purification.

また、昇華精製管の複数個所の紫外線吸光度を測定することで、前記昇華精製管内壁面において前記被処理物質が凝結している場所を特定する昇華精製装置という構成にしてもよい。これにより、昇華精製管の内壁面に凝結する被処理物質が紫外線を吸収することから、複数個所の紫外線吸光度を測定することで、複数個所の被処理物質の凝結量を把握することが可能となり、昇華精製管の内壁面において、被処理物質の凝結量が多い領域を把握できるという効果を奏する。   Further, it may be configured as a sublimation purification apparatus that identifies the place where the substance to be treated is condensed on the inner wall surface of the sublimation purification pipe by measuring the ultraviolet absorbance at a plurality of locations of the sublimation purification pipe. As a result, the substance to be treated that condenses on the inner wall of the sublimation purification tube absorbs ultraviolet rays, so it is possible to grasp the amount of condensation of the substance to be treated at multiple locations by measuring the ultraviolet absorbance at multiple locations. In the inner wall surface of the sublimation purification tube, there is an effect that it is possible to grasp a region where the amount of the substance to be treated is large.

また、昇華精製管の紫外線吸収スペクトルを測定することで、昇華精製管の内壁面に凝結している被処理物質の組成を把握する昇華精製装置という構成にしてもよい。昇華精製管の内壁面に凝結する被処理物質は、その物質ごとに吸収される紫外線の波長が異なることから紫外線領域の波長における吸収スペクトルを測定することで、昇華精製管の内壁面に凝結した被処理物質の組成を把握することができるという効果を有する。   Alternatively, a sublimation purification apparatus may be configured to measure the ultraviolet absorption spectrum of the sublimation purification tube to grasp the composition of the substance to be treated that has condensed on the inner wall surface of the sublimation purification tube. The substance to be treated that condenses on the inner wall surface of the sublimation purification tube is condensed on the inner wall surface of the sublimation purification tube by measuring the absorption spectrum at the wavelength in the ultraviolet region because the wavelength of the absorbed ultraviolet rays differs for each material. This has the effect that the composition of the material to be treated can be grasped.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1に実施の形態1の昇華精製装置の概略断面図を示す。昇華精製装置1は流入口2と流出口3を有する昇華精製管4と減圧手段5と加熱手段6aと加熱手段6bと不活性ガス供給手段7と紫外線吸光度測定装置8を備えている。紫外線吸光度測定装置8は発光部9と受光部10を備えている。昇華精製管4の内部において流入口2側に被処理物質11が設置されている。昇華精製管4はその両端部において流入口2と流出口3が取り外しできるように分割されている。
(Embodiment 1)
FIG. 1 shows a schematic cross-sectional view of the sublimation purification apparatus of the first embodiment. The sublimation purification apparatus 1 includes a sublimation purification pipe 4 having an inlet 2 and an outlet 3, a decompression means 5, a heating means 6 a, a heating means 6 b, an inert gas supply means 7, and an ultraviolet absorbance measurement device 8. The ultraviolet absorbance measuring device 8 includes a light emitting unit 9 and a light receiving unit 10. A substance 11 to be treated is installed on the inlet 2 side in the sublimation purification pipe 4. The sublimation purification pipe 4 is divided at both ends so that the inlet 2 and the outlet 3 can be removed.

昇華精製方法により被処理物質11を昇華精製する場合、最初に、昇華精製管の流入口2を取り外して被処理物質11を昇華精製管4の内部に設置し、流入口2を再び取り付ける。なお、昇華精製管4は昇華精製中にその内部を減圧することおよび昇華精製管を加熱することから、機械的強度が高く耐熱性の高い石英ガラス製を用いる。   When sublimation purification of the material to be treated 11 is performed by the sublimation purification method, first, the inlet 2 of the sublimation purification pipe is removed, the substance to be treated 11 is installed inside the sublimation purification pipe 4, and the inlet 2 is attached again. The sublimation purification tube 4 is made of quartz glass having high mechanical strength and high heat resistance because the inside of the sublimation purification tube 4 is decompressed and the sublimation purification tube is heated during the sublimation purification.

減圧手段5により減圧した昇華精製管4において、円筒形の昇華精製管4の外周部を隙間無く覆うように設置された加熱手段6aにより被処理物質11は加熱される。減圧下での昇華温度以上に加熱された被処理物質11は昇華される。さらに不活性ガス供給手段7により流入口2から昇華精製管4に供給されて流出口3より排出される不活性ガス12により、昇華された被処理物質11は搬送される。   In the sublimation purification pipe 4 decompressed by the decompression means 5, the substance 11 to be treated is heated by the heating means 6a installed so as to cover the outer periphery of the cylindrical sublimation purification pipe 4 without a gap. The to-be-processed substance 11 heated above the sublimation temperature under reduced pressure is sublimated. Further, the sublimated substance 11 is transported by the inert gas 12 supplied from the inlet 2 to the sublimation purification pipe 4 by the inert gas supply means 7 and discharged from the outlet 3.

昇華精製管4の内壁面は、不活性ガス12の搬送方向に沿って温度勾配を有するように加熱手段6bにより加熱されており、搬送された被処理物質11の凝結温度と一致する領域で被処理物質11を凝結させる。加熱手段6bは加熱手段6aと同様に円筒形の昇華精製管4の外周部を隙間無く覆うように設置されている。   The inner wall surface of the sublimation purification tube 4 is heated by the heating means 6b so as to have a temperature gradient along the transport direction of the inert gas 12, and is covered in a region that matches the condensation temperature of the transported substance 11 to be treated. The treatment substance 11 is condensed. The heating means 6b is installed so as to cover the outer peripheral portion of the cylindrical sublimation purification pipe 4 without a gap, like the heating means 6a.

従来の方法と同様に加熱手段6aによる加熱温度は被処理物質11の分解温度よりも低い温度であり、その温度において被処理物質11が昇華できるよう、減圧手段5により減圧される。   As in the conventional method, the heating temperature by the heating means 6a is lower than the decomposition temperature of the substance 11 to be treated, and the pressure is reduced by the decompression means 5 so that the substance 11 can be sublimated at that temperature.

また、加熱手段6bによる加熱温度は被処理物質11の凝結温度に近い温度であり、被処理物質11は加熱手段6bの近傍で被処理物質11の凝結温度に一致した領域で昇華精製管4の内壁面に凝結する。被処理物質11に含まれる不純物のうち、加熱手段6aの加熱温度より高い昇華温度を有する不純物は昇華しないので、その場にとどまり、加熱手段6bの加熱温度より低い凝結温度を有する不純物は不活性ガスとともに昇華精製管4から排出される。   The heating temperature by the heating means 6b is close to the condensation temperature of the substance 11 to be treated. It condenses on the inner wall. Among the impurities contained in the substance 11 to be treated, impurities having a sublimation temperature higher than the heating temperature of the heating means 6a do not sublime, so they remain in place and impurities having a condensation temperature lower than the heating temperature of the heating means 6b are inactive. The gas is discharged from the sublimation purification tube 4 together with the gas.

昇華精製が完了した時点で、加熱手段6aと加熱手段6bと減圧手段5と不活性ガス供給手段7の運転を停止し、昇華精製管4の内部が常温常圧に低下した時点で流出口3を取り外し、凝結した被処理物質11を回収する。   When the sublimation purification is completed, the heating means 6a, the heating means 6b, the decompression means 5 and the inert gas supply means 7 are stopped, and when the inside of the sublimation purification pipe 4 is lowered to normal temperature and normal pressure, the outlet 3 And the condensed material 11 to be treated is recovered.

本発明の実施の形態で昇華精製する被処理物質11はトリス(8−キノリノラト)アルミニウムなどの有機ELに用いる有機色素や、ペンタセンなどの有機半導体であり、減圧下において昇華する特性を有するものであれば、他の有機化合物についても同様の効果を得ることができる。   The substance 11 to be treated by sublimation purification in the embodiment of the present invention is an organic dye used for organic EL such as tris (8-quinolinolato) aluminum or an organic semiconductor such as pentacene, and has a characteristic of sublimating under reduced pressure. If it exists, the same effect can be acquired also about another organic compound.

また、本発明の実施の形態で用いる不活性ガス12は昇華された被処理物質11を搬送するために、昇華精製管4内に注入されるものであり、被処理物質11と相互に反応しないガスであることが望ましい。具体的にはArガスなどが適用されるものである。   Further, the inert gas 12 used in the embodiment of the present invention is injected into the sublimation purification tube 4 in order to transport the sublimated material 11 to be processed, and does not react with the material 11 to be processed. A gas is desirable. Specifically, Ar gas or the like is applied.

本発明の実施の形態では、従来の昇華精製装置とは異なり、昇華精製管4を挟んで対向するように発光部9と受光部10を有する紫外線吸光度測定装置8を備えている。発光部9から発光した紫外線は、昇華精製管4を透過して受光部10で受光される。昇華精製管4は強度と耐熱性を満足するために石英ガラスで形成されているので、昇華精製を開始する前は昇華精製管4では紫外線はほとんど吸収されない。昇華精製が進行し、昇華精製管4の内壁に被処理物質11が凝結すると、発光部9から発光した紫外線は被処理物質11により吸収されるので、受光部10での紫外線光量が低下する。   In the embodiment of the present invention, unlike a conventional sublimation purification apparatus, an ultraviolet absorbance measurement apparatus 8 having a light emitting unit 9 and a light receiving unit 10 is provided so as to face each other with a sublimation purification tube 4 interposed therebetween. The ultraviolet light emitted from the light emitting unit 9 passes through the sublimation purification tube 4 and is received by the light receiving unit 10. Since the sublimation purification tube 4 is made of quartz glass in order to satisfy the strength and heat resistance, the sublimation purification tube 4 hardly absorbs ultraviolet rays before the sublimation purification is started. When sublimation purification proceeds and the material 11 to be treated condenses on the inner wall of the sublimation purification tube 4, the ultraviolet light emitted from the light emitting portion 9 is absorbed by the material 11 to be treated, and the amount of ultraviolet light at the light receiving portion 10 decreases.

すなわち、紫外線吸光度測定装置8により昇華精製中の紫外線吸光度を測定することで、昇華精製管4の内壁における被処理物質11の凝結量を把握することができる。紫外線吸光度測定装置8の発光部9と受光部10は昇華精製管4を紫外線が透過できるように設置しておけばよく、従来の昇華精製装置のように、昇華精製管4の内壁面での被処理物質11の凝結状態を把握するために昇華精製管4から加熱手段6aおよび加熱手段6bを分離して目視する必要が無くなり、昇華精製管4の内壁面の温度を所望の温度に保持することが可能になり、凝結する被処理物質11に不純物が含まれる可能性を減らすことができる。   That is, by measuring the ultraviolet absorbance during the sublimation purification with the ultraviolet absorbance measuring device 8, it is possible to grasp the condensation amount of the substance 11 to be treated on the inner wall of the sublimation purification tube 4. The light-emitting unit 9 and the light-receiving unit 10 of the ultraviolet light absorbance measuring device 8 may be installed so that the sublimation purification tube 4 can transmit ultraviolet rays. As in the conventional sublimation purification device, the sublimation purification tube 4 has an inner wall surface. There is no need to separate the heating means 6a and the heating means 6b from the sublimation purification tube 4 to visually check the condensation state of the substance 11 to be treated, and the temperature of the inner wall surface of the sublimation purification tube 4 is maintained at a desired temperature. It is possible to reduce the possibility that impurities are contained in the material 11 to be condensed.

また、紫外線吸光度測定装置8により連続的または断続的に昇華精製管4の紫外線吸光度を測定することで、紫外線吸光度が一定になった時点で昇華精製が完了したことを把握できるので、余剰に時間をかけて昇華精製を実施することや、昇華精製が不十分なまま昇華精製を完了することがなくなるものである。   Further, by continuously or intermittently measuring the ultraviolet absorbance of the sublimation purification tube 4 with the ultraviolet absorbance measuring device 8, it is possible to grasp that the sublimation purification is completed when the ultraviolet absorbance becomes constant, so that an excessive amount of time is required. To carry out sublimation purification and to complete sublimation purification with insufficient sublimation purification.

なお、本実施の形態では、加熱手段6aおよび加熱手段6bの構成について、特に限定はしていないが、電熱線をガラス繊維等の断熱材で被覆した加熱手段等、昇華精製管4の内壁面を効率よく加熱できるような構造であればよい。図1においては、加熱手段6aおよび加熱手段6bの電熱線を折れ線で示し、周囲の断熱材を点線で示している。電熱線に流れる電流によるジュール熱を加熱に利用する場合は、加熱手段の温度を熱電対で測定しながら電流を制御するなどして、加熱温度を安定させる方法が望ましい。また、加熱手段6aおよび加熱手段6bは昇華精製管4の外周部を隙間無く覆うように設置されているとしたが、昇華精製管4の内壁面の温度を安定化させるためには加熱手段6aおよび加熱手段6bと昇華精製管4は近接して設置することが好ましく、昇華精製管4の外形に合わせて加熱手段6aと加熱手段6bを構成することが好ましい。   In addition, in this Embodiment, although it does not specifically limit about the structure of the heating means 6a and the heating means 6b, The inner wall surface of the sublimation purification pipe | tube 4 including the heating means etc. which coat | covered the heating wire with heat insulating materials, such as glass fiber, etc. Any structure can be used as long as it can be efficiently heated. In FIG. 1, heating wires of the heating means 6a and the heating means 6b are indicated by broken lines, and surrounding heat insulating materials are indicated by dotted lines. When Joule heat generated by the current flowing in the heating wire is used for heating, a method of stabilizing the heating temperature by controlling the current while measuring the temperature of the heating means with a thermocouple is desirable. Further, the heating means 6a and the heating means 6b are installed so as to cover the outer peripheral portion of the sublimation purification pipe 4 without a gap, but in order to stabilize the temperature of the inner wall surface of the sublimation purification pipe 4, the heating means 6a. The heating means 6b and the sublimation purification pipe 4 are preferably installed close to each other, and the heating means 6a and the heating means 6b are preferably configured in accordance with the outer shape of the sublimation purification pipe 4.

また、本実施の形態では、加熱手段6bと紫外線吸光度測定装置8の発光部9および受光部10の位置関係について特に限定しないが、加熱手段6bにより加熱された昇華精製管4は伝熱の作用と不活性ガスの流れによる作用で、加熱手段6bから不活性ガスの後流側に温度勾配を有するものであり、その状況を勘案して、加熱手段6bの後流側に紫外線吸光度測定装置8の発光部9および受光部10を設置すればよい。   In the present embodiment, the positional relationship between the heating unit 6b and the light emitting unit 9 and the light receiving unit 10 of the ultraviolet absorbance measuring device 8 is not particularly limited. However, the sublimation purification tube 4 heated by the heating unit 6b has a heat transfer effect. By the action of the inert gas flow, there is a temperature gradient from the heating means 6b to the downstream side of the inert gas, and in consideration of the situation, the ultraviolet absorbance measuring device 8 is provided downstream of the heating means 6b. The light emitting unit 9 and the light receiving unit 10 may be installed.

すなわち、加熱手段6bの後流側に設置された紫外線吸光度測定装置8の発光部9および受光部10の位置が被処理物質11の凝結温度になるように、加熱手段6bの加熱温度は被処理物質11の凝結温度よりも高めの温度を維持すればよい。加熱手段6bと紫外線吸光度測定装置8の発光部9および受光部10の位置が離れていてもよく、紫外線吸光度測定装置8の発光部9および受光部10の位置が被処理物質11の凝結温度になるように、加熱手段6bの加熱温度を設定すればよい。   That is, the heating temperature of the heating unit 6b is set so that the positions of the light emitting unit 9 and the light receiving unit 10 of the ultraviolet absorbance measuring device 8 installed on the downstream side of the heating unit 6b become the condensation temperature of the substance 11 to be processed. What is necessary is just to maintain temperature higher than the condensing temperature of the substance 11. The positions of the light emitting unit 9 and the light receiving unit 10 of the heating means 6b and the ultraviolet absorbance measuring device 8 may be separated from each other, and the positions of the light emitting unit 9 and the light receiving unit 10 of the ultraviolet absorbance measuring device 8 are set to the condensation temperature of the substance 11 to be treated. The heating temperature of the heating means 6b may be set so that

また、本実施の形態では、紫外線吸光度測定装置8の発光部9から発光される紫外線の波長について特に限定しないが、200nm〜500nm程度の紫外線を含む波長を有する光を照射すれば、被処理物質11に由来する紫外線吸光度の減衰を測定することができるものである。   In the present embodiment, the wavelength of the ultraviolet light emitted from the light emitting unit 9 of the ultraviolet absorbance measuring device 8 is not particularly limited. However, if light having a wavelength including about 200 nm to 500 nm is irradiated, the substance to be processed 11 can measure the attenuation of ultraviolet absorbance derived from No. 11.

また、本実施の形態では、紫外線吸光度測定装置8の発光部9および受光部10の構造について特に限定しないが、発光部9は水銀ランプや紫外LEDなど、所望の波長の紫外線を照射できる発光デバイスであればよく、受光部10は所望の波長を受光できる光半導体素子などを用いればよい。   In the present embodiment, the structures of the light emitting unit 9 and the light receiving unit 10 of the ultraviolet absorbance measuring device 8 are not particularly limited. The light emitting unit 9 is a light emitting device capable of irradiating ultraviolet rays having a desired wavelength, such as a mercury lamp or an ultraviolet LED. The light receiving unit 10 may be an optical semiconductor element that can receive a desired wavelength.

また、本実施の形態では、昇華精製中に紫外線吸光度測定装置8により昇華精製管の紫外線吸光度を測定するものとしたが、この方法に限ったものではない。昇華精製を開始する前と所定の時間が経過して昇華精製を終了した時点での昇華精製管4の紫外線吸光度を測定して比較してもよい。昇華精製前後の昇華精製管4の紫外線吸光度の変化の度合いから、被処理物質11の凝結量を把握できるものである。また、昇華精製中に不活性ガス供給手段7の動作を一時停止させ、不活性ガス12により被処理物質11が搬送されない状態で昇華精製管4の紫外線吸光度を測定して比較してもよい。昇華精製管の内壁に付着していない被処理物質11による紫外線の吸収を除くことができるので、被処理物質11の凝結量を正確に把握することができるものである。   In the present embodiment, the ultraviolet absorbance of the sublimation purification tube is measured by the ultraviolet absorbance measuring device 8 during the sublimation purification, but it is not limited to this method. The ultraviolet absorbance of the sublimation purification tube 4 may be measured and compared before the start of sublimation purification and at the time when a predetermined time has passed and the sublimation purification is completed. From the degree of change in the ultraviolet absorbance of the sublimation purification tube 4 before and after sublimation purification, the amount of condensation of the substance 11 to be treated can be grasped. Further, the operation of the inert gas supply means 7 may be temporarily stopped during the sublimation purification, and the ultraviolet absorbance of the sublimation purification tube 4 may be measured and compared in a state where the substance 11 to be treated is not transported by the inert gas 12. Since the absorption of ultraviolet rays by the material to be treated 11 not attached to the inner wall of the sublimation purification tube can be eliminated, the amount of condensation of the material to be treated 11 can be accurately grasped.

また、本実施の形態では、減圧手段5の構造について特に限定しないが、ロータリーポンプまたはダイアフラムポンプなどのポンプにより昇華精製管4の内部を減圧することができればよく、ターボ分子ポンプと組み合わせて真空度を高めてもよい。   In the present embodiment, the structure of the decompression means 5 is not particularly limited, but it is sufficient that the inside of the sublimation purification pipe 4 can be decompressed by a pump such as a rotary pump or a diaphragm pump. May be increased.

また、本実施の形態では、不活性ガス供給手段7の構造について特に限定しないが、ガスボンベに充填されたアルゴンガス等の不活性ガスを一定量供給できる減圧弁およびマスフローコントローラー等を用いればよく、被処理物質11との反応性の少ないガスで、昇華した被処理物質11を搬送できるガスを一定の流量で供給できればよい。   Further, in the present embodiment, the structure of the inert gas supply means 7 is not particularly limited, but a pressure reducing valve and a mass flow controller that can supply a fixed amount of inert gas such as argon gas filled in a gas cylinder may be used. It is only necessary to supply a gas capable of transporting the sublimed material 11 to be processed at a constant flow rate with a gas having low reactivity with the material 11 to be processed.

また、本実施の形態では、昇華精製後の被処理物質11の回収方法について特に限定しないが、昇華精製完了後に昇華精製管4から流出口3を取り外して、内壁面から被処理物質11をかきとってもよい。また、昇華精製完了後に被処理物質11が凝結した部分の前後で昇華精製管4を切断し、昇華精製管4の内壁面から被処理物質11をかきとってもよい。また、昇華精製管4の内径寸法とほぼ同一の外径寸法である昇華精製回収管を昇華精製管4の内側にあらかじめ挿入しておき、昇華精製管4から昇華精製回収管を取り外すことで被処理物質11を容易に回収することも可能である。昇華精製回収管を用いる場合は、昇華精製管4と同様に紫外線の透過率の高い石英ガラスを利用すればよい。   In the present embodiment, the method for recovering the material 11 to be processed after sublimation purification is not particularly limited, but after completion of sublimation purification, the outlet 3 is removed from the sublimation purification tube 4 and the material 11 is scraped from the inner wall surface. It may be taken. Alternatively, after the sublimation purification is completed, the sublimation purification tube 4 may be cut before and after the portion where the treatment target material 11 is condensed, and the treatment target material 11 may be scraped off from the inner wall surface of the sublimation purification tube 4. In addition, a sublimation purification recovery tube having an outer diameter that is substantially the same as the inner diameter of the sublimation purification tube 4 is inserted into the sublimation purification tube 4 in advance, and the sublimation purification recovery tube 4 is removed from the sublimation purification tube 4. It is also possible to easily recover the processing substance 11. In the case of using the sublimation purification tube, quartz glass having a high ultraviolet transmittance may be used as in the sublimation purification tube 4.

また、本実施の形態では、流出口3に減圧手段5を接続しているが、この方法に限ったものではなく、被処理物質11に含まれている低凝結温度の不純物が減圧手段に吸引される可能性があるので、流出口3と減圧手段5の間にコールドトラップを設けても良い。   In the present embodiment, the decompression means 5 is connected to the outlet 3. However, the present invention is not limited to this method, and impurities having a low condensation temperature contained in the substance to be treated 11 are sucked into the decompression means. Therefore, a cold trap may be provided between the outlet 3 and the decompression means 5.

また、本実施の形態では、昇華精製前に被処理物質11を昇華精製管4の内部に設置して、加熱手段6aにより加熱することで昇華させるとしたが、この方法に限ったものではなく、被処理物質11をるつぼに入れてヒーター等で直接加熱してもよく、減圧下で被処理物質が昇華する温度まで加熱することができればどのような加熱手段を用いてもよく、被処理物質11に不純物が多く含まれることが予想される場合は、昇華精製後に残渣を回収できるよう、被処理物質11を容器に入れた状態で加熱するほうが好ましい。   In the present embodiment, the substance 11 to be treated is installed inside the sublimation purification tube 4 before sublimation purification and is sublimated by heating by the heating means 6a. However, the present invention is not limited to this method. The material to be treated 11 may be directly heated with a heater or the like in a crucible, and any heating means may be used as long as it can be heated to a temperature at which the material to be treated sublimates under reduced pressure. When 11 is expected to contain a large amount of impurities, it is preferable to heat the substance to be treated 11 in a container so that the residue can be recovered after sublimation purification.

また、本実施の形態では、紫外線吸光度測定装置8の発光部9と受光部10が昇華精製管4を挟んで対向するように設置されているとしたが、この方法に限ったものではない。発光部9から照射された紫外線が昇華精製管4の内壁面を通過した後に受光部10に到達すればよく、石英製の反射板と組み合わせて発光部9と受光部10を昇華精製管4に対して配置してもよい。   Moreover, in this Embodiment, although the light emission part 9 and the light-receiving part 10 of the ultraviolet-ray-absorbance measuring apparatus 8 were installed so that it might oppose on both sides of the sublimation purification pipe | tube 4, it is not restricted to this method. The ultraviolet light emitted from the light emitting unit 9 may reach the light receiving unit 10 after passing through the inner wall surface of the sublimation purification tube 4, and the light emitting unit 9 and the light receiving unit 10 are combined into a sublimation purification tube 4 in combination with a quartz reflector. You may arrange | position with respect.

(実施の形態2)
図2に実施の形態2の昇華精製装置の概略断面図を示す。図1と同様の構成要素については同一の符号を付し、その詳細な説明は省略する。
(Embodiment 2)
FIG. 2 shows a schematic sectional view of the sublimation purification apparatus of the second embodiment. The same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施の形態では実施の形態1とは異なり、紫外線吸光度測定装置8が光プローブ13を有している。光プローブ13は発光部9から発光される紫外線を減衰なく透過させ、昇華精製管4を透過した紫外線を受光部10へ減衰なく透過させる特性を有する細径の石英ファイバーである。   In the present embodiment, unlike the first embodiment, the ultraviolet absorbance measurement device 8 has an optical probe 13. The optical probe 13 is a small-diameter quartz fiber having a characteristic of transmitting ultraviolet light emitted from the light emitting unit 9 without attenuation and transmitting ultraviolet light transmitted through the sublimation purification tube 4 to the light receiving unit 10 without attenuation.

この構成によれば、加熱手段6bの近傍に細径の石英ファイバーを設置するだけでよく、昇華精製管4の外周部分にある加熱手段6bに細径の石英ファイバーを通すだけの隙間を確保するだけでよく、加熱手段6bからの伝熱により形成される昇華精製管4の内壁面の温度勾配を乱す可能性を減らすことができる。   According to this configuration, it is only necessary to install a small-diameter quartz fiber in the vicinity of the heating means 6b, and a clearance enough to pass the small-diameter quartz fiber through the heating means 6b in the outer peripheral portion of the sublimation purification tube 4 is ensured. The possibility of disturbing the temperature gradient of the inner wall surface of the sublimation purification tube 4 formed by heat transfer from the heating means 6b can be reduced.

また、光プローブ13は石英ガラスで形成された石英ファイバーであるので熱伝導率が低く、昇華精製管4の内壁面の温度勾配を乱す可能性を減らすことができる。   Further, since the optical probe 13 is a quartz fiber formed of quartz glass, the thermal conductivity is low, and the possibility of disturbing the temperature gradient of the inner wall surface of the sublimation purification tube 4 can be reduced.

実施の形態1と同様に、昇華精製管4の紫外線吸光度の変化を測定することで、被処理物質11の凝結量を把握できるものであるが、本実施の形態では昇華精製管4の温度勾配を乱すことなく昇華精製管4の紫外線吸光度を測定することができるので、均一な温度勾配を利用して被処理物質11の精製度を高めることができるものである。   As in the first embodiment, the amount of condensation of the substance 11 to be treated can be grasped by measuring the change in the UV absorbance of the sublimation purification tube 4. In this embodiment, the temperature gradient of the sublimation purification tube 4 is obtained. Since the ultraviolet absorbance of the sublimation purification tube 4 can be measured without disturbing the temperature, the degree of purification of the substance 11 to be treated can be increased using a uniform temperature gradient.

また、本実施の形態では紫外線吸光度測定装置8の発光部9と受光部10が昇華精製管4を挟んで対向するように設置しているが、この配置に限ったものではなく、昇華精製管4に紫外線を透過させるように、2本の光プローブ13の端面が昇華精製管4を挟むように対向して設置すればよく、発光部9と受光部10の設置位置について特に限定するものではない。光プローブ13が細径の石英ファイバーであることからその柔軟性を活用して発光部9と受光部10の設置位置を任意に設定できるものである。   In the present embodiment, the light-emitting unit 9 and the light-receiving unit 10 of the ultraviolet absorbance measuring device 8 are installed so as to face each other with the sublimation purification tube 4 interposed therebetween. However, the present invention is not limited to this arrangement. 4 so that the end faces of the two optical probes 13 are opposed to each other so that the sublimation purification tube 4 is sandwiched between them so that the ultraviolet light can be transmitted through the sublimation purification tube 4. Absent. Since the optical probe 13 is a thin quartz fiber, the installation position of the light emitting unit 9 and the light receiving unit 10 can be arbitrarily set by utilizing its flexibility.

また、本実施の形態では光プローブ13の直径について特に限定するものではないが、昇華精製管4の内壁面における被処理物質11の付着部位の紫外線吸光度を測定できる面積であればよく、コア径0.2mm程度の断面を有する石英ファイバーにより昇華精製管4を挟んで対向してその光軸を一致させればよく、昇華精製管4の内壁面の温度への影響が少なければコア径0.2mm以上の石英ファイバーを使用してもよい。   In the present embodiment, the diameter of the optical probe 13 is not particularly limited, but may be any area as long as it can measure the ultraviolet absorbance of the adhesion site of the substance 11 to be treated on the inner wall surface of the sublimation purification tube 4. It is only necessary that the sublimation purification tube 4 is sandwiched by quartz fibers having a cross section of about 0.2 mm so that the optical axes thereof coincide with each other. A quartz fiber of 2 mm or more may be used.

(実施の形態3)
図3に実施の形態3の昇華精製装置の概略断面図を示す。図1から図2と同様の構成要素については同一の符号を付し、その詳細な説明は省略する。本実施の形態では実施の形態2とは異なり、紫外線吸光度測定装置8は光路切替手段14と複数組の光プローブ13を備えている。また、加熱手段6cと加熱手段6dを備えており、加熱手段6aと同様に昇華精製管4の外周部を隙間無く覆うように設置されている。
(Embodiment 3)
FIG. 3 shows a schematic cross-sectional view of the sublimation purification apparatus of the third embodiment. The same components as those in FIGS. 1 to 2 are denoted by the same reference numerals, and detailed description thereof is omitted. In the present embodiment, unlike the second embodiment, the ultraviolet absorbance measuring apparatus 8 includes an optical path switching means 14 and a plurality of sets of optical probes 13. Moreover, the heating means 6c and the heating means 6d are provided, and it is installed so that the outer peripheral part of the sublimation purification pipe | tube 4 may be covered without gap similarly to the heating means 6a.

光路切替手段14は昇華精製管4の紫外線を透過させる位置を切替えることができるものであり、本実施の形態では異なる3箇所の紫外線吸光度を測定できる。   The optical path switching means 14 can switch the position where the sublimation purification tube 4 transmits ultraviolet rays, and in this embodiment, it can measure ultraviolet absorbances at three different locations.

この構成により発光部9側の光路切替手段14と受光部10側の光路切替手段14を連動して切替えることで、昇華精製管4を挟んで対向する光プローブ13に紫外線を透過させることで、昇華精製管4の複数個所の紫外線吸光度を測定することができるものである。すなわち、光路切替手段14により複数組の光プローブ13を使い分けることで昇華精製管4の複数個所の紫外線吸光度を測定することができ、紫外線吸光度の高い位置に被処理物質11が凝結していることが分かるので、昇華精製管4の内壁面において被処理物質11が凝結している場所を特定することができるものである。   By switching the optical path switching unit 14 on the light emitting unit 9 side and the optical path switching unit 14 on the light receiving unit 10 side in conjunction with this configuration, by transmitting ultraviolet light to the optical probe 13 opposed across the sublimation purification tube 4, The ultraviolet absorbance at a plurality of locations of the sublimation purification tube 4 can be measured. That is, it is possible to measure the ultraviolet absorbance at a plurality of locations of the sublimation purification tube 4 by properly using a plurality of sets of optical probes 13 by the optical path switching means 14, and the substance 11 to be treated is condensed at a position where the ultraviolet absorbance is high. Therefore, it is possible to specify the place where the material 11 to be treated is condensed on the inner wall surface of the sublimation purification tube 4.

また本実施の形態は実施の形態1および実施の形態2とは異なり、加熱手段を4組備えているものである。加熱手段6aは被処理物質11を昇華させるための加熱手段であり、実施の形態1および実施の形態2と同様の作用を示すものである。加熱手段6bおよび加熱手段6cおよび加熱手段6dは被処理物質11を凝結させる温度を設定するためのものであり、異なる加熱温度でそれぞれの加熱手段を動作させることで昇華精製管4の内壁面に温度勾配を設定することができる。昇華された被処理物質11は不活性ガス12により搬送されるので、被処理物質11の凝結温度に一致した部位で被処理物質11が凝結される。   Further, this embodiment differs from the first and second embodiments in that it includes four sets of heating means. The heating means 6a is a heating means for sublimating the material 11 to be treated, and exhibits the same action as in the first and second embodiments. The heating means 6b, the heating means 6c, and the heating means 6d are for setting the temperature for condensing the material 11 to be treated. By operating the respective heating means at different heating temperatures, the heating means 6b and the heating means 6d are applied to the inner wall surface of the sublimation purification tube 4. A temperature gradient can be set. Since the sublimed material 11 to be treated is transported by the inert gas 12, the material 11 to be treated is condensed at a site corresponding to the condensation temperature of the material 11 to be treated.

本実施の形態では従来の昇華精製装置と異なり、昇華精製中に被処理物質11の凝結する部位を特定することができるので、凝結温度が未知である被処理物質11を昇華精製する場合においても、昇華精製中の凝結状況を把握しながら加熱手段の温度設定を変化させるなどの対応が可能になり、昇華精製の作業効率を高めることができる。また、昇華精製が完了した後で昇華精製された被処理物質11を回収する場合に、回収すべき場所を容易に特定することができ、昇華精製の作業効率を高めることができる。   In the present embodiment, unlike the conventional sublimation purification apparatus, it is possible to identify the site where the material 11 to be treated is condensed during sublimation purification. Therefore, even when the material 11 to be treated whose sublimation temperature is unknown is sublimated and purified. Thus, it becomes possible to change the temperature setting of the heating means while grasping the condensation state during the sublimation purification, and the work efficiency of the sublimation purification can be increased. Further, when the sublimation-purified substance 11 to be treated is collected after the sublimation purification is completed, the place to be collected can be easily specified, and the working efficiency of the sublimation purification can be improved.

また、昇華精製中に何らかの要因で、昇華精製管4の内部の真空度や内壁面の温度が変動した場合には、被処理物質11の凝結位置が変動するが、そのような場合においても昇華精製管4の内壁面の複数個所の紫外線吸光度を測定するので、実際に被処理物質11が凝結した場所を特定することができる。   Further, when the degree of vacuum inside the sublimation purification tube 4 or the temperature of the inner wall surface fluctuates for some reason during the sublimation purification, the condensation position of the substance 11 to be treated fluctuates. Since the ultraviolet absorbance at a plurality of locations on the inner wall surface of the purification tube 4 is measured, it is possible to specify the location where the substance 11 to be treated has actually condensed.

また、従来の昇華精製方法においては、被処理物質11の昇華温度を把握するために、昇華精製作業の事前に、別の装置を用いて真空下で被処理物質11を加熱して重量減衰を測定する精密な熱重量分析を行うことが多い。熱重量分析の結果により、真空度と凝結温度の関係が把握できるので、その条件に合わせて昇華精製条件を設定するものであるが、本実施の形態では熱重量分析の結果と真空度が異なり、凝結温度が変動したことにより凝結する場所が変動した場合においても、被処理物質11が凝結した場所を容易に特定することができる。   Further, in the conventional sublimation purification method, in order to grasp the sublimation temperature of the substance to be treated 11, the substance to be treated 11 is heated under vacuum using a separate device in advance of the sublimation purification work to reduce the weight. Often, precise thermogravimetric analysis is performed. The relationship between the degree of vacuum and the condensation temperature can be grasped from the results of thermogravimetric analysis, and sublimation purification conditions are set according to the conditions.However, the vacuum degree differs from the results of thermogravimetric analysis in this embodiment. Even when the place where the condensation occurs due to the change in the condensation temperature, it is possible to easily identify the place where the substance 11 to be treated has condensed.

また、実施の形態1および2と同様に、昇華精製管4の内壁面温度を安定的に維持することが昇華精製の純度を高めるポイントであることから、加熱手段6aおよび加熱手段6bおよび加熱手段6cおよび加熱手段6dは昇華精製管4の外周部を隙間無く覆うように設置することが重要であり、本実施の形態の光プローブ13を用いることで昇華精製管4の外周部に隙間を有することなく対応できるものである。   Similarly to the first and second embodiments, the stable maintenance of the inner wall surface temperature of the sublimation purification pipe 4 is a point that increases the purity of the sublimation purification, so that the heating means 6a, the heating means 6b, and the heating means It is important to install 6c and heating means 6d so as to cover the outer peripheral portion of sublimation purification tube 4 without a gap, and by using optical probe 13 of the present embodiment, there is a gap in the outer peripheral portion of sublimation purification tube 4. It can cope without it.

(実施の形態4)
図4に実施の形態4の昇華精製装置の概略断面図を示す。図1から図3と同様の構成要素については同一の符号を付し、その詳細な説明は省略する。
(Embodiment 4)
FIG. 4 shows a schematic cross-sectional view of the sublimation purification apparatus of the fourth embodiment. The same components as those in FIGS. 1 to 3 are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施の形態では、紫外線吸光度測定装置8の発光部9は被処理物質11が吸収する波長を含む範囲の紫外線を発光する。受光部10は発光部9からの紫外線を受光し、波長ごとの吸光度を測定する。被処理物質11が異なる凝結温度を有する複数の物質の混合物である場合、異なる凝結温度に合わせて、加熱手段6bおよび加熱手段6cおよび加熱手段6dの加熱温度を設定する。それにより高凝結温度被処理物質15と低凝結温度被処理物質16は異なる部位で凝結する。   In the present embodiment, the light emitting unit 9 of the ultraviolet absorbance measuring device 8 emits ultraviolet rays in a range including the wavelength absorbed by the substance 11 to be processed. The light receiving unit 10 receives the ultraviolet rays from the light emitting unit 9 and measures the absorbance for each wavelength. When the material 11 to be treated is a mixture of a plurality of substances having different condensation temperatures, the heating temperatures of the heating means 6b, the heating means 6c, and the heating means 6d are set in accordance with the different condensation temperatures. As a result, the high-condensation temperature treated substance 15 and the low-condensation temperature treated substance 16 condense at different sites.

図5に高凝結温度被処理物質15の紫外線吸収スペクトルを示す。高凝結温度被処理物質15は255nm付近で高い吸光度を示している。   FIG. 5 shows an ultraviolet absorption spectrum of the substance 15 to be treated with a high condensation temperature. The high-condensation temperature treated substance 15 shows a high absorbance around 255 nm.

図6に低凝結温度被処理物質16の紫外線吸収スペクトルを示す。低凝結温度被処理物質16は240nm付近で高い吸光度を示している。   FIG. 6 shows the ultraviolet absorption spectrum of the low-condensation temperature treated substance 16. The low-condensation temperature-treated substance 16 exhibits high absorbance around 240 nm.

この構成において、紫外線吸光度測定装置8に備えられた光路切替手段14の作用により複数組の光プローブ13を使い分けることで、昇華精製管4の複数位置に対して昇華精製管4を透過する紫外線の波長と吸光度の関係すなわち紫外線吸収スペクトルを測定することができる。紫外線吸収スペクトルから昇華精製管4の内壁面で凝結している高凝結温度被処理物質15または低凝結温度被処理物質16の有無および組成を把握することができる。   In this configuration, a plurality of sets of optical probes 13 are selectively used by the action of the optical path switching means 14 provided in the ultraviolet absorbance measuring device 8, so that the ultraviolet rays transmitted through the sublimation purification tube 4 can be transmitted to a plurality of positions of the sublimation purification tube 4. The relationship between wavelength and absorbance, that is, the ultraviolet absorption spectrum can be measured. The presence and composition of the high condensation temperature treated substance 15 or the low condensation temperature treated substance 16 condensed on the inner wall surface of the sublimation purification tube 4 can be determined from the ultraviolet absorption spectrum.

また、図5および図6で示すそれぞれの紫外線吸収スペクトルを既知の物質の紫外線吸収スペクトルと比較することで、所望の物質が昇華精製されているか否かを確認することができる。   Further, by comparing each ultraviolet absorption spectrum shown in FIG. 5 and FIG. 6 with an ultraviolet absorption spectrum of a known substance, it can be confirmed whether or not the desired substance is purified by sublimation.

また、図5および図6で示す紫外線吸収スペクトルを重ね合わせることで、お互いの吸収ピークが共有されていなければ、高凝結温度被処理物質15および低凝結温度被処理物質16を高純度に分離することができたのか、その成否を確認することができる。   Further, by superimposing the ultraviolet absorption spectra shown in FIGS. 5 and 6, if the mutual absorption peak is not shared, the high condensation temperature treated substance 15 and the low condensation temperature treated substance 16 are separated with high purity. The success or failure can be confirmed.

つまり、本実施の形態のように、昇華精製管4の内壁面の温度を任意に設定して、内壁面温度が異なる領域を複数個所に形成することができれば、被処理物質11が異なる凝結温度を有する複数の物質の混合された物質であっても容易に分離精製することが可能になり、それぞれの凝結部位における紫外線吸収スペクトルを測定することで、凝結した被処理物質11の組成を把握することができる。   That is, if the temperature of the inner wall surface of the sublimation purification tube 4 is arbitrarily set and a plurality of regions having different inner wall surface temperatures can be formed at a plurality of locations as in the present embodiment, the condensing temperatures of the substances to be treated 11 are different. It is possible to easily separate and purify even a mixed substance of a plurality of substances having a concentration, and grasp the composition of the condensed substance 11 to be treated by measuring the ultraviolet absorption spectrum at each condensation site. be able to.

また、本実施の形態において、昇華精製管4の前段である高凝結温度被処理物質15の凝結状態をモニタリングすることが、高凝結温度被処理物質15と低凝結温度被処理物質16を混合することなく分離精製するために重要である。加熱手段6bの加熱温度が低凝結温度被処理物質16の凝結温度よりも低い場合には、高凝結温度被処理物質15と低凝結温度被処理物質16が混合した状態で同じ場所に凝結してしまうので、分離精製することができなくなる。その場合には、加熱手段6bの加熱温度を高めることで、低凝結温度被処理物質16が昇華して、加熱手段6cの後流以降で凝結することになるので、高凝結温度被処理物質15と低凝結温度被処理物質16を混合することなく分離精製することができる。   Further, in the present embodiment, monitoring the condensation state of the high condensation temperature treated substance 15 which is the previous stage of the sublimation purification tube 4 mixes the high condensation temperature treated substance 15 and the low condensation temperature treated substance 16. This is important for separation and purification. When the heating temperature of the heating means 6b is lower than the condensing temperature of the low condensing temperature treated substance 16, the high condensing temperature treated substance 15 and the low condensing temperature treated substance 16 are condensed in the same place. Therefore, separation and purification cannot be performed. In that case, by increasing the heating temperature of the heating means 6b, the low-condensation temperature-treated substance 16 sublimes and condenses after the wake of the heating means 6c. And the low-condensation temperature treated substance 16 can be separated and purified without mixing.

本実施の形態においては、被処理物質11が高凝結温度被処理物質15および低凝結温度被処理物質16の2種類の物質の混合物であるとしたが、その組成に限ったものではなく、3種類以上の混合物の場合は3種類以上の温度領域を設定して、その領域の紫外線吸収スペクトルを測定することができれば、同様な構成で同じ効果を得ることができる。   In the present embodiment, the substance to be treated 11 is a mixture of two kinds of substances, that is, the substance to be treated 15 having a high condensation temperature and the substance to be treated 16 having a low condensation temperature. However, the composition is not limited to this. In the case of a mixture of more than one type, the same effect can be obtained with the same configuration if three or more types of temperature regions are set and the ultraviolet absorption spectrum of the region can be measured.

また、被処理物質11が異なる凝結温度を有する複数の物質の混合物でない場合においても、実施の形態3と同様に、被処理物質11が凝結した場所を特定することができる。   In addition, even when the substance to be treated 11 is not a mixture of a plurality of substances having different condensation temperatures, the place where the substance to be treated 11 is condensed can be specified as in the third embodiment.

また、本実施の形態においては、紫外線吸収スペクトルを200nmから500nmの波長の範囲で連続的に測定しているが、その方法に限ったものではなく、昇華精製対象である高凝結温度被処理物質15および低凝結温度被処理物質16の紫外線吸収ピークを含む断続的な波長でスペクトルを測定しても同様な効果を得ることができる。   In the present embodiment, the ultraviolet absorption spectrum is continuously measured in the wavelength range of 200 nm to 500 nm. However, the present invention is not limited to this method. A similar effect can be obtained even if the spectrum is measured at intermittent wavelengths including the ultraviolet absorption peak of the substance 15 and the low condensation temperature treated substance 16.

また、本実施の形態においては、紫外線吸光度測定装置8の発光部9および受光部10の構造について特に限定しないが、発光部9は水銀ランプや重水素ランプなど、所望の波長の紫外線を照射できる発光デバイスであればよく、受光部10は所望の波長の範囲を受光できるよう回折格子と光電子増倍管による受光デバイスやフォトダイオードアレイなどの受光デバイスを用いればよい。   In the present embodiment, the structures of the light emitting unit 9 and the light receiving unit 10 of the ultraviolet absorbance measuring device 8 are not particularly limited, but the light emitting unit 9 can irradiate ultraviolet rays having a desired wavelength such as a mercury lamp or a deuterium lamp. The light receiving unit 10 may be a light receiving device such as a light receiving device using a diffraction grating and a photomultiplier tube or a photodiode array so as to receive a desired wavelength range.

本発明にかかる昇華精製方法および昇華精製装置は、昇華精製中に被処理物質の凝結量を把握することを可能とするものであるので、有機ELや有機太陽電池または有機半導体などに使用される昇華性を有する有機化合物の精製、分離手段等として有用である。   The sublimation purification method and the sublimation purification apparatus according to the present invention make it possible to grasp the condensed amount of a substance to be treated during sublimation purification, and are used for organic EL, organic solar cells, organic semiconductors, and the like. It is useful as a means for purifying and separating organic compounds having sublimation properties.

1 昇華精製装置
2 流入口
3 流出口
4 昇華精製管
5 減圧手段
6a 加熱手段
6b 加熱手段
6c 加熱手段
6d 加熱手段
7 不活性ガス供給手段
8 紫外線吸光度測定装置
9 発光部
10 受光部
11 被処理物質
12 不活性ガス
13 光プローブ
14 光路切替手段
15 高凝結温度被処理物質
16 低凝結温度被処理物質
101 昇華精製装置
102 昇華精製管
103 減圧手段
104a 加熱手段
104b 加熱手段
105 不活性ガス供給手段
106 流入口
107 流出口
108 被処理物質
109 不活性ガス
DESCRIPTION OF SYMBOLS 1 Sublimation purification apparatus 2 Inlet 3 Outlet 4 Sublimation purification pipe 5 Depressurization means 6a Heating means 6b Heating means 6c Heating means 6d Heating means 7 Inert gas supply means 8 Ultraviolet light absorption measuring device 9 Light emitting part 10 Light receiving part 11 Processed substance DESCRIPTION OF SYMBOLS 12 Inert gas 13 Optical probe 14 Optical path switching means 15 High condensing temperature processed substance 16 Low condensing temperature processed substance 101 Sublimation purification apparatus 102 Sublimation purification pipe 103 Decompression means 104a Heating means 104b Heating means 105 Inert gas supply means 106 Flow Inlet 107 Outlet 108 Substance to be treated 109 Inert gas

Claims (5)

内部を減圧した昇華精製管内で昇華させた被処理物質を不活性ガスにより搬送し、温度勾配を有するように加熱した前記昇華精製管の内壁面に昇華した前記被処理物質を凝結させる昇華精製方法であって、
前記昇華精製管の紫外線吸光度を測定することで、前記被処理物質の凝結量を把握する昇華精製方法。
A sublimation purification method in which a substance to be treated sublimated in a sublimation purification pipe whose pressure is reduced is conveyed by an inert gas, and the substance to be sublimated is condensed on an inner wall surface of the sublimation purification pipe heated to have a temperature gradient. Because
A sublimation purification method in which the amount of condensation of the substance to be treated is grasped by measuring the ultraviolet absorbance of the sublimation purification tube.
流入口と流出口を有する昇華精製管と減圧手段と加熱手段と不活性ガス供給手段を備え、前記減圧手段により減圧した前記昇華精製管の内部において、前記加熱手段により被処理物質を加熱することで被処理物質を昇華させ、さらに前記不活性ガス供給手段により前記流入口から前記昇華精製管に供給されて前記流出口より排出される不活性ガスにより、昇華された前記被処理物質を搬送し、不活性ガスの搬送方向に沿って温度勾配を有するように前記加熱手段により加熱した前記昇華精製管の内壁面に、搬送された前記被処理物質を凝結させる昇華精製装置であって、
紫外線吸光度測定装置により前記昇華精製管の紫外線吸光度を測定し、昇華精製中の紫外線吸光度の変化から前記被処理物質の凝結量を把握する昇華精製装置。
A sublimation purification pipe having an inlet and an outlet, a depressurization means, a heating means, and an inert gas supply means, and the substance to be treated is heated by the heating means inside the sublimation purification pipe decompressed by the decompression means. The material to be treated is sublimated with the inert gas supplied from the inflow port to the sublimation purification pipe and discharged from the outflow port by the inert gas supply means. A sublimation purification apparatus for condensing the transferred substance to be treated on the inner wall surface of the sublimation purification tube heated by the heating means so as to have a temperature gradient along the conveying direction of the inert gas,
A sublimation purification apparatus that measures the ultraviolet absorbance of the sublimation purification tube with an ultraviolet absorbance measurement apparatus, and grasps the amount of condensation of the substance to be treated from the change in ultraviolet absorbance during sublimation purification.
光プローブを有する紫外線吸光度測定装置により、前記昇華精製管の紫外線吸光度を測定することで、前記被処理物質の凝結量を把握する請求項2記載の昇華精製装置。 The sublimation purification apparatus according to claim 2, wherein the amount of condensation of the substance to be treated is determined by measuring the ultraviolet absorbance of the sublimation purification tube with an ultraviolet absorbance measurement apparatus having an optical probe. 前記昇華精製管の複数個所の紫外線吸光度を測定することで、前記昇華精製管内壁面において前記被処理物質が凝結している場所を特定する請求項2または3に記載の昇華精製装置。 The sublimation purification apparatus according to claim 2 or 3, wherein a place where the substance to be treated is condensed is identified on an inner wall surface of the sublimation purification pipe by measuring ultraviolet absorbance at a plurality of locations of the sublimation purification pipe. 前記昇華精製管の紫外線吸収スペクトルを測定することで、前記昇華精製管の内壁面に凝結している前記被処理物質の組成を把握する請求項2から4のいずれか一項に記載の昇華精製装置。 The sublimation purification according to any one of claims 2 to 4, wherein the composition of the substance to be treated condensed on the inner wall surface of the sublimation purification tube is determined by measuring an ultraviolet absorption spectrum of the sublimation purification tube. apparatus.
JP2012148248A 2012-07-02 2012-07-02 Sublimation refining method, and sublimation refining apparatus Pending JP2014008483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012148248A JP2014008483A (en) 2012-07-02 2012-07-02 Sublimation refining method, and sublimation refining apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012148248A JP2014008483A (en) 2012-07-02 2012-07-02 Sublimation refining method, and sublimation refining apparatus

Publications (1)

Publication Number Publication Date
JP2014008483A true JP2014008483A (en) 2014-01-20

Family

ID=50105633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012148248A Pending JP2014008483A (en) 2012-07-02 2012-07-02 Sublimation refining method, and sublimation refining apparatus

Country Status (1)

Country Link
JP (1) JP2014008483A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175096A1 (en) * 2016-04-08 2017-10-12 株式会社半導体エネルギー研究所 Purification method, and purification device
CN110115853A (en) * 2019-04-11 2019-08-13 深圳普瑞材料技术有限公司 A kind of efficient small molecule material sublimation purification inner tube and device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175096A1 (en) * 2016-04-08 2017-10-12 株式会社半導体エネルギー研究所 Purification method, and purification device
JP2017189766A (en) * 2016-04-08 2017-10-19 株式会社半導体エネルギー研究所 Purification method, and purification device
CN109414629A (en) * 2016-04-08 2019-03-01 株式会社半导体能源研究所 Purification process and purification devices
CN109414629B (en) * 2016-04-08 2021-06-29 株式会社半导体能源研究所 Purification method and purification apparatus
US11090577B2 (en) 2016-04-08 2021-08-17 Semiconductor Energy Laboratory Co., Ltd. Purification method and purification apparatus
CN110115853A (en) * 2019-04-11 2019-08-13 深圳普瑞材料技术有限公司 A kind of efficient small molecule material sublimation purification inner tube and device
CN110115853B (en) * 2019-04-11 2021-08-20 深圳普瑞材料技术有限公司 Efficient micromolecular material sublimation purification inner tube and device

Similar Documents

Publication Publication Date Title
US6034357A (en) Apparatus and process for measuring the temperature of semiconductor wafers in the presence of radiation absorbing gases
US20180207545A1 (en) Apparatus for vacuum purification
FI3514533T3 (en) Apparatus for monitoring mercury gas in a sample
JP2014008483A (en) Sublimation refining method, and sublimation refining apparatus
EP2803397B1 (en) Apparatus for purifying organicelectroluminescent material and method for purifying organic compound
KR20140084165A (en) Apparatus for purifying organic material and method for purifying organic material
KR20150002644A (en) Organic-material refining device
JP2003526067A (en) Apparatus and method for tempering at least one workpiece
JP2007278836A (en) Method of analyzing mercury in exhaust gas, and device therefor
TW200507927A (en) Apparatus and process for vacuum sublimation
KR20110127452A (en) Apparatus for measuring total mercury amount
JP2000065699A (en) Analytical sample-burning device, method for controlling supply of inert gas, oxygen-containing gas in analytical sample-burning device, and analytical system having sample-burning device
US7985945B2 (en) Method for reducing stray light in a rapid thermal processing chamber by polarization
TW201338854A (en) Organic-material refining device
KR100550941B1 (en) Device and method for refining organic material
KR20100114342A (en) Sublimation refining apparatus and sublimation refining method using the same
JP4841917B2 (en) Oxygen concentration measuring device
JP2007015870A (en) Activated carbon manufacturing apparatus
CN110618097A (en) Mercury morphological analysis pyrolysis device with adjustable and controllable temperature and flow rate and use method
TWI577957B (en) Heater unit and heat treatment apparatus
CN104926571A (en) Sublimation device and method for preparation of high-purity explosive material
KR101366447B1 (en) Organic compound purifying apparatus
JP2014061465A (en) Apparatus and method for sublimation purification
JP2000065696A (en) Filter device and sulfur analytical system provided with filter device
JP5371624B2 (en) Plasma emission analysis method and apparatus therefor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150312