JP2014007897A - 電池モジュールの監視装置 - Google Patents

電池モジュールの監視装置 Download PDF

Info

Publication number
JP2014007897A
JP2014007897A JP2012143252A JP2012143252A JP2014007897A JP 2014007897 A JP2014007897 A JP 2014007897A JP 2012143252 A JP2012143252 A JP 2012143252A JP 2012143252 A JP2012143252 A JP 2012143252A JP 2014007897 A JP2014007897 A JP 2014007897A
Authority
JP
Japan
Prior art keywords
battery
circuit
voltage
bus bar
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012143252A
Other languages
English (en)
Inventor
Takayoshi Amano
孝義 天野
Masahiro Kako
昌弘 加古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP2012143252A priority Critical patent/JP2014007897A/ja
Publication of JP2014007897A publication Critical patent/JP2014007897A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】電池モジュールを成す複数の単位電池11の電圧を測定し、各単位電池11の充電状態を監視する電池監視回路に電圧データをシリアル通信により送信する電池モジュールの監視装置において、各単位電池毎に電圧データを常時蓄えておき、電池監視回路への送信は各単位電池毎に蓄えていた電圧データを一斉に送信することにより、電池監視回路において必要としたタイミングで各単位電池の最新データを得ることができるようにする。
【解決手段】各単位電池11の電圧データを所定周期でそれぞれ測定するオペアンプ32と、測定した電圧データをそれぞれ保存するメモリ40と、電池監視回路へ電圧データを送信するとき、メモリ40に保存された各電圧データのうち、それぞれ直前のタイミングで保存されたものを送信するロジック回路39、シリアル入力回路41及びシリアル出力回路とを備える。
【選択図】図4

Description

本発明は、電気自動車などに用いられ、複数個の単位電池を組合わせて成る電池モジュールの電圧などを監視する電池モジュールの監視装置に関する。
電気自動車などの電源としての電池モジュールは、複数の単位電池を直並列接続して高電圧、大容量の出力を確保可能としている。係る電池モジュールを効率良く使用するためには単位電池個々の充電状態を把握して各単位電池をバランス良く使用することが望ましい。そのため、上記電池モジュールでは各単位電池の充電状態を測定して、その測定データに基づいて電池監視回路で各単位電池の充電状態が均等になるように制御している。単位電池の充電状態は通電時における単位電池の電圧を測定することにより行われている。
このように各単位電池毎に電圧を測定するためには、電圧測定回路に各単位電池を個別に接続しなければならない。そのため、単位電池数が多い場合、電圧測定のために各単位電池と電圧測定回路との間を結ぶ配線数が増加し、その取扱いが煩雑になる。因みに、単位電池が48個直列接続された電池モジュールの場合、上記配線数が少なくとも48本必要となる。
その問題を解消するものとして、各単位電池に対応させて電圧測定回路を各単位電池に接近して設け、各測定回路で測定された電圧をシリアル通信により単一の通信線で電池監視回路に送る方式(以下、シリアル方式という)が提案されている(下記特許文献1参照)。
特開2011−78200号公報
しかし、上記シリアル方式の場合、シリアル通信により多数の単位電池の電圧データを順次送信するため、送信開始から終了までに長時間を要し、送信開始初期に電池監視回路に送られたデータは、送信完了時には測定から長時間を経過したデータとなり、最新データではなくなる問題がある。つまり、データを必要としたタイミングで各単位電池の最新データを得ることができない問題がある。
このような問題に鑑み本発明の課題は、各単位電池毎に電圧データを常時蓄えておき、電池監視回路への送信は各単位電池毎に蓄えていたデータを一斉に送信することにより、電池監視回路において必要としたタイミングで各単位電池の最新データを得ることができるようにすることにある。
本発明の第1発明は、電池モジュールを成す複数の単位電池の電圧を測定し、充電状態等の電池の状態を監視する電池監視回路に前記電圧データをシリアル通信により送信する電池モジュールの監視装置であって、前記各単位電池の電圧データを所定周期でそれぞれ測定する電圧測定回路と、測定した電圧データをそれぞれ保存するメモリと、前記電池監視回路へ前記電圧データを送信するとき、保存された各電圧データのうち、それぞれ直前のタイミングで保存されたものを送信する送信回路とを備えることを特徴とする。
第1発明によれば、所定周期で測定され保存された各単位電池の電圧データのうち、電圧データ送信時には、その直前のタイミングで保存された各電圧データを送信するので、電池監視回路ではデータを必要としたタイミングで各単位電池の最新データを得ることができる。なお、本発明におけるメモリは揮発性メモリでも不揮発性メモリでも良い。
本発明の第2発明は、上記第1発明において、電池モジュールを成す単位電池のうち、互いに隣接する単位電池同士を電気接続するバスバーと、該バスバーで互いに接続された各単位電池の電圧を測定する電圧測定回路とを一体化してバスバーモジュールとされており、前記バスバーモジュールには該バスバーモジュールの温度を測定する温度センサが設けられ、該温度センサにより測定された温度データは、前記電圧測定回路により測定された電圧データと共にメモリに保存され、前記送信回路により前記電池監視回路へ送信されることを特徴とする。
第2発明によれば、電池に近接配置され、且つ内部に電気回路を備えるバスバーモジュールの温度を温度センサにより測定し、その結果を電池監視回路に送信するので、必要に応じてバスバーモジュールの温度に基づき電池モジュールの使用状態、若しくはバスバーモジュール内の電気回路の作動状態を制御して、バスバーモジュールに一体化された電気回路を高熱から保護することができる。
本発明の第3発明は、上記第1発明において、電池モジュールを成す単位電池のうち、互いに隣接する単位電池同士を電気接続するバスバーと、該バスバーで互いに接続された各単位電池の電圧を測定する電圧測定回路と、前記バスバーで互いに接続された各単位電池の充電状態を均等化する均等化回路とを一体化してバスバーモジュールとされており、前記バスバーモジュールには該バスバーモジュールの温度を測定する温度センサが設けられ、該温度センサにより測定された温度データは、前記電圧測定回路により測定された電圧データと共にメモリに保存され、前記送信回路により前記電池監視回路へ送信されることを特徴とする。
第3発明によれば、電池に近接配置され、且つ内部に作動時に発熱を伴う均等化回路を備えるバスバーモジュールの温度を温度センサにより測定し、その結果を電池監視回路に送信するので、必要に応じてバスバーモジュールの温度に基づき電池モジュールの使用状態、若しくはバスバーモジュール内の均等化回路の作動状態を制御して、バスバーモジュールに一体化された電気回路を高熱から保護することができる。
本発明の第4発明は、上記第2又は第3発明において、前記電圧データ及び温度データは、一つのアナログ・デジタル変換器により順次デジタル信号に変換され、前記温度データは、前記電圧データよりも後のタイミングで時間差を持ってメモリに保存されるように構成され、前記送信回路により前記電池監視回路へ送信される前記温度データは、前記電圧データよりも後のタイミングで送信されることを特徴とする。
第4発明によれば、送信回路から電池監視回路への送信時、電圧データより温度データの方が測定から送信までの時間遅れが少ないため、バスバーモジュールに一体化された電気回路の熱に対する保護の確実性を高めることができる。
本発明の一実施形態の全体構成を説明する説明図である。 上記実施形態におけるバスバーモジュールの平面図である。 上記実施形態におけるシリアル通信の説明図である。 上記実施形態における電池監視ICのブロック回路図である。 上記実施形態における電圧及び温度データのメモリへの保存の仕方を説明するタイムチャートである。 上記実施形態における電池モジュールの温度分布を示す説明図である。
図1〜6に基づいて本発明の一実施形態を説明する。この実施形態は、電気自動車用電池に本発明を適用したものを示し、24個の単位電池11を直列接続して電池モジュール10が構成されている。
図1は一実施形態の全体概要を示しており、図2は24個の単位電池11を互いに直列接続するバスバー23A〜23Fと、バスバー23A〜23Fのうち隣接する4つを樹脂成形体27A〜27F、28A〜28Fによって連結して一体化されたバスバーモジュール20A〜20Fとを示している。図2において、24Fと25は、バスバー23A〜23Fによって互いに直列接続された24個の単位電池11の両極端子に接続されたバスバーである。
図1、2のように、樹脂成形体27A〜27Fには電池監視IC30A〜30Fが一体化されて設けられており、各電池監視IC30A〜30Fは配線板29内の電気配線(シリアル信号線21)によって電池監視回路50との間でシリアル通信可能に接続されている。図2において、21A、21Bは、配線板29内の電気配線を電池監視回路50に接続するためのコネクタである。樹脂成形体27A〜27F、28A〜28F、配線板29及び配線板26には、各単位電池11の両極端子を各電池監視IC30A〜30Fに接続する配線が一体化されて設けられている。なお、配線板26は樹脂成形体27A〜27F、28A〜28Fと同様にバスバー25に一体化されて設けられている。
図4は電池監視IC30(各電池監視IC30A〜30Fを代表して示す)の内部構成を示しており、電池監視IC30には一つのバスバーモジュール20(バスバーモジュール20A〜20Fを代表して示す)に対応する4個の単位電池11がモニタ配線22によって接続されている。
各単位電池11の両極端子間には、それぞれコンデンサ48が接続され、更に定電流回路45とダイオード46との直列回路が接続されている。コンデンサ48はサージ電圧吸収用であり、ダイオード46は順方向の電圧降下が温度に依存するように構成された温度測定用ダイオードである。従って、ダイオード46は、モニタ配線22を介して伝達される単位電池11の温度を検出している。また、定電流回路45はダイオード46に定電流を供給するものである。
また、各単位電池11の両極端子間には、抵抗47とトランジスタ31との直列回路が接続されている。各トランジスタ31は均等化回路34からの信号を受けて導通するように構成されており、トランジスタ31が導通されると対応する単位電池11は抵抗47を通じて放電される。この構成により、各単位電池11の均等化が行われている。つまり、後述するように電池監視回路50で、各単位電池11毎の充電状態が監視され、各単位電池11の充電状態が均等になるように、比較的充電状態の良い単位電池11に対応するトランジスタ31が導通されて、その単位電池11を放電させる。
更に、各単位電池11の両極端子間には、上記抵抗47を介してオペアンプ32が接続されており、各単位電池11の端子間電圧を測定している。各オペアンプ32の出力はマルチプレクサ33を介してAD変換器(アナログ・デジタル変換器)35に供給され、各オペアンプ32で測定された各単位電池11の端子間電圧は順次デジタル信号に変換されてロジック回路39内のメモリ40に格納され保存される。このメモリ40は揮発性メモリでも不揮発性メモリでも良い。各オペアンプ32は、本発明の電圧測定回路に相当する。
AD変換器35には、温度センサ36も接続されており、温度センサ36により測定される温度データも各オペアンプ32からの電圧データと共にデジタル信号に変換されてロジック回路39内のメモリ40に格納され保存される。ここで、温度センサ36は電池監視IC30の温度(チップ温度)を測定している。電池監視IC30は、上述のようにバスバーモジュール20を構成する樹脂成形体27A〜27Fに一体化されていて、単位電池11の上に配置されており、単位電池11が発生する熱を受け易い。また、電池監視IC30内には、上述のように均等化回路34の指令を受けて各単位電池11を放電させる抵抗47も有り、温度上昇し易い。そのため、温度センサ36によってチップ温度を測定し、このチップ温度が所定値よりも高くなったときは電池モジュール10の使用状態や均等化回路34の作動を制御して温度上昇を抑制するようにしている。それにより電池監視IC30内の各電気回路を高温から保護している。
上述のロジック回路39は、上述のようにメモリ40を内蔵すると共に、発振回路38及び均等化回路34に接続されている。発振回路38はロジック回路39内でクロックパルスを発生させるために設けられており、このクロックパルスによりロジック回路39内の各種作動タイミングが制御されている。また、均等化回路34はロジック回路39から作動許可信号を受けるようにされている。
ロジック回路39には、シリアル入力回路41及びシリアル出力回路42が接続されており、ロジック回路39はシリアル入力回路41及びシリアル出力回路42を介して他のバスバーモジュール20のロジック回路39と共に電池監視回路50に接続されている。このように各バスバーモジュール20A〜20Fの各電池監視IC30A〜30Fがシリアル入力回路41及びシリアル出力回路42を介して互いにカスケード接続され、シリアル通信にて電池監視回路50との間で通信可能とされている。ロジック回路39、シリアル入力回路41及びシリアル出力回路42は、本発明の送信回路に相当する。
図4において、43は基準電圧発生回路であり、単位電池11の電圧を受けて電池監視IC30内の各回路に一定電圧を供給している。なお、図4では基準電圧発生回路43から各回路への電源供給線の図示は省略している。また、44は外部サーミスタであり、電池モジュール10の中で中心部に位置する単位電池11の外壁に固定され、当該単位電池11の温度を測定している。従って、係る外部サーミスタ44は電池モジュール10の中で一つの単位電池11に対応して設けられ、その出力を電池監視IC30のマルチプレクサ33に入力され、各オペアンプ32からの電圧信号と共にAD変換器35でデジタル信号に変換されてロジック回路39に供給されている。
図1に示すように、電池モジュール10には電流センサ61が設けられ、この電流センサ61により電池モジュール10を成す各単位電池11に流れる電流が測定されている。ここで測定された電流は電池監視回路50に供給され、電池監視回路50では、その電流に基づいて各単位電池11の充放電状態を検出している。また、電池モジュール10には冷却ファンモータ62も設けられ、この冷却ファンモータ62によって駆動される冷却ファン(不図示)によって電池モジュール10を冷却するようにしている。冷却ファンモータ62には、電気自動車における制御回路である電源系制御回路63から駆動信号が供給されている。従って、上記冷却ファンは電池モジュール10を含めた電気自動車全体における必要性の判断から作動制御されている。なお、上述の電池監視回路50と電源系制御回路63との間もシリアル通信によって情報交換するようにされている。
図5は、各電池監視IC30A〜30Fにおける電圧データと温度データがロジック回路39のメモリ40に保存される様子を説明している。図5において、縦軸は6個のバスバーモジュール20A〜20Fの各電池監視IC30A〜30Fの電圧データと温度データを示し、横軸は電圧データと温度データがロジック回路39のメモリ40に保存されるタイミングであるサンプリング周期を示している。このサンプリング周期は、上述のクロックパルスにより決定されている。
図5の横軸に示す1〜6の各サンプリング周期では、それぞれ4個の単位電池11に対応する4つの電圧データが保存され、温度センサ36によって測定された温度データが保存される。このとき、各電圧データ及び温度データは、一つのAD変換器35によって順次デジタル信号に変換されてロジック回路39のメモリ40に格納されるため、僅かの時間差を持って保存される。このようにして、メモリ40にはサンプリング周期に従って常時、各電圧データ及び温度データが保存されている。図5において、黒丸(●)はメモリ40に保存された一つひとつのデータを示す。なお、図5では1〜5のサンプリング周期には斜線Eより下側で黒丸(●)の記載されてない領域があるが、これは記載を省略しているのみで実際には全てのサンプリング周期でデータは保存されている。
図5において6番目のサンプリング周期を太枠で囲っているが、これは電圧監視回路50から各電池監視IC30A〜30Fが各電圧データ及び温度データの要求指令を受けて、その要求に応じて各電圧データ及び温度データをシリアル通信により送信した時期を示している。一方、図5においてサンプリング周期の1番目から6番目にかけて斜めに引かれた線Eは、本発明のように各電圧データ及び温度データをメモリ40に保存しない、従来方式で各電圧データ及び温度データをシリアル通信によって送信した場合の各データの送信タイミングを示している。図5の太枠と斜めに引かれた線Eとを比較すれば明らかなように、従来方式では各電池監視IC30A〜30F毎に違うサンプリング周期の電圧データ及び温度データが送信されるのに対し、本発明の方式では全ての各電池監視IC30A〜30Fが同じサンプリング周期の電圧データ及び温度データを送信できる。換言すると、従来方式では、シリアル通信により電圧データ及び温度データの送信開始から終了までに長時間(サンプリング周期1〜6を合計した時間)を要し、送信開始初期に電池監視回路に送られたデータは、送信完了時には測定から長時間を経過したデータとなり、最新データではなくなる。つまり、データを必要としたタイミングで各単位電池の最新データを得ることができない。これに対し、本発明の方式では、電池監視回路50への電圧データ及び温度データの送信はメモリ40に常時蓄えておいたデータを一斉に送信することにより、電池監視回路50はデータを必要としたタイミングで各単位電池11の最新データを得ることができる。
図5において、各電池監視IC30A〜30Fにおける温度データは各電圧データより遅いタイミングでメモリ40に格納されている。このようにすることにより、電圧データより温度データの方が測定から送信までの時間遅れが少なくされるため、温度センサ36によって測定された温度データを測定後時間遅れ少なく電池監視回路50に送信して、各電池監視IC30A〜30Fに一体化された電気回路の熱に対する保護の確実性を高めることができる。
図5によれば、サンプリング6回分の電圧データ及び温度データがメモリ40に格納、保存されるように見えるが、メモリ40には、常時最新のサンプリング1回分データが格納、保存されれば良い。
図3は、各電池監視IC30A〜30Fと電池監視回路50との間で行われるシリアル通信を説明している。電池監視回路50から電圧監視及び温度監視の指示信号Aがシリアル信号線21を介してバスバーモジュール20Aの電池監視IC30Aに送信されると、電池監視IC30Aではロジック回路39のメモリ40に保存されている電圧データ及び温度データを次のバスバーモジュール20Bの電池監視IC30Bに送信する。この送信を受けて電池監視IC30Bでは、同様にメモリ40に保存されている電圧データ及び温度データを電池監視IC30Aの電圧データ及び温度データと共に、次のバスバーモジュール20Cの電池監視IC30Cに送信する。以下同様にして各電池監視IC30A〜30Fの電圧データ及び温度データを順次重ねて送信し、最終的には電池監視IC30Fから電池監視回路50に全ての電池監視IC30A〜30Fの電圧データ及び温度データが送信される。
均等化指示信号Bについても上述の電圧監視及び温度監視の指示信号Aと同様にシリアル通信により各バスバーモジュール20A〜20Fの各電池監視IC30A〜30Fに送信される。
図6は24個の単位電池11が直列接続されて成る電池モジュール10の単位電池11配列方向における温度分布の一例を示している。図2から明らかなように単位電池11の配列方向には各電池監視IC30A〜30Fが配列され、各電池監視IC30A〜30Fでは、上述のように各単位電池11に対応してダイオード46により温度測定が行われている。各ダイオード46によって測定された温度は、図6で▲によって示され、各ダイオード46で測定された温度を結んだ折れ線Cによって各単位電池11の温度が示されている。図6では各ダイオード46によって測定された温度を示す▲の位置は、各電池監視IC30A〜30Fに対応して記載されているが、各ダイオード46は各単位電池11毎に対応して設けられているので、▲の位置は各単位電池11に対応して記載することができる。図6ではこれを省略して記載している。
なお、各電池監視IC30A〜30Fにおけるダイオード46により測定される温度に代えて温度センサ36によって測定される温度を使用することもできる。ダイオード46は単位電池11の温度測定を目的として設けられおり、温度センサ36は電池監視IC30の温度測定を目的に設けられているが、温度センサ36により測定される温度も単位電池11の温度の影響を大きく受けているので、代用は充分に可能である。このようにダイオード46に代えて温度センサ36を使用した場合は、図6において測定される温度を示す▲の位置は図示のとおり各電池監視IC30A〜30Fに対応することになる。
図6において外部サーミスタ44は、電池モジュール10の単位電池11配列方向における略中央部に設けられており、外部サーミスタ44によって測定される温度は■で示されている。図6から明らかなように外部サーミスタ44によって測定される温度■は、電池モジュール10の単位電池11配列方向において略同じ位置に設けられた電池監視IC30Dのダイオード46によって測定された温度●より僅かに高い温度を示している。これは、電池監視IC30Dが設けられているバスバーモジュール20Dは上述のように冷却ファンによって冷却されていること、並びに単位電池11の熱がダイオード46に伝わるまでに時間を要することのため、外部サーミスタ44によって測定される温度よりもダイオード46によって測定された温度の方が低くなるためである。なお、外部サーミスタ44としてサーミスタを使用する理由は、サーミスタがダイオードに比べて温度に対する応答性が良いためである。
しかし、実際の単位電池11の温度は外部サーミスタ44によって測定される温度であるため、両者の温度差を補正係数として、ダイオード46によって測定された温度Cを補正している。補正された温度はDで示されている。つまり、温度Dは温度Cに補正係数を加算して求められている。
このように補正された結果、電池モジュール10の各単位電池11の温度Dは実温度に近似した値となり、電源系制御回路63における電池温度の監視を精度良く行うことができる。例えば、図6で示すように電池監視IC30Cの近くの単位電池11で「異常発熱」が起きると、その熱は電池監視IC30Cのダイオード46によって測定され、電池監視IC30Cに対応する温度▲が上昇する。そのため、上述のように補正された後の温度から「異常発熱」を検出することができる。
以上、特定の実施形態について説明したが、本発明は、それらの外観、構成に限定されず、本発明の要旨を変更しない範囲で種々の変更、追加、削除が可能である。例えば、
1.電池モジュールに使用される単位電池は、リチウム・イオン電池、ニッケル・水素電池など種類を問わない。
2.電池モジュールはハイブリッド車(エンジンと電気モータとの駆動力で走行する車両)用、電気自動車用、産業車両用、家庭用など用途を問わない。
3.一つの電池モジュールに接続される単位電池の数は、任意とすることができる。
4.バスバーモジュールは使用しても、しなくても良い。
5.バスバーモジュールによりモジュール化される単位電池の数は、上記実施形態の場合は4個とされたが、任意の数に設定することができる。
6.上記実施形態では、一つのバスバーモジュール内では、4つの単位電池の電圧を時間差を持ってメモリに取り込むようにしたが、各単位電池の電圧を全て同時にメモリに取り込むようにしても良い。その場合、アナログ・デジタル変換器が各単位電池毎に必要となる。
7.均等化回路は、上記実施形態のように充電状態の良い単位電池を単純に放電させるものではなく、充電状態の良い単位電池により充電状態の悪い単位電池を充電するものでも良い。
8.上記実施形態では、各バスバーモジュールの温度は、電圧データと共に各メモリに保存する構成としたが、温度データはメモリに保存せず、電池監視回路への送信時に、温度を測定して直接送信するようにしても良い。その場合、電池監視回路へシリアル通信にて順次データ送信される各バスバーモジュールのうち、送信順序を最後とされたバスバーモジュールを、バスバーモジュールの風冷時における下流側(最下流とは限らない)に位置し、冷却され難いバスバーモジュールと一致させることが望ましい。なぜなら、風冷時において下流側に位置するバスバーモジュールは冷却風が届き難く冷却され難い傾向にあり、一方、シリアル通信においてデータ送信の順序が最後とされたバスバーモジュールは温度が測定されてから送信されるまでの時間遅れが他のバスバーモジュールに比べて最も少なくなるため、温度条件の厳しいバスバーモジュールの温度を、温度測定から時間遅れ少なく電池監視回路に送信することができる。これにより、バスバーモジュールに一体化された電気回路保護の確実性を高めることができる。
10 電池モジュール
11 単位電池
20、20A、20B、20C、20D、20E、20F バスバーモジュール
21 シリアル信号線
21A、21B コネクタ
22 モニタ配線
23A、23B、23C、23D、23E、23F バスバー
24F、25 バスバー
26 配線板
27A、27B、27C、27D、27E、27F 樹脂成形体
28A、28B、28C、28D、28E、28F 樹脂成形体
29 配線板
30、30A、30B、30C、30D、30E、30F 電池監視IC
31 トランジスタ
32 オペアンプ(電圧測定回路)
33 マルチプレクサ
34 均等化回路
35 AD変換器(アナログ・デジタル変換器)
36 温度センサ
38 発振回路
39 ロジック回路(送信回路)
40 メモリ
41 シリアル入力回路(送信回路)
42 シリアル出力回路(送信回路)
43 基準電圧発生回路
44 外部サーミスタ
45 定電流回路
46 ダイオード
47 抵抗
48 コンデンサ
50 電池監視回路
61 電流センサ
62 冷却ファンモータ
63 電源系統制御回路

Claims (4)

  1. 電池モジュールを成す複数の単位電池の電圧を測定し、充電状態等の電池の状態を監視する電池監視回路に前記電圧データをシリアル通信により送信する電池モジュールの監視装置であって、
    前記各単位電池の電圧データを所定周期でそれぞれ測定する電圧測定回路と、
    測定した電圧データをそれぞれ保存するメモリと、
    前記電池監視回路へ前記電圧データを送信するとき、保存された各電圧データのうち、それぞれ直前のタイミングで保存されたものを送信する送信回路とを備えることを特徴とする電池モジュールの監視装置。
  2. 請求項1において、
    電池モジュールを成す単位電池のうち、互いに隣接する単位電池同士を電気接続するバスバーと、該バスバーで互いに接続された各単位電池の電圧を測定する電圧測定回路とを一体化してバスバーモジュールとされており、
    前記バスバーモジュールには該バスバーモジュールの温度を測定する温度センサが設けられ、
    該温度センサにより測定された温度データは、前記電圧測定回路により測定された電圧データと共にメモリに保存され、前記送信回路により前記電池監視回路へ送信されることを特徴とする電池モジュールの監視装置。
  3. 請求項1において、
    電池モジュールを成す単位電池のうち、互いに隣接する単位電池同士を電気接続するバスバーと、該バスバーで互いに接続された各単位電池の電圧を測定する電圧測定回路と、前記バスバーで互いに接続された各単位電池の充電状態を均等化する均等化回路とを一体化してバスバーモジュールとされており、
    前記バスバーモジュールには該バスバーモジュールの温度を測定する温度センサが設けられ、
    該温度センサにより測定された温度データは、前記電圧測定回路により測定された電圧データと共にメモリに保存され、前記送信回路により前記電池監視回路へ送信されることを特徴とする電池モジュールの監視装置。
  4. 請求項2又は3において、
    前記電圧データ及び温度データは、一つのアナログ・デジタル変換器により順次デジタル信号に変換され、前記温度データは、前記電圧データよりも後のタイミングで時間差を持ってメモリに保存されるように構成され、
    前記送信回路により前記電池監視回路へ送信される前記温度データは、前記電圧データよりも後のタイミングで送信されることを特徴とする電池モジュールの監視装置。
JP2012143252A 2012-06-26 2012-06-26 電池モジュールの監視装置 Pending JP2014007897A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012143252A JP2014007897A (ja) 2012-06-26 2012-06-26 電池モジュールの監視装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012143252A JP2014007897A (ja) 2012-06-26 2012-06-26 電池モジュールの監視装置

Publications (1)

Publication Number Publication Date
JP2014007897A true JP2014007897A (ja) 2014-01-16

Family

ID=50105181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012143252A Pending JP2014007897A (ja) 2012-06-26 2012-06-26 電池モジュールの監視装置

Country Status (1)

Country Link
JP (1) JP2014007897A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125936A1 (ja) * 2014-02-20 2015-08-27 矢崎総業株式会社 電源装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125936A1 (ja) * 2014-02-20 2015-08-27 矢崎総業株式会社 電源装置
JPWO2015125936A1 (ja) * 2014-02-20 2017-03-30 矢崎総業株式会社 電源装置

Similar Documents

Publication Publication Date Title
US11519971B2 (en) Battery pack
EP2043220B1 (en) Multi-series battery control system
EP2043221B1 (en) Automotive power supply system
EP2043222A2 (en) Integrated circuit for controlling battery cell and automotive power supply system
JP5683710B2 (ja) 電池システム監視装置
EP2043218A2 (en) Automotive power supply system
EP3179262B1 (en) Battery system for vehicle, and cell controller
US20120326725A1 (en) Monitoring apparatus, monitoring control apparatus, power supply apparatus, monitoring method, monitoring control method, power storage system, electronic apparatus, motor-driven vehicle, and electric power system
US20130265058A1 (en) Battery monitoring system using time-based signals
US8013618B2 (en) Voltage detection apparatus
JP5670556B2 (ja) 電池制御装置
US8793087B2 (en) Modular device for protecting and monitoring a battery
JP5497319B2 (ja) 電池組立装置、及び電池組立方法
JPWO2015181866A1 (ja) 電池システム
CN102769157A (zh) 电池组热管理系统和方法
CN102341715A (zh) 用于检测电池组中的电流传感器的异常的方法和装置
TWI451653B (zh) 電池組保護系統及其充放電方法
JP2011069782A (ja) 電圧監視回路、及び電池電源装置
US20130260198A1 (en) Battery System
KR101877564B1 (ko) 배터리 팩
KR101488355B1 (ko) 스마트 bms 시스템
KR20210007247A (ko) 배터리 모듈을 위한 냉각 요구 사양 진단 장치
JP2014007897A (ja) 電池モジュールの監視装置
US20140347060A1 (en) System for Power Balance Monitoring in Batteries
CN103999282A (zh) 用于确定电池组的充电和放电功率电平的系统和方法