JP2014007100A - Transparent conductive film and method for producing the same - Google Patents

Transparent conductive film and method for producing the same Download PDF

Info

Publication number
JP2014007100A
JP2014007100A JP2012143161A JP2012143161A JP2014007100A JP 2014007100 A JP2014007100 A JP 2014007100A JP 2012143161 A JP2012143161 A JP 2012143161A JP 2012143161 A JP2012143161 A JP 2012143161A JP 2014007100 A JP2014007100 A JP 2014007100A
Authority
JP
Japan
Prior art keywords
conductive film
transparent conductive
sheet resistance
nitrogen
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012143161A
Other languages
Japanese (ja)
Other versions
JP6080399B2 (en
Inventor
Takahiro Ito
孝洋 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Geomatec Co Ltd
Original Assignee
Geomatec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geomatec Co Ltd filed Critical Geomatec Co Ltd
Priority to JP2012143161A priority Critical patent/JP6080399B2/en
Publication of JP2014007100A publication Critical patent/JP2014007100A/en
Application granted granted Critical
Publication of JP6080399B2 publication Critical patent/JP6080399B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Electric Cables (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transparent conductive film which can be used for a transparent heating element, has relatively high sheet resistance, can be stably supplied, and has high transmittance, and to provide a method for producing the same.SOLUTION: The transparent conductive film formed on a transparent substrate contains indium tin oxide (ITO) as a main material, is doped with nitrogen and silicon oxide, and is for a transparent heating element. The transparent conductive film has a sheet resistance of 1000-30000 Ω/sq and a transmittance at a wavelength of 550 nm of 96% or more.

Description

本発明は、透明基板上に設けられる発熱体用の透明導電膜及びその製造方法に関する。   The present invention relates to a transparent conductive film for a heating element provided on a transparent substrate and a method for producing the same.

寒冷地や冬場において道路表示灯,屋外表示装置,屋外照明装置,車両窓などの融雪,結露防止や曇り止めを行うために、透明導電膜を透明発熱体として用いるニーズがある。特に近年、熱を放出しにくいLEDを用いた信号や電球等が多く用いられるようになったことで、信号や電球の融雪や結露防止を行う透明発熱体からなるデフロスターのニーズが高まっている。   There is a need to use a transparent conductive film as a transparent heating element in order to prevent snow melting, condensation, and anti-fogging in road indicators, outdoor display devices, outdoor lighting devices, vehicle windows and the like in cold and winter areas. Particularly in recent years, the need for defrosters made of transparent heating elements for preventing melting of snow and condensation of signals and light bulbs has increased due to the increasing use of signals and light bulbs using LEDs that do not easily release heat.

透明導電膜からなる透明発熱体には、1000〜10000Ω/sq程度のシート抵抗が求められ、このシート抵抗は、デジタルタッチパネル用電極として用いられる透明導電膜で150Ω/sq程度以下、アナログタッチパネル用電極として用いられる透明導電膜で400〜800Ω/sq程度の低抵抗が求められるのに対し、比較的高い値である。
そこで、透明導電膜を高抵抗側にシフトさせるために、ITOにSiOを添加して透明導電膜を得る技術が知られている(例えば特許文献1)。
A transparent heating element made of a transparent conductive film is required to have a sheet resistance of about 1000 to 10000 Ω / sq. This sheet resistance is about 150 Ω / sq or less for a transparent conductive film used as an electrode for a digital touch panel. The transparent conductive film used as a low resistance of about 400 to 800 Ω / sq is required, whereas it is a relatively high value.
Therefore, a technique for obtaining a transparent conductive film by adding SiO 2 to ITO in order to shift the transparent conductive film to the high resistance side is known (for example, Patent Document 1).

特許文献1では、SnO,SiO,Inを含む成形体を焼成・焼結させて得たターゲットを用いて、DCマグネトロンスパッタによりガラス基板上に厚さ1200Åの透明導電膜を成膜したところ、0.78〜22×10−3Ω・cmの範囲の抵抗率で、透過率88%以上の透明導電膜が得られることが開示されている。抵抗率をシート抵抗に換算すると、65〜1833Ω/sqの範囲となり、特に、ターゲット中のSiO濃度が10wt%のときに、1750又は1833Ω/sqの高抵抗膜が得られることが開示されている。 In Patent Document 1, a 1200 nm thick transparent conductive film is formed on a glass substrate by DC magnetron sputtering using a target obtained by firing and sintering a compact containing SnO 2 , SiO 2 , and In 2 O 3. It is disclosed that a transparent conductive film having a transmittance of 88% or more can be obtained with a resistivity in the range of 0.78 to 22 × 10 −3 Ω · cm. When the resistivity is converted into sheet resistance, it is in the range of 65 to 1833 Ω / sq, and in particular, it is disclosed that a high resistance film of 1750 or 1833 Ω / sq can be obtained when the SiO 2 concentration in the target is 10 wt%. Yes.

特開2007−138266号公報(段落0064〜0135,表1の参考例1〜5)JP 2007-138266 A (paragraphs 0064 to 0135, reference examples 1 to 5 in Table 1)

しかし、特許文献1のように、ITOにSiOを添加して得た透明導電膜では、高いシート抵抗は得られるものの、シート抵抗を細かく調整することが難しく、各製品に求められるシート抵抗の値に設定しにくかった。
特に、500Ω/sqより高いシート抵抗の範囲では、シート抵抗が高くなるにつれて当然膜厚を薄く設定する必要があるが、成膜中の酸素濃度の変動や装置内の残留水分の影響が相対的に大きくなり膜性能に敏感に表れる結果、成膜そのものが徐々に難しくなり、歩留まりが低下していく。特許文献1ではシート抵抗1800Ω/sqの膜が得られてはいるが、この1800Ω/sq程度のシート抵抗では、薄膜として形成はされるものの抵抗値が不安定であり、さらに透過率をも考慮して双方を一定の値に安定させることは困難で、歩留まりが低くなることが分かっている。
However, as in Patent Document 1, with a transparent conductive film obtained by adding SiO 2 to ITO, a high sheet resistance is obtained, but it is difficult to finely adjust the sheet resistance, and the sheet resistance required for each product is It was difficult to set the value.
In particular, in the sheet resistance range higher than 500 Ω / sq, it is necessary to set the film thickness to be thinner as the sheet resistance increases. However, the relative influence of fluctuations in oxygen concentration during film formation and the residual moisture in the apparatus is relatively high. As a result, it becomes difficult to form the film itself and the yield decreases. Although a film having a sheet resistance of 1800 Ω / sq is obtained in Patent Document 1, the sheet resistance of about 1800 Ω / sq is formed as a thin film, but the resistance value is unstable, and the transmittance is also taken into consideration. Thus, it is difficult to stabilize both at a constant value, and it has been found that the yield decreases.

更に高い数千Ω/sq以上のシート抵抗の実現を図っても、ITOにSiOを添加して成膜する方法では、安定的に成膜することが事実上不可能で、実用化が困難であった。
また、例えば、窓の曇り止め、寒冷地での信号のデフロスターなどの用途では、電気コネクタの取付け等のためにリフローハンダ付け等の工程が必要となることがあり、300℃程度までの加熱に対する耐熱性が求められるものの、ITOにSiOを添加して得た透明導電膜では、耐熱性が不十分であった。この点は、後述の本発明における対比例のデータにも示されている。
Even if a sheet resistance of several thousand Ω / sq or higher is achieved, it is virtually impossible to form a film by adding SiO 2 to ITO, and it is difficult to put it into practical use. Met.
Also, for example, in applications such as defrosting of windows and signal defrosters in cold regions, a process such as reflow soldering may be required for mounting electrical connectors, etc. Although heat resistance is required, the transparent conductive film obtained by adding SiO 2 to ITO has insufficient heat resistance. This point is also shown in comparative data in the present invention described later.

本発明は、上記の課題に鑑みてなされたものであり、本発明の目的は、透明発熱体に用いることが可能で、比較的高いシート抵抗を備え、安定的に供給可能で透過率の高い透明導電膜及びその製造方法を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention can be used for a transparent heating element, has a relatively high sheet resistance, can be stably supplied, and has high transmittance. It is in providing a transparent conductive film and its manufacturing method.

前記課題は、請求項1の透明導電膜によれば、透明基板に形成された透明導電膜であって、酸化インジウムスズ(ITO)を主材料とし、窒素とケイ素酸化物が添加されており、透明発熱体用であることにより解決される。
このように、ITOを主材料とし、ケイ素酸化物だけでなく窒素が添加されているため、成膜時における透明導電膜のシート抵抗の制御幅が広くなり、各製品の要求に応じた所定のシート抵抗に設定することが可能となる。また、ケイ素酸化物だけでなく窒素が添加されているため、成膜後に熱が掛かったときのシート抵抗の変化が小さくなり、透明導電膜の耐熱性を向上できる。
その結果、比較的高抵抗で、かつ、各製品の要求に応じた所定のシート抵抗を備えた透明発熱体用の透明導電膜を、安定的に供給可能となる。
According to the transparent conductive film of claim 1, the subject is a transparent conductive film formed on a transparent substrate, the main material is indium tin oxide (ITO), nitrogen and silicon oxide are added, This can be solved by using a transparent heating element.
Thus, since ITO is the main material and not only silicon oxide but also nitrogen is added, the control range of the sheet resistance of the transparent conductive film at the time of film formation becomes wide, and a predetermined amount corresponding to the demand of each product The sheet resistance can be set. Further, since not only silicon oxide but also nitrogen is added, the change in sheet resistance when heat is applied after film formation is reduced, and the heat resistance of the transparent conductive film can be improved.
As a result, it is possible to stably supply a transparent conductive film for a transparent heating element having a relatively high resistance and a predetermined sheet resistance according to the requirements of each product.

このとき、請求項2のように、シート抵抗が、1000〜30000Ω/sqで、波長550nmにおける透過率が、96%以上であると好適である。
このように、シート抵抗が、30000Ω/sq以下であるため、透明発熱体として実用的な発熱量を確保できる。また、シート抵抗を、1000Ω/sq以上としているため、従来の酸化インジウムスズ(ITO)からなる透明導電膜では、所望のシート抵抗に制御することが難しかった1000Ω/sq以上のシート抵抗の領域において、所望のシート抵抗に容易に制御することができる。
波長550nmにおける透過率が、96%以上であるため、透過性が要求される窓の曇り止め等の用途に、好適に用いることができる。
At this time, it is preferable that the sheet resistance is 1000 to 30000 Ω / sq and the transmittance at a wavelength of 550 nm is 96% or more.
Thus, since sheet resistance is 30000 ohms / sq or less, a practical calorific value as a transparent heating element is securable. Further, since the sheet resistance is set to 1000 Ω / sq or more, in the conventional transparent conductive film made of indium tin oxide (ITO), it is difficult to control the sheet resistance to a desired sheet resistance in a region of 1000 Ω / sq or more. The desired sheet resistance can be easily controlled.
Since the transmittance at a wavelength of 550 nm is 96% or more, it can be suitably used for applications such as window fogging that requires transparency.

このとき、請求項3のように、前記シート抵抗が、2000Ω/sqより大きく、3000Ω/sq以下であると好適である。
このように、透明基板に形成された透明導電膜であって、ITOを主材料とし、窒素とケイ素酸化物が添加されており、透明発熱体用において、シート抵抗が、2000Ω/sqより大きく、3000Ω/sq以下であるため、従来は安定して成膜することが難しかった2000〜3000Ω/sqの耐熱性を備えた透明導電膜を供給することができ、発熱量と透過率のバランスの点から最も必要とされる透明発熱体を安定供給するというニーズに応えることが可能となる。
また、2000Ω/sqより大きく、3000Ω/sq以下という高めのシート抵抗値帯において、比較的大型の基板に成膜されたものであっても、同一基板内の部分的なシート抵抗のばらつきが殆どなく、基板の面上の全域に亘って均一なシート抵抗を備えた透明導電膜とすることができる。
At this time, it is preferable that the sheet resistance is greater than 2000Ω / sq and equal to or less than 3000Ω / sq.
Thus, a transparent conductive film formed on a transparent substrate, with ITO as the main material, nitrogen and silicon oxide are added, and for a transparent heating element, the sheet resistance is greater than 2000 Ω / sq, Since it is 3000 Ω / sq or less, it is possible to supply a transparent conductive film having a heat resistance of 2000 to 3000 Ω / sq, which has conventionally been difficult to stably form a film. Therefore, it is possible to meet the needs for the stable supply of the most necessary transparent heating element.
Further, even when the film is formed on a relatively large substrate in a high sheet resistance value range of greater than 2000Ω / sq and less than 3000Ω / sq, there is almost no variation in partial sheet resistance within the same substrate. And a transparent conductive film having a uniform sheet resistance over the entire surface of the substrate.

また、シート抵抗が、2000Ω/sqより大きく、3000Ω/sq以下であるため、プラスチックフィルム基板に適した透明導電膜を達成できる。一般的に、プラスチックフィルム基板では、ITOを主材料とする膜の成膜の再現性が悪いため、ある程度以上の厚みを有した膜を成膜することにより、実用的な再現性を確保している。しかし、膜が厚すぎると透過率が低下し、クラックやカール状の欠点も発生しやすくなるため、プラスチックフィルム基板上に透明導電膜を成膜する際の課題となっている。
これに対し、ITOにケイ素酸化物と窒素が添加された透明導電膜を、請求項3のように、2000Ω/sqより大きく、3000Ω/sq以下のシート抵抗の範囲とした場合では、膜厚を100〜200Åと安定して成膜できる範囲とすることができるため、透明基板がプラスチックフィルム基板である場合も含め、透過率を高く維持しながら安定して成膜することができる。
Moreover, since the sheet resistance is greater than 2000Ω / sq and less than or equal to 3000Ω / sq, a transparent conductive film suitable for a plastic film substrate can be achieved. In general, plastic film substrates have poor reproducibility of film formation using ITO as the main material. Therefore, by forming a film with a certain thickness or more, practical reproducibility is ensured. Yes. However, if the film is too thick, the transmittance is reduced, and cracks and curled defects are likely to occur, which is a problem when a transparent conductive film is formed on a plastic film substrate.
On the other hand, when the transparent conductive film in which silicon oxide and nitrogen are added to ITO is in the sheet resistance range of more than 2000Ω / sq and less than 3000Ω / sq as in claim 3, the film thickness is reduced. Since it can be set as the range which can form into a film stably as 100-200 mm, including the case where a transparent substrate is a plastic film board | substrate, it can form into a film stably, maintaining the transmittance | permeability high.

このとき、請求項4のように、前記窒素を、2.0〜5.0at%含み、ケイ素を、3.0〜9.0at%含み、該3.0〜9.0at%のケイ素は、前記ケイ素酸化物として含まれていると好適である。
このように構成しているため、透明発熱体として用いるために十分な耐熱性を有すると共に、シート抵抗の制御幅が広く、各製品の要求に応じた所定のシート抵抗に設定可能な透明導電膜を達成できる。
窒素が2.0at%未満となると、成膜後に、実用上十分な耐熱性が得られず、また、成膜中のシート抵抗の制御が難しくなって、実用上必要な程度のシート抵抗の再現性が得られなくなる。窒素が5.0at%より多くなると、実用上十分な膜の透過性が得られなくなる。
ケイ素が3.0at%未満となると、シート抵抗が低下し、透明発熱体として用いるために十分なシート抵抗を得ることが困難になる。ケイ素が9.0at%より多くなると、実用的な透明発熱体に要求される抵抗値から大きい方に外れてしまう。
At this time, as in claim 4, the nitrogen is included at 2.0 to 5.0 at%, the silicon is included at 3.0 to 9.0 at%, and the silicon at 3.0 to 9.0 at% is It is preferable that it is contained as the silicon oxide.
With this configuration, the transparent conductive film has sufficient heat resistance to be used as a transparent heating element, has a wide sheet resistance control range, and can be set to a predetermined sheet resistance according to the requirements of each product. Can be achieved.
If the nitrogen content is less than 2.0 at%, practically sufficient heat resistance cannot be obtained after film formation, and it becomes difficult to control the sheet resistance during film formation, so that the sheet resistance can be reproduced to the extent necessary for practical use. Sex cannot be obtained. When the nitrogen content exceeds 5.0 at%, practically sufficient membrane permeability cannot be obtained.
When silicon is less than 3.0 at%, the sheet resistance decreases, and it becomes difficult to obtain sufficient sheet resistance for use as a transparent heating element. If the amount of silicon exceeds 9.0 at%, the resistance value required for a practical transparent heating element will deviate to the larger value.

このとき、請求項5のように、透明導電膜の製造方法であって、酸化インジウムスズ(ITO)にケイ素酸化物を5〜10%添加したターゲットを用い、アルゴンガスに、該アルゴンガスに対して4〜18%の窒素を添加したガスをスパッタガスとして導入して、透明基板上に透明発熱体用の透明導電膜を成膜すると好適である。
このように構成しているため、透明発熱体として用いるために十分な耐熱性を有すると共に、シート抵抗の制御幅が広く、各製品の要求に応じた所定のシート抵抗に設定可能な透明導電膜を製造できる。
At this time, as in claim 5, it is a method for producing a transparent conductive film, wherein a target in which 5 to 10% of silicon oxide is added to indium tin oxide (ITO) is used, and argon gas is used with respect to the argon gas. It is preferable to form a transparent conductive film for a transparent heating element on a transparent substrate by introducing a gas added with 4 to 18% nitrogen as a sputtering gas.
With this configuration, the transparent conductive film has sufficient heat resistance to be used as a transparent heating element, has a wide sheet resistance control range, and can be set to a predetermined sheet resistance according to the requirements of each product. Can be manufactured.

酸化インジウムスズ(ITO)を主材料とし、ケイ素酸化物だけでなく窒素が添加されているため、成膜時における透明導電膜のシート抵抗の制御幅が広くなり、各製品の要求に応じた所定のシート抵抗に設定することが可能となる。また、ケイ素酸化物だけでなく窒素が添加されているため、成膜後に熱が掛かったときのシート抵抗の変化が小さくなり、透明導電膜の耐熱性を向上できる。
その結果、比較的高抵抗で、かつ、各製品の要求に応じた所定のシート抵抗を備えた透明発熱体用の透明導電膜を、安定的に供給可能となる。
Since indium tin oxide (ITO) is the main material and not only silicon oxide but also nitrogen is added, the control range of the sheet resistance of the transparent conductive film at the time of film formation becomes wide, and it is determined according to the requirements of each product It is possible to set to a sheet resistance of. Further, since not only silicon oxide but also nitrogen is added, the change in sheet resistance when heat is applied after film formation is reduced, and the heat resistance of the transparent conductive film can be improved.
As a result, it is possible to stably supply a transparent conductive film for a transparent heating element having a relatively high resistance and a predetermined sheet resistance according to the requirements of each product.

スパッタガスに窒素を導入して成膜した実施例1〜6と窒素を導入せずに成膜した対比例1〜7における、成膜時の導入酸素量と成膜された透明導電膜のシート抵抗との関係を示すグラフである。Introduced oxygen amount at the time of film formation and sheets of transparent conductive film formed in Comparative Examples 1 to 7 in which films were formed by introducing nitrogen into the sputtering gas and without introducing nitrogen It is a graph which shows the relationship with resistance. 実施例3−(1),7−(1)に係る透明導電膜付き基板を、200℃で加熱処理した場合における加熱処理前後の透明導電膜のシート抵抗を測定した結果を示すグラフである。It is a graph which shows the result of having measured the sheet resistance of the transparent conductive film before and behind heat processing when the board | substrate with a transparent conductive film which concerns on Example 3- (1) and 7- (1) is heat-processed at 200 degreeC. 対比例4−(1),6−(1)に係る透明導電膜付き基板を、200℃で加熱処理した場合における加熱処理前後の透明導電膜のシート抵抗を測定した結果を示すグラフである。It is a graph which shows the result of having measured the sheet resistance of the transparent conductive film before and behind heat processing at the time of heat-processing the substrate with a transparent conductive film which concerns on 4- (1) and 6- (1) at 200 degreeC. 実施例3−(2),7−(2)に係る透明導電膜付き基板を、300℃で加熱処理した場合における加熱処理前後の透明導電膜のシート抵抗を測定した結果を示すグラフである。It is a graph which shows the result of having measured the sheet resistance of the transparent conductive film before and behind heat processing when the board | substrate with a transparent conductive film which concerns on Example 3- (2) and 7- (2) is heat-processed at 300 degreeC. 対比例4−(2),6−(2)に係る透明導電膜付き基板を、300℃で加熱処理した場合における加熱処理前後の透明導電膜のシート抵抗を測定した結果を示すグラフである。It is a graph which shows the result of having measured the sheet resistance of the transparent conductive film before and behind heat processing at the time of heat-processing the substrate with a transparent conductive film which concerns on 4- (2) and 6- (2) to 300 degreeC. 実施例8−(1),9−(1),対比例8−(1)に係る透明導電膜付き基板を、200℃で加熱処理した場合における加熱処理前後の透明導電膜のシート抵抗を測定した結果を示すグラフである。The sheet resistance of the transparent conductive film before and after the heat treatment when the substrate with the transparent conductive film according to Example 8- (1), 9- (1), and proportional 8- (1) was heat-treated at 200 ° C. was measured. It is a graph which shows the result. 実施例8−(2),9−(2),対比例8−(2)に係る透明導電膜付き基板を、300℃で加熱処理した場合における加熱処理前後の透明導電膜のシート抵抗を測定した結果を示すグラフである。The sheet resistance of the transparent conductive film before and after the heat treatment when the substrate with the transparent conductive film according to Example 8- (2), 9- (2), and proportional 8- (2) was heat-treated at 300 ° C. was measured. It is a graph which shows the result. 実施例10,対比例9に係る透明導電膜付き基板を、120℃で加熱処理した場合における加熱処理前後の透明導電膜のシート抵抗を測定した結果を示すグラフである。It is a graph which shows the result of having measured the sheet resistance of the transparent conductive film before and behind the heat processing at the time of heat-processing the board | substrate with a transparent conductive film which concerns on Example 10 and the proportionality 9 at 120 degreeC. 実施例3に係る透明導電膜のXPS分析結果を示すグラフである。10 is a graph showing the XPS analysis result of a transparent conductive film according to Example 3.

(透明導電膜)
本実施の形態に係る透明導電膜は、透明基板に形成された透明発熱体用の透明導電膜であって、酸化インジウムスズ(ITO)を主材料とし、窒素とケイ素酸化物が添加されている。
(Transparent conductive film)
The transparent conductive film according to the present embodiment is a transparent conductive film for a transparent heating element formed on a transparent substrate, which is mainly composed of indium tin oxide (ITO) and added with nitrogen and silicon oxide. .

本実施形態の透明基板は、ガラス基板又はプラスチックフィルム基板からなる。
プラスチックフィルム基板としては、例えばPET(ポリエチレンテレフタレート)、PES(ポリエーテルサルフォン)、ポリカーボネート、ポリアリレートからなる基板が用いられる。
本実施形態の透明導電膜は、酸化インジウムスズ(ITO)を主材料とし、3.0〜9.0at%のケイ素及び2.0〜5.0at%の窒素を含み、波長550nmにおける透過率が、96%以上、好ましくは98%以上である。また、膜厚は120±10Åの範囲にあり、シート抵抗が、1000〜30000Ω/sq、好ましくは2000〜3000Ω/sqである。
The transparent substrate of this embodiment consists of a glass substrate or a plastic film substrate.
As the plastic film substrate, for example, a substrate made of PET (polyethylene terephthalate), PES (polyethersulfone), polycarbonate, or polyarylate is used.
The transparent conductive film of this embodiment is mainly composed of indium tin oxide (ITO), contains 3.0 to 9.0 at% silicon and 2.0 to 5.0 at% nitrogen, and has a transmittance at a wavelength of 550 nm. 96% or more, preferably 98% or more. The film thickness is in the range of 120 ± 10 mm, and the sheet resistance is 1000 to 30000 Ω / sq, preferably 2000 to 3000 Ω / sq.

本実施形態の透明導電膜は、透明基板上に成膜されており、例えば、透明導電膜の基板逆側の面に形成される一対の電極と、電極が形成される部分を除いた透明導電膜の基板逆側の面のほぼ全体を覆う絶縁膜と、絶縁膜の透明導電膜逆側の面に形成され、基板よりも赤外線の放射率が低く、透明導電膜において生じた熱が基板逆側に放射されることを抑制する低放射率膜と、が更に形成されることにより、透明導電膜発熱体を構成可能である。
本実施形態の透明導電膜を備えた透明導電膜発熱体は、例えば、寒冷地や冬場において道路表示灯,屋外表示装置,屋外照明装置,車両窓などの融雪,結露防止や曇り止めを行うために用いられる。
The transparent conductive film of this embodiment is formed on a transparent substrate. For example, the transparent conductive film excluding a pair of electrodes formed on the surface of the transparent conductive film on the opposite side of the substrate and a portion where the electrodes are formed. An insulating film that covers almost the entire surface of the film opposite to the substrate and a surface of the insulating film on the opposite side of the transparent conductive film, has a lower emissivity of infrared rays than the substrate, and heat generated in the transparent conductive film A transparent conductive film heating element can be configured by further forming a low-emissivity film that suppresses radiation to the side.
The transparent conductive film heating element provided with the transparent conductive film of the present embodiment performs, for example, prevention of snow melting, dew condensation and anti-fogging for road indicator lights, outdoor display devices, outdoor lighting devices, vehicle windows, etc. in cold regions and winter seasons. Used for.

(透明導電膜の製造方法)
本実施形態の透明導電膜の製造方法について説明する。
本実施形態の透明導電膜の成膜は、次のように行う。
公知のDCマグネトロンスパッタリング装置を用い、その非磁性体ターゲット用カソードに、酸化インジウムスズ(ITO)及び5〜10%のケイ素酸化物を含有するターゲットを取り付け、ターゲットと平行かつ対向してガラス基板又はプラスチックフィルム基板からなる透明基板を設置する。
アルゴンガスに、このアルゴンガスに対して約4〜18%の窒素及び約0〜4%の酸素を添加したガスをスパッタガスとして導入して、公知のDCマグネトロンスパッタにより、透明基板上に透明導電膜を成膜する。
成膜時の基板温度は、ガラス基板の場合は、300℃とする。
一方、プラスチックフィルム基板の場合の成膜時の基板温度は、100℃とする。
(Method for producing transparent conductive film)
The manufacturing method of the transparent conductive film of this embodiment is demonstrated.
The transparent conductive film of this embodiment is formed as follows.
Using a known DC magnetron sputtering apparatus, a target containing indium tin oxide (ITO) and 5 to 10% silicon oxide is attached to the cathode for the non-magnetic target, and a glass substrate or A transparent substrate made of a plastic film substrate is installed.
A gas obtained by adding about 4 to 18% nitrogen and about 0 to 4% oxygen to the argon gas is introduced as a sputtering gas, and transparent conductive material is formed on the transparent substrate by a known DC magnetron sputtering. A film is formed.
The substrate temperature during film formation is 300 ° C. in the case of a glass substrate.
On the other hand, the substrate temperature at the time of film formation in the case of a plastic film substrate is 100 ° C.

成膜条件は、例えば、ターゲット−基板間距離:50〜200mm、到達真空度:3.0〜8.0×10-4Pa、スパッタ圧力:0.1〜1.0Pa、投入電力:直流50〜500W、基板加熱温度:室温〜300℃とする。
スパッタガスには、酸素を添加してもしなくてもよい。但し、ITOとSiOを含むターゲットを用いて成膜する場合、シート抵抗が安定しない傾向があるが、酸素を添加すると、ITOとSiOを含むターゲットを用いた場合であっても、シート抵抗が安定する。
また、酸素の代わりに、スパッタガスに二酸化炭素を添加してもよい。
The film forming conditions are, for example, target-substrate distance: 50 to 200 mm, ultimate vacuum: 3.0 to 8.0 × 10 −4 Pa, sputtering pressure: 0.1 to 1.0 Pa, input power: DC 50 ˜500 W, substrate heating temperature: room temperature to 300 ° C.
Oxygen may or may not be added to the sputtering gas. However, when forming a film using a target containing ITO and SiO 2 , the sheet resistance tends to be unstable. However, when oxygen is added, even if a target containing ITO and SiO 2 is used, the sheet resistance Is stable.
Further, carbon dioxide may be added to the sputtering gas instead of oxygen.

以下、本発明の透明導電膜の具体的実施例について説明するが、本発明は、これに限定されるものではない。
(実施例及び対比例に係る透明導電膜の形成)
以下の条件でDCマグネトロンスパッタによってガラス基板上に実施例1〜7及び対比例1〜9に係る透明導電膜を成膜した。
スパッタ装置:カルーセル型バッチ式スパッタ装置
ターゲット:角型、厚さ6mm
実施例1〜7,対比例1〜7:酸化インジウムスズ90%,二酸化ケイ素10%
実施例8〜10,対比例8,9:酸化インジウムスズ95%,二酸化ケイ素5%
スパッタ方式 :DCマグネトロンスパッタ
排気装置 :ターボ分子ポンプ
到達真空度 :5×10-4Pa
基板温度 :実施例1〜9,対比例1〜8: 300℃
実施例10,対比例9: 100℃
スパッタ電力 :1.55W/cm
使用基板 :実施例1〜9,対比例1〜8:ガラス基板
実施例10,対比例9:PETフィルム基板
透明導電膜の膜厚:120±10Åの範囲内
Hereinafter, although the specific Example of the transparent conductive film of this invention is described, this invention is not limited to this.
(Formation of transparent conductive film according to examples and comparison)
Transparent conductive films according to Examples 1 to 7 and Comparative Examples 1 to 9 were formed on a glass substrate by DC magnetron sputtering under the following conditions.
Sputtering equipment: Carousel type batch type sputtering equipment Target: Square type, thickness 6mm
Examples 1-7, Comparative 1-7: Indium tin oxide 90%, silicon dioxide 10%
Examples 8 to 10, Comparative 8,9: Indium tin oxide 95%, silicon dioxide 5%
Sputtering method: DC magnetron sputtering Exhaust device: Turbo molecular pump Ultimate vacuum: 5 × 10 −4 Pa
Substrate temperature: Examples 1 to 9, Comparative 1 to 8: 300 ° C.
Example 10, Comparative 9: 100 ° C.
Sputtering power: 1.55 W / cm 2
Substrate used: Examples 1 to 9, Comparative 1 to 8: Glass substrate
Example 10, Comparative 9: PET film substrate Film thickness of transparent conductive film: within the range of 120 ± 10 mm

Ar流量 :450sccm
実施例1〜10,対比例1〜9の窒素,酸素流量
実施例1:窒素20sccm,酸素0sccm
実施例2:窒素20sccm,酸素5sccm
実施例3−(1)(2):窒素20sccm,酸素7sccm
実施例4:窒素20sccm,酸素9sccm
実施例5:窒素20sccm,酸素11sccm
実施例6:窒素20sccm,酸素15sccm
実施例7−(1)(2):窒素40sccm,酸素11sccm
実施例8−(1)(2):窒素40sccm,酸素0sccm
実施例9−(1)(2):窒素80sccm,酸素0sccm
実施例10:窒素50sccm,酸素0sccm
対比例1:窒素0sccm,酸素5sccm
対比例2:窒素0sccm,酸素7sccm
対比例3:窒素0sccm,酸素9sccm
対比例4−(1)(2):窒素0sccm,酸素11sccm
対比例5:窒素0sccm,酸素13sccm
対比例6−(1)(2):窒素0sccm,酸素15sccm
対比例7:窒素0sccm,酸素17sccm
対比例8−(1)(2):窒素0sccm,酸素6sccm
対比例9:窒素0sccm,酸素6sccm
なお、(1)(2)の表記はそれぞれ、同じ条件の成膜試験を2回行った場合における1バッチ目サンプル,2バッチ目サンプルを示す。
Ar flow rate: 450 sccm
Examples 1-10, Nitrogen, Oxygen Flow Rate of Comparative 1-9 Example 1: Nitrogen 20 sccm, Oxygen 0 sccm
Example 2: Nitrogen 20 sccm, oxygen 5 sccm
Example 3- (1) (2): nitrogen 20 sccm, oxygen 7 sccm
Example 4: Nitrogen 20 sccm, oxygen 9 sccm
Example 5: Nitrogen 20 sccm, oxygen 11 sccm
Example 6: Nitrogen 20 sccm, oxygen 15 sccm
Example 7- (1) (2): nitrogen 40 sccm, oxygen 11 sccm
Example 8- (1) (2): nitrogen 40 sccm, oxygen 0 sccm
Example 9- (1) (2): nitrogen 80 sccm, oxygen 0 sccm
Example 10: nitrogen 50 sccm, oxygen 0 sccm
Comparison 1: Nitrogen 0sccm, Oxygen 5sccm
Comparison 2: Nitrogen 0 sccm, oxygen 7 sccm
Comparison 3: Nitrogen 0 sccm, oxygen 9 sccm
Comparative 4- (1) (2): nitrogen 0 sccm, oxygen 11 sccm
Comparison 5: nitrogen 0 sccm, oxygen 13 sccm
Comparative 6- (1) (2): nitrogen 0 sccm, oxygen 15 sccm
Comparison 7: nitrogen 0 sccm, oxygen 17 sccm
Comparative 8- (1) (2): nitrogen 0 sccm, oxygen 6 sccm
Comparison 9: nitrogen 0 sccm, oxygen 6 sccm
The notations (1) and (2) indicate the first batch sample and the second batch sample when the film formation test under the same conditions is performed twice.

(実施例及び対比例の膜組成)
上記方法で成膜された実施例3,5,7,8,9,10,対比例6,8,9の膜組成をXPS分析により測定した結果を、表1に示す。
(Example and comparative film composition)
Table 1 shows the results obtained by measuring the film compositions of Examples 3, 5, 7, 8, 9, 10, and proportional 6, 8, 9 formed by the above method by XPS analysis.

Figure 2014007100
Figure 2014007100

(導入酸素量と透明導電膜のシート抵抗の関係)
図1は、スパッタガスに窒素を導入した実施例1,2,3−(1),4,5,6及びスパッタガスに窒素を導入しない対比例1,2,3,4−(1),5,6−(1),7における、成膜時の導入酸素量と成膜された透明導電膜のシート抵抗との関係をグラフに示したものである。
また、表2は、実施例1〜6からなる実施例群及び対比例1〜7からなる対比例群において、シート抵抗が下限の最小値であるボトム値を示した実施例5及び対比例6−(1)の膜特性を示している。
(Relationship between amount of introduced oxygen and sheet resistance of transparent conductive film)
FIG. 1 shows Examples 1, 2, 3- (1), 4, 5, 6 in which nitrogen is introduced into the sputtering gas, and Comparative 1, 2, 3, 4- (1), in which nitrogen is not introduced into the sputtering gas. The relationship between the amount of oxygen introduced at the time of film formation and the sheet resistance of the formed transparent conductive film in 5, 6- (1), 7 is shown in a graph.
Table 2 shows Example 5 and Comparative Example 6 in which the bottom value is the minimum value of the sheet resistance in the Example group consisting of Examples 1 to 6 and the Comparative group consisting of Comparative Examples 1 to 7. -The film characteristic of (1) is shown.

Figure 2014007100
Figure 2014007100

図1より、対比例1〜7からなる対比例群のグラフよりも、実施例1〜6からなる実施例群のグラフの方が、導入酸素量が変化したときのシート抵抗の変化が少なかった。対比例群では、シート抵抗のグラフが平らになる領域がみられなかったのに対し、実施例群では、導入酸素量が5〜15sccmの領域において、シート抵抗の変化が少なくなっていた。
以上より、窒素ガスをスパッタガスに添加することにより、シート抵抗の安定域が広くなることが分かった。窒素ガスをスパッタガスに添加しない場合、導入酸素量の変化に対応してシート抵抗値が変化するため、製品設計に合わせた所望のシート抵抗に設定するために、導入酸素量を厳密にコントロールする必要がある。それに対し、窒素ガスをスパッタガスに添加した場合は、シート抵抗調整のためのスパッタガスの厳密なコントロールが不要となり、スパッタガス混合比率や導入量の制御が容易になることが分かった。
From FIG. 1, the graph of the example group consisting of Examples 1 to 6 showed less change in sheet resistance when the amount of introduced oxygen was changed than the graph of the proportional group consisting of Comparatives 1 to 7. . In the comparative group, there was no region where the graph of the sheet resistance was flat, whereas in the example group, the change in sheet resistance was small in the region where the amount of introduced oxygen was 5 to 15 sccm.
From the above, it was found that the stability range of the sheet resistance is increased by adding nitrogen gas to the sputtering gas. When nitrogen gas is not added to the sputtering gas, the sheet resistance value changes in response to changes in the introduced oxygen amount, so the introduced oxygen amount is strictly controlled to set the desired sheet resistance according to the product design. There is a need. On the other hand, it was found that when nitrogen gas was added to the sputtering gas, it was not necessary to strictly control the sputtering gas for adjusting the sheet resistance, and it became easy to control the sputtering gas mixing ratio and the introduction amount.

また、表2より、図1のグラフにおいてシート抵抗がボトム値を示した実施例5,対比例6−(1)では、いずれも、シート抵抗が9000〜10000程度で、550nmにおける透過率が98〜99%であり、高抵抗,高透過の透明導電膜が得られることが分かった。   Further, from Table 2, in Example 5, in which the sheet resistance shows the bottom value in the graph of FIG. 1, in Comparative 6- (1), the sheet resistance is about 9000 to 10000, and the transmittance at 550 nm is 98. It was found to be 99%, and a transparent conductive film having high resistance and high transmission was obtained.

(10%のSiOを含有するターゲットを用いた200℃における耐熱性試験)
表3及び図2,図3は、それぞれ、実施例3−(1),7−(1)に係る透明導電膜付き基板と、対比例4−(1),6−(1)に係る透明導電膜付き基板を、200℃の熱風乾燥オーブン内で1,2,3時間保持して加熱処理を行い、加熱処理前(0時間)及び1,2,3時間加熱後の透明導電膜のシート抵抗を測定した結果である。
(Heat resistance test at 200 ° C. using a target containing 10% SiO 2 )
Table 3 and FIGS. 2 and 3 show the transparent conductive film substrate according to Examples 3- (1) and 7- (1) and the transparent films according to the comparative 4- (1) and 6- (1), respectively. A substrate with a conductive film is heated in a hot air drying oven at 200 ° C. for 1, 2 or 3 hours, and heat-treated before (0 hours) and after heating for 1, 2, or 3 hours. It is the result of measuring resistance.

Figure 2014007100
Figure 2014007100

対比例4−(1)と実施例7−(1)を対比すると、スパッタガスに窒素を含まない対比例4−(1)の透明導電膜の3時間加熱後のシート抵抗の変化率が44.3%であったのに対し、スパッタガスに40sccmの窒素を含む実施例7−(1)の透明導電膜の3時間加熱後のシート抵抗の変化率が16.5%であり、スパッタガスに窒素を導入することにより、透明導電膜の200℃における耐熱性が向上することが分かった。   When the comparative 4- (1) and Example 7- (1) are compared, the change rate of the sheet resistance after heating for 3 hours of the transparent conductive film of the comparative 4- (1) containing no nitrogen in the sputtering gas is 44. The sheet resistance change rate after heating for 3 hours of the transparent conductive film of Example 7- (1) containing 40 sccm of nitrogen in the sputtering gas was 16.5%. It was found that the heat resistance at 200 ° C. of the transparent conductive film was improved by introducing nitrogen into the transparent conductive film.

(10%のSiOを含有するターゲットを用いた300℃における耐熱性試験)
表4及び図4,図5は、それぞれ、実施例3−(2),7−(2)に係る透明導電膜付き基板と、対比例4−(2),6−(2)に係る透明導電膜付き基板を、300℃の熱風乾燥オーブン内で1,2,3時間保持して加熱処理を行い、加熱処理前(0時間)及び1,2,3時間加熱後の透明導電膜のシート抵抗を測定した結果である。
(Heat resistance test at 300 ° C. using a target containing 10% SiO 2 )
Table 4 and FIGS. 4 and 5 show the substrates with transparent conductive films according to Examples 3- (2) and 7- (2), respectively, and the transparency according to comparative 4- (2) and 6- (2). A substrate with a conductive film is heated in a hot air drying oven at 300 ° C. for 1, 2, 3 hours, and heat-treated before and after the heat treatment (0 hours) and after heating for 1, 2, 3 hours. It is the result of measuring resistance.

Figure 2014007100
Figure 2014007100

対比例4−(2)と実施例7−(2)を対比すると、スパッタガスに酸素のみが導入され窒素を含まない対比例4−(2)の透明導電膜の3時間加熱後のシート抵抗の変化率が4502.9%であったのに対し、スパッタガスに40sccmの窒素を含み、対比例4−(2)と同量の酸素が導入された実施例7−(2)の透明導電膜の3時間加熱後のシート抵抗の変化率は605.8%であり、スパッタガスに窒素を導入することにより、透明導電膜の300℃における耐熱性が向上することが分かった。
200℃における耐熱性試験結果である表3及び図2,図3と対比すると、200℃の熱処理を経た場合よりも300℃の熱処理を経た場合の方が、窒素ガスを導入したことによる透明導電膜の耐熱性向上効果が顕著にみられることが分かった。
When comparing 4- (2) and Example 7- (2), the sheet resistance after heating for 3 hours of the transparent conductive film according to 4- (2) in which only oxygen is introduced into the sputtering gas and no nitrogen is contained. The rate of change was 4502.9%, whereas the transparent conductivity of Example 7- (2), in which 40 sccm of nitrogen was contained in the sputtering gas and the same amount of oxygen as that in 4- (2) was introduced. The rate of change in sheet resistance after heating the film for 3 hours was 605.8%, and it was found that the heat resistance of the transparent conductive film at 300 ° C. was improved by introducing nitrogen into the sputtering gas.
Compared with Table 3 and FIG. 2 and FIG. 3, which are the results of the heat resistance test at 200 ° C., the transparent conductivity due to the introduction of nitrogen gas is greater when the heat treatment at 300 ° C. is performed than at the heat treatment at 200 ° C. It was found that the effect of improving the heat resistance of the film was noticeable.

(5%のSiOを含有するターゲットを用いた耐熱性試験)
次いで、5%の二酸化ケイ素を含有するターゲットを用いてスパッタした実施例8−(1),実施例9−(1),対比例8−(1)に係る透明導電膜付き基板を、200℃及び300度の高温下に暴露した場合の耐熱性を対比した。
表5,図6は、実施例8−(1),実施例9−(1),対比例8−(1)に係る透明導電膜付き基板を、200℃の熱風乾燥オーブン内で1,2,3時間保持して加熱処理を行い、加熱処理前(0時間)及び1,2,3時間加熱後の透明導電膜のシート抵抗を測定した結果である。
(Heat resistance test using a target containing 5% SiO 2 )
Subsequently, the substrate with a transparent conductive film according to Example 8- (1), Example 9- (1), and Comparative 8- (1) sputtered using a target containing 5% silicon dioxide was formed at 200 ° C. And the heat resistance when exposed to a high temperature of 300 degrees.
Table 5 and FIG. 6 show the transparent conductive film-coated substrates according to Example 8- (1), Example 9- (1), and Comparative 8- (1) in a hot air drying oven at 200 ° C. 3 is a result of measuring the sheet resistance of the transparent conductive film before the heat treatment (0 hour) and after the heat treatment for 1, 2, 3 hours.

Figure 2014007100
Figure 2014007100

また、表6,図7は、実施例8−(2),実施例9−(2),対比例8−(2)に係る透明導電膜付き基板を、300℃の熱風乾燥オーブン内で1,2,3時間保持して加熱処理を行い、加熱処理前(0時間)及び1,2,3時間加熱後の透明導電膜のシート抵抗を測定した結果である。   Table 6 and FIG. 7 show that the substrate with a transparent conductive film according to Example 8- (2), Example 9- (2), and Comparative 8- (2) is 1 in a 300 ° C. hot air drying oven. , 2 and 3 hours, and the heat treatment was performed, and the sheet resistance of the transparent conductive film before the heat treatment (0 hour) and after the heat treatment for 1, 2 and 3 hours was measured.

Figure 2014007100
Figure 2014007100

表5,図6の結果より、二酸化ケイ素を5%含有するターゲットを用いてスパッタして得たシート抵抗1〜2×10Ω/sq台の膜において、温度200℃に1〜3時間暴露した場合における耐熱性は、窒素ガスを含み、酸素ガスを含まないスパッタガスを導入して得た実施例8−(1),9−(1)と、窒素ガスを含まず、酸素ガスを含むスパッタガスを導入して得た対比例8−(1)との間で、差がなかった。
また、表6,図7の結果より、二酸化ケイ素を5%含有するターゲットを用いてスパッタして得た膜において、温度300℃に1〜3時間暴露した場合における耐熱性は、窒素ガスを含み、酸素ガスを含まないスパッタガスを導入して得た実施例8−(2),9−(2)が、窒素ガスを含まず、酸素ガスを含むスパッタガスを導入して得た対比例8−(2)に対比して、高くなっていた。
従って、表5,図6及び表6,図7の結果より、5%の二酸化ケイ素を含有するターゲットを用い、スパッタガスに窒素ガスを混合して成膜した場合、200℃に1〜3時間暴露したときの耐熱性に向上は見られなかったが、300℃に1〜3時間暴露したときの耐熱性が大幅に向上することが分かった。
From the results shown in Table 5 and FIG. 6, a film having a sheet resistance of 1 to 2 × 10 3 Ω / sq obtained by sputtering using a target containing 5% of silicon dioxide is exposed to a temperature of 200 ° C. for 1 to 3 hours. In this case, the heat resistance is that of Examples 8- (1) and 9- (1) obtained by introducing a sputtering gas containing nitrogen gas and not containing oxygen gas, and oxygen gas not containing nitrogen gas. There was no difference from the comparative 8- (1) obtained by introducing the sputtering gas.
Further, from the results of Table 6 and FIG. 7, in the film obtained by sputtering using a target containing 5% of silicon dioxide, the heat resistance when exposed to a temperature of 300 ° C. for 1 to 3 hours includes nitrogen gas. Comparative Examples 8 (2) and 9- (2) obtained by introducing a sputtering gas not containing oxygen gas were obtained by introducing a sputtering gas not containing nitrogen gas but containing oxygen gas. -It was higher than (2).
Therefore, from the results of Table 5, FIG. 6, Table 6, and FIG. 7, when a film containing nitrogen gas mixed with sputtering gas using a target containing 5% silicon dioxide is formed at 200 ° C. for 1 to 3 hours. Although no improvement was observed in the heat resistance when exposed, it was found that the heat resistance when exposed to 300 ° C. for 1 to 3 hours was significantly improved.

(PETフィルム基板に成膜した場合の耐熱性試験)
表7及び図8は、5%の二酸化ケイ素を含有するターゲットを用いてPETフィルム基板上に100℃で成膜して得た実施例10,対比例9に係る透明導電膜付き基板を、120℃の熱風乾燥オーブン内で1,2,3時間保持して加熱処理を行い、加熱処理前(0時間)及び1,2,3時間加熱後の透明導電膜のシート抵抗を測定した結果である。
(Heat resistance test when deposited on a PET film substrate)
Table 7 and FIG. 8 show a substrate with a transparent conductive film according to Example 10 and Comparative Example 9 obtained by forming a film on a PET film substrate at 100 ° C. using a target containing 5% silicon dioxide. It is the result of measuring the sheet resistance of the transparent conductive film before the heat treatment (0 hour) and after the heat treatment for 1, 2, 3 hours by performing the heat treatment for 1,2,3 hours in a hot air drying oven at 0 ° C. .

Figure 2014007100
Figure 2014007100

表7,図8の結果より、酸素ガスを含まず窒素ガスを含むスパッタガスを導入して得た実施例10が、酸素ガスを含み窒素ガスを含まないスパッタガスを導入して得た対比例9に対比して、温度120℃に1〜3時間暴露した場合における耐熱性が高くなっていた。
従って、100℃という比較的低温で成膜する場合でも、スパッタ時に窒素ガスを導入することにより、成膜後の120℃における耐熱性が向上することが分かった。
From the results shown in Table 7 and FIG. 8, Example 10 obtained by introducing a sputtering gas containing no nitrogen gas but not containing oxygen gas was obtained by introducing a sputtering gas containing oxygen gas and no nitrogen gas. Compared to 9, the heat resistance when exposed to a temperature of 120 ° C. for 1 to 3 hours was high.
Therefore, it was found that even when the film was formed at a relatively low temperature of 100 ° C., the heat resistance at 120 ° C. after the film formation was improved by introducing nitrogen gas during sputtering.

本発明の実施形態に係る透明導電膜に含まれるケイ素の状態を調べるため、実施例の幾つかの膜をXPS(X-ray Photoelectron Spectroscopy)の高分解能測定を行って分析した。ほぼ同様の結果が得られており、代表例として実施例3のグラフを図9に示す。強度のピークは、結合エネルギー103eV付近に現れている。
Siのピークは99eV付近、SiOのピークは103eV付近、SiOのピークは102eV付近、Siのピークは101eV付近であることが知られていること(出展:SCAS Technical News XPSによるシリコンウェーハの分析)から、本発明の実施形態に係る透明導電膜に含まれるケイ素は、ほぼSiOの状態であると判定された。
In order to investigate the state of silicon contained in the transparent conductive film according to the embodiment of the present invention, several films in the examples were analyzed by high-resolution measurement using XPS (X-ray Photoelectron Spectroscopy). Almost the same result was obtained, and a graph of Example 3 is shown in FIG. 9 as a representative example. The intensity peak appears in the vicinity of the binding energy of 103 eV.
It is known that the Si peak is around 99 eV, the SiO 2 peak is around 103 eV, the SiO x N y peak is around 102 eV, and the Si 3 N 4 peak is around 101 eV (Exhibition: SCAS Technical News XPS The silicon contained in the transparent conductive film according to the embodiment of the present invention was determined to be substantially in the SiO 2 state.

Claims (5)

透明基板に形成された透明導電膜であって、
酸化インジウムスズ(ITO)を主材料とし、窒素とケイ素酸化物が添加されており、透明発熱体用であることを特徴とする透明導電膜。
A transparent conductive film formed on a transparent substrate,
A transparent conductive film characterized in that it is made of indium tin oxide (ITO) as a main material, nitrogen and silicon oxide are added, and is used for a transparent heating element.
シート抵抗が、1000〜30000Ω/sqで、波長550nmにおける透過率が、96%以上であることを特徴とする請求項1記載の透明導電膜。   The transparent conductive film according to claim 1, wherein the sheet resistance is 1000 to 30000 Ω / sq, and the transmittance at a wavelength of 550 nm is 96% or more. 前記シート抵抗が、2000Ω/sqより大きく、3000Ω/sq以下であることを特徴とする請求項2記載の透明導電膜。   The transparent conductive film according to claim 2, wherein the sheet resistance is greater than 2000Ω / sq and less than or equal to 3000Ω / sq. 前記窒素を、2.0〜5.0at%含み、
ケイ素を、3.0〜9.0at%含み、
該3.0〜9.0at%のケイ素は、前記ケイ素酸化物として含まれていることを特徴とする請求項1乃至3いずれか記載の透明導電膜。
Containing 2.0 to 5.0 at% of the nitrogen,
Containing 3.0 to 9.0 at% of silicon,
4. The transparent conductive film according to claim 1, wherein the 3.0 to 9.0 at% silicon is contained as the silicon oxide. 5.
酸化インジウムスズ(ITO)にケイ素酸化物を5〜10%添加したターゲットを用い、アルゴンガスに、該アルゴンガスに対して4〜18%の窒素を添加したガスをスパッタガスとして導入して、透明基板上に透明発熱体用の透明導電膜を成膜することを特徴とする透明導電膜の製造方法。
Using a target obtained by adding 5 to 10% silicon oxide to indium tin oxide (ITO), a gas obtained by adding 4 to 18% nitrogen to the argon gas as a sputtering gas is transparent. A method for producing a transparent conductive film, comprising forming a transparent conductive film for a transparent heating element on a substrate.
JP2012143161A 2012-06-26 2012-06-26 Transparent conductive film Active JP6080399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012143161A JP6080399B2 (en) 2012-06-26 2012-06-26 Transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012143161A JP6080399B2 (en) 2012-06-26 2012-06-26 Transparent conductive film

Publications (2)

Publication Number Publication Date
JP2014007100A true JP2014007100A (en) 2014-01-16
JP6080399B2 JP6080399B2 (en) 2017-02-15

Family

ID=50104636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012143161A Active JP6080399B2 (en) 2012-06-26 2012-06-26 Transparent conductive film

Country Status (1)

Country Link
JP (1) JP6080399B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104992752A (en) * 2015-07-16 2015-10-21 城步新鼎盛电子科技有限公司 Production method of silver nanowire transparent conductive film

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202415A (en) * 1984-12-06 1987-09-07 三井金属鉱業株式会社 Indium oxide system light transmitting conductive film
JPH04206403A (en) * 1990-11-30 1992-07-28 Nitto Denko Corp Transparent conductive coating, transparent conductive film and analogue touch panel
JPH04308612A (en) * 1991-04-04 1992-10-30 Nitto Denko Corp Transparent conductive membrane and manufacture thereof, transparent conductive film, and analog touch-panel
JPH06157036A (en) * 1992-11-13 1994-06-03 Nippon Soda Co Ltd Production of tin-doped indium oxide film having high resistivity
JPH06293957A (en) * 1993-02-10 1994-10-21 Nippon Soda Co Ltd Indium oxide film enhanced in resistance
JPH06349338A (en) * 1993-06-10 1994-12-22 Teijin Ltd Transparent conductive lamination
JP2000113732A (en) * 1998-06-25 2000-04-21 Asahi Glass Co Ltd Transparent conductive film, its manufacture, substrate with transparent conductive film, and touch panel
JP2003105532A (en) * 2001-06-26 2003-04-09 Mitsui Mining & Smelting Co Ltd Sputtering target for highly resistant transparent conductive film, and manufacturing method of highly resistant transparent conductive film
JP2003277921A (en) * 2002-03-19 2003-10-02 Nikko Materials Co Ltd Sputtering target for high resistance transparent electroconductive film
JP2005135649A (en) * 2003-10-28 2005-05-26 Mitsui Mining & Smelting Co Ltd Indium oxide based transparent conductive film and its manufacturing method
JP2007138266A (en) * 2005-11-21 2007-06-07 Mitsui Mining & Smelting Co Ltd Sputtering target for highly resistant transparent conductive film, and highly resistant transparent conductive film, and manufacturing method of highly resistant transparent conductive film
JP2007200823A (en) * 2006-01-30 2007-08-09 Nitto Denko Corp Crystalline transparent conductive thin film, manufacturing method therefor, transparent conductive film, and touch panel

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202415A (en) * 1984-12-06 1987-09-07 三井金属鉱業株式会社 Indium oxide system light transmitting conductive film
JPH04206403A (en) * 1990-11-30 1992-07-28 Nitto Denko Corp Transparent conductive coating, transparent conductive film and analogue touch panel
JPH04308612A (en) * 1991-04-04 1992-10-30 Nitto Denko Corp Transparent conductive membrane and manufacture thereof, transparent conductive film, and analog touch-panel
JPH06157036A (en) * 1992-11-13 1994-06-03 Nippon Soda Co Ltd Production of tin-doped indium oxide film having high resistivity
JPH06293957A (en) * 1993-02-10 1994-10-21 Nippon Soda Co Ltd Indium oxide film enhanced in resistance
JPH06349338A (en) * 1993-06-10 1994-12-22 Teijin Ltd Transparent conductive lamination
JP2000113732A (en) * 1998-06-25 2000-04-21 Asahi Glass Co Ltd Transparent conductive film, its manufacture, substrate with transparent conductive film, and touch panel
JP2003105532A (en) * 2001-06-26 2003-04-09 Mitsui Mining & Smelting Co Ltd Sputtering target for highly resistant transparent conductive film, and manufacturing method of highly resistant transparent conductive film
JP2003277921A (en) * 2002-03-19 2003-10-02 Nikko Materials Co Ltd Sputtering target for high resistance transparent electroconductive film
JP2005135649A (en) * 2003-10-28 2005-05-26 Mitsui Mining & Smelting Co Ltd Indium oxide based transparent conductive film and its manufacturing method
JP2007138266A (en) * 2005-11-21 2007-06-07 Mitsui Mining & Smelting Co Ltd Sputtering target for highly resistant transparent conductive film, and highly resistant transparent conductive film, and manufacturing method of highly resistant transparent conductive film
JP2007200823A (en) * 2006-01-30 2007-08-09 Nitto Denko Corp Crystalline transparent conductive thin film, manufacturing method therefor, transparent conductive film, and touch panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104992752A (en) * 2015-07-16 2015-10-21 城步新鼎盛电子科技有限公司 Production method of silver nanowire transparent conductive film

Also Published As

Publication number Publication date
JP6080399B2 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
US8518221B2 (en) Method of making ITO-coated article for use with electronic device
CN101866708B (en) High-transmissivity flexible transparent conductive film and preparation method thereof
TWI601163B (en) Substrate with transparent electrode and its manufacturing method
CN103993288B (en) A kind of preparation method of electrically conducting transparent FTO/Ag/FTO laminated film
JP5580972B2 (en) Sputtering composite target
CN103400632B (en) A kind of Graphene dopant material and application thereof
CN105874545B (en) The manufacture method of nesa coating
JP2007109406A (en) Substrate with zinc oxide-based transparent conductive film for touch panel
JP6080399B2 (en) Transparent conductive film
JP2989886B2 (en) Analog touch panel
Girtan et al. The influence of preparation conditions on the electrical and optical properties of oxidized indium thin films
JP2000113732A (en) Transparent conductive film, its manufacture, substrate with transparent conductive film, and touch panel
CN103177800A (en) High transmittance transparent conductive film and production method thereof
Boycheva et al. Optical and electrical characterization of rf sputtered ITO films developed as art protection coatings
CN103993281A (en) Preparation method of FTO (F-doped SiO2) transparent conducting thin film
JP2003346559A (en) Transparent conductive film, and forming method thereof
JP4079457B2 (en) Method for increasing resistance of indium-tin oxide film
JPH01283369A (en) Sputtering target for forming electrically conductive transparent ito film
KR101492215B1 (en) ULTRATHIN ITO:Ce FILM DEPOSITED BY RF SUPERIMPOSED DC MAGNETRON SPUTTERING, A PREPARATION METHOD OF THE FILM AND A TOUCH PANEL INCLUDING THE SAME
EP3396013A1 (en) Transparent conductive film, substrate provided with transparent conductive film, and method for producing substrate provided with transparent conductive film
KR101008237B1 (en) Method of forming transparent conducting film
JPH07224374A (en) Method for making tin doped indium oxide film high resistant
JPH06135742A (en) Method for giving high resistance to tin-doped indium oxide film
JP2018188677A (en) Metal oxide transparent conductive film and method of manufacturing the same
JP6946770B2 (en) Composite oxide transparent conductive film and base material with transparent conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170117

R150 Certificate of patent or registration of utility model

Ref document number: 6080399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250