JP2014004914A - Railroad system - Google Patents

Railroad system Download PDF

Info

Publication number
JP2014004914A
JP2014004914A JP2012141832A JP2012141832A JP2014004914A JP 2014004914 A JP2014004914 A JP 2014004914A JP 2012141832 A JP2012141832 A JP 2012141832A JP 2012141832 A JP2012141832 A JP 2012141832A JP 2014004914 A JP2014004914 A JP 2014004914A
Authority
JP
Japan
Prior art keywords
power
vehicle
power supply
storage device
supply source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012141832A
Other languages
Japanese (ja)
Other versions
JP6001350B2 (en
Inventor
Tsutomu Miyauchi
努 宮内
Motoya Suzuki
基也 鈴木
Yasuyuki Nakamura
恭之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012141832A priority Critical patent/JP6001350B2/en
Priority to IN10460DEN2014 priority patent/IN2014DN10460A/en
Priority to CN201380031983.9A priority patent/CN104379397B/en
Priority to PCT/JP2013/065582 priority patent/WO2014002717A1/en
Publication of JP2014004914A publication Critical patent/JP2014004914A/en
Application granted granted Critical
Publication of JP6001350B2 publication Critical patent/JP6001350B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/06Arrangements for consuming regenerative power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/52Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/12Dynamic electric regenerative braking for vehicles propelled by dc motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/02Electric propulsion with power supply external to the vehicle using dc motors
    • B60L9/04Electric propulsion with power supply external to the vehicle using dc motors fed from dc supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Abstract

PROBLEM TO BE SOLVED: To reduce a powering time by utilizing a power storage device installed along a track as much as possible to smoothly increase a stringing voltage during powering, and to enhance an energy saving effect by expanding a coasting time.SOLUTION: A railroad system comprises a plurality of power supply sources (101-103) having at least one between a transformer station and a power storage device, a vehicle (105) for receiving the power from the power supply source to travel, and a power management system (108) for managing the power supplied from the power supply source and a charge amount to the power storage device in accordance with positions of the power supply sources (101-103). The power management system (108) determines a power storage device from which the vehicle (105) receives the supply by receiving a vehicle position, a vehicle speed, and a traveling state (powering state, coasting state, braking state) of the vehicle (105) from the vehicle (105), determines the necessity of power supply from the determined power storage device from the vehicle speed and the traveling state, and transmits the determination result to the power supply sources (101-103).

Description

電力供給体からの電力供給を受けて動作する鉄道システムに関する。   The present invention relates to a railway system that operates by receiving power supply from a power supply body.

架線から電力供給を受けて走行する鉄道車両(以下、単に「車両」という。)において、その供給元である変電所がダウンした場合や、同一変電区間に車両が大幅に増加した場合には、車両の架線電圧が大幅に低下してしまい、走行性能の大幅な低下をきたすことがある。
一方、鉄道では、ダイヤがあることから、走行性能の部分的な悪化によって走行が遅くなった場合、ダイヤを遵守しようと加速するため、よりエネルギーを消費し、さらに架線電圧の低下を招くという悪循環に陥るおそれがある。
In a railway vehicle that travels by receiving power supply from an overhead line (hereinafter simply referred to as “vehicle”), if the substation that is the source of the supply is down or if the number of vehicles has increased significantly in the same substation, The overhead line voltage of the vehicle may be greatly reduced, and the running performance may be significantly reduced.
On the other hand, railways have diamonds, so if the running slows down due to partial deterioration of running performance, it accelerates to comply with the diamonds, so it consumes more energy and further reduces overhead voltage. There is a risk of falling.

これを解決する技術として、下記特許文献1には、変電所の送り出し電圧を押し上げることで、架線電圧を高めることが、そして、下記特許文献2には、運転ダイヤと車両位置に基づいて、複数の変電所及び地上の蓄電装置が供給する電力を最適化することが示されている。   As a technique for solving this, the following Patent Document 1 discloses that the overhead line voltage is increased by boosting the sending voltage of the substation, and the following Patent Document 2 includes a plurality of information based on the driving diagram and the vehicle position. It is shown that the power supplied by the substations and power storage devices on the ground is optimized.

特開平7−304353号公報JP-A-7-304353 特開2008−24206号公報JP 2008-24206 A

しかしながら、特許文献1に示された技術では、保守員が車両の走行状態やダイヤを常時確認し、その都度、変電所の送り出し電圧を予測して調整しなければならず、保守負担が非常に高い。
さらに、効果的な加速性能を得ようとすると、変電所から送り出される電圧を大幅に上昇せざるを得ず、このため、架線から電力供給系、車両駆動装置を含め、最大の送り出し電圧に耐えられる素子を使わなければならず、コストアップを招いてしまう。
さらに、予測が外れた場合には、最適な供給とならず、最悪の場合には、回生制動中の他の車両が、上昇した架線電圧により回生制動を失効させ、十分に電力を回生できないおそれがある。
However, in the technique disclosed in Patent Document 1, maintenance personnel must always check the running state and schedule of the vehicle, and each time, it is necessary to predict and adjust the sending voltage of the substation, which greatly increases the maintenance burden. high.
Furthermore, in order to obtain effective acceleration performance, the voltage sent from the substation has to be significantly increased. For this reason, it can withstand the maximum delivery voltage from the overhead line, including the power supply system and vehicle drive system. Device must be used, resulting in an increase in cost.
In addition, if the prediction is lost, the optimal supply is not achieved. In the worst case, another vehicle during regenerative braking may cause regenerative braking to expire due to the increased overhead line voltage, and sufficient power cannot be regenerated. There is.

また、特許文献2では、運転ダイヤを用いた予測電力を基に最適な電力送出を行うとしているが、遅れなどが発生した場合には、車両は運転ダイヤに準じた走行を行うことができず、最適な電力送出を実現することは困難である。
さらに、運転パターンは運転士によって必ずしも一定ではないことから、そもそも正確な予測ができないという問題がある。
In Patent Document 2, optimal power transmission is performed based on predicted power using a driving diagram. However, when a delay or the like occurs, the vehicle cannot travel according to the driving diagram. It is difficult to realize optimal power transmission.
Furthermore, since the driving pattern is not necessarily constant depending on the driver, there is a problem that accurate prediction cannot be performed in the first place.

そこで、本発明の目的は、上記問題を鑑み、路線に沿って設置された蓄電装置を最大限有効活用することにより、ダイヤを考慮しつつ、力行時の架線電圧を柔軟に上昇させることで、力行時間を低減し、惰行走行時間を拡大することにより、省エネ効果を高めることにある。   Therefore, in view of the above problems, the object of the present invention is to maximize the power storage device installed along the route to maximize the power, while flexibly raising the overhead line voltage during powering while considering the diagram. The purpose is to increase the energy saving effect by reducing the power running time and increasing the coasting travel time.

本発明は上記目的を達成するため、本発明による、鉄道システムにおいては、次のような技術的手段を講じた。すなわち、
(1)変電所及び蓄電装置の少なくとも一方を有する複数の電力供給源と、前記電力供給源から電力を受けて走行する車両と、前記車両が走行する路線における前記電力供給源の位置に応じて、当該電力供給源から供給する電力及び前記蓄電装置への充電量を管理する電力管理システムで構成される鉄道システムにおいて、前記電力管理システムは、前記車両から車両位置、車両速度と、該車両が力行中か、惰行中か、あるいは制動中であるかの走行状態を受け取ることによって、前記車両が供給を受ける前記電力供給源に含まれる蓄電装置を決定するとともに、前記車両速度と前記走行状態から、決定された前記蓄電装置からの電力供給の要否を判断し、当該蓄電装置を備えた前記電力供給源にその判断結果を伝達するようにした。
In order to achieve the above object, the present invention takes the following technical means in the railway system according to the present invention. That is,
(1) A plurality of power supply sources having at least one of a substation and a power storage device, a vehicle that travels by receiving power from the power supply source, and a position of the power supply source on a route on which the vehicle travels In the railway system including a power management system that manages the power supplied from the power supply source and the amount of charge to the power storage device, the power management system includes the vehicle position, the vehicle speed, and the vehicle from the vehicle. A power storage device included in the power supply source to which the vehicle is supplied is determined by receiving a running state indicating whether the vehicle is running, coasting, or braking, and the vehicle speed and the running state are determined. Then, it is determined whether or not it is necessary to supply power from the power storage device, and the determination result is transmitted to the power supply source including the power storage device.

(2)上記の鉄道システムにおいて、前記車両から前記電力管理システムに供給される情報に、当該車両に供給される架線電圧を含み、前記電力管理システムは、この架線電圧を、あらかじめ定められた架線電圧閾値と比較することで、前記電力供給源に含まれる蓄電装置から電力の供給をするかどうかを判断する機能を有するようにした。 (2) In the above railway system, the information supplied from the vehicle to the power management system includes an overhead line voltage supplied to the vehicle, and the power management system uses the overhead line voltage as a predetermined overhead line. By comparing with a voltage threshold value, it has a function of determining whether or not to supply power from the power storage device included in the power supply source.

(3)上記の鉄道システムにおいて、前記電力管理システムは、路線の制限速度を記憶するデータベースを備え、前記車両位置に基づいて制限速度を求め、制限速度と車両速度の関係、及び、制限速度の変化の関係から、前記電力供給源に含まれる蓄電装置から電力の供給をするかどうかを判断する機能を有するようにした。 (3) In the above railway system, the power management system includes a database that stores a speed limit of a route, obtains a speed limit based on the vehicle position, a relationship between the speed limit and the vehicle speed, and the speed limit From the relationship of change, a function of determining whether to supply power from the power storage device included in the power supply source is provided.

(4)上記の鉄道システムにおいて、前記電力管理システムは、前記車両に対して電力供給を行う電力供給源の蓄電装置に対して、当該電力供給源と前記車両の間に、蓄電装置を備えず変電所のみからなる電力供給源が含まれる場合には、前記蓄電装置からの電力供給を禁止するように制御するようにした。 (4) In the above railway system, the power management system does not include a power storage device between the power supply source and the vehicle with respect to the power storage device of the power supply source that supplies power to the vehicle. When a power supply source consisting only of a substation is included, control is performed to prohibit power supply from the power storage device.

一般に、変電所とは異なり、路線に沿って各所に設置された蓄電装置には、余剰電力を随時蓄えバッファ機能を有するとともに、必要時に直ちに電力を供給することができるので、車両位置、車両速度、走行状態に応じて、これら蓄電装置のうち、最適なものを選択した上で、電力を放電させることで、架線電圧を押し上げる効果を得られ、力行時の架線電圧を高く保つことで、ダイヤを遵守しつつ、力行時間を低減し、惰行走行時間を拡大することにより、省エネを図ることが可能となる。   In general, unlike substations, power storage devices installed at various locations along the route can store surplus power at any time, have a buffer function, and can supply power immediately when necessary. By selecting the most suitable of these power storage devices according to the running state, and discharging the power, the effect of boosting the overhead line voltage can be obtained, and by keeping the overhead line voltage during power running high, It is possible to save energy by reducing powering time and extending coasting time while complying with the above.

実施例1のシステム構成図System configuration diagram of Embodiment 1 実施例1の蓄電装置判断システムにおける処理フローProcessing flow in power storage device determination system of embodiment 1 実施例1の電力アシスト判定システムにおける処理フローProcessing Flow in Power Assist Determination System of Embodiment 1 実施例1における電力アシスト決定システムの処理フローProcessing flow of power assist determination system in embodiment 1 実施例1による加速性能を示す図The figure which shows the acceleration performance by Example 1 本発明の対象例Example of the present invention 本発明を実現した場合の結果Results of implementing the present invention 本発明の第2の実施例を実現するためのシステム構成図の一例An example of a system configuration diagram for realizing the second embodiment of the present invention 本発明の第2の実施例を実現するための電力アシスト判定システムの処理フローProcessing flow of the power assist determination system for realizing the second embodiment of the present invention 本発明の第3の実施例を実現するためのシステム構成図の一例An example of a system configuration diagram for realizing the third embodiment of the present invention 本発明の第3の実施例を実現するための電力アシスト判定システムの処理フローProcess flow of power assist determination system for realizing the third embodiment of the present invention

以下、図面を用いて本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[実施例1]
図1は本発明を実現するための鉄道システム構成図の一例である。
この例では、路線に沿って複数設置された電力供給源としての蓄電装置101、変電所102、及び蓄電装置と変電所の双方を備えた電力供給設備103と、これらの電力供給源から架線104を経由して電力を受けて走行する車両105と、各電力供給設備101〜103を管理する電力管理システム108から構成されている。
この構成の鉄道システムにおいて、電力管理システム108は、蓄電装置判断システム112、電力アシスト判定システム113、電力アシスト決定システム116から構成されている。
[Example 1]
FIG. 1 is an example of a railway system configuration diagram for realizing the present invention.
In this example, the power storage device 101, the substation 102, and the power supply facility 103 including both the power storage device and the substation as power supply sources installed along the route, and the overhead line 104 from these power supply sources. The vehicle 105 that travels by receiving power via the power, and a power management system 108 that manages the power supply facilities 101 to 103.
In the railway system having this configuration, the power management system 108 includes a power storage device determination system 112, a power assist determination system 113, and a power assist determination system 116.

蓄電装置判断システム112は、車両105から車両位置及び車両速度及び車両が力行しているか、惰行中であるか、あるいは制動中かの車両状態を示す車両情報109を入手し、電力供給源である蓄電装置101、変電所102、力供給設備103の位置を管理するデータベース110から得られる電力供給源位置情報111とから、架線に対してどの蓄電装置を有する設備から電力アシストを行うかを決定する。   The power storage device determination system 112 obtains vehicle information 109 indicating the vehicle position, vehicle speed, and the vehicle state of whether the vehicle is coasting or braking from the vehicle 105, and is a power supply source. From the power supply source position information 111 obtained from the database 110 that manages the positions of the power storage device 101, the substation 102, and the power supply facility 103, it is determined from which power storage device the power assist is performed on the overhead line. .

電力アシスト判定システム113は、車両情報109から車両105に電力アシストを行うべきかの判断を行うもので、蓄電装置判断システム112からの第1の判断結果114と、電力アシスト判定システム113からの第2の判断結果115を基に、車両105にどの電力供給源から電力アシストを行うべきかを判断する。
電力アシスト決定システム116の判断結果117を、蓄電装置101あるいは蓄電装置を備えた電力供給設備103に送信することにより、蓄電装置からの電力供給が行われる。
The power assist determination system 113 determines whether power assist should be performed on the vehicle 105 based on the vehicle information 109. The first determination result 114 from the power storage device determination system 112 and the first determination from the power assist determination system 113. Based on the determination result 115 of No. 2, it is determined from which power supply source to the vehicle 105 the power assist should be performed.
By transmitting the determination result 117 of the power assist determination system 116 to the power storage device 101 or the power supply facility 103 including the power storage device, power is supplied from the power storage device.

図2は、蓄電装置判断システム112の具体的な処理フローを示している。
ステップ201では、現在の車両位置に基づいて、車両から近い順に、蓄電装置を備えた電力供給源をソートし、最も近い位置から順に1、2・・・nとして、ステップ202に進む。
なお、車両と蓄電装置との距離があまりに離れていると、長い架線を経由することによる電力損失が大きくなり、また、その間に、他の車両が回生制動を行っている可能性も高くなるので、探索する蓄電装置を備えた電力供給源には、距離的制限を設けている。
FIG. 2 shows a specific processing flow of the power storage device determination system 112.
In step 201, based on the current vehicle position, the power supply sources equipped with the power storage devices are sorted in order from the vehicle, and the process proceeds to step 202 as 1, 2,.
In addition, if the distance between the vehicle and the power storage device is too far, the power loss due to passing through a long overhead wire increases, and the possibility that another vehicle is performing regenerative braking during that time also increases. The power supply source including the power storage device to be searched is provided with a distance limitation.

ステップ202では、K(探索ID)=1とする次にステップ203に進む。
ステップ203では、電力供給源(K)のSOC(蓄電状態)が電力供給可能な状態か否かを判定し、電力供給可能であればステップ204に、電力供給が不可能であればステップ205に進む。
ステップ204では、電力供給源(K)に出力指令を送る。以上で終了となる。
ステップ205では、電力供給源の探索IDであるKを1増加して、ステップ206に進む。
In step 202, K (search ID) = 1 is set, and the process proceeds to step 203.
In step 203, it is determined whether or not the SOC (storage state) of the power supply source (K) is in a state where power can be supplied. If power can be supplied, the process proceeds to step 204. If power cannot be supplied, the process proceeds to step 205. move on.
In step 204, an output command is sent to the power supply source (K). This is the end.
In step 205, the power supply source search ID K is incremented by 1, and the process proceeds to step 206.

また、ステップ206では、電力供給源の探索IDであるK>電力供給源の上限(n)が成立するかを判断し、Kが電力供給源の上限を超えていれば、電力供給可能な蓄電装置が存在しないものとして、処理を終了とし、Kが電力供給源の上限を超えていなければ、ステップ203に戻り、電力供給可能な蓄電装置の探索を継続する。
以上の処理により、蓄電装置判断システム112により、車両に最も近く、かつ、電力供給可能な蓄電装置に関する第1の判断結果114を算出できる。
Further, in step 206, it is determined whether or not the power supply source search ID K> power supply source upper limit (n) is satisfied, and if K exceeds the power supply source upper limit, the power can be supplied. If it is determined that no device exists, the process ends, and if K does not exceed the upper limit of the power supply source, the process returns to step 203 to continue searching for a power storage device that can supply power.
Through the above processing, the power storage device determination system 112 can calculate the first determination result 114 regarding the power storage device closest to the vehicle and capable of supplying power.

図3は、電力アシスト判定システム113の具体的な処理フローを示している。
ステップ301では、車両状態が力行中か否かを判断し、力行中であればステップ302に進み、力行中でなければステップ304に進む。
ステップ302では、車両状態情報に含まれる車両速度が、V/f終端速度を超えているか否かを判定し、超えている場合はステップ303に進み出力要求を行う。
一方、車両速度がV/f終端速度以下であればステップ304に進み、出力不要求を行い、処理を終了する。
なお、V/f終端速度とは、蓄電装置により電力アシストを行う前の状態の架線電圧により、加速度を一定に維持し得る終端速度を意味する。
FIG. 3 shows a specific processing flow of the power assist determination system 113.
In step 301, it is determined whether or not the vehicle state is in power running. If power running is in progress, the process proceeds to step 302. If power running is not in progress, the process proceeds to step 304.
In step 302, it is determined whether or not the vehicle speed included in the vehicle state information exceeds the V / f end speed, and if it exceeds, the process proceeds to step 303 to make an output request.
On the other hand, if the vehicle speed is equal to or lower than the V / f end speed, the process proceeds to step 304, the output is not requested, and the process is terminated.
Note that the V / f terminal speed means a terminal speed at which the acceleration can be kept constant by the overhead voltage in a state before the power assist is performed by the power storage device.

図4は、電力アシスト決定システム116の具体的な処理フローを示している。
ステップ401では、決められた電力供給源と車両の間に、蓄電装置を備えていない変電所だけの電力供給源の有無を判断し、変電所のみの電力供給源がなければステップ402に、変電所のみの電力供給源があればステップ403に進む。
ステップ402では、該当する電力供給源の蓄電装置に放電するように指令を出し、処理を終了し、ステップ403では、電力供給源の蓄電装置から放電を行わないようにするため指令は送らない。以上で終了となる。
FIG. 4 shows a specific processing flow of the power assist determination system 116.
In step 401, it is determined whether or not there is a power supply source only for a substation that is not equipped with a power storage device between the determined power supply source and the vehicle. If there is only one power supply source, the process proceeds to step 403.
In step 402, a command is issued to discharge the power storage device of the corresponding power supply source, and the process is terminated. In step 403, no command is sent to prevent discharge from the power storage device of the power supply source. This is the end.

以上の処理により、車両が力行かつ、V/f終端速度を超えている場合、地上蓄電装置から電力を放電することで、架線電圧を押し上げることができる。
例えば、図5に示すように、基準電圧における車両速度をα、加速後の車両速度をβとし、架線電圧を基準電圧×β/αに押し上げたとすると、車両の加速性能がモードaからモードa’に向上する。
鉄道はダイヤが決まっているので、加速性能を上げることで、惰行時間の拡大につながるため、省エネを図ることができる。図6及び図7を用いて、本制御を適用した場合の時々刻々の状態を示す。
With the above processing, when the vehicle is running and exceeds the V / f terminal speed, the overhead line voltage can be increased by discharging power from the ground power storage device.
For example, as shown in FIG. 5, if the vehicle speed at the reference voltage is α, the vehicle speed after acceleration is β, and the overhead wire voltage is pushed up to the reference voltage × β / α, the acceleration performance of the vehicle changes from mode a to mode a. 'Improved.
Since the railway schedule is fixed, increasing the acceleration performance will lead to an increase in coasting time, thus saving energy. 6 and 7 will be used to show the state every moment when this control is applied.

図6は、簡単な例として駅間の路線上に、それぞれ蓄電装置を有する2つの電力供給源1及び2と変電所のみで構成された電力供給源3がある場合を想定する。
また、図7は、図6の路線上を、1列車が走行するものとして、本実施例による制御を適用した場合の時々刻々の状態を示している。
上から順に[時間−速度]、[時間−V/f速度判定]、[時間−力行判定]、[時間−電力供給源との距離]、[時間−電力供給源1指令]、[時間−電力供給源2指令]、[時間−電力供給源1のSOC]、[時間−電力供給源2のSOC]、[時間−車両架線電圧]の関係を表している。なお、実線は、[時間−速度]の関係において、本実施例による制御を使用したものを実線、使用しないものを破線で示しているが、ダイヤ変更が発生しないよう、両者の時間積分値は一定とする。
FIG. 6 assumes a case where there are two power supply sources 1 and 2 each having a power storage device and a power supply source 3 composed only of a substation on a line between stations as a simple example.
Moreover, FIG. 7 shows the state every moment at the time of applying the control by a present Example supposing that one train drive | works on the route of FIG.
[Time-speed], [Time-V / f speed determination], [Time-power running determination], [Time-distance with power supply source], [Time-power supply source 1 command], [Time- It represents the relationship of [power supply source 2 command], [time-SOC of power supply source 1], [time-SOC of power supply source 2], and [time-vehicle overhead line voltage]. In addition, in the relation of [time-speed], the solid line shows a solid line that uses the control according to the present embodiment and a broken line that does not use the control. Let it be constant.

これらのグラフに対して時間で領域分割して説明する。
時間領域Aは、車両が駅から出発し力行し、速度がV/f終端速度以下の領域である場合を示している。この場合、図3の処理フローに従うと、蓄電装置への電力供給要求はなく、車両は制御不使用と同様の動作をする。
These graphs will be described by dividing into regions by time.
A time region A indicates a case where the vehicle departs from the station and powers and the speed is a region below the V / f terminal speed. In this case, according to the processing flow of FIG. 3, there is no power supply request to the power storage device, and the vehicle operates in the same manner as when the control is not used.

次に車両速度がV/f終端速度を超えると時間領域Bに移る。
時間領域Bは、車両速度がV/f終端速度を超えているので、図2の処理フローに従うと、車両位置から蓄電装置のみの電力供給源1の方が、蓄電装置と変電所の双方を備えた電力供給源2よりも近く、また、電力供給源1の蓄電装置のSOCも十分にあること、図4の処理フローに従うと、電力供給源1が変電所だけの電力供給源3よりも近いことから電力供給源1に指令を出すことになる。
Next, when the vehicle speed exceeds the V / f end speed, the time zone B is entered.
In time region B, since the vehicle speed exceeds the V / f terminal speed, according to the processing flow of FIG. 2, the power supply source 1 including only the power storage device from the vehicle position is connected to both the power storage device and the substation. According to the processing flow shown in FIG. 4, the power supply source 1 is closer to the power supply source 2 than the power supply source 2 provided, and the SOC of the power storage device of the power supply source 1 is sufficient. Since it is close, a command is issued to the power supply source 1.

また、図3の処理フローに従うと、力行中でかつ車両速度がV/f終端速度を超えているので、電力供給源への要求をすることになる。
このため、電力供給源1に放電指令が行われ、車両の架線電圧が上昇し、力行性能が上昇し加速が改善される。ただし、これに伴い電力供給源1のSOCが減っていく。
Further, according to the processing flow of FIG. 3, the power supply source is requested because the vehicle is running in power and the vehicle speed exceeds the V / f terminal speed.
For this reason, a discharge command is issued to the power supply source 1, the overhead wire voltage of the vehicle increases, the power running performance increases, and the acceleration is improved. However, the SOC of the power supply source 1 decreases accordingly.

次に、車両が惰行に入ると時間領域Cに移る。
この場合、図3の処理フローに従うと、電力供給源への要求はない。このため、電力供給源1及び電力供給源2のSOCの変動はない。次に、車両が再力行に入ると時間領域Dに移る。
Next, when the vehicle enters coasting, the time zone C is entered.
In this case, according to the processing flow of FIG. 3, there is no request to the power supply source. For this reason, there is no fluctuation | variation of SOC of the power supply source 1 and the power supply source 2. FIG. Next, when the vehicle enters powering again, the time zone D is entered.

時間領域Dは、車両が再力行しており、速度がV/f終端速度を超えた場合を示している。この場合、図3の処理フローに従うと、電力供給源への要求をすることになる。
また、図2の処理フローに従うと、車両位置から電力供給源2の方が電力供給源1よりも近く、SOCも十分にあることから電力供給源2に放電指令が行われるが、電力供給源3の方が電力供給源2よりも近いため、図4の処理から電力供給源からの放電が行われないようになる。これにより力行性能は、制御なしと同様となる。次に、電力供給源2の方が電力供給源3よりも小さくなると時間領域Eに移る。
A time region D indicates a case where the vehicle is repowering and the speed exceeds the V / f end speed. In this case, according to the processing flow of FIG. 3, a request is made to the power supply source.
Further, according to the processing flow of FIG. 2, since the power supply source 2 is closer to the power supply source 1 than the vehicle position and the SOC is sufficient, a discharge command is issued to the power supply source 2. Since 3 is closer to the power supply source 2, the discharge from the power supply source is not performed from the processing of FIG. As a result, the power running performance is the same as that without control. Next, when the power supply source 2 becomes smaller than the power supply source 3, the time domain E is entered.

時間領域Eは、車両が再力行しており、速度がV/f終端速度を超えた場合を示している。この場合、図3の処理フローに従うと、電力供給源への要求をすることになる。また、図2の処理フローに従うと、車両位置から電力供給源2の方が電力供給源1よりも近く、SOCも十分にあること、図4の処理フローに従うと、電力供給源2が変電所だけの電力供給源3よりも近いことから電力供給源2に放電指令が行われ、電力供給源2のSOCが減っていく。また、車両の架線電圧が上がる。これにより力行性能が上昇し加速が良くなる。次に、車両が惰行に入ると時間領域Fに移る。   Time region E shows a case where the vehicle is repowering and the speed exceeds the V / f end speed. In this case, according to the processing flow of FIG. 3, a request is made to the power supply source. Also, according to the processing flow of FIG. 2, the power supply source 2 is closer to the power supply source 1 from the vehicle position and the SOC is sufficient, and according to the processing flow of FIG. 4, the power supply source 2 is connected to the substation. Since the power supply source 2 is closer to the power supply source 2, a discharge command is issued to the power supply source 2, and the SOC of the power supply source 2 decreases. In addition, the overhead voltage of the vehicle increases. This improves power running performance and improves acceleration. Next, the time zone F is entered when the vehicle enters coasting.

時間領域Fは、車両が惰行している。この場合、図3の処理フローに従うと、電力供給源への要求はない。このため、電力供給源1及び電力供給源2のSOCの変動はない。次に、車両が制動に入ると時間領域Gに移る。   In the time region F, the vehicle is coasting. In this case, according to the processing flow of FIG. 3, there is no request to the power supply source. For this reason, there is no fluctuation | variation of SOC of the power supply source 1 and the power supply source 2. FIG. Next, when the vehicle enters braking, the time domain G is entered.

時間領域G、Hは、車両が制動している。この場合は、電力供給源を制御してそれぞれに充電するようにする。   In the time regions G and H, the vehicle is braking. In this case, the power supply source is controlled to charge each of them.

以上の処理により、地上蓄電装置から電力を放電することで、架線電圧を押し上げる効果を得られ、力行時の架線電圧を高く保つことで、ダイヤを遵守しつつ、力行時間を低減し、惰行走行時間を拡大することにより、省エネを図ることが可能となる。   Through the above process, the power from the ground power storage device can be discharged to boost the overhead line voltage. By keeping the overhead line voltage during power running high, the power running time can be reduced while complying with the schedule and coasting. By extending the time, it becomes possible to save energy.

[実施例2]
次に、実施例2のシステム構成を、図8に示す。実施例1と異なる点は、車両情報801に、その車両に供給される架線電圧を含め、電力アシスト判定システム802がこの架線電圧に応じて判定を変更することである。
電力アシスト判定システム802の処理を図9に示す。
ステップ301では、車両状態は力行駆動かを判断し、Yesであればステップ302に進む。Noであればステップ304に進む。
ステップ302では、車両状態情報に含まれる速度はV/fを超えているかの情報がYesならステップ901に進む。Noであればステップ304に進む。
ステップ901では、架線電圧が架線電圧閾値αよりも小さいかを判断する。Yesならステップ303に進む。Noであればステップ304に進む。
ステップ303では出力要求を出す。また、ステップ304では出力不要求を出す。以上で終了となる。
[Example 2]
Next, the system configuration of the second embodiment is shown in FIG. The difference from the first embodiment is that the power assist determination system 802 changes the determination according to the overhead line voltage including the overhead line voltage supplied to the vehicle in the vehicle information 801.
The processing of the power assist determination system 802 is shown in FIG.
In step 301, it is determined whether the vehicle state is power running drive. If no, go to step 304.
In step 302, if the information indicating whether the speed included in the vehicle state information exceeds V / f is Yes, the process proceeds to step 901. If no, go to step 304.
In step 901, it is determined whether the overhead wire voltage is smaller than the overhead wire voltage threshold value α. If yes, go to step 303. If no, go to step 304.
In step 303, an output request is issued. In step 304, an output non-request is issued. This is the end.

なお、ステップ901における架線電圧閾値αは任意の値であり、要は、蓄電装置からの放電による効果が十分に得られない場合や、回生制動中の他の列車が付近にいる場合に回生による制動力を低減しないように設定されるもので、例えば基準電圧や車両の軽負荷開始電圧を使用してもよい。また、路線全体で一定ではなく、例えばダイヤの疎密度に応じて時間や電力供給設備毎に、αを変更しても良い。
本制御を実施することで、架線電圧の平準化を図れることになる。また、蓄電装置の動きも平準化するため、容量を抑えることもできる。
Note that the overhead voltage threshold value α in step 901 is an arbitrary value. In short, when the effect due to the discharge from the power storage device cannot be sufficiently obtained, or when another train during regenerative braking is in the vicinity, It is set so as not to reduce the braking force. For example, a reference voltage or a light load start voltage of the vehicle may be used. Moreover, it may not be constant for the entire route, and for example, α may be changed for each time or power supply facility according to the density of the diamond.
By performing this control, the overhead line voltage can be leveled. Further, since the movement of the power storage device is also leveled, the capacity can be suppressed.

[実施例3]
次に、実施例3のシステム構成を図10に示す。実施例1と異なる点は、車両情報1001が車両速度、車両位置を含み、電力アシスト判定システム1002が、自動列車運転装置つきの車両1003を前提にすることである。
電力アシスト判定システム1002の処理を図11に示す。
ステップ1101では、車両位置から制限速度を求める。次にステップ1102に進む。
ステップ1102では、ステップ1101で求めた制限速度が車両速度よりも高いかどうかを判断する、Yesであればステップ1103に進む。Noであればステップ1104に進む。
[Example 3]
Next, FIG. 10 shows a system configuration of the third embodiment. The difference from the first embodiment is that the vehicle information 1001 includes the vehicle speed and the vehicle position, and the power assist determination system 1002 is based on the vehicle 1003 with an automatic train driving device.
The processing of the power assist determination system 1002 is shown in FIG.
In step 1101, a speed limit is obtained from the vehicle position. Next, the process proceeds to step 1102.
In Step 1102, it is determined whether or not the speed limit obtained in Step 1101 is higher than the vehicle speed. If Yes, the process proceeds to Step 1103. If No, go to Step 1104.

そして、ステップ1103では、車両速度がV/fを超えているかを判定し、超えている場合らステップ1105に、車両速度がV/f以下の場合、ステップ1106に進む。
ステップ1104では、ステップ1101で求めた制限速度が前回のものよりも大きいかどうかを判断し、大きければ、車両が力行に転じると予測し、ステップ1103に進む。ステップ1101で求めた制限速度が前回以下であればステップ1106に進む。
ステップ1105では出力要求を送出しステップ1106では出力不要求を送出すし、処理が終了となる。
In step 1103, it is determined whether the vehicle speed exceeds V / f. If it exceeds, the process proceeds to step 1105. If the vehicle speed is V / f or less, the process proceeds to step 1106.
In step 1104, it is determined whether or not the speed limit obtained in step 1101 is larger than the previous speed. If it is larger, it is predicted that the vehicle will turn to power running, and the process proceeds to step 1103. If the speed limit obtained in step 1101 is equal to or lower than the previous speed, the process proceeds to step 1106.
In step 1105, an output request is sent, and in step 1106, an output non-request is sent, and the process ends.

なお、いずれの実施例においても車両速度がV/f速度を超えているかの判定(図3のステップ302)は、車上側で行い、地上側に対しては越えたかどうかの結果のみを送付してステップ302の判断を行う方式であっても良い。さらに、V/f速度ではなく、一般的に、車両のV/f終端速度は路線最高速度の1/3以下になるよう設計されているため、路線最高速度の1/3として判定を行ってもよい。   In any of the embodiments, the determination as to whether the vehicle speed exceeds the V / f speed (step 302 in FIG. 3) is performed on the vehicle upper side, and only the result of whether the vehicle speed has been exceeded is sent to the ground side. The method of performing the determination in step 302 may be used. Furthermore, not the V / f speed, but the vehicle's V / f end speed is generally designed to be 1/3 or less of the maximum route speed. Also good.

また、いずれの実施例においても、車両に最も近い蓄電装置と車両の間に変電所がある場合には、変電所からだけ供給する場合と比べて、車両架線電圧には変化がないことから供給しない。但し、車両に最も近い蓄電装置が変電所内にある場合には、該変電所は、車両に最も近い蓄電装置と車両の間にある変電所ではないとする。従って、以下の式が成立する場合には供給しない。
|車両に最も近い変電所−車両に最も近い蓄電装置位置|/|車両位置-車両に最も近い蓄電装置位置|<1 :(車両に最も近い変電所≠車両に最も近い蓄電装置位置)
Also, in any of the embodiments, when there is a substation between the power storage device closest to the vehicle and the vehicle, the supply voltage is supplied because there is no change in the vehicle overhead line voltage compared to the case where the substation is supplied only from the substation. do not do. However, when the power storage device closest to the vehicle is in the substation, the substation is not a substation between the power storage device closest to the vehicle and the vehicle. Therefore, it is not supplied when the following expression holds.
| Substation closest to vehicle--Power storage device position closest to vehicle | / | Vehicle position--Power storage device position closest to vehicle | <1: (Substation closest to vehicle ≠ Power storage device position closest to vehicle)

101:蓄電装置、102:変電所、103:電力供給設備、104:架線、105:車両、106:電力量、107:充電量、108:電力管理システム、109:車両情報、110:データベース、111:位置情報、112:蓄電装置判断システム、113:電力アシスト判定システム、114:第1の判断結果、115:第2の判断結果、116:電力アシスト決定システム、117:判断結果、801:車両情報、802:電力アシスト判定システム、1001:車両速度、車両位置で構成される車両情報、1002:電力アシスト判定システム、1003:自動列車運転装置つきの車両 101: power storage device, 102: substation, 103: power supply equipment, 104: overhead line, 105: vehicle, 106: power amount, 107: charge amount, 108: power management system, 109: vehicle information, 110: database, 111 : Position information, 112: power storage device determination system, 113: power assist determination system, 114: first determination result, 115: second determination result, 116: power assist determination system, 117: determination result, 801: vehicle information 802: Power assist determination system, 1001: Vehicle information including vehicle speed and vehicle position, 1002: Power assist determination system, 1003: Vehicle with automatic train driving device

Claims (5)

変電所及び蓄電装置の少なくとも一方を有する複数の電力供給源と、前記電力供給源から電力を受けて走行する車両と、前記車両が走行する路線における前記電力供給源の位置に応じて、当該電力供給源から供給する電力及び前記蓄電装置への充電量を管理する電力管理システムで構成される鉄道システムにおいて、
前記電力管理システムは、前記車両から車両位置、車両速度と、該車両が力行中か、惰行中か、あるいは制動中であるかの走行状態を受け取ることによって、前記車両が供給を受ける前記電力供給源に含まれる蓄電装置を決定するとともに、前記車両速度と前記走行状態から、決定された前記蓄電装置からの電力供給の要否を判断し、当該蓄電装置を備えた前記電力供給源にその判断結果を伝達することを特徴とする鉄道システム。
A plurality of power supply sources having at least one of a substation and a power storage device, a vehicle that travels by receiving power from the power supply source, and the power according to a position of the power supply source on a route on which the vehicle travels In a railway system composed of a power management system that manages power supplied from a supply source and the amount of charge to the power storage device,
The power management system receives the power from the vehicle by receiving a vehicle position, a vehicle speed, and a running state indicating whether the vehicle is powering, coasting, or braking. Determining a power storage device included in the power source, determining whether power supply from the determined power storage device is necessary based on the vehicle speed and the traveling state, and determining the power supply source including the power storage device Railway system characterized by transmitting results.
請求項1の鉄道システムにおいて、
前記車両から前記電力管理システムに供給される情報に、当該車両に供給される架線電圧を含み、前記電力管理システムは、この架線電圧を、あらかじめ定められた架線電圧閾値と比較することで、前記電力供給源に含まれる蓄電装置から電力の供給をするかどうかを判断する機能を有することを特徴とする鉄道システム。
The railway system according to claim 1,
The information supplied from the vehicle to the power management system includes an overhead line voltage supplied to the vehicle, and the power management system compares the overhead line voltage with a predetermined overhead line voltage threshold, A railway system having a function of determining whether to supply power from a power storage device included in a power supply source.
請求項1の鉄道システムにおいて、
前記電力管理システムは、路線の制限速度を記憶するデータベースを備え、前記車両位置に基づいて制限速度を求め、制限速度と車両速度の関係、及び、制限速度の変化の関係から、前記電力供給源に含まれる蓄電装置から電力の供給をするかどうかを判断する機能を有することを特徴とする鉄道システム。
The railway system according to claim 1,
The power management system includes a database that stores a speed limit of a route, obtains a speed limit based on the vehicle position, and determines the power supply source based on a relationship between the speed limit and the vehicle speed, and a change in speed limit. A railway system having a function of determining whether to supply power from the power storage device included in the railway system.
請求項1の鉄道システムにおいて、
前記電力管理システムは、車両速度が駅間最高速度の1/3を超えた場合に当該車両に対して、前記電力供給源に含まれる蓄電装置から電力の供給をするかどうかを判断する機能を有することを特徴とする鉄道システム。
The railway system according to claim 1,
The power management system has a function of determining whether to supply power from the power storage device included in the power supply source to the vehicle when the vehicle speed exceeds 1/3 of the maximum speed between stations. A railway system characterized by comprising:
請求項1から4のいずれか一項に記載された鉄道システムにおいて、
前記電力管理システムは、前記車両に対して電力供給を行う電力供給源の蓄電装置に対して、当該電力供給源と前記車両の間に、蓄電装置を備えず変電所のみからなる電力供給源が含まれる場合には、前記蓄電装置からの電力供給を禁止するように制御することを特徴とする鉄道システム。
In the railway system according to any one of claims 1 to 4,
In the power management system, for a power storage device of a power supply source that supplies power to the vehicle, a power supply source including only a substation without a power storage device is provided between the power supply source and the vehicle. If included, the railway system is controlled to prohibit power supply from the power storage device.
JP2012141832A 2012-06-25 2012-06-25 Railway system Active JP6001350B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012141832A JP6001350B2 (en) 2012-06-25 2012-06-25 Railway system
IN10460DEN2014 IN2014DN10460A (en) 2012-06-25 2013-06-05
CN201380031983.9A CN104379397B (en) 2012-06-25 2013-06-05 Railway system
PCT/JP2013/065582 WO2014002717A1 (en) 2012-06-25 2013-06-05 Railway system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012141832A JP6001350B2 (en) 2012-06-25 2012-06-25 Railway system

Publications (2)

Publication Number Publication Date
JP2014004914A true JP2014004914A (en) 2014-01-16
JP6001350B2 JP6001350B2 (en) 2016-10-05

Family

ID=49782883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012141832A Active JP6001350B2 (en) 2012-06-25 2012-06-25 Railway system

Country Status (4)

Country Link
JP (1) JP6001350B2 (en)
CN (1) CN104379397B (en)
IN (1) IN2014DN10460A (en)
WO (1) WO2014002717A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190102963A (en) * 2018-02-27 2019-09-04 히가시니혼료카쿠데츠도 가부시키가이샤 Power supply system and method for controlling the system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108749654B (en) * 2018-06-06 2021-05-28 马茜 Power management system of train
CN108773299B (en) * 2018-06-06 2021-06-29 安徽施耐德成套电气有限公司 Power management system for electrified rail transit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259528U (en) * 1985-10-02 1987-04-13
JPH1191414A (en) * 1997-09-22 1999-04-06 Toshiba Corp Control device for substation
JP2008024206A (en) * 2006-07-24 2008-02-07 Toshiba Corp Control device for controlling power supply of mobile body
JP2009067205A (en) * 2007-09-12 2009-04-02 Toshiba Corp Sub station using storage element, and electric railroad feeding system
WO2009107715A1 (en) * 2008-02-29 2009-09-03 川崎重工業株式会社 Electric railway power-supply system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259528U (en) * 1985-10-02 1987-04-13
JPH1191414A (en) * 1997-09-22 1999-04-06 Toshiba Corp Control device for substation
JP2008024206A (en) * 2006-07-24 2008-02-07 Toshiba Corp Control device for controlling power supply of mobile body
JP2009067205A (en) * 2007-09-12 2009-04-02 Toshiba Corp Sub station using storage element, and electric railroad feeding system
WO2009107715A1 (en) * 2008-02-29 2009-09-03 川崎重工業株式会社 Electric railway power-supply system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190102963A (en) * 2018-02-27 2019-09-04 히가시니혼료카쿠데츠도 가부시키가이샤 Power supply system and method for controlling the system
JP2019147447A (en) * 2018-02-27 2019-09-05 東日本旅客鉄道株式会社 Power supply system and control method of the system
KR102179305B1 (en) * 2018-02-27 2020-11-16 히가시니혼료카쿠데츠도 가부시키가이샤 Power supply system and method for controlling the system
JP6998236B2 (en) 2018-02-27 2022-01-18 東日本旅客鉄道株式会社 Power supply system and control method of the system

Also Published As

Publication number Publication date
CN104379397B (en) 2016-10-12
JP6001350B2 (en) 2016-10-05
CN104379397A (en) 2015-02-25
WO2014002717A1 (en) 2014-01-03
IN2014DN10460A (en) 2015-08-21

Similar Documents

Publication Publication Date Title
CN101563253B (en) Energy-regulating system for a vehicle
KR101478717B1 (en) System, sub-station and method for recovering brake energy of rail vehicles, rail vehicles for this system
US10507739B2 (en) Train-energy control system, ground device, and on-board device
JP5044341B2 (en) Power storage device
JP6047827B2 (en) Operation control device, operation control method, and control program
WO2013099171A1 (en) Transportation management device, transportation management system, and control program
KR101776008B1 (en) Electric railway vehicle system between stations using a rapid charge system
CN104260759A (en) Method and system for optimizing energy conservation of urban rail transit
JPWO2014027400A1 (en) Train information management apparatus and device control method
US8838304B2 (en) Method for determining run-curves for vehicles based on travel time
JP6282212B2 (en) Storage battery charge / discharge management device and storage battery charge / discharge management system
US10766367B2 (en) Train control device
JP6001350B2 (en) Railway system
JP4907262B2 (en) Electric vehicle control device
Al-Ezee et al. Aspects of catenary free operation of DC traction systems
JP6599775B2 (en) Train storage battery control device, method and program
CN110395299B (en) Train braking energy utilization method in urban rail transit
JP5537406B2 (en) Vehicle control system
JPH1191414A (en) Control device for substation
JP4856219B2 (en) Mobile control device
JP7120853B2 (en) Power supply system and power supply method
JP5922555B2 (en) Operation management system
JP2018186641A (en) Train control system
KR20200052163A (en) SOC management method for hydrogen fuel cell hybrid railway vehicle
CN111469885B (en) Mobile unit in rail transit system and rail transit system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160901

R150 Certificate of patent or registration of utility model

Ref document number: 6001350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150