JP2018186641A - Train control system - Google Patents

Train control system Download PDF

Info

Publication number
JP2018186641A
JP2018186641A JP2017086816A JP2017086816A JP2018186641A JP 2018186641 A JP2018186641 A JP 2018186641A JP 2017086816 A JP2017086816 A JP 2017086816A JP 2017086816 A JP2017086816 A JP 2017086816A JP 2018186641 A JP2018186641 A JP 2018186641A
Authority
JP
Japan
Prior art keywords
vehicle
train
regeneration
energy
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017086816A
Other languages
Japanese (ja)
Inventor
尊善 西野
Takayoshi Nishino
尊善 西野
勝田 敬一
Keiichi Katsuta
敬一 勝田
小田 篤史
Atsushi Oda
篤史 小田
将尭 横田
Masataka Yokota
将尭 横田
雄飛 堤
Yuhi Tsutsumi
雄飛 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2017086816A priority Critical patent/JP2018186641A/en
Publication of JP2018186641A publication Critical patent/JP2018186641A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the utilization efficiency of regenerative energy, by increasing an opportunity allowing direct accommodation of regenerative energy between vehicles.SOLUTION: There is provided a train control system including a first vehicle having a first electric motor and a second vehicle having a second electric motor, in which the first and second electric motors have a regenerative brake function of decelerating the vehicle by converting kinetic energy into electric energy and supplying the generated electric energy to an overhead power line. The train control system issues a command for dividing a vehicle of one formation into two formations including the first vehicle and the second vehicle or annexing a train with two formations of the first vehicle and the second vehicle to one formation based on information on regenerative invalidation or excess over reference power quantity.SELECTED DRAWING: Figure 1

Description

本発明は、回生ブレーキを利用する列車の制御システムに関する。   The present invention relates to a train control system using a regenerative brake.

電動機で駆動する鉄道車両の走行に掛かるエネルギーを低減するため、電動機を使って運動エネルギーを電気エネルギーに変換することで車両を減速させ、発生した電気エネルギーを他の車両が架線を介し受電して加速に再利用するしくみ(回生ブレーキ)が実用されている。   In order to reduce the energy required for running a railway vehicle driven by an electric motor, the motor is decelerated by converting the kinetic energy into electric energy using the electric motor, and the generated electric energy is received by the other vehicle via the overhead line. A mechanism for reusing acceleration (regenerative braking) is in practical use.

回生ブレーキには、発生した電気エネルギー(回生エネルギー)を再利用できる加速中の車両が在線していない限り利用できないという問題がある。   The regenerative brake has a problem that it cannot be used unless an accelerating vehicle capable of reusing the generated electric energy (regenerative energy) is present.

この問題への対策として、特許文献1の電気鉄道き電システムは、架線に設置した蓄電装置へ回生エネルギーを蓄え、車両が加速した際に蓄えたエネルギーを放電することで、加速中の車両の有無に関わらず回生ブレーキを利用できるようにしている。   As a countermeasure to this problem, the electric railway power system of Patent Document 1 stores regenerative energy in a power storage device installed on an overhead line, and discharges the stored energy when the vehicle accelerates, thereby The regenerative brake can be used regardless of the presence or absence.

また、特許文献2のき電システムは、加速中の車両が在線して回生エネルギーを利用可能な場合には車両間での電力融通を優先し、加速中の車両で消費しきれない回生エネルギーを蓄電池に充電することで、効率よく回生エネルギーを再利用できるようにしている。   In addition, the power feeding system of Patent Document 2 gives priority to power interchange between vehicles when the vehicle being accelerated is present and the regenerative energy is available, and the regenerative energy that cannot be consumed by the vehicle being accelerated is given priority. By charging the storage battery, regenerative energy can be reused efficiently.

特許文献1や特許文献2のき電システムの構成で、車両の加速に必要なエネルギーを変電所に加えて蓄電池からも同時に供給すれば、変電所から供給するエネルギーのピーク値を下げられる。これにより、変電所のピーク値の設計条件を緩和できたり、単位時間あたりのピーク値に従って課金されるようなエネルギー利用料契約のとき利用料を下げられたりする。   In the configuration of the feeding system of Patent Literature 1 and Patent Literature 2, if energy necessary for vehicle acceleration is added to the substation and supplied simultaneously from the storage battery, the peak value of energy supplied from the substation can be lowered. Thereby, the design condition of the peak value of the substation can be relaxed, or the usage fee can be reduced when the energy usage fee contract is charged according to the peak value per unit time.

特開2009−67205号公報JP 2009-67205 A 特開2016−49817号公報JP 2016-49817 A

特許文献1に記載の方法では、蓄電池の充放電に伴うエネルギーロスの分、回生エネルギーの利用効率が落ちる。   In the method described in Patent Document 1, the use efficiency of regenerative energy is reduced by the amount of energy loss associated with charging / discharging of the storage battery.

特許文献2に記載の方法では、回生エネルギーを車両間で直接的に融通できる場合には、蓄電池の充放電に伴うエネルギーロスを最小限に抑えられるものの、回生エネルギーを車両間で直接的に融通できない場合にはやはり、蓄電池の充放電に伴うエネルギーロスの分、回生エネルギーの利用効率が落ちる。   In the method described in Patent Document 2, when regenerative energy can be interchanged directly between vehicles, energy loss due to charging / discharging of the storage battery can be minimized, but regenerative energy can be interchanged directly between vehicles. If this is not possible, the efficiency of using regenerative energy is reduced due to the energy loss associated with charging / discharging the storage battery.

また、特許文献1や特許文献2に記載の方法では、蓄電池に放電できるだけのエネルギーが貯えられ、加速中の車両へ放電可能な条件が整っているとき(例えば蓄電池が高温になり過ぎていないとき)にしか、変電所から供給するエネルギーのピーク値を下げる効果を発揮できない。   Further, in the methods described in Patent Document 1 and Patent Document 2, energy that can be discharged is stored in the storage battery, and conditions for discharging to the accelerating vehicle are in place (for example, when the storage battery is not too hot). However, the effect of lowering the peak value of energy supplied from the substation can only be demonstrated.

これらの問題を踏まえ、回生エネルギーを車両間で直接的に融通できる機会を増やし、回生エネルギーの利用効率を向上させることが、本発明の解決しようとする課題である。   Based on these problems, it is a problem to be solved by the present invention to increase opportunities for allowing regenerative energy to be interchanged directly between vehicles and improve the utilization efficiency of regenerative energy.

上記の課題を解決するために、本発明は、例えば特許請求の範囲に記載の構成を採用する。   In order to solve the above problems, the present invention employs, for example, the configurations described in the claims.

本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、第一の電動機を有する第一の車両と、第二の電動機を有する第二の車両とを有し、前記第一及び第二の電動機は、運動エネルギーを電気エネルギーに変換することで車両を減速させ、発生した電気エネルギーを架線へ供給する回生ブレーキ機能を有する列車の列車制御システムにおいて、回生失効または基準電力量超過の情報に基づき、一編成の車両を前記第一の車両と前記第二の車両の二編成に分割する、または前記第一の車両と前記第二の車両の二編成であった列車を一編成に併合する指令を発信するように構成する。   The present application includes a plurality of means for solving the above-described problems. To give an example, the first application includes a first vehicle having a first electric motor and a second vehicle having a second electric motor, In the train control system for a train having a regenerative braking function, the first and second electric motors decelerate the vehicle by converting kinetic energy into electric energy and supply the generated electric energy to the overhead line. Based on the excess information, a train of vehicles is divided into two trains of the first vehicle and the second vehicle, or a train that is a train of the first vehicle and the second vehicle. A command to be merged into one organization is transmitted.

本発明により、回生エネルギーを車両間で直接的に融通できる機会が増え、回生エネルギーの利用効率が向上する。   According to the present invention, opportunities for allowing regenerative energy to be interchanged directly between vehicles are increased, and the use efficiency of regenerative energy is improved.

実施例1における列車制御システムの構成を示す図The figure which shows the structure of the train control system in Example 1. 実施例1における回生失効が検知される場合の一例を示す図The figure which shows an example in case the regeneration invalidity in Example 1 is detected. 実施例1における回生失効が検知されない場合の一例を示す図The figure which shows an example when the regeneration invalidity in Example 1 is not detected. 実施例1における分割併合判定部の状態遷移を示す図The figure which shows the state transition of the division | segmentation merge determination part in Example 1. 実施例1における分割判定モードの処理の手順を示すフローチャート7 is a flowchart illustrating a procedure of division determination mode processing according to the first embodiment. 実施例1における併合判定モードの処理の手順を示すフローチャートThe flowchart which shows the procedure of the process of the merge determination mode in Example 1. 実施例1における分割指令出力後の列車の状態を示す図The figure which shows the state of the train after the division | segmentation command output in Example 1. 実施例2における列車制御システムの構成を示す図The figure which shows the structure of the train control system in Example 2. 実施例2で変電所供給電力量のピークが基準値を超える場合の一例を示す図The figure which shows an example in case the peak of substation supply electric energy exceeds reference values in Example 2. 実施例2で変電所供給電力量のピークが基準値を超えない場合の一例を示す図The figure which shows an example when the peak of substation supply electric energy does not exceed a reference value in Example 2. 実施例2における分割指令出力後の列車の状態と変電所供給電力量の推移を示す図The figure which shows the transition of the state of the train after the division | segmentation command output in Example 2, and a substation supply electric energy.

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

本発明の一実施形態である列車制御システムの構成を図1に示す。
本実施例では、架線から給電され電動機で駆動する列車101と列車102が、互いに架線を介して回生電力の融通が可能な同一の変電所区間に在線し、走行しているものとする。列車101と列車102が加減速をする時刻は、運行計画などで特定の時刻に縛られてはおらず、十分にばらついているものとする。ここで、列車101と列車102の間の距離は、十分な大きさを保つように信号システムで担保されているものとし、以降、本実施例を通じて、列車同士の衝突のような事象は考えない。
A configuration of a train control system according to an embodiment of the present invention is shown in FIG.
In this embodiment, it is assumed that a train 101 and a train 102 that are fed from an overhead line and driven by an electric motor are on the same substation section where regenerative power can be accommodated via the overhead line and are running. It is assumed that the time at which the train 101 and the train 102 accelerate / decelerate is not limited to a specific time in the operation plan or the like and varies sufficiently. Here, it is assumed that the distance between the train 101 and the train 102 is secured by a signal system so as to maintain a sufficient size, and thereafter, an event such as a collision between trains is not considered through this embodiment. .

列車101と列車102が加減速をする時刻が十分にばらついていると前提を置いた理由は、本実施例が、複数の列車の運転操作(加速や減速)の組み合わせの確率的な分布を利用するものであり、そのような前提の下で最も良く効果を発揮するからである。もし、列車の位置と運転操作が予め計画したダイヤに従っていつも決まっているのならば、本実施例はダイヤに対して実際の運転が揺らぐ範囲(運行乱れや運転操作タイミングのずれ)で効果を発揮するが、その場合の効果は上記の前提の時よりも小さい。   The reason for assuming that the time at which the train 101 and the train 102 accelerate / decelerate sufficiently varies is that this embodiment uses a probabilistic distribution of combinations of driving operations (acceleration and deceleration) of multiple trains. This is because it is most effective under such assumptions. If the train position and driving operation are always determined according to a schedule that is planned in advance, this embodiment will be effective in the range where the actual driving fluctuates with respect to the schedule (disturbance in operation and deviation in driving operation timing). However, the effect in that case is smaller than that of the above assumption.

確率的な分布を利用するというのは、図2に表されるような列車2編成(101、102)が在線している場合よりも、この2編成をそれぞれ2つに分割し、図7に表されるような列車4編成(101A、101B、102A、102B)とした方が、ある列車が回生ブレーキを掛けようとしたときに、負荷車となる別の加速中の列車がいる確率が高いということである。これにより、結果的に、負荷車がおらず回生ブレーキを掛けられないことが減り、列車群全体のエネルギーの利用効率が上がる。これが、本実施例が効果を発揮する原理である。   Using probabilistic distribution means that the two trains (101, 102) as shown in FIG. 2 are divided into two, compared to the case where there are two trains (101, 102) as shown in FIG. The train with four trains as shown (101A, 101B, 102A, 102B) is more likely to have another accelerating train that becomes a load vehicle when a train tries to apply regenerative braking. That's what it means. As a result, the number of loaded vehicles is not present and the regenerative brake cannot be applied, and the energy utilization efficiency of the entire train group is increased. This is the principle that the present embodiment demonstrates the effect.

列車101と列車102はそれぞれ、2両の車両を連結して成る。各車両が駆動系を搭載しており自走可能であるが、連結して列車を編成しているとき、各車両の運転操作は一貫しているものとする。つまり、片方が加速してもう片方が減速するということはなく、加速か減速かの運転操作は列車101として決まり、各車両の駆動系の動作はそれに協調する。   Each of the train 101 and the train 102 is formed by connecting two vehicles. Each vehicle is equipped with a drive system and can be self-propelled. However, when the train is connected and organized, the driving operation of each vehicle is consistent. That is, one side does not accelerate and the other does not decelerate, the driving operation of acceleration or deceleration is determined as the train 101, and the operation of the drive system of each vehicle is coordinated therewith.

ここで、列車101と列車102を2両編成としたのは、本発明の実施を2両編成の場合に限る意図ではない。複数両で編成され、それぞれ駆動系を搭載して自走可能な複数の列車に分割できれば、本発明は同様に実施できる。   Here, the fact that the train 101 and the train 102 have a two-car train is not intended to limit the implementation of the present invention to a two-car train. The present invention can be similarly implemented as long as it can be divided into a plurality of trains that are knitted by a plurality of cars and that can each be equipped with a drive train and that can run independently.

尚、列車101や列車102を構成する車両が自動列車運転装置を備え、ドライバレスで自走可能であれば、列車を分割後に車両の数だけ運転士を増員する手間やコストを省くことができる。   If the train 101 or the train 102 is equipped with an automatic train driving device and can be self-propelled without a driver, it is possible to save labor and cost for increasing the number of drivers after dividing the train. .

以下、列車101が搭載する車上システム113の構成を説明する。列車102も同様の車上システムを搭載するが、その説明は省略する。   Hereinafter, the configuration of the on-board system 113 mounted on the train 101 will be described. The train 102 is also equipped with a similar on-vehicle system, but the description thereof is omitted.

車上システム113は、回生ブレーキシステム103、回生失効検知部104、車上送信部105、車上受信部106、分割併合制御部107で成る。   The on-board system 113 includes a regenerative braking system 103, a regeneration invalidation detection unit 104, an on-vehicle transmission unit 105, an on-vehicle reception unit 106, and a division / merging control unit 107.

回生ブレーキシステム103は、列車101を回生ブレーキによって減速させるシステムである。このシステムは、今日、多数実用されているものである。すなわち、電動機とそれを制御する変換機で構成され、電動機を発電機として動作させることで列車の運動エネルギーを電気エネルギーに変換して、架線を介して他の車両に融通できるようにしたものである。融通先となる負荷車両が不在のときは、そのことを架線電圧の上昇等で検知して回生ブレーキの適用を諦め(回生失効)、空気ブレーキなどの代替手段で必要な減速力を確保できるようにする。例えば図2のようなとき、すなわち時刻A付近で列車101も列車102も減速するようなときは、時刻A付近で回生失効となる。図3のようなとき、すなわち時刻B付近で列車101は減速し列車102は加速するようなときは、時刻B付近で電気エネルギーを列車102に融通できるため、回生失効にはならない。   The regenerative brake system 103 is a system that decelerates the train 101 by the regenerative brake. Many such systems are in practical use today. In other words, it is composed of an electric motor and a converter that controls the electric motor. By operating the electric motor as a generator, the train's kinetic energy is converted into electric energy, which can be accommodated to other vehicles via an overhead wire. is there. When there is no load vehicle to be accommodated, it can be detected by an increase in overhead line voltage, etc. to give up the application of regenerative braking (regeneration expired), and the necessary deceleration force can be secured with alternative means such as air brake To. For example, in the case shown in FIG. 2, that is, when both the train 101 and the train 102 decelerate near the time A, the regeneration expires near the time A. When FIG. 3 shows, that is, when the train 101 decelerates near time B and the train 102 accelerates, electrical energy can be accommodated in the train 102 near time B, so that regeneration is not lost.

回生失効検知部104は、回生ブレーキシステム113が前述のように回生失効した場合にその情報を検知する。単に回生失効した回数を検知するのでも良いし、回生の機会を逸したエネルギー量を検知するのでも良い。前者に比べて後者の場合、後述の分割併合判定部110で、エネルギー量に基づいたよりきめ細かい判定が可能になる。   The regenerative invalidation detection unit 104 detects the information when the regenerative braking system 113 is regeneratively expired as described above. It is also possible to simply detect the number of times the regeneration has expired, or to detect the amount of energy that has missed the opportunity for regeneration. In the latter case as compared with the former, the division / merging determination unit 110 described later enables more detailed determination based on the energy amount.

車上送信部105は、回生失効検知部104で検知した回生失効の情報を地上システム114へ送信する。媒体は何でも良く、例えば無線が利用できる。   The on-vehicle transmission unit 105 transmits the regeneration invalidation information detected by the regeneration invalidation detection unit 104 to the ground system 114. Any medium can be used, for example, wireless can be used.

車上受信部106は、地上システム114から後述の分割指令または併合指令を受信するもので、ここでも媒体は何でも良い。   The on-vehicle receiving unit 106 receives a division command or a merge command, which will be described later, from the ground system 114, and any medium may be used here.

分割併合制御部107は、車上受信部106から分割指令を受けたとき列車101を構成する2つの車両の連結を開放してそれぞれ自走できるようにし、また、車上受信部106から併合指令を受けたとき、2つの車両を連結して列車101を編成する。   The division / merging control unit 107 opens the connection between the two vehicles constituting the train 101 when receiving a division command from the on-vehicle receiving unit 106, and allows the vehicle to run independently. The train 101 is formed by connecting two vehicles.

続いて以下では、地上システム114について説明する。地上システム114は、地上受信部108、回生失効記憶部109、分割併合判定部110、地上送信部112で成る。   Subsequently, the ground system 114 will be described below. The terrestrial system 114 includes a terrestrial receiving unit 108, a regeneration expiration storage unit 109, a division / merging determination unit 110, and a terrestrial transmission unit 112.

地上受信部108は、前述の回生失効検知部104で検知した回生失効の情報を、車上システム113から受信する。   The ground receiving unit 108 receives from the on-board system 113 information on the regenerative revocation detected by the regenerative revocation detecting unit 104 described above.

回生失効記憶部109は、地上受信部108で受信した回生失効の情報を、単位時間あたりの情報として取り出せる形で記録する。すなわち、回生失効の回数の頻度、あるいは回生の機会を逸したエネルギー量の変化が分かる形で回生失効の情報を保持する。例えば、回生失効の回数や回生の機会を逸したエネルギー量を時刻と関連付けて記憶しておけば、単位時間あたりへの換算は容易である。単位時間の長さは、例えばおよその運転時隔が10分のときは3時間など、回生失効のサンプル数が十分にとれる程度であれば良い。   The regeneration / revocation storage unit 109 records the regeneration / revocation information received by the ground reception unit 108 in a form that can be extracted as information per unit time. In other words, the information on the regenerative revocation is held in such a way that the frequency of the regenerative revocation or the change in the amount of energy missed the regenerative opportunity can be understood. For example, if the number of regeneration invalidations and the amount of energy that missed the regeneration opportunity are stored in association with the time, conversion into unit time is easy. The length of the unit time may be such that, for example, when the approximate operation time interval is 10 minutes, the number of regenerative invalidation samples can be sufficiently obtained, such as 3 hours.

分割併合判定部110は、回生失効記憶部109の保持する前述の情報を用い、列車を分割または併合させるかどうかを判定し、それぞれ判定結果に応じて分割指令または併合指令を出力する。この判定方法について図4、図5、図6を用いて詳しく説明する。   The division / merging determination unit 110 determines whether to divide or merge the train using the above-described information held in the regeneration invalidation storage unit 109, and outputs a division command or a merge command depending on the determination result. This determination method will be described in detail with reference to FIGS. 4, 5, and 6.

図4は、分割併合判定部110の状態遷移を表している。初期状態は分割判定モード401であり、ここでは列車を分割させるかどうかを判定する。分割させるとき、分割指令を出力し、併合判定モード402に遷移する。併合判定モード402では、列車を併合させるかどうかを判定し、併合させるとき、併合指令を出力して分割判定モード401に遷移する。この状態遷移によると、分割指令と併合指令を同時に出力することが無い。   FIG. 4 shows a state transition of the division / merging determination unit 110. The initial state is a division determination mode 401, in which it is determined whether to divide the train. When dividing, a division command is output, and a transition is made to the merge determination mode 402. In the merge determination mode 402, it is determined whether or not the trains are to be merged. When the trains are merged, a merge command is output and a transition is made to the division determination mode 401. According to this state transition, the split command and the merge command are not output simultaneously.

図5は分割判定モード401における処理のフローチャートである。分割判定モード401はこの処理フローを周期的に行なう。周期は前述の単位時間の長さに合わせ、単位時間が3時間のときは例えば1時間周期で十分である。   FIG. 5 is a flowchart of processing in the division determination mode 401. The division determination mode 401 periodically performs this processing flow. The period corresponds to the length of the unit time described above, and for example, a one-hour period is sufficient when the unit time is 3 hours.

まず、処理501で回生失効記憶部109から単位時間あたりの回生失効の情報を読み出す。この情報は、前述の通り、回生失効の発生頻度やエネルギー量の変化を表すものである。次に、処理502で予め定めた基準値よりも、回生失効の発生頻度やエネルギー量の変化が大きいかどうかを判定する。大きいときは、処理503へ移行し、分割指令を出力した上で併合判定モード402へ遷移して、処理フローを終える。小さいときは、そのまま処理フローを終える。   First, in process 501, information on regeneration invalidation per unit time is read from the regeneration invalidation storage unit 109. As described above, this information represents the frequency of occurrence of regeneration expiration and the change in the amount of energy. Next, it is determined whether or not the frequency of regeneration revocation and the change in energy amount are larger than the reference value predetermined in the process 502. When it is larger, the process shifts to process 503, outputs a division command, shifts to the merge determination mode 402, and ends the process flow. When it is smaller, the processing flow is finished as it is.

ここで、処理502で用いた基準値は、許容する消費エネルギーの観点から決めれば良い。例えば、おおよその運転時隔から考えて3時間で回生ブレーキの機会が20回あり、列車の走行に掛かる総消費エネルギーの設計上、そのうち少なくとも半分は回生失効無くエネルギーを再利用したい場合、10回を基準値とすれば良い。   Here, the reference value used in processing 502 may be determined from the viewpoint of allowable energy consumption. For example, if there are 20 regenerative braking opportunities in 3 hours from the approximate driving time interval, and the design of the total energy consumption required for running the train, at least half of them wants to recycle energy without regeneration expiration 10 times May be used as a reference value.

図6は併合判定モード402における処理のフローチャートである。併合判定モード402はこの処理フローを周期的に行なう。前述の分割判定モード401と同様、周期は前述の単位時間の長さに合わせ、単位時間が3時間のときは例えば1時間周期で十分である。
まず、処理601で回生失効記憶部109から単位時間あたりの回生失効の情報を読み出す。この情報は、前述の通り、回生失効の発生頻度やエネルギー量の変化を表すものである。次に、処理602で予め定めた基準値よりも、回生失効の発生頻度やエネルギー量の変化が小さいかどうかを判定する。小さいときは、処理603へ移行し、併合指令を出力した上で分割判定モード401へ遷移して、処理フローを終える。大きいときは、そのまま処理フローを終える。
FIG. 6 is a flowchart of processing in the merge determination mode 402. The merge determination mode 402 periodically performs this processing flow. Similar to the division determination mode 401 described above, the period is adjusted to the length of the unit time described above. For example, when the unit time is 3 hours, a period of one hour is sufficient.
First, in process 601, information on regeneration invalidation per unit time is read from the regeneration invalidation storage unit 109. As described above, this information represents the frequency of occurrence of regeneration expiration and the change in the amount of energy. Next, it is determined whether or not the occurrence frequency of regeneration and the change in the energy amount are smaller than the reference value predetermined in the process 602. When it is smaller, the process shifts to process 603, outputs a merge command, shifts to the division determination mode 401, and ends the process flow. When it is larger, the processing flow is finished as it is.

ここで、処理602で用いた基準値は、省エネルギーと列車運行の省力化とのトレードオフを考慮して決めた値である。一般に、列車の数を増やすほど、運転時隔が詰まり、運行管理や保安制御に掛かる手間やコストが増大する。このため、列車運行の省力化よりも省エネルギーに重点を置く場合ほど基準値を小さく設定するのが良く、例えば5回と決めることができる。この基準値を処理502の基準値(前述では10回と例示)よりも小さく設定しておけば、併合判定モード402と分割判定モード401との間で状態遷移が頻繁に繰り返されるのを防止できる。   Here, the reference value used in the process 602 is a value determined in consideration of a trade-off between energy saving and labor saving of train operation. In general, as the number of trains increases, the operation time interval is clogged, and the labor and cost for operation management and security control increase. For this reason, it is better to set the reference value smaller as the emphasis is on energy saving rather than labor saving of train operation, and can be determined, for example, five times. If this reference value is set to be smaller than the reference value of processing 502 (10 times in the above example), it is possible to prevent frequent state transitions between the merge determination mode 402 and the division determination mode 401. .

以上に記した本発明の実施形態によれば、回生失効の発生頻度が多いとき、列車の編成を分割して列車数を増やすことで回生融通が可能な機会を増やし、回生エネルギーの利用効率を向上できる。また、回生失効の発生頻度が十分に小さいときは、列車の編成を併合して列車数を増やし、回生エネルギーの利用効率を十分な大きさに保ちながら輸送力を増加できる。   According to the embodiment of the present invention described above, when the frequency of regeneration invalidation is high, the opportunities for regenerative accommodation are increased by dividing the train organization and increasing the number of trains, and the use efficiency of regenerative energy is increased. It can be improved. In addition, when the frequency of occurrence of regenerative expiration is sufficiently small, the number of trains can be increased by combining trains, and the transportation capacity can be increased while keeping the regenerative energy utilization efficiency sufficiently large.

尚、回生失効記憶部109は列車101、102両方の回生失効の情報を集め、合計で回生失効の発生頻度やエネルギー量の変化を算出できるようにしても良い。この方が、回生融通が可能な同じ変電所区間における列車群としての振る舞いをより良く分割・併合の判断に反映でき、結果として、本実施例の効果をより良く発揮できる。   In addition, the regeneration invalidation memory | storage part 109 may collect the regeneration invalidation information of both the trains 101 and 102, and may be able to calculate the change in the frequency of occurrence of regeneration invalidity and the amount of energy in total. This can better reflect the behavior of the train group in the same substation section where regenerative accommodation is possible in the determination of division / merging, and as a result, the effect of the present embodiment can be better demonstrated.

本発明の一実施形態であり、実施例1とは異なる実施形態における列車制御システムの構成を図8に示す。   FIG. 8 shows the configuration of a train control system according to an embodiment of the present invention that is different from the first embodiment.

本実施例において、列車801と列車802には、それぞれ実施例1の列車101、列車102と同様の前提を置く。但し、回生ブレーキが可能であることは本実施例の必須要件ではないので、前提から除いても良い。   In the present embodiment, the train 801 and the train 802 have the same premise as the train 101 and the train 102 of the first embodiment, respectively. However, since it is not an essential requirement of the present embodiment that regenerative braking is possible, it may be excluded from the premise.

図8の他の構成要素を説明する前に、本実施例の構成が発揮する効果とその原理を図9、図10、図11を用いて説明しておく。   Before describing the other components in FIG. 8, the effects and the principle of the configuration of this embodiment will be described with reference to FIGS. 9, 10, and 11. FIG.

図9は、実施例1における図2と同様、列車801、列車802の加減速タイミングの一例を示しており、加えて、本実施例で注目する変電所供給電力量の時系列を併記したものである。ここで、変電所供給電力量の基準ピーク値3Eは、電力利用料の契約上、超過すると余計に料金の掛かる基準値である。単位時間(例えば1時間)の間に電力利用料が3Eを超えることがあると、その単位時間の電力利用料のベースが高く設定される。   FIG. 9 shows an example of the acceleration / deceleration timing of the train 801 and the train 802 as in FIG. 2 in the first embodiment. In addition, the time series of the substation supply power amount noted in this embodiment is also shown. It is. Here, the reference peak value 3E of the amount of power supplied to the substation is a reference value for which an extra fee is charged if the power usage fee is contracted. If the power usage fee exceeds 3E during a unit time (for example, 1 hour), the base of the power usage fee for that unit time is set high.

一般に、列車が高速で走行する程、同じだけ加速するのに必要なパワーが増大し、変電所供給電力量(パワーの積分値)が大きくなる。このため、列車あたりで見ると、加速し切った瞬間に変電所供給電力量がピーク値(本実施例では1両あたりE)をとる。いま、列車801、列車802の両方が同時に加速する時刻Cに注目すると、変電所供給電力量のピーク値は2列車分の重ね合わせで4Eまで増大し、基準値3Eを超える。したがって、このような同時加速が単位時間内に起こることは、電力利用料の観点から望ましくない。   Generally, as the train travels at a higher speed, the power required to accelerate the same increases, and the amount of power supplied to the substation (the integrated value of power) increases. For this reason, when viewed from the train, the substation supply electric energy takes a peak value (E in this embodiment) at the moment of acceleration. Now, focusing on the time C when both the train 801 and the train 802 accelerate simultaneously, the peak value of the substation supply electric power increases to 4E by superimposing two trains and exceeds the reference value 3E. Therefore, it is not desirable from the viewpoint of a power usage fee that such simultaneous acceleration occurs within a unit time.

図10もまた、列車801、列車802の加減速タイミングの一例を示しているが、列車801と列車802の加速のタイミングが互いに重ならない点が図9と異なる。時刻Dに列車801が、時刻Eに列車802が加速したときの変電所供給電力量のピーク値は高々2Eであり、基準値3Eを超えない。   FIG. 10 also shows an example of the acceleration / deceleration timings of the train 801 and the train 802, but differs from FIG. 9 in that the acceleration timings of the train 801 and the train 802 do not overlap each other. When the train 801 accelerates at the time D and the train 802 accelerates at the time E, the peak value of the substation supply electric energy is 2E at most and does not exceed the reference value 3E.

図11は、列車801、列車802をそれぞれ2分割し、801A、801B、802A、802Bの都合4列車で走行する場合の加減速タイミングの一例を示している。それぞれの列車が時刻F、時刻G、時刻H、時刻Iに互いにタイミングが重なることなく加速している。このとき変電所供給電力量のピーク値は、列車長に比例して下がり、高々Eである。   FIG. 11 shows an example of acceleration / deceleration timing when the train 801 and the train 802 are each divided into two and traveled by four convenient trains 801A, 801B, 802A, and 802B. Each train is accelerating at time F, time G, time H, and time I without overlapping each other. At this time, the peak value of the electric power supplied to the substation decreases in proportion to the train length and is at most E.

図11のような場合にピーク値が3Eを超えるには、少なくとも3列車分の加速タイミングが偶然重なる必要があり、この確率は、図9や図10のように2列車しか無い状況で、それらの加速タイミングが重なる確率よりも小さいと言える。すなわち、車両数は同じでも、図11のように短い列車が多く在線するときの方が、変電所供給電力量のピーク値が期待値として平準化され、基準値を超えることが少ないと期待でき、電力利用料を抑え易い。これが、本実施例の構成がもたらす効果とその原理である。   In the case shown in FIG. 11, in order for the peak value to exceed 3E, the acceleration timing for at least three trains must coincide by chance, and this probability is in the situation where there are only two trains as shown in FIG. 9 and FIG. It can be said that the acceleration timing is smaller than the probability of overlapping. That is, even when the number of vehicles is the same, when there are many short trains as shown in FIG. 11, it can be expected that the peak value of the substation supply electric energy will be leveled as an expected value and less than the reference value. It is easy to reduce the electricity usage fee. This is the effect and principle of the configuration of this embodiment.

図8に戻って本実施例の構成要素を説明する。   Returning to FIG. 8, the components of the present embodiment will be described.

車上システム813は、車上受信部806と分割併合制御部807で成る。これらはそれぞれ実施例1における車上システム113、車上受信部106、分割併合制御部107と同様のものである。   The on-vehicle system 813 includes an on-vehicle receiving unit 806 and a division / merging control unit 807. These are the same as the on-board system 113, the on-board receiving unit 106, and the division / merging control unit 107 in the first embodiment.

地上システム814は、電力供給量監視部815、地上受信部808、ピーク超過計測部809、分割併合判定部810、地上送信部812で成る。   The ground system 814 includes a power supply amount monitoring unit 815, a ground receiving unit 808, a peak excess measuring unit 809, a division / merging determination unit 810, and a ground transmitting unit 812.

供給電力量監視部815は、図示していない変電所から列車801、列車802に供給する電力量の時間推移を監視する。監視の手段は特に限定せず、例えば変電所が通常備える手段で良い。または、列車801、列車802のそれぞれが利用した電力量を計測する手段を車載し、その計測値を通信で収集して合計する手段でも良い。後者の手段は、変電所に直接計測装置を取り付けられない場合や、変電所の情報を直接は取得できない場合に便利である。
ピーク超過計測部809は、供給電力量監視部815で監視した電力量の時間推移が単位時間のうちに予め定めた基準値を越えた回数を計測する。ここで、単位時間や基準値は、図9の説明で前述した考え方で、例えば1時間のうちに電力利用料の計算上定められた上限値3Eを超える回数、と設定できる。
The power supply amount monitoring unit 815 monitors the time transition of the amount of power supplied to the train 801 and the train 802 from a substation (not shown). The monitoring means is not particularly limited, and may be means normally provided in a substation, for example. Alternatively, a unit that measures the amount of electric power used by each of the train 801 and the train 802 may be mounted on the vehicle, and the measured values may be collected and summed by communication. The latter means is convenient when the measuring device cannot be directly attached to the substation or when the information on the substation cannot be obtained directly.
The peak excess measurement unit 809 measures the number of times that the time transition of the power amount monitored by the supplied power amount monitoring unit 815 exceeds a predetermined reference value within a unit time. Here, the unit time and the reference value can be set, for example, as the number of times exceeding the upper limit value 3E determined in the calculation of the power usage fee within one hour, based on the concept described above with reference to FIG.

分割併合判定部810は、実施例1の分割併合判定部110と同様のもので、但し入力が回生失効の回数ではなくピーク超過計測部809で計測したピーク超過の回数である点が異なる。ピーク超過の回数がある上限回数を超えたときに分割指令を出力し、ピーク超過の回数がある下限回数を下回ったときに併合指令を出力するように処理をする。上限回数、下限回数は、実施例1で消費エネルギーと列車運行の省力化とのトレードオフを考慮して定めたのと同じように、電力利用料と列車運行の省力化とのトレードオフを考慮して定められる。   The division / merging determination unit 810 is the same as the division / merging determination unit 110 of the first embodiment, except that the input is not the number of regeneration invalidations but the number of peak excesses measured by the peak excess measurement unit 809. Processing is performed so that a division command is output when the number of times of peak excess exceeds a certain upper limit number of times, and a merge command is output when the number of times of peak excess falls below a certain number of lower limit times. The upper limit count and lower limit count consider the trade-off between the power usage fee and the train operation saving, as in Example 1, taking into consideration the trade-off between the energy consumption and the train operation saving. Determined.

以上に記した本発明の第2の実施形態によれば、変電所供給電力量のピーク値が頻繁に大きくなるとき、列車の編成を分割して列車数を増やすことでピーク値の期待値を平準化し、ピーク値が基準値を超えて電力利用料が高くなるのを抑えられる。また、変電所供給電力量のピーク値が基準値を超過する頻度が十分に小さいときは、列車の編成を併合して列車数を増やし、ピーク値を十分小さく保ちながら輸送力を増加できる。   According to the second embodiment of the present invention described above, when the peak value of the substation supply power amount frequently increases, the expected value of the peak value can be obtained by dividing the train formation and increasing the number of trains. Leveling is possible, and it is possible to prevent the peak value from exceeding the reference value and increasing the power usage fee. Moreover, when the frequency at which the peak value of the substation supply power amount exceeds the reference value is sufficiently small, the number of trains can be increased by combining train formation, and the transportation capacity can be increased while keeping the peak value sufficiently small.

101、102、101A、101B、102A、102B、801、802、801A、801B、802A、802B 列車
103 回生ブレーキシステム
104 回生失効検知部
105 車上送信部
106、806 車上受信部
107、807 分割併合制御部
108 地上受信部
109 回生失効記憶部
110、810 分割併合判定部
112、812 地上送信部
113、813 車上システム
114、814 地上システム
401 分割判定モード
402 併合判定モード
501、502、503、601、602、603 処理
815 供給電力量監視部
816 ピーク超過計測部
101, 102, 101A, 101B, 102A, 102B, 801, 802, 801A, 801B, 802A, 802B Train 103 Regenerative brake system 104 Regeneration expiration detection unit 105 On-vehicle transmitter 106, 806 On-vehicle receiver 107, 807 Split and merge Control unit 108 Ground receiving unit 109 Regeneration expiration storage unit 110, 810 Division / merging determination unit 112, 812 Ground transmission unit 113, 813 On-board system 114, 814 Ground system 401 Division determination mode 402 Merge determination mode 501, 502, 503, 601 , 602, 603 Processing 815 Power supply amount monitoring unit 816 Peak excess measurement unit

Claims (8)

第一の電動機を有する第一の車両と、第二の電動機を有する第二の車両とを有し、
前記第一及び第二の電動機は、運動エネルギーを電気エネルギーに変換することで車両を減速させ、発生した電気エネルギーを架線へ供給する回生ブレーキ機能を有する列車の列車制御システムにおいて、
回生失効または基準電力量超過の情報に基づき、一編成の車両を前記第一の車両と前記第二の車両の二編成に分割する、または前記第一の車両と前記第二の車両の二編成であった列車を一編成に併合する指令を発信する列車制御システム。
A first vehicle having a first electric motor, and a second vehicle having a second electric motor,
In the train control system for a train having a regenerative brake function, the first and second electric motors decelerate the vehicle by converting kinetic energy into electric energy and supply the generated electric energy to the overhead line.
Based on information on regeneration expiration or excess of reference electric energy, one train is divided into two trains of the first vehicle and the second vehicle, or two trains of the first vehicle and the second vehicle Train control system that sends out instructions to merge trains that were
前記回生失効の情報を記憶する回生失効記憶部または前記基準電力量超過の情報を計測する超過計測部を有する請求項1の列車制御システム。   The train control system according to claim 1, further comprising: a regeneration / revocation storage unit that stores the regeneration / revocation information, or an excess measurement unit that measures the reference power excess information. 前記回生失効の回数、回生の機会を逸したエネルギー量、前記基準電力量超過の量、前記基準電力量超過の回数、の少なくとも一つが基準値よりも大きい場合に、一編成の車両を前記第一の車両と前記第二の二編成に分割する指令を発信する請求項1の列車制御システム。   If at least one of the number of regeneration expirations, the amount of energy missed the regeneration opportunity, the amount of excess reference electric power, the number of excess reference electric energy is greater than a reference value, a set of vehicles is The train control system according to claim 1, wherein a command for dividing the vehicle into one vehicle and the second two trains is transmitted. 前記回生失効の回数、回生の機会を逸したエネルギー量、前記基準電力量超過の量、前記基準電力量超過の回数、の少なくとも一つが基準値よりも小さい場合に、前記第一の車両と前記第二の車両の二編成であった列車を一編成に併合する指令を発信する請求項1の列車制御システム。   When at least one of the number of regeneration invalidations, the amount of energy missed regeneration opportunity, the amount of excess reference power amount, the number of excess reference power amounts is smaller than a reference value, the first vehicle and the The train control system according to claim 1, wherein the train control system transmits a command for merging a train that is a train of the second vehicle into a train. 列車の車上システム上に、前記指令を受けて列車の分割または併合を制御する分割併合制御部を有する請求項1の列車制御システム。   2. The train control system according to claim 1, further comprising a division / merging control unit that controls division or merging of trains on the train on-board system in response to the command. 前記回生失効記憶部に回生失効情報を提供する回生失効検知部を有し、前記回生失効情報は回生の機会を逸したエネルギー量である請求項2の列車制御システム。   3. The train control system according to claim 2, further comprising a regeneration invalidation detection unit that provides regeneration invalidation information to the regeneration invalidation storage unit, wherein the regeneration invalidation information is an amount of energy that misses an opportunity for regeneration. 列車に供給される電力量の時間推移を監視する供給電力量監視部を有し、前記超過計測部は前記供給電力量監視部が監視する電力量の時間推移が単位時間のうちに基準値を超えた回数を計測する請求項2の列車制御システム。   A power supply amount monitoring unit that monitors a time transition of the amount of power supplied to the train, and the excess measurement unit has a reference value for the time transition of the power amount monitored by the power supply amount monitoring unit within a unit time. The train control system according to claim 2 which measures the number of times exceeded. 第一の電動機を有する第一の車両と、第二の電動機を有する第二の車両とを有し、
前記第一及び第二の電動機は、運動エネルギーを電気エネルギーに変換することで車両を減速させ、発生した電気エネルギーを架線へ供給する回生ブレーキ機能を有する列車の運転方法において、
回生失効または基準電力量超過の情報に基づき、一編成の車両を前記第一の車両と前記第二の二編成に分割する、または前記第一の車両と前記第二の車両の二編成であった列車を一編成に併合する列車の運転方法。
A first vehicle having a first electric motor, and a second vehicle having a second electric motor,
In the operation method of the train having the regenerative brake function, the first and second electric motors decelerate the vehicle by converting kinetic energy into electric energy, and supply the generated electric energy to the overhead line.
Based on information on regeneration expiration or excess of reference power, one set of vehicles is divided into the first vehicle and the second two sets, or two sets of the first vehicle and the second vehicle. Train operation method to merge trains into a single train.
JP2017086816A 2017-04-26 2017-04-26 Train control system Pending JP2018186641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017086816A JP2018186641A (en) 2017-04-26 2017-04-26 Train control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017086816A JP2018186641A (en) 2017-04-26 2017-04-26 Train control system

Publications (1)

Publication Number Publication Date
JP2018186641A true JP2018186641A (en) 2018-11-22

Family

ID=64355237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017086816A Pending JP2018186641A (en) 2017-04-26 2017-04-26 Train control system

Country Status (1)

Country Link
JP (1) JP2018186641A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109795375A (en) * 2019-02-26 2019-05-24 中铁第四勘察设计院集团有限公司 A kind of train regenerating brake control method and system
CN111806241A (en) * 2020-06-28 2020-10-23 同济大学 Method for determining regenerative electric energy recovery space of rail transit train

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109795375A (en) * 2019-02-26 2019-05-24 中铁第四勘察设计院集团有限公司 A kind of train regenerating brake control method and system
CN111806241A (en) * 2020-06-28 2020-10-23 同济大学 Method for determining regenerative electric energy recovery space of rail transit train
CN111806241B (en) * 2020-06-28 2022-02-18 同济大学 Method for determining regenerative electric energy recovery space of rail transit train

Similar Documents

Publication Publication Date Title
CN102803007B (en) The drive system of rolling stock
JP5079535B2 (en) Railway vehicle drive system
CN203937528U (en) The rail system with energy exchange station
JP5174999B1 (en) Train information management apparatus and device control method
EP2650186B1 (en) Drive system and control method of train
US9168932B2 (en) Battery charging control apparatus of a train
US20160347204A1 (en) Train-energy control system, ground device, and on-board device
CN108622145B (en) Suspension type monorail locomotive transportation system
CN103857577A (en) Train control system
CN109559499B (en) Vehicle queue running management platform, control method and vehicle-mounted terminal
KR20090126197A (en) Control device of electric vehicle provided with fixed position automatic stop control means
KR20170019253A (en) Electric railway vehicle system between stations using a rapid charge system
JP2012175803A (en) Railway system equipped with power storage means
JP2018186641A (en) Train control system
KR101273267B1 (en) Smart energy management system using energy storage system
CN102271955A (en) Method and system for charging traffic vehicle not using overhead wire
JP5419186B2 (en) Method for estimating travelable distance and energy consumption of energy-saving vehicles
JP4027521B2 (en) Train operation control device
KR102003021B1 (en) Apparatus of sensing regenerative energy of electric railway and method thereof and regenerative energy storage system and operating method thereof
JP6001350B2 (en) Railway system
JP4856219B2 (en) Mobile control device
JP7120853B2 (en) Power supply system and power supply method
KR102208023B1 (en) SOC management method for hydrogen fuel cell hybrid railway vehicle
JP5922555B2 (en) Operation management system
JP7336917B2 (en) Electric railway power supply system