JP2014004511A - Method for regenerating activated carbon - Google Patents
Method for regenerating activated carbon Download PDFInfo
- Publication number
- JP2014004511A JP2014004511A JP2012140767A JP2012140767A JP2014004511A JP 2014004511 A JP2014004511 A JP 2014004511A JP 2012140767 A JP2012140767 A JP 2012140767A JP 2012140767 A JP2012140767 A JP 2012140767A JP 2014004511 A JP2014004511 A JP 2014004511A
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- acid solution
- acid
- regenerating
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
- Water Treatment By Sorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
本発明は、水処理施設で使用され有機物および無機物の少なくともいずれかが付着した活性炭の吸着性能を再生するための活性炭の再生方法に関する。 The present invention relates to a method for regenerating activated carbon for regenerating the adsorption performance of activated carbon to which at least one of an organic substance and an inorganic substance attached is used in a water treatment facility.
浄水施設や下水処理施設などの水処理施設では、活性炭を用いて、被処理水の有機物や無機物を吸着して水の浄化処理をしている。 In water treatment facilities such as water purification facilities and sewage treatment facilities, activated carbon is used to adsorb organic and inorganic substances to be treated to purify water.
このような水の浄化処理に用いられる活性炭は、一定量の有機物や無機物を吸着すると、その吸着性能が低下する。 When activated carbon used for such water purification treatment adsorbs a certain amount of organic matter or inorganic matter, its adsorption performance decreases.
ここで、近年、浄水施設や下水処理施設などにおける被処理水の高度化が進み、活性炭の需要が増加傾向にある。 Here, in recent years, water to be treated has become more sophisticated in water purification facilities and sewage treatment facilities, and the demand for activated carbon has been increasing.
したがって、将来的に、安定した活性炭の調達が困難になることが懸念されており、吸着性能が低下した活性炭を再生する技術について検討されている。 Therefore, there is concern that it will be difficult to procure stable activated carbon in the future, and a technique for regenerating activated carbon with reduced adsorption performance is being studied.
この種の活性炭の再生方法としては、活性炭に80〜120℃の加熱空気または水蒸気を通気してかびの臭いを除去した後、この活性炭に130〜200℃の加熱空気または水蒸気を通気してトリハロメタンを除去して活性炭を再生する方法が知られている(例えば、特許文献1参照。)。 As a method for regenerating this type of activated carbon, 80 to 120 ° C. heated air or water vapor is passed through the activated carbon to remove mold smell, and then 130 to 200 ° C. heated air or water vapor is passed through the activated carbon to trihalomethane. There is known a method of removing activated carbon to regenerate activated carbon (for example, see Patent Document 1).
また、有機塩素化合物を吸着した活性炭に水を添加した後、電離性放射線を照射することにより、活性炭に吸着した有機塩素化合物を分解し無害化して活性炭を再生する方法が知られている(例えば、特許文献2参照。)。 Moreover, after adding water to the activated carbon which adsorb | sucked the organic chlorine compound, the method of decomposing | disassembling and detoxifying the organic chlorine compound adsorbed to activated carbon by irradiating with ionizing radiation is known (for example, , See Patent Document 2).
さらに、グリシンの脱色に使用した活性炭をアルカリ水溶液で処理し、次いで水洗して活性炭を再生する方法が知られている(例えば、特許文献3参照。)。 Furthermore, a method is known in which activated carbon used for decolorization of glycine is treated with an alkaline aqueous solution and then washed with water to regenerate the activated carbon (see, for example, Patent Document 3).
また、使用済みの活性炭をアーク放電処理することにより、活性炭に吸着した吸着物質を離脱させて連続的に再生する方法が知られている(例えば、特許文献4参照。)。 Further, a method is known in which used activated carbon is subjected to arc discharge treatment to remove the adsorbed material adsorbed on the activated carbon and continuously regenerate it (see, for example, Patent Document 4).
さらに、加熱水蒸気で活性炭を加熱し、この加熱により活性炭から離脱した吸着物質を外部に搬出して活性炭を再生する方法が知られている(例えば、特許文献5参照。)。 Furthermore, a method is known in which activated carbon is heated with heated steam, and the adsorbed material detached from the activated carbon by this heating is carried out to regenerate the activated carbon (see, for example, Patent Document 5).
また、使用済み活性炭に電子ビームを照射することにより、活性炭の吸着性能を回復させて活性炭を再生する方法が知られている(例えば、特許文献6参照。)。 In addition, a method is known in which activated carbon is regenerated by irradiating the used activated carbon with an electron beam to recover the adsorption performance of the activated carbon (see, for example, Patent Document 6).
さらに、有機溶剤を含んだ使用済み活性炭に電流を流し発熱させることにより、有機溶剤を蒸発させて活性炭を再生する方法が知られている(例えば、特許文献7参照。)。 Furthermore, there is known a method of regenerating activated carbon by evaporating the organic solvent by causing a current to flow through the used activated carbon containing the organic solvent to generate heat (for example, see Patent Document 7).
また、原水中の不純物を吸着処理する活性炭ろ過塔の活性炭を再生する方法において、前記ろ過塔内に処理水が充満した状態で、処理水とともに活性炭を加熱し、処理水を排出した後に、ろ過塔内を真空にして、活性炭から吸着物質を離脱させて活性炭を再生する方法が知られている(例えば、特許文献8参照。)。 Further, in the method of regenerating activated carbon of the activated carbon filtration tower that adsorbs impurities in the raw water, the activated carbon is heated together with the treated water in a state where the treated water is filled in the filtration tower, and after the treated water is discharged, the filtration is performed. A method is known in which the inside of the tower is evacuated and the adsorbed material is separated from the activated carbon to regenerate the activated carbon (see, for example, Patent Document 8).
さらに、汚染物質が吸着した吸着素材としての活性炭を加熱して汚染物質を離脱させ、この活性炭から離脱した汚染物質と、光照射下で汚染物質の分解を生じさせる成分を含む機能水とを光照射下で接触させて分解することにより活性炭を再生する方法が知られている。なお、このような機能水としては、塩酸、フッ酸、シュウ酸、硫酸、リン酸およびホウ酸などが知られている(例えば、特許文献9参照。)。 Furthermore, activated carbon as an adsorbing material that adsorbs the pollutants is heated to release the pollutants, and the pollutants separated from the activated carbon and functional water containing components that cause decomposition of the pollutants under light irradiation are irradiated with light. A method for regenerating activated carbon by contacting and decomposing under irradiation is known. In addition, hydrochloric acid, hydrofluoric acid, oxalic acid, sulfuric acid, phosphoric acid, boric acid, etc. are known as such functional water (for example, refer patent document 9).
また、有害ガスを吸着した活性炭に150〜250℃の過熱蒸気を噴射して低沸点物質を除去した後に、300〜350℃の過熱蒸気を噴射して高沸点物質を除去することにより、活性炭を再生する方法が知られている(例えば、特許文献10参照。)。 Moreover, after removing low boiling point substances by injecting superheated steam at 150 to 250 ° C. onto activated carbon that has adsorbed harmful gas, activated carbon is removed by injecting superheated steam at 300 to 350 ° C. to remove high boiling point substances. A method of reproducing is known (for example, see Patent Document 10).
しかしながら、上述の各活性炭の再生方法では、例えば水酸化アルミニウムおよび硫酸カルシウムなどの強熱残分の除去について検討されていない。そのため、例えば水処理工程の上流側に凝集沈殿手段が存在する環境や、微生物が活性炭に付着し易い環境などのように強熱残分が付着しやすい環境で使用された活性炭を再生する場合に、強熱残分を十分に除去できず、この強熱残分により吸着性能の再生が妨げられてしまい、効率的に活性炭の吸着性能を再生できない問題が考えられる。 However, in the above-described regeneration methods of activated carbon, removal of ignition residues such as aluminum hydroxide and calcium sulfate has not been studied. For this reason, for example, when regenerating activated carbon used in an environment where ignitable residues are likely to adhere, such as an environment where coagulation sedimentation means exist upstream of the water treatment process or an environment where microorganisms are likely to adhere to activated carbon. The ignition residue cannot be sufficiently removed, and the regeneration of the adsorption performance is hindered by the ignition residue, and the adsorption performance of the activated carbon cannot be efficiently recovered.
本発明はこのような点に鑑みなされたもので、強熱残分を除去でき、活性炭の吸着性能を効率的に再生できる活性炭の再生方法を提供することを目的とする。 This invention is made | formed in view of such a point, and it aims at providing the regeneration method of the activated carbon which can remove an ignition residue and can reproduce | regenerate the adsorption | suction performance of activated carbon efficiently.
請求項1に記載された活性炭の再生方法は、水処理に用いられ有機物および無機物の少なくともいずれかが付着した活性炭の吸着性能を再生する活性炭の再生方法であって、前記活性炭を酸溶液にて酸洗浄し、この酸洗浄された活性炭を加熱手段にて加熱処理するものである。 The method for regenerating activated carbon according to claim 1 is a method for regenerating activated carbon used for water treatment to regenerate the adsorption performance of activated carbon to which at least one of an organic substance and an inorganic substance adheres, wherein the activated carbon is an acid solution. The acid-washed activated carbon is heat-treated with a heating means.
請求項2に記載された活性炭の再生方法は、請求項1記載の活性炭の再生方法において、酸溶液は、塩酸溶液、硫酸溶液およびリン酸溶液のいずれかであるものである。 The activated carbon regeneration method described in claim 2 is the activated carbon regeneration method according to claim 1, wherein the acid solution is any one of a hydrochloric acid solution, a sulfuric acid solution, and a phosphoric acid solution.
請求項3に記載された活性炭の再生方法は、請求項1または2に記載された活性炭の再生方法において、酸溶液の酸の濃度は、0.1mol/L以上であるものである。 The method for regenerating activated carbon according to claim 3 is the method for regenerating activated carbon according to claim 1 or 2, wherein the acid concentration of the acid solution is 0.1 mol / L or more.
請求項4に記載された活性炭の再生方法は、請求項1ないし3のいずれか一に記載された活性炭の再生方法において、加熱手段は、ロータリーキルンであるものである。 The activated carbon regeneration method described in claim 4 is the activated carbon regeneration method according to any one of claims 1 to 3, wherein the heating means is a rotary kiln.
請求項1に記載された発明によれば、酸洗浄してから加熱処理するため、加熱処理の前に酸洗浄によって予め強熱残分を除去でき、活性炭の吸着性能を効率的に再生できる。 According to the first aspect of the invention, since the heat treatment is performed after the acid cleaning, the ignition residue can be removed in advance by the acid cleaning before the heat treatment, and the adsorption performance of the activated carbon can be efficiently regenerated.
請求項2に記載された発明によれば、酸溶液が塩酸溶液、硫酸溶液およびリン酸溶液のいずれかであるため、強熱残分をより確実に除去できる。 According to the invention described in claim 2, since the acid solution is any one of a hydrochloric acid solution, a sulfuric acid solution and a phosphoric acid solution, the ignition residue can be removed more reliably.
請求項3に記載された発明によれば、酸溶液の酸の濃度が0.1mol/L以上であるため、強熱残分を効率的に除去できる。 According to the invention described in claim 3, since the acid concentration of the acid solution is 0.1 mol / L or more, the ignition residue can be efficiently removed.
請求項4に記載された発明によれば、加熱手段がロータリーキルンであるため、活性炭を効率的に加熱でき、活性炭の吸着性能を効率的に再生できる。 According to the invention described in claim 4, since the heating means is a rotary kiln, the activated carbon can be efficiently heated, and the adsorption performance of the activated carbon can be efficiently regenerated.
以下、本発明の一実施の形態の活性炭の再生方法を詳細に説明する。 Hereinafter, a method for regenerating activated carbon according to an embodiment of the present invention will be described in detail.
浄水施設や下水処理施設などの水処理施設での水処理に用いられた使用済みの活性炭は、有機物および無機物が付着し、吸着性能が低下している。 The used activated carbon used for water treatment in water treatment facilities such as water purification facilities and sewage treatment facilities is adhering to organic and inorganic substances, resulting in reduced adsorption performance.
このように水処理に用いられ吸着性能が低下した活性炭の吸着性能を再生する際には、活性炭を酸溶液にて酸洗浄し、この酸洗浄された活性炭を加熱手段にて加熱処理して付着物を除去する。 When regenerating the adsorption performance of activated carbon that has been used for water treatment and has reduced adsorption performance, the activated carbon is acid washed with an acid solution, and the acid-washed activated carbon is heated with a heating means. Remove the kimono.
なお、水処理に用いられた使用済みの活性炭に付着する有機物としては、例えば、ジェオスミン、2−メチルイソボルネオール(2−MIB)、トリハロメタンを含む有機ハロゲン化合物、有機ハロゲン前駆物質(塩素などのハロゲンとの反応でトリハロメタンが生成されるフミン酸およびフルボ酸などの物質)、陰イオン界面活性剤、フェノール類、トリクロロエチレン、および、オゾン反応によるアルデヒドなどの生成物などが考えられる。 Examples of organic substances attached to used activated carbon used in water treatment include, for example, geosmin, 2-methylisoborneol (2-MIB), organic halogen compounds including trihalomethane, and organic halogen precursors (halogens such as chlorine). And substances such as humic acid and fulvic acid that produce trihalomethane by reaction with), anionic surfactants, phenols, trichlorethylene, and products such as aldehydes by ozone reaction.
そして、これらの有機物のうち、水質基準の項目として規定されているものが活性炭の吸着性能を再生する際の除去対象となり、例えば、ジェオスミン、2−メチルイソボルネオール(2−MIB)、トリハロメタン、陰イオン界面活性剤、フェノール類およびトリクロロエチレンなどが水道水の水質基準の項目に含まれている。 Among these organic substances, those specified as water quality criteria are to be removed when the adsorption performance of activated carbon is regenerated. For example, geosmin, 2-methylisoborneol (2-MIB), trihalomethane, negative Ionic surfactants, phenols, trichlorethylene, etc. are included in the water quality standards for tap water.
また、水処理に用いられた使用済みの活性炭に付着する無機物としては、例えば、カルシウム、アルミニウム、ケイ素、硫黄、マグネシウム、鉄、リン、ストロンチウム、亜鉛、ナトリウムなどや、これらの化合物が考えられる。 Moreover, as an inorganic substance adhering to the used activated carbon used for water treatment, these compounds can be considered, for example, calcium, aluminum, silicon, sulfur, magnesium, iron, phosphorus, strontium, zinc, sodium, and the like.
そして、これらの無機物のうち、水質基準の項目として規定されているものが活性炭の吸着性能を再生する際の除去対象となり、例えば、カルシウム、アルミニウム、マグネシウム、鉄、亜鉛およびナトリウムなどが水道水の水質基準の項目に含まれ、リンが排水基準の項目として規定されている。 Among these inorganic substances, those specified as water quality criteria are to be removed when regenerating the adsorption performance of activated carbon. For example, calcium, aluminum, magnesium, iron, zinc and sodium are tap water. It is included in the water quality standard items, and phosphorus is specified as a drainage standard item.
酸洗浄では、活性炭全体が酸溶液に浸漬した状態にて、所定時間撹拌して静置する。酸溶液にて活性炭を撹拌して静置すると、活性炭に付着した例えば凝集剤由来の水酸化アルミニウムおよび硫酸カルシウムなどの強熱残分が、酸溶液と反応して活性炭から離脱する。その後、濾紙などを用いて濾過して酸溶液から活性炭を取り出し、取り出した活性炭を水洗して乾燥させる。 In the acid cleaning, the whole activated carbon is immersed in an acid solution and left to stand with stirring for a predetermined time. When the activated carbon is stirred in an acid solution and allowed to stand, an ignition residue such as aluminum hydroxide and calcium sulfate derived from the aggregating agent reacts with the acid solution and leaves the activated carbon. Thereafter, the activated carbon is taken out from the acid solution by filtration using filter paper or the like, and the taken out activated carbon is washed with water and dried.
酸溶液は、例えば、塩酸溶液、硫酸溶液およびリン酸溶液などが好ましい。また、酸溶液は、酸の濃度は0.1mol/Lより低いと、強熱残分との反応が進行しにくいため、0.1mol/L以上が好ましく、より好ましくは1mol/L以上である。 The acid solution is preferably a hydrochloric acid solution, a sulfuric acid solution, a phosphoric acid solution, or the like. Further, the acid solution is preferably at least 0.1 mol / L, more preferably at least 1 mol / L because the reaction with the ignition residue hardly proceeds when the acid concentration is lower than 0.1 mol / L. .
加熱処理では、酸洗浄した後の活性炭を加熱手段を用いて加熱する。活性炭を加熱することにより、活性炭の内部に入り込み酸洗浄では除去できない例えば揮発成分などの付着物を除去し、活性炭の吸着性能を再生する。 In the heat treatment, the activated carbon after acid cleaning is heated using a heating means. By heating the activated carbon, the adsorbed performance of the activated carbon is regenerated by removing adhering substances such as volatile components that cannot be removed by acid cleaning.
また、加熱処理では、加熱手段として、ロータリーキルンおよびヒーターなどが用いられる。 In the heat treatment, a rotary kiln, a heater, or the like is used as a heating means.
さらに、加熱処理では、加熱温度が500℃より低いと揮発成分などの付着物が除去されにくく、加熱温度が1000℃より高いと活性炭が消失や損傷する可能性が考えられるため、加熱温度は500℃以上1000℃以下が好ましい。 Furthermore, in the heat treatment, if the heating temperature is lower than 500 ° C., deposits such as volatile components are difficult to remove, and if the heating temperature is higher than 1000 ° C., the activated carbon may be lost or damaged. It is preferably at least 1000 ° C.
なお、加熱処理では、活性炭の内部に入り込んだ揮発成分などの付着物が除去される状態になるように活性炭を加熱できればよく、例えば加熱手段としてロータリーキルンを用いる場合の加熱時間は、2時間以上4時間以下の範囲であると好ましい。 In the heat treatment, it is only necessary that the activated carbon can be heated so that deposits such as volatile components that have entered the activated carbon are removed. For example, when the rotary kiln is used as the heating means, the heating time is 2 hours or more 4 It is preferable that it is in the range of time or less.
次に、上記一実施の形態の作用および効果を説明する。 Next, the operation and effect of the one embodiment will be described.
上記活性炭の再生方法によれば、酸洗浄してから加熱処理するため、活性炭に付着した有機物や無機物である強熱残分を、予め酸洗浄によって除去できる。また、このように強熱残分を除去した状態にて活性炭を加熱処理するため、加熱処理による付着物の除去作用が強熱残分に阻害されず、活性炭の内部の付着物まで除去し易い。したがって、使用済みの活性炭の吸着性能を効率的に再生できる。 According to the method for regenerating activated carbon, since the heat treatment is performed after the acid cleaning, an ignition residue that is an organic substance or an inorganic substance attached to the activated carbon can be removed in advance by acid cleaning. Further, since the activated carbon is heat-treated in such a state that the ignition residue is removed, the deposit removal action by the heat treatment is not hindered by the ignition residue, and it is easy to remove even the deposit inside the activated carbon. . Therefore, the adsorption performance of the used activated carbon can be efficiently regenerated.
酸溶液は、塩酸溶液、硫酸溶液およびリン溶液のいずれかを用いることにより、酸溶液が活性炭の外表面に付着した有機物や無機物である強熱残分と反応しやすいため、強熱残分をより確実に除去できる。 By using any one of hydrochloric acid solution, sulfuric acid solution, and phosphorous solution, the acid solution easily reacts with the ignitable residue that is an organic or inorganic substance adhering to the outer surface of the activated carbon. It can be removed more reliably.
また、酸溶液は、酸の濃度が0.1mol/L以上であることにより、酸溶液と強熱残分との反応が進行しやすいため、強熱残分を効率的に除去できる。 In addition, since the acid solution has an acid concentration of 0.1 mol / L or more, the reaction between the acid solution and the ignition residue tends to proceed, so that the ignition residue can be efficiently removed.
加熱手段がロータリーキルンであることにより、活性炭を効率的に加熱できるため、付着物を除去しやすく、活性炭の吸着性能を効率的に再生できる。 When the heating means is a rotary kiln, the activated carbon can be efficiently heated, so that the deposits can be easily removed, and the adsorption performance of the activated carbon can be efficiently regenerated.
また、加熱手段は、加熱温度が500℃以上1000℃以下であることにより、付着物を確実に除去できるとともに、加熱による活性炭の消失や損傷を防止できる。 Moreover, the heating means can remove deposits reliably and prevent loss or damage of activated carbon due to heating when the heating temperature is 500 ° C. or higher and 1000 ° C. or lower.
以下、本実施例および比較例について説明する。 Hereinafter, this example and a comparative example will be described.
水処理施設で使用され吸着性能が低下した使用済み活性炭のサンプルA、サンプルBおよびサンプルCを用いて、活性炭の吸着性能の再生試験を行った。 Using the used activated carbon samples A, B, and C, which were used in a water treatment facility and the adsorption performance decreased, a regeneration test of the activated carbon adsorption performance was performed.
サンプルA、サンプルBおよびサンプルCについて酸洗浄を行った後、加熱処理を行ったものを実施例1とした。 Sample A, Sample B, and Sample C were acid washed and then heat-treated as Example 1.
酸洗浄は、実験室にて行い、サンプルA、サンプルBおよびサンプルCそれぞれ250gに対して1mol/Lの塩酸溶液を1L加えて1時間撹拌した。その後、No.5C濾紙(アドバンテック社製)を用いて吸引濾過し、濾過後の残渣である活性炭を水洗した。 Acid cleaning was performed in a laboratory, and 1 L of a 1 mol / L hydrochloric acid solution was added to 250 g of each of Sample A, Sample B, and Sample C, and stirred for 1 hour. Then, no. Suction filtration was performed using 5C filter paper (manufactured by Advantech), and the activated carbon which was the residue after filtration was washed with water.
加熱処理は、水洗後のサンプルA、サンプルBおよびサンプルCをるつぼに入れて、800℃で加熱した。 In the heat treatment, Sample A, Sample B, and Sample C after washing with water were placed in a crucible and heated at 800 ° C.
サンプルA、サンプルBおよびサンプルCを用いて、加熱処理を行った後、実施例1と同様に酸洗浄を行ったものを比較例1とした。 Sample A, Sample B, and Sample C were subjected to heat treatment and then subjected to acid cleaning in the same manner as in Example 1 as Comparative Example 1.
この比較例1の加熱処理は、ロータリーキルンを用いて行った。サンプルAは、再生温度813℃、スクリュー速度9.5rpm、再生時間7時間30分の条件で加熱処理した。サンプルBは、再生温度780℃、スクリュー速度8.0rpm、再生時間5時間50分の条件で加熱処理した。サンプルCは、再生温度822℃、スクリュー速度6.0rpm、再生時間5時間20分の条件で加熱処理した。 The heat treatment of Comparative Example 1 was performed using a rotary kiln. Sample A was heat-treated at a regeneration temperature of 813 ° C., a screw speed of 9.5 rpm, and a regeneration time of 7 hours 30 minutes. Sample B was heat-treated at a regeneration temperature of 780 ° C., a screw speed of 8.0 rpm, and a regeneration time of 5 hours and 50 minutes. Sample C was heat-treated at a regeneration temperature of 822 ° C., a screw speed of 6.0 rpm, and a regeneration time of 5 hours and 20 minutes.
サンプルA、サンプルBおよびサンプルCを用いて、比較例1と同様に加熱処理を行った後、アルカリ洗浄を行ったものを比較例2とした。 Sample A, Sample B, and Sample C were subjected to heat treatment in the same manner as in Comparative Example 1, and then subjected to alkali cleaning as Comparative Example 2.
アルカリ洗浄は、実験室にて行い、サンプルA、サンプルBおよびサンプルCそれぞれ250gに対して1mol/Lの水酸化ナトリウム溶液1Lを加えて24時間撹拌した。なお、アルカリ洗浄の場合、溶液が粘性を有し、活性炭が容器底部に溜まってしまう可能性が考えられるため、撹拌時間を24時間とした。その後、No.5C濾紙を用いて吸引濾過し、濾過後の残渣である活性炭を水洗した。 The alkali cleaning was performed in a laboratory, and 1 L of a 1 mol / L sodium hydroxide solution was added to 250 g of each of Sample A, Sample B, and Sample C, followed by stirring for 24 hours. In the case of alkali cleaning, since the solution has viscosity and the activated carbon may be accumulated at the bottom of the container, the stirring time was set to 24 hours. Then, no. Suction filtration was performed using 5C filter paper, and the activated carbon that was the residue after filtration was washed with water.
サンプルA、サンプルBおよびサンプルCを用いて、比較例2と同様にアルカリ洗浄を行った後に、実施例1と同様に加熱処理を行ったものを比較例3とした。 Sample A, Sample B, and Sample C were subjected to alkali cleaning in the same manner as in Comparative Example 2, and then subjected to heat treatment in the same manner as in Example 1 as Comparative Example 3.
そして、実施例1および各比較例の再生処理後の活性炭の各サンプルについて、吸着性能を確認した。吸着性能は、JWWA(社団法人日本水道協会)の規格A114(水道用粒状活性炭)に基づいてヨウ素吸着力および強熱残分を測定するとともに、揮発成分を測定して確認した。なお、吸着性能の再生の比較対象として、吸着性能が低下した使用済み活性炭についても同様にヨウ素吸着力、強熱残分および揮発成分を測定した。 And adsorption | suction performance was confirmed about each sample of the activated carbon after the regeneration process of Example 1 and each comparative example. Adsorption performance was confirmed by measuring iodine adsorption power and ignition residue based on JWWA (Japan Water Works Association) standard A114 (granular activated carbon for waterworks) and measuring volatile components. In addition, iodine adsorption power, ignition residue, and volatile components were similarly measured for used activated carbon with reduced adsorption performance as a comparison target for adsorption performance regeneration.
ここで、ヨウ素吸着力(mg/g)は、活性炭1gに吸着できるヨウ素の量である。このヨウ素吸着力は、0.05mol/Lのヨウ素吸着溶液に活性炭の各サンプルを段階的に加え、15分振とう後、残留ヨウ素濃度を測定し、吸着等温線を作成して、残留ヨウ素濃度が2.5g/Lとなる活性炭単位当たりのヨウ素吸着量の値を求めたものである。 Here, iodine adsorption power (mg / g) is the amount of iodine that can be adsorbed on 1 g of activated carbon. This iodine adsorption power is obtained by adding each sample of activated carbon stepwise to a 0.05 mol / L iodine adsorption solution, shaking for 15 minutes, measuring the residual iodine concentration, and creating an adsorption isotherm. Is a value of iodine adsorption amount per activated carbon unit that becomes 2.5 g / L.
強熱残分は、再生処理後の活性炭の各サンプルを電気炉中で加熱することにより、再生処理後に活性炭に残留した付着物を強熱灰化させて求める。すなわち、強熱残分(%)の値は、加熱前の活性炭の質量に対する加熱後に残った灰分の質量を示す。 The ignition residue is obtained by heating each sample of the activated carbon after the regeneration treatment in an electric furnace to ash the deposits remaining on the activated carbon after the regeneration treatment. That is, the value of the ignition residue (%) indicates the mass of ash remaining after heating with respect to the mass of activated carbon before heating.
揮発成分は、再生処理後の活性炭の各サンプルを電気炉中で加熱することにより、再生処理後に活性炭に残留した付着物を揮発させて求める。すなわち、揮発成分(%)の値は、加熱前の活性炭の質量に対する加熱後に減少した活性炭の質量(加熱により揮発した付着物の質量)を示す。 The volatile component is obtained by heating each sample of activated carbon after the regeneration treatment in an electric furnace to volatilize the deposits remaining on the activated carbon after the regeneration treatment. That is, the value of the volatile component (%) indicates the mass of activated carbon reduced after heating (the mass of deposits volatilized by heating) relative to the mass of activated carbon before heating.
表1には強熱残分の測定結果を示し、表2には揮発成分の測定結果を示し、表3には、ヨウ素吸着力の測定結果を示す。 Table 1 shows the measurement results of the ignition residue, Table 2 shows the measurement results of the volatile components, and Table 3 shows the measurement results of the iodine adsorption power.
表1に示すように、使用済み活性炭と比較すると、実施例1および比較例1は、強熱残分の値が小さく再生処理により強熱残分が除去されていた。特に実施例1では安定して強熱残分が除去されていた。 As shown in Table 1, compared with the used activated carbon, Example 1 and Comparative Example 1 had a small value of the ignition residue, and the ignition residue was removed by the regeneration treatment. In particular, in Example 1, the ignition residue was stably removed.
これら結果から、酸洗浄では強熱残分を除去できるが、アルカリ洗浄では強熱残分を除去されにくいことが分かる。 From these results, it is understood that the ignition residue can remove the ignition residue, but the alkali cleaning hardly removes the ignition residue.
表2に示すように、使用済み活性炭と比較すると、実施例1および比較例3は、揮発成分の値が小さく再生処理により揮発成分が除去されていた。特に実施例1では揮発成分が多く除去されていた。 As shown in Table 2, when compared with the used activated carbon, Example 1 and Comparative Example 3 had a small value of the volatile component, and the volatile component was removed by the regeneration treatment. In particular, in Example 1, many volatile components were removed.
これらの結果から、加熱処理の前に酸洗浄を行い強熱残分を除去することにより加熱処理にて効率的に揮発成分を除去できるが、強熱残分を除去していない状態で加熱処理をしても揮発成分が除去されにくいことが分かる。 From these results, it is possible to efficiently remove volatile components by heat treatment by acid washing prior to heat treatment and removing the ignition residue, but heat treatment without removing the ignition residue. It can be seen that volatile components are difficult to remove even if
表3に示すように、使用済み活性炭と比較すると、実施例1が最もヨウ素吸着力が再生していた。 As shown in Table 3, compared with the used activated carbon, Example 1 had the most regenerated iodine adsorption power.
これらの結果から、使用済み活性炭を酸洗浄することにより活性炭から強熱残分を除去でき、この酸洗浄後の活性炭を加熱処理することにより揮発成分が除去されやすく、ヨウ素吸着力を効率的に再生できることが分かる。 From these results, it is possible to remove the ignition residue from the activated carbon by acid cleaning of the used activated carbon. By heating the activated carbon after this acid cleaning, the volatile components are easily removed, and the iodine adsorption power is efficiently improved. You can see that it can be played.
したがって、使用済み活性炭を酸洗浄した後に加熱処理することにより、活性炭の吸着性能を効率的に再生できる。 Therefore, the adsorption performance of the activated carbon can be efficiently regenerated by heat treating the used activated carbon after acid cleaning.
Claims (4)
前記活性炭を酸溶液にて酸洗浄し、
この酸洗浄された活性炭を加熱手段にて加熱処理する
ことを特徴とする活性炭の再生方法。 An activated carbon regeneration method for regenerating the adsorption performance of activated carbon to which at least one of an organic substance and an inorganic substance used for water treatment is attached,
The activated carbon is acid washed with an acid solution,
A method for regenerating activated carbon, comprising heat-treating the acid-washed activated carbon with a heating means.
ことを特徴とする請求項1記載の活性炭の再生方法。 The method for regenerating activated carbon according to claim 1, wherein the acid solution is any one of a hydrochloric acid solution, a sulfuric acid solution, and a phosphoric acid solution.
ことを特徴とする請求項1または2記載の活性炭の再生方法。 The method for regenerating activated carbon according to claim 1 or 2, wherein the acid concentration of the acid solution is 0.1 mol / L or more.
ことを特徴とする請求項1ないし3のいずれか一記載の活性炭の再生方法。 The method for regenerating activated carbon according to any one of claims 1 to 3, wherein the heating means is a rotary kiln.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012140767A JP2014004511A (en) | 2012-06-22 | 2012-06-22 | Method for regenerating activated carbon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012140767A JP2014004511A (en) | 2012-06-22 | 2012-06-22 | Method for regenerating activated carbon |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014004511A true JP2014004511A (en) | 2014-01-16 |
Family
ID=50102757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012140767A Pending JP2014004511A (en) | 2012-06-22 | 2012-06-22 | Method for regenerating activated carbon |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014004511A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016104113A1 (en) * | 2014-12-26 | 2016-06-30 | Jx金属株式会社 | Method for recovering gold from activated carbon |
CN116474749A (en) * | 2023-04-26 | 2023-07-25 | 南雄市绿炭再生资源有限公司 | Preparation process for regenerating waste activated carbon |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4894668A (en) * | 1972-03-14 | 1973-12-05 | ||
JPS52138087A (en) * | 1976-05-14 | 1977-11-17 | Daikin Ind Ltd | Regenerator for activated carbon for water treatment |
JPS533991A (en) * | 1976-06-30 | 1978-01-14 | Ebara Infilco Co Ltd | Regeneration of activated carbon |
JPS5381494A (en) * | 1976-12-27 | 1978-07-18 | Mitsubishi Chem Ind Ltd | Activated carbon treating method |
JPS5475860A (en) * | 1977-11-29 | 1979-06-18 | Kurita Water Ind Ltd | Device for treating water containing metal ions |
JPS5614410A (en) * | 1979-07-13 | 1981-02-12 | Idemitsu Kosan Co Ltd | Granular activated carbon regenerating method |
JPS63315146A (en) * | 1987-06-16 | 1988-12-22 | Koko Res Kk | Regeneration of carbonaceous adsorbing body |
JPH1147589A (en) * | 1997-08-07 | 1999-02-23 | Ebara Corp | Regeneration pretreatment of activated carbon |
WO2002034385A1 (en) * | 2000-10-27 | 2002-05-02 | Daekyung Carbon Technologies Co., Ltd. | Regeneration process and facilities of spent activated carbons |
JP2004275837A (en) * | 2003-03-13 | 2004-10-07 | Babcock Hitachi Kk | Method for decoloring aromatic nitrogen compound-containing wastewater |
-
2012
- 2012-06-22 JP JP2012140767A patent/JP2014004511A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4894668A (en) * | 1972-03-14 | 1973-12-05 | ||
JPS52138087A (en) * | 1976-05-14 | 1977-11-17 | Daikin Ind Ltd | Regenerator for activated carbon for water treatment |
JPS533991A (en) * | 1976-06-30 | 1978-01-14 | Ebara Infilco Co Ltd | Regeneration of activated carbon |
JPS5381494A (en) * | 1976-12-27 | 1978-07-18 | Mitsubishi Chem Ind Ltd | Activated carbon treating method |
JPS5475860A (en) * | 1977-11-29 | 1979-06-18 | Kurita Water Ind Ltd | Device for treating water containing metal ions |
JPS5614410A (en) * | 1979-07-13 | 1981-02-12 | Idemitsu Kosan Co Ltd | Granular activated carbon regenerating method |
JPS63315146A (en) * | 1987-06-16 | 1988-12-22 | Koko Res Kk | Regeneration of carbonaceous adsorbing body |
JPH1147589A (en) * | 1997-08-07 | 1999-02-23 | Ebara Corp | Regeneration pretreatment of activated carbon |
WO2002034385A1 (en) * | 2000-10-27 | 2002-05-02 | Daekyung Carbon Technologies Co., Ltd. | Regeneration process and facilities of spent activated carbons |
JP2004275837A (en) * | 2003-03-13 | 2004-10-07 | Babcock Hitachi Kk | Method for decoloring aromatic nitrogen compound-containing wastewater |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016104113A1 (en) * | 2014-12-26 | 2016-06-30 | Jx金属株式会社 | Method for recovering gold from activated carbon |
JPWO2016104113A1 (en) * | 2014-12-26 | 2017-10-05 | Jx金属株式会社 | How to recover gold from activated carbon |
US10392679B2 (en) | 2014-12-26 | 2019-08-27 | Jx Nippon Mining & Metals Corporation | Method for recovering gold from activated carbon |
CN116474749A (en) * | 2023-04-26 | 2023-07-25 | 南雄市绿炭再生资源有限公司 | Preparation process for regenerating waste activated carbon |
CN116474749B (en) * | 2023-04-26 | 2023-09-19 | 南雄市绿炭再生资源有限公司 | Preparation process for regenerating waste activated carbon |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gupta et al. | Potential of activated carbon from waste rubber tire for the adsorption of phenolics: effect of pre-treatment conditions | |
JP6242761B2 (en) | Waste water treatment apparatus and treatment method | |
Alslaibi et al. | Comparison of activated carbon prepared from olive stones by microwave and conventional heating for iron (II), lead (II), and copper (II) removal from synthetic wastewater | |
RU2443468C2 (en) | Activation, cleaning and application of oil shale | |
Zaini et al. | Microwave-induced zinc chloride activated palm kernel shell for dye removal | |
RU2017101435A (en) | METHOD FOR WATER TREATMENT BY ADSORPTION AND FILTRATION ON A LAYER OF GRANULATED MATERIAL | |
KR101273494B1 (en) | Recycle method of spent carbons by chemical impregnation and heating treatments in vacuum | |
JP2014004511A (en) | Method for regenerating activated carbon | |
Khalil et al. | Adsorptive removal of Cu (II) ions by date pits: kinetic and equilibrium studies. | |
KR101767787B1 (en) | Method for recycling activated carbon and aparatus for recycling activated carbon using the same | |
JP2013202594A (en) | Metallic ion adsorbent and method of removing metallic ion using the same | |
JP2007268424A (en) | Separation method of pcb-contaminated material | |
US10758860B2 (en) | Apparatus for treating mercury-containing waste and method for recovering high purity elemental mercury using same apparatus | |
Ibrahim et al. | Effectiveness of biochar from hydrothermal carbonization of wetland biomass for sorption of ammonia | |
JP2014136169A (en) | Method and apparatus for treating cement firing exhaust gas | |
JP2013180284A (en) | Exhaust gas treating method and exhaust gas treatment apparatus | |
JP2006326551A (en) | Cleaning agent for soil contaminated with organoarsenic compound and cleaning method | |
JP2007325979A (en) | Treatment method for volatile organic halogen compound | |
JP2014074694A (en) | Method for removing radioactive cesium | |
KR101927405B1 (en) | Humic acid-impregnated activated carbon for adsorbing mercury and the manufacturing method thereof | |
JP2016052958A (en) | Method for producing carbide derived from coffee bean | |
JP2016193412A (en) | Organic solvent-containing gas treating system | |
JP7400230B2 (en) | Organic solvent recovery method and organic solvent recovery system | |
JP2004321919A (en) | Soil decontaminating method | |
JP3793719B2 (en) | Treatment method for mercury-containing wastewater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20150521 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150609 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20150609 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20150609 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20150807 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160412 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160420 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160615 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160713 |