JP2016052958A - Method for producing carbide derived from coffee bean - Google Patents

Method for producing carbide derived from coffee bean Download PDF

Info

Publication number
JP2016052958A
JP2016052958A JP2014178380A JP2014178380A JP2016052958A JP 2016052958 A JP2016052958 A JP 2016052958A JP 2014178380 A JP2014178380 A JP 2014178380A JP 2014178380 A JP2014178380 A JP 2014178380A JP 2016052958 A JP2016052958 A JP 2016052958A
Authority
JP
Japan
Prior art keywords
content
organic acid
aqueous solution
carbon precursor
acid aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014178380A
Other languages
Japanese (ja)
Inventor
山中 雅義
Masayoshi Yamanaka
雅義 山中
奥野 壮敏
Taketoshi Okuno
壮敏 奥野
岩崎 秀治
Hideji Iwasaki
秀治 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Chemical Co Ltd
Kureha Corp
Kuraray Co Ltd
Kureha Battery Materials Japan Co Ltd
Original Assignee
Kuraray Chemical Co Ltd
Kureha Corp
Kuraray Co Ltd
Kureha Battery Materials Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Chemical Co Ltd, Kureha Corp, Kuraray Co Ltd, Kureha Battery Materials Japan Co Ltd filed Critical Kuraray Chemical Co Ltd
Priority to JP2014178380A priority Critical patent/JP2016052958A/en
Publication of JP2016052958A publication Critical patent/JP2016052958A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a carbide derived from a coffee bean in which the contents of metallic elements such as alkali metals, alkaline-earth metals and heavy metals are sufficiently reduced, and suitably usable as a carbon material for an electronic component such as a carbon material for the negative electrode of a non-aqueous electrolytic battery in particular.SOLUTION: Provided is a method for producing a carbide derived from a coffee bean comprising: a step where a carbon precursor derived from a coffee bean is immersed into an organic acid aqueous solution with the renewal of an organic acid aqueous solution for at least one time to reduce the content of metallic elements such as alkali metals, alkaline-earth metals, heavy metals or the like in the carbon precursor; and a step where the obtained carbon precursor is carbonized.SELECTED DRAWING: None

Description

本発明は、珈琲豆由来の炭化物の製造方法、詳しくは非水電解質電池の負極用の炭素材等の電子部品用炭素材として好適に用いることができる、アルカリ金属、アルカリ土類金属および重金属等の金属元素の含有量が低減された珈琲豆由来の炭化物の製造方法に関する。   INDUSTRIAL APPLICABILITY The present invention relates to a method for producing a soybean-derived carbide, specifically, an alkali metal, alkaline earth metal, heavy metal, etc. that can be suitably used as a carbon material for electronic parts such as a carbon material for a negative electrode of a nonaqueous electrolyte battery It is related with the manufacturing method of the soybean-derived carbide | carbonized_material in which content of the metal element of this was reduced.

炭素材は、コンデンサー用電極、電解用電極、活性炭、担持体などの様々な用途において用いられており、今後更なる開発が期待されている分野および素材である。これらの炭素材は従来、椰子殻、石炭コークス、石炭または石油ピッチ、フラン樹脂またはフェノール樹脂等に由来する炭化物を原料として製造される。近年、地球環境への影響、および、埋蔵量の減少による価格高騰に起因して、化石燃料資源の今後の使用が困難になることが予想されている。   Carbon materials are used in various applications such as capacitor electrodes, electrolysis electrodes, activated carbon, and supports, and are fields and materials that are expected to be further developed in the future. Conventionally, these carbon materials are produced from carbides derived from coconut shell, coal coke, coal or petroleum pitch, furan resin, phenol resin, or the like. In recent years, it is expected that the future use of fossil fuel resources will become difficult due to the impact on the global environment and the rising prices due to the decrease in reserves.

そこで、地球環境に優しい素材として天然素材に由来する炭化物を原料として製造された炭素材が注目されている。しかしながら、天然素材には、生物の生命活動維持に必要な種々の金属が含まれている。したがって、天然素材由来の炭化物を電子材料用の炭素材として用いた場合、このような金属が不純物となり、電気的な障害が生じることが懸念される。また、水ろ過等に用いられる活性炭などの吸着剤では、吸着した物質と金属とが反応し、水溶性物質が形成され、水中へ再び放出される等の問題が生じる上に、炭化賦活時に、残留する金属により孔形成反応が加速され、必要以上に多孔化が進行する。さらに、触媒担持体においては、担持する触媒金属と含有不純物金属との反応により目的とした粒径または組成で触媒成分を担持できない等の問題が生じる。   Therefore, carbon materials manufactured using carbonaceous materials derived from natural materials as raw materials that are friendly to the global environment are attracting attention. However, natural materials contain various metals necessary for maintaining the biological activities of living organisms. Therefore, when a carbide derived from a natural material is used as a carbon material for an electronic material, there is a concern that such a metal becomes an impurity and an electrical failure occurs. In addition, in an adsorbent such as activated carbon used for water filtration and the like, the adsorbed substance reacts with the metal to form a water-soluble substance, which is released again into water, and at the time of carbonization activation, The remaining metal accelerates the pore formation reaction, and the pore formation proceeds more than necessary. Further, in the catalyst carrier, there arises a problem that the catalyst component cannot be supported with the intended particle size or composition due to the reaction between the catalyst metal to be supported and the contained impurity metal.

珈琲豆に由来する炭素材に関し、金属を除去する方法としては、植物由来の有機物を酸性溶液により液相脱灰する方法(特許文献1)、植物性原料を水で洗浄して植物性原料中に含有される金属成分を溶出除去する方法(特許文献2)、植物性原料または炭素化された植物性原料を水系溶媒中でマイクロ波加熱処理することにより、植物性原料または炭素化された植物性原料に含有される金属成分を溶出除去する方法(特許文献3)などが提案されている。   Regarding the carbon material derived from coconut beans, as a method for removing metal, a method of performing liquid phase decalcification of plant-derived organic matter with an acidic solution (Patent Document 1), washing the plant raw material with water, (Patent Document 2) for removing and removing metal components contained in plant material, by subjecting plant raw material or carbonized plant raw material to microwave heat treatment in an aqueous solvent, thereby producing plant raw material or carbonized plant A method (e.g., Patent Document 3) that elutes and removes a metal component contained in a functional raw material has been proposed.

しかしながら、特許文献1に記載されている方法においては、有機酸を使用した場合、浸漬初期に有機酸水溶液中へ溶出する有機物により、有機酸とアルカリ土類金属および/または重金属との反応が阻害される。そのため、特許文献1に記載の方法では、マグネシウム、カルシウム、鉄については除去するのが困難である。また、塩酸等の強酸を用いて脱灰を行った場合には、脱灰後の珈琲豆に塩素等が残留しないように、脱灰後に多量の水で水洗を行わねばならない。   However, in the method described in Patent Document 1, when an organic acid is used, the reaction between the organic acid and the alkaline earth metal and / or heavy metal is hindered by an organic substance that elutes into the aqueous organic acid solution at the initial stage of immersion. Is done. Therefore, it is difficult to remove magnesium, calcium, and iron by the method described in Patent Document 1. In addition, when deashing is performed using a strong acid such as hydrochloric acid, it must be washed with a large amount of water after deashing so that chlorine and the like do not remain in the beans after deashing.

また、特許文献2および特許文献3には、アルカリ土類金属、アルカリ土類金属および重金属を溶出除去することが記載されているものの、具体的にはカリウムの除去が確認されているのみである。また、洗浄に水を用いる特許文献2および特許文献3に記載の方法では、水に対する溶解度が十分に高くないアルカリ土類金属塩および重金属塩を十分に除去することができない。   Further, Patent Document 2 and Patent Document 3 describe that alkaline earth metal, alkaline earth metal and heavy metal are eluted and removed, but specifically, removal of potassium has only been confirmed. . In addition, the methods described in Patent Document 2 and Patent Document 3 that use water for washing cannot sufficiently remove alkaline earth metal salts and heavy metal salts whose solubility in water is not sufficiently high.

国際公開第2014/038491号パンフレットInternational Publication No. 2014/038491 Pamphlet 特開2000−268823号公報JP 2000-268823 A 特開2000−327316号公報JP 2000-327316 A

本発明の目的は、非水電解質電池の負極用の炭素材等の電子部品用炭素材として好適に用いることができる、アルカリ金属、アルカリ土類金属および重金属等の金属元素の含有量が十分に低減された珈琲豆由来の炭化物の製造方法を提供することである。   It is an object of the present invention to have a sufficient content of metal elements such as alkali metals, alkaline earth metals, and heavy metals that can be suitably used as carbon materials for electronic parts such as carbon materials for negative electrodes of nonaqueous electrolyte batteries. It is to provide a method for producing reduced soybean-derived carbides.

本発明者らは、珈琲豆由来の炭素前駆体を有機酸水溶液中に、少なくとも1回の有機酸水溶液の更新を伴って浸漬することにより、炭素前駆体中の金属元素の含有量を低減し、次いで得られた炭素前駆体を炭化することにより上記課題を解決できることを見出し、本発明を完成させるに至った。   The present inventors reduced the content of the metal element in the carbon precursor by immersing the carbon precursor derived from soybeans in the organic acid aqueous solution with at least one renewal of the organic acid aqueous solution. Then, it was found that the above-mentioned problems can be solved by carbonizing the obtained carbon precursor, and the present invention has been completed.

すなわち、本発明には、以下のものが含まれる。
[1]珈琲豆由来の炭化物の製造方法であって、
1)珈琲豆由来の炭素前駆体を有機酸水溶液中、少なくとも1回の有機酸水溶液の更新を伴って浸漬することにより、炭素前駆体中の金属元素の含有量を低下させる工程、および
2)得られた炭素前駆体を炭化する工程
を含む、方法。
[2]炭化は、炭素前駆体を、不活性ガス雰囲気下、300〜800℃において加熱することにより行う、上記[1]に記載の方法。
[3]含有量を低下させる金属元素は、アルカリ金属、アルカリ土類金属および重金属からなる群から選択される少なくとも1種である、上記[1]または[2]に記載の方法。
[4]有機酸水溶液に浸漬する前の炭素前駆体中のカリウムの含有量K(a)、マグネシウムの含有量Mg(a)、カルシウムの含有量Ca(a)および鉄の含有量Fe(a)に対する有機酸水溶液中に浸漬することにより金属元素および/または非金属元素の含有量を低下させた後の炭素前駆体中のカリウムの含有量K(b)、マグネシウムの含有量Mg(b)、カルシウムの含有量Ca(b)および鉄の含有量Fe(b)の割合はそれぞれ、
K(b)/K(a)≦0.1
Mg(b)/Mg(a)≦0.2
Ca(b)/Ca(a)≦0.2
Fe(b)/Fe(a)≦0.15
である、上記[1]〜[3]のいずれかに記載の方法。
[5]炭化物は、50ppm以下のカリウムの含有量、50ppm以下のマグネシウムの含有量、50ppm以下のカルシウムの含有量、20ppm以下の鉄の含有量を有する、上記[1]〜[4]のいずれかに記載の方法。
That is, the present invention includes the following.
[1] A method for producing a soybean-derived carbide,
1) A step of reducing the content of the metal element in the carbon precursor by immersing the carbon precursor derived from red beans in the organic acid aqueous solution with at least one renewal of the organic acid aqueous solution, and 2) A method comprising carbonizing the obtained carbon precursor.
[2] The method according to [1] above, wherein the carbonization is performed by heating the carbon precursor at 300 to 800 ° C. in an inert gas atmosphere.
[3] The method according to [1] or [2] above, wherein the metal element for reducing the content is at least one selected from the group consisting of alkali metals, alkaline earth metals, and heavy metals.
[4] Potassium content K (a), magnesium content Mg (a), calcium content Ca (a) and iron content Fe (a) before being immersed in an organic acid aqueous solution ) K (b), magnesium content Mg (b) in the carbon precursor after the content of the metal element and / or non-metal element is reduced by immersing in an organic acid aqueous solution The proportions of calcium content Ca (b) and iron content Fe (b) are respectively
K (b) / K (a) ≦ 0.1
Mg (b) / Mg (a) ≦ 0.2
Ca (b) / Ca (a) ≦ 0.2
Fe (b) / Fe (a) ≦ 0.15
The method according to any one of [1] to [3] above.
[5] Any of the above [1] to [4], wherein the carbide has a potassium content of 50 ppm or less, a magnesium content of 50 ppm or less, a calcium content of 50 ppm or less, and an iron content of 20 ppm or less. The method of crab.

本発明の方法により製造した炭化物は、金属元素が十分に除去されているので、特に非水電解質電池用の負極用の炭素材等の電子部品用炭素材として好適に用いることができる。   The carbide produced by the method of the present invention can be suitably used as a carbon material for electronic parts such as a carbon material for a negative electrode for a non-aqueous electrolyte battery because the metal element is sufficiently removed.

本発明の珈琲豆由来の炭化物の製造方法は、珈琲豆由来の炭素前駆体を有機酸水溶液中に、少なくとも1回の有機酸水溶液の更新を伴って浸漬することにより、炭素前駆体中の金属元素の含有量を低下させる工程を含む。   The method for producing carbides derived from soybeans of the present invention comprises immersing a carbon precursor derived from soybeans in an organic acid aqueous solution with at least one renewal of the organic acid aqueous solution, thereby providing a metal in the carbon precursor. Including a step of reducing the content of the element.

珈琲豆由来の炭素前駆体は、炭化工程を行う前の珈琲豆由来物質である。珈琲豆の産地や品種は、特に限定されるものではなく、あらゆる産地、あらゆる品種の珈琲豆に由来してよい。珈琲豆由来の炭素前駆体は、飲料としての珈琲を抽出する前の珈琲豆であってもよいし、飲料としての珈琲を抽出した後の一般的に珈琲粕とも称される抽出残渣であってもよい。   The coconut-derived carbon precursor is a coconut-derived material before the carbonization step. The production area and variety of soybeans are not particularly limited, and may be derived from soybeans of any production area and variety. The carbon precursor derived from cocoon may be cocoon before extracting cocoon as a beverage, or an extraction residue generally referred to as cocoon after extracting cocoon as a beverage. Also good.

本発明では、珈琲豆由来の炭素前駆体として、珈琲豆を粉砕したものを用いることが好ましい。珈琲豆由来の炭素前駆体の大きさの上限としては、好ましくは珈琲豆を1/2程度に割ったもの、より好ましくは5mm以下に粗粉砕したものである。また、本発明に用いる珈琲豆由来の炭素前駆体の大きさの下限としては、好ましくは0.1mm以上、より好ましくは1mm以上である。本発明では、珈琲豆を上記の上限および下限の任意の組合わせの範囲内で用いてよく、種々の大きさの珈琲豆を混合して炭素前駆体として用いてもよい。珈琲豆由来の炭素前駆体からの金属の除去が容易となる観点から、0.1mm〜5mm程度に粉砕された珈琲豆を用いることが好ましい。適度に破砕されており、廃棄物として多量に入手しやすい観点からは、飲料としての珈琲を抽出した後の一般的に珈琲粕とも称される抽出残渣を珈琲豆由来の炭素前駆体として用いることが好ましい。   In this invention, it is preferable to use what grind | pulverized the soybeans as a carbon precursor derived from soybeans. The upper limit of the size of the carbon precursor derived from the soybeans is preferably that obtained by dividing the soybeans by about 1/2, and more preferably coarsely pulverized to 5 mm or less. Moreover, as a minimum of the magnitude | size of the carbon precursor derived from the soybeans used for this invention, Preferably it is 0.1 mm or more, More preferably, it is 1 mm or more. In the present invention, soybean beans may be used within a range of any combination of the above upper limit and lower limit, and soybean beans of various sizes may be mixed and used as a carbon precursor. From the viewpoint of facilitating the removal of the metal from the soybean-derived carbon precursor, it is preferable to use soybean beans pulverized to about 0.1 mm to 5 mm. From the point of view of being moderately crushed and easily available in large quantities as waste, use the extraction residue, commonly referred to as koji, after extracting koji as a beverage as a carbon precursor derived from koji. Is preferred.

ここで、珈琲豆は、カリウム等のアルカリ金属元素、マグネシウムおよびカルシウム等のアルカリ土類金属元素、および鉄等の重金属を多く含んでいる。そのため、これらの金属元素を含んだ珈琲豆由来の炭素前駆体を炭化すると、金属元素が炭素質を侵食し、炭化時に必要な炭素質が分解されるおそれがある。また、このような金属を含む炭化物を、例えばリチウムイオン電池などにおいて、例えば電極等として使用した場合、充電時に還元された金属が析出し、セパレータを貫通してショートを引き起こすなどなどの電池の安全性に悪影響を及ぼす場合がある。   Here, the soybeans contain a lot of alkali metal elements such as potassium, alkaline earth metal elements such as magnesium and calcium, and heavy metals such as iron. For this reason, if carbon precursors derived from soybeans containing these metal elements are carbonized, the metal elements may erode the carbonaceous matter, and the carbonaceous matter necessary for carbonization may be decomposed. In addition, when a carbide containing such a metal is used as, for example, an electrode in a lithium ion battery or the like, the safety of the battery such as a metal that has been reduced during charging is deposited and causes a short circuit through the separator. May adversely affect sex.

本発明の炭素材の製造方法において、珈琲豆由来の炭素前駆体を有機酸水溶液中に、少なくとも1回の有機酸水溶液の更新を伴って浸漬することにより、炭素前駆体中の金属元素の含有量を低下させる。ここで、有機酸水溶液中に浸漬することにより、炭素前駆体中の金属元素の含有量を低下させることを以下において脱灰とも称する。有機酸水溶液に用いる有機酸は、リン、硫黄、ハロゲン等の不純物源となる元素を含まないことが好ましい。有機酸がリン、硫黄、ハロゲン等の元素を含まない場合には、炭素前駆体を有機酸水溶液中に浸漬後の水洗を省略し、有機酸が残存する珈琲豆を炭化した場合であっても、炭素材として好適に用いることできる炭化物が得られるため有利である。また、上記浸漬に使用後の有機酸水溶液の廃液処理を特別な装置を用いることなく比較的容易に行うことができるため有利である。   In the method for producing a carbon material of the present invention, the carbon precursor derived from soybeans is immersed in the organic acid aqueous solution with at least one renewal of the organic acid aqueous solution, thereby containing the metal element in the carbon precursor. Reduce the amount. Here, reducing the content of the metal element in the carbon precursor by immersing in an organic acid aqueous solution is also referred to as decalcification below. The organic acid used in the organic acid aqueous solution preferably does not contain an element that becomes an impurity source such as phosphorus, sulfur, or halogen. If the organic acid does not contain elements such as phosphorus, sulfur, halogen, etc., even if the carbon precursor is not washed in the organic acid aqueous solution and then washed with water, and the soybeans in which the organic acid remains are carbonized This is advantageous because it provides a carbide that can be suitably used as a carbon material. Moreover, the waste liquid treatment of the organic acid aqueous solution after use for the immersion can be performed relatively easily without using a special apparatus, which is advantageous.

有機酸の例としては、飽和カルボン酸、例えば蟻酸、酢酸、プロピオン酸、蓚酸、酒石酸、クエン酸等、芳香族カルボン酸、例えば安息香酸、テレフタル酸等が挙げられる。入手可能性、酸性度による腐食および人体への影響の観点から、酢酸、蓚酸およびクエン酸が好ましい。   Examples of organic acids include saturated carboxylic acids such as formic acid, acetic acid, propionic acid, succinic acid, tartaric acid and citric acid, and aromatic carboxylic acids such as benzoic acid and terephthalic acid. Acetic acid, succinic acid, and citric acid are preferable from the viewpoint of availability, corrosion due to acidity, and influence on human body.

本発明では、通常、溶出する金属化合物の溶解度、廃棄物の処理、環境適合性等の観点から、有機酸を水性溶液と混合して有機酸水溶液として用いる。水性溶液としては、水、水と水溶性有機溶媒との混合物などが挙げられる。水溶性有機溶媒としては、例えばメタノール、エタノール、プロピレングリコール、エチレングリコールなどのアルコールが挙げられる。   In the present invention, an organic acid is usually mixed with an aqueous solution and used as an aqueous organic acid solution from the viewpoints of the solubility of the eluted metal compound, the disposal of waste, environmental compatibility, and the like. Examples of the aqueous solution include water, a mixture of water and a water-soluble organic solvent, and the like. Examples of the water-soluble organic solvent include alcohols such as methanol, ethanol, propylene glycol, and ethylene glycol.

有機酸水溶液中の酸の濃度としては、特に限定されるものではなく、用いる酸の種類に応じて濃度を調節して用いることができる。本発明では、有機酸水溶液の総量を基準として、通常0.001重量%〜20重量%、より好ましくは0.01重量%〜18重量%、さらに好ましくは0.02重量%〜15重量%の範囲の酸濃度の有機酸水溶液を用いる。酸濃度が上記範囲内であれば、適度な金属溶出速度が得られるため実用的な時間で脱灰工程を行うことが可能となる。また、炭素前駆体における酸の残留量が少なくなるので、その後の製品への影響も少なくなる。   The concentration of the acid in the aqueous organic acid solution is not particularly limited, and the concentration can be adjusted according to the type of acid used. In the present invention, based on the total amount of the organic acid aqueous solution, it is usually 0.001% to 20% by weight, more preferably 0.01% to 18% by weight, still more preferably 0.02% to 15% by weight. An organic acid aqueous solution having an acid concentration in the range is used. If the acid concentration is within the above range, an appropriate metal elution rate can be obtained, so that the deashing process can be performed in a practical time. Moreover, since the residual amount of acid in the carbon precursor is reduced, the influence on the subsequent product is also reduced.

有機酸水溶液のpHは、好ましくは3.5以下、より好ましくは3以下である。有機酸水溶液のpHが上記の値を超えない場合、金属元素の有機酸水溶液への溶解速度が低下することなく、金属元素の除去を効率的に行うことができる。   The pH of the organic acid aqueous solution is preferably 3.5 or less, more preferably 3 or less. When the pH of the organic acid aqueous solution does not exceed the above value, the metal element can be efficiently removed without decreasing the dissolution rate of the metal element in the organic acid aqueous solution.

炭素前駆体を浸漬する際の有機酸水溶液の温度は、特に限定されないが、好ましくは45℃〜120℃、より好ましくは50℃〜110℃、さらに好ましくは60℃〜100℃の範囲である。炭素前駆体を浸漬する際の有機酸水溶液の温度が上記範囲内であれば、使用する酸の分解が抑制され、実用的な時間での脱灰工程の実施が可能となる金属の溶出速度が得られるため好ましい。また、特殊な装置を用いずに脱灰工程を行うことができるため好ましい。   Although the temperature of the organic acid aqueous solution at the time of immersing a carbon precursor is not specifically limited, Preferably it is 45 to 120 degreeC, More preferably, it is 50 to 110 degreeC, More preferably, it is the range of 60 to 100 degreeC. If the temperature of the organic acid aqueous solution at the time of immersing the carbon precursor is within the above range, the decomposition of the acid to be used is suppressed, and the elution rate of the metal that enables the deashing process to be carried out in a practical time is achieved. Since it is obtained, it is preferable. Moreover, since a deashing process can be performed without using a special apparatus, it is preferable.

本発明の方法における、珈琲豆由来の炭素前駆体を有機酸水溶液中に、少なくとも1回の有機酸水溶液の更新を伴って浸漬する工程において、少なくとも1回の有機酸水溶液の更新を伴って浸漬する方法としては、炭素前駆体に、有機酸水溶液を連続的に添加し、所定の時間滞留させ、抜き取りながら浸漬を行う方法でも、炭素前駆体を有機酸水溶液に浸漬し、所定の時間滞留させ、脱液した後、新たに有機酸水溶液を添加して浸漬−脱液を繰り返す方法であっても構わない。また、有機酸水溶液の全部を更新する方法であってもよいし、有機酸水溶液の一部を更新する方法であってもよい。炭素前駆体を有機酸水溶液に浸漬する時間としては、用いる酸に応じて適宜調節することができる。本発明では、浸漬する時間は、経済性および脱灰効率の観点から、通常0.1〜100時間、好ましくは0.2〜80時間、より好ましくは0.5〜50時間の範囲である。   In the method of the present invention, in the step of immersing the carbon precursor derived from peas in the organic acid aqueous solution with at least one update of the organic acid aqueous solution, at least one immersion with the update of the organic acid aqueous solution is performed. As a method for performing the above, a method of continuously adding an organic acid aqueous solution to a carbon precursor and retaining it for a predetermined time, and dipping while removing the carbon precursor is also immersed in an organic acid aqueous solution and retained for a predetermined time. Alternatively, after the liquid removal, a method may be used in which an organic acid aqueous solution is newly added and the immersion-liquid removal is repeated. Moreover, the method of updating the whole organic acid aqueous solution may be sufficient, and the method of updating a part of organic acid aqueous solution may be sufficient. The time for immersing the carbon precursor in the organic acid aqueous solution can be appropriately adjusted according to the acid used. In the present invention, the immersion time is usually in the range of 0.1 to 100 hours, preferably 0.2 to 80 hours, and more preferably 0.5 to 50 hours, from the viewpoint of economy and decalcification efficiency.

有機酸水溶液の重量に対する浸漬する珈琲豆由来の炭素前駆体の重量の割合は、用いる有機酸水溶液の種類、濃度および温度等に応じて適宜調節することが可能であり、通常0.1重量%〜200重量%、好ましくは1重量%〜150重量%、より好ましくは1.5重量%〜120重量%の範囲である。上記範囲内であれば、有機酸水溶液に溶出した金属元素が有機酸水溶液から析出しにくく、炭素前駆体への再付着が抑制されるため好ましい。また、上記範囲内であれば、容積効率が適切となるため経済的観点から好ましい。   The ratio of the weight of the carbon precursor derived from soybeans to be immersed relative to the weight of the organic acid aqueous solution can be appropriately adjusted according to the type, concentration, temperature, etc. of the organic acid aqueous solution used, and is usually 0.1% by weight. It is -200 weight%, Preferably it is 1 weight%-150 weight%, More preferably, it is the range of 1.5 weight%-120 weight%. If it is in the said range, since the metal element eluted to organic acid aqueous solution cannot precipitate easily from organic acid aqueous solution, and reattachment to a carbon precursor is suppressed, it is preferable. Moreover, if it is in the said range, since volume efficiency becomes appropriate, it is preferable from an economical viewpoint.

脱灰工程を行う雰囲気としては、特に限定されず、浸漬に使用する方法に応じて異なっていてよい。本発明では、通常、脱灰工程を大気雰囲気下で実施する。   It does not specifically limit as atmosphere which performs a deashing process, According to the method used for immersion, you may differ. In the present invention, the decalcification step is usually performed in an air atmosphere.

浸漬−脱液を繰り返す場合は、通常2回〜8回、好ましくは3回〜5回繰り返して行うことができる。   In the case of repeating the dipping and draining, it can be repeated usually 2 to 8 times, preferably 3 to 5 times.

本発明の方法では、有機酸水溶液に浸漬する前の炭素前駆体中のカリウムの含有量K(a)、マグネシウムの含有量Mg(a)、カルシウムの含有量Ca(a)および鉄の含有量Fe(a)に対する、有機酸水溶液中に浸漬することにより金属元素の含有量を低下させた後の炭素前駆体中のカリウムの含有量K(b)、マグネシウムの含有量Mg(b)、カルシウムの含有量Ca(b)および鉄の含有量Fe(b)の割合は、それぞれ、好ましくは
K(b)/K(a)≦0.1、
Mg(b)/Mg(a)≦0.2、
Ca(b)/Ca(a)≦0.2、および
Fe(b)/Fe(a)≦0.15であり、
より好ましくは
K(b)/K(a)≦0.05、
Mg(b)/Mg(a)≦0.1、
Ca(b)/Ca(a)≦0.1、
Fe(b)/Fe(a)≦0.1
である。
ここで、上記金属原子の含有量は、蛍光X線分析装置(例えば、株式会社リガク製ZSX Primusμ)を用いて測定することができる。有機酸水溶液に浸漬する前の炭素前駆体中の金属元素の含有量および有機酸水溶液中に浸漬させた後の炭素前駆体中の金属元素の含有量は、例えば実施例に記載するように、これらの炭素前駆体を炭化して得た炭化物を用いて測定を行い、得られた含有量を炭化物の収量を用いて炭素前駆体中の含有量に換算して算出することができる。
In the method of the present invention, the potassium content K (a), the magnesium content Mg (a), the calcium content Ca (a) and the iron content in the carbon precursor before being immersed in the organic acid aqueous solution. The content K (b) of potassium in the carbon precursor after the content of the metal element is reduced by immersing it in an organic acid aqueous solution with respect to Fe (a), the content Mg (b) of magnesium, the calcium content The proportion of the content Ca (b) and the content Fe (b) of iron is preferably K (b) / K (a) ≦ 0.1, respectively.
Mg (b) / Mg (a) ≦ 0.2,
Ca (b) / Ca (a) ≦ 0.2, and Fe (b) / Fe (a) ≦ 0.15,
More preferably K (b) / K (a) ≦ 0.05,
Mg (b) / Mg (a) ≦ 0.1,
Ca (b) / Ca (a) ≦ 0.1,
Fe (b) / Fe (a) ≦ 0.1
It is.
Here, the content of the metal atoms can be measured using a fluorescent X-ray analyzer (for example, ZSX Primus μ manufactured by Rigaku Corporation). The content of the metal element in the carbon precursor before being immersed in the organic acid aqueous solution and the content of the metal element in the carbon precursor after being immersed in the organic acid aqueous solution are, for example, as described in Examples. Measurement can be performed using carbides obtained by carbonizing these carbon precursors, and the obtained content can be calculated by converting to the content in the carbon precursor using the yield of the carbides.

本発明の製造方法において、珈琲豆由来の炭素前駆体を有機酸水溶液中に、少なくとも1回の有機酸水溶液の更新を伴って浸漬する工程を行った後、必要に応じて洗浄工程および/または乾燥工程を行うことができる。   In the production method of the present invention, after performing the step of immersing the carbon precursor derived from the soybeans in the organic acid aqueous solution with at least one renewal of the organic acid aqueous solution, the washing step and / or as necessary. A drying process can be performed.

さらに、本発明の炭化物の製造方法は、上記工程で得られた珈琲豆由来の炭素前駆体を炭化する工程を含む。   Furthermore, the manufacturing method of the carbide | carbonized_material of this invention includes the process of carbonizing the carbon precursor derived from the soybeans obtained at the said process.

本発明において、炭化する温度は特に限定されるものではないが、通常300℃〜800℃の範囲、好ましくは350℃〜700℃の範囲である。上記の温度範囲内では、保管時に発火の原因となる有機物が炭化乾留によって十分に脱離するため好ましい。また、炭化物の硬度が適度となるので、破砕に使用するメディアの損傷が抑制され、コンタミ、生産性の悪化等の問題が起こり難くなるため好ましい。   In the present invention, the temperature for carbonization is not particularly limited, but is usually in the range of 300 ° C to 800 ° C, preferably in the range of 350 ° C to 700 ° C. Within the above-mentioned temperature range, organic substances that cause ignition during storage are preferable because they are sufficiently desorbed by carbonization. Moreover, since the hardness of carbide | carbonized_material becomes moderate, damage to the medium used for crushing is suppressed, and since problems, such as a contamination and a deterioration of productivity, do not arise easily, it is preferable.

炭化時の雰囲気としては、炭素前駆体の酸化燃焼が起こらなければ特に限定されず、窒素およびアルゴン等の不活性ガスおよび乾留ガスの何れの雰囲気下で行ってもよい。   The atmosphere during carbonization is not particularly limited as long as oxidative combustion of the carbon precursor does not occur, and the atmosphere may be any atmosphere of inert gas such as nitrogen and argon and dry distillation gas.

また、加熱速度としては、特に限定されるものではなく、加熱の方法により異なるが、好ましくは1℃/分〜20℃/分、より好ましくは2℃/分〜18℃/分である。昇温速度が上記範囲内であれば、良好な生産性が得られ経済性の点から好ましい。また、発生する乾留ガスによる賦活の進行が抑制され、良好な炭素密度が得られるため、本発明の炭化物を電池の負極用炭素材として用いる場合において電池容量の点から好ましい。   Moreover, it does not specifically limit as a heating rate, Although it changes with methods of heating, Preferably it is 1 to 20 degreeC / min, More preferably, it is 2 to 18 degreeC / min. If the rate of temperature increase is within the above range, good productivity can be obtained, which is preferable from the viewpoint of economy. In addition, since the progress of activation by the generated dry distillation gas is suppressed and a good carbon density is obtained, it is preferable from the viewpoint of battery capacity when the carbide of the present invention is used as a carbon material for a negative electrode of a battery.

温度の保持時間としては、特に限定されるものではなく、好ましくは0.1時間〜20時間の範囲、より好ましくは0.5時間〜15時間の範囲である。保持時間が上記範囲内であれば、炭化が十分に進行するため発火が生じにくくなるため好ましい。また、経済性の観点から、適度な時間であるため好ましい。   The temperature holding time is not particularly limited, and is preferably in the range of 0.1 hour to 20 hours, more preferably in the range of 0.5 hour to 15 hours. If the holding time is within the above range, it is preferable because carbonization proceeds sufficiently so that ignition hardly occurs. Moreover, since it is moderate time from a viewpoint of economical efficiency, it is preferable.

本発明の製造方法において、炭化を行った後、必要に応じて、除金属工程、粉砕工程および/または焼成工程を実施することができる。しかしながら、本発明の方法により製造した炭化物は、金属元素が十分に除去されているため、さらなる除金属工程を省略することができる。   In the production method of the present invention, after carbonization, a metal removal step, a pulverization step and / or a firing step can be performed as necessary. However, since the carbide produced by the method of the present invention has sufficiently removed the metal element, a further metal removal step can be omitted.

本発明に従って製造された炭化物は、カリウムを好ましくは50ppm以下、より好ましくは40ppm以下、さらに好ましくは30ppm以下の量で含む。   The carbide produced according to the present invention preferably contains potassium in an amount of 50 ppm or less, more preferably 40 ppm or less, and even more preferably 30 ppm or less.

本発明に従って製造された炭化物は、マグネシウムを好ましくは100ppm以下、より好ましくは80ppm以下、さらに好ましくは50ppm以下の量で含む。   The carbide produced according to the present invention preferably contains magnesium in an amount of 100 ppm or less, more preferably 80 ppm or less, and even more preferably 50 ppm or less.

本発明に従って製造された炭化物は、カルシウムを好ましくは100ppm以下、より好ましくは90ppm以下、さらに好ましくは80ppm以下の量で含む。   The carbide produced according to the present invention preferably contains calcium in an amount of 100 ppm or less, more preferably 90 ppm or less, and even more preferably 80 ppm or less.

本発明に従って製造された炭化物は、鉄を好ましくは25ppm以下、より好ましくは 23ppm以下、さらに好ましくは20ppm以下の量で含む。   The carbide produced according to the present invention preferably contains iron in an amount of 25 ppm or less, more preferably 23 ppm or less, and even more preferably 20 ppm or less.

炭化物中の上記金属の含有量は、上記と同様にして、蛍光X線分析装置を用いて測定することができる。   The content of the metal in the carbide can be measured using a fluorescent X-ray analyzer in the same manner as described above.

本発明の方法により製造した炭化物は、例えば非水電解質電池用負極等の電子部品、水ろ過用活性炭や消臭用活性炭等の多孔体、触媒用担持体などの種々の用途に用いることができる。とりわけ、本発明の方法により製造した炭化物は、アルカリ金属元素、アルカリ土類金属元素および重金属元素が十分に除去されているため非水電解質電池用負極に好適に用いることができる。   The carbide produced by the method of the present invention can be used for various applications such as electronic parts such as a negative electrode for non-aqueous electrolyte batteries, porous bodies such as activated carbon for water filtration and deodorized activated carbon, and support for catalyst. . In particular, the carbide produced by the method of the present invention can be suitably used for the negative electrode for non-aqueous electrolyte batteries because the alkali metal element, alkaline earth metal element and heavy metal element are sufficiently removed.

以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

[金属元素含有量の測定]
珈琲豆中の金属元素の含有量は、蛍光X線分析装置(株式会社リガク製ZSX Primusμ)を用いて評価した。ここで、植物中の金属元素含有量は、採取した季節等に応じて部位においてバラツキが存在する。また、X線による金属元素の成分分析においては、金属の存在形態(結晶化度)によりX線の強度が異なる。したがって、炭化物中の金属が同等の結晶化度となるように以下の炭化条件に統一して珈琲豆を炭化した後、得られた炭化物中の金属元素の含有量について蛍光X線分析を行った。炭素前駆体中の金属元素の含有量は、炭化物にて測定した値を炭化物の回収率に基づいて換算し、算出した。
なお、本条件下で、金属成分が揮発して外部に気散しないことは、別途排気ガスの分析により確認した。
[Measurement of metal element content]
The content of the metal element in the soybeans was evaluated using a fluorescent X-ray analyzer (ZSX Primusμ manufactured by Rigaku Corporation). Here, the content of the metal element in the plant varies depending on the season of sampling. Further, in the component analysis of metal elements by X-rays, the intensity of X-rays varies depending on the presence form (crystallinity) of the metal. Therefore, after carbonizing the soybeans under the following carbonization conditions so that the metal in the carbide has the same crystallinity, fluorescent X-ray analysis was performed on the content of the metal element in the obtained carbide. . The content of the metal element in the carbon precursor was calculated by converting the value measured with the carbide based on the recovery rate of the carbide.
In addition, it was confirmed by analyzing the exhaust gas separately that the metal component volatilizes and does not diffuse to the outside under these conditions.

[炭化条件]
乾燥した脱灰後の珈琲豆50gを焼成ボートに取り、68mmφアルミナ製管を用いた管状炉にて、炭化を行った。昇温速度は18℃/分、窒素流量は3L/分で行い、500℃まで昇温、そのまま60分間保持して、自然冷却にて80℃以下になったところで取り出した。
[Carbonization conditions]
50 g of dried ash beans after deashing were taken into a firing boat and carbonized in a tubular furnace using a 68 mmφ alumina tube. The temperature rising rate was 18 ° C./min, the nitrogen flow rate was 3 L / min, the temperature was raised to 500 ° C., kept for 60 minutes, and taken out when it was 80 ° C. or less by natural cooling.

<実施例1>
2Lセパラブルフラスコに攪拌機、冷却塔を装着し、珈琲豆(上島珈琲マンデリンG−1)100gを0.4Mクエン酸水溶液900gに分散させた。分散液を、90℃に加熱して、60分保持した後、冷却してろ過により脱液した。この操作を3回繰り返し、脱灰操作を行った。脱灰した珈琲豆を熱風乾燥機にて80℃、8時間乾燥した。得られた珈琲豆を上記の炭化条件に従って炭化し、14.7gの炭化物を得た。
<Example 1>
A 2 L separable flask was equipped with a stirrer and a cooling tower, and 100 g of soybeans (Kamijima Mandolin G-1) was dispersed in 900 g of 0.4 M citric acid aqueous solution. The dispersion was heated to 90 ° C. and held for 60 minutes, then cooled and drained by filtration. This operation was repeated three times to perform a decalcification operation. The deashed soybean beans were dried with a hot air dryer at 80 ° C. for 8 hours. The obtained soybeans were carbonized according to the above carbonization conditions to obtain 14.7 g of carbide.

<実施例2>
実施例1において0.4M酢酸水溶液を用いたこと以外は実施例1と同様にして、14.2gの炭化物を得た。
<Example 2>
14.2 g of carbide was obtained in the same manner as in Example 1 except that 0.4 M acetic acid aqueous solution was used in Example 1.

<実施例3>
実施例1において0.04Mクエン酸水溶液を用い、浸漬時間を3時間としたこと以外は、実施例1と同様にして、15.1gの炭化物を得た。
<Example 3>
15.1 g of carbide was obtained in the same manner as in Example 1 except that a 0.04M aqueous citric acid solution was used in Example 1 and the immersion time was 3 hours.

<実施例4>
実施例1において0.01Mクエン酸水溶液を用いたこと以外は実施例3と同様にして、15.2gの炭化物を得た。
<Example 4>
15.2 g of carbide was obtained in the same manner as in Example 3 except that a 0.01 M citric acid aqueous solution was used in Example 1.

<比較例1>
実施例1において脱灰を行わなかったこと以外は実施例1と同様にして、15.7gの炭化物を得た。
<比較例2>
実施例1において脱灰の操作を1回とし、1回の操作を180分をとした以外は実施例1と同様にして、15.1gの炭化物を得た。
<Comparative Example 1>
15.7 g of carbide was obtained in the same manner as in Example 1 except that deashing was not performed in Example 1.
<Comparative Example 2>
In Example 1, 15.1 g of carbide was obtained in the same manner as in Example 1 except that the deashing operation was performed once and that one operation was performed for 180 minutes.

実施例1〜4および比較例1において得た炭化物中の金属元素の含有量をそれぞれ、上記金属元素含有量の測定に従って測定した。結果を以下の表1に示す。   The metal element contents in the carbides obtained in Examples 1 to 4 and Comparative Example 1 were measured according to the measurement of the metal element contents. The results are shown in Table 1 below.

Figure 2016052958
Figure 2016052958

実施例1〜4および比較例2における有機酸水溶液に浸漬する前の炭素前駆体中の各金属元素の含有量に対する、有機酸水溶液中に浸漬させた後の炭素前駆体中の各金属元素の含有量の割合(K(b)/K(a)、Mg(b)/Mg(a)、Ca(b)/Ca(a)、およびFe(b)/Fe(a))を算出した。結果を次の表2に示す。なお、有機酸水溶液に浸漬する前の炭素前駆体中のカリウムの含有量をK(a)、マグネシウムの含有量をMg(a)、カルシウムの含有量をCa(a)、鉄の含有量をFe(a)とし、有機酸水溶液中に浸漬させた後の炭素前駆体中のカリウムの含有量をK(b)、マグネシウムの含有量をMg(b)、カルシウムの含有量をCa(b)、鉄の含有量をFe(b)とする。

Figure 2016052958
Each of the metal elements in the carbon precursor after being immersed in the organic acid aqueous solution with respect to the content of each metal element in the carbon precursor before being immersed in the organic acid aqueous solution in Examples 1 to 4 and Comparative Example 2 The content ratios (K (b) / K (a), Mg (b) / Mg (a), Ca (b) / Ca (a), and Fe (b) / Fe (a)) were calculated. The results are shown in Table 2 below. In addition, the content of potassium in the carbon precursor before being immersed in the organic acid aqueous solution is K (a), the content of magnesium is Mg (a), the content of calcium is Ca (a), and the content of iron is Fe (a), the potassium content in the carbon precursor after being immersed in the organic acid aqueous solution is K (b), the magnesium content is Mg (b), and the calcium content is Ca (b). The iron content is Fe (b).
Figure 2016052958

表1において、実施例1と比較例1とを比較すると、実施例1で得た炭化物中の各金属元素の含有量は、比較例1および比較例2で得た炭化物中の金属元素の含有量より遥かに低い値となった。また、有機酸の種類を変更した場合(実施例2)、脱灰条件を変更した場合(実施例3)および有機酸の濃度を変更した場合(実施例4)においても炭化物中の各金属元素の含有量は低く、良好な結果となった。   In Table 1, when Example 1 is compared with Comparative Example 1, the content of each metal element in the carbide obtained in Example 1 is the content of the metal element in the carbide obtained in Comparative Example 1 and Comparative Example 2. The value was much lower than the amount. Also, when the type of organic acid is changed (Example 2), when the decalcification conditions are changed (Example 3), and when the concentration of the organic acid is changed (Example 4), each metal element in the carbide The content of was low and gave good results.

また、表2より、本発明の製造方法において、有機酸水溶液に浸漬する前の炭素前駆体中の金属元素の含有量に対する、有機酸水溶液中に浸漬させた後の炭素前駆体中の金属元素の含有量の割合が、十分に低減されていることが分かる。このように、本発明の方法によれば、金属元素が十分に除去された珈琲豆由来の炭化物を製造することができる。   Moreover, from Table 2, in the production method of the present invention, the metal element in the carbon precursor after being immersed in the organic acid aqueous solution with respect to the content of the metal element in the carbon precursor before being immersed in the organic acid aqueous solution. It can be seen that the content ratio of is sufficiently reduced. Thus, according to the method of the present invention, a soybean-derived carbide from which metal elements are sufficiently removed can be produced.

Claims (5)

珈琲豆由来の炭化物の製造方法であって、
1)珈琲豆由来の炭素前駆体を有機酸水溶液中に、少なくとも1回の有機酸水溶液の更新を伴って浸漬することにより、炭素前駆体中の金属元素の含有量を低下させる工程、および
2)得られた炭素前駆体を炭化する工程
を含む、方法。
A method for producing a soybean-derived carbide,
1) A step of reducing the content of the metal element in the carbon precursor by immersing the carbon precursor derived from red beans in the organic acid aqueous solution with at least one renewal of the organic acid aqueous solution, and 2 ) A method comprising carbonizing the resulting carbon precursor.
炭化は、炭素前駆体を、不活性ガス雰囲気下、300〜800℃において加熱することにより行う、請求項1に記載の方法。   Carbonization is the method of Claim 1 performed by heating a carbon precursor at 300-800 degreeC by inert gas atmosphere. 含有量を低下させる金属元素は、アルカリ金属、アルカリ土類金属および重金属からなる群から選択される少なくとも1種である、請求項1または2に記載の方法。   The method according to claim 1 or 2, wherein the metal element for reducing the content is at least one selected from the group consisting of alkali metals, alkaline earth metals, and heavy metals. 有機酸水溶液に浸漬する前の炭素前駆体中のカリウムの含有量K(a)、マグネシウムの含有量Mg(a)、カルシウムの含有量Ca(a)および鉄の含有量Fe(a)に対する、有機酸水溶液中に浸漬することにより金属元素および/または非金属元素の含有量を低下させた後の炭素前駆体中のカリウムの含有量K(b)、マグネシウムの含有量Mg(b)、カルシウムの含有量Ca(b)および鉄の含有量Fe(b)の割合はそれぞれ、
K(b)/K(a)≦0.1
Mg(b)/Mg(a)≦0.2
Ca(b)/Ca(a)≦0.2
Fe(b)/Fe(a)≦0.15
である、請求項1〜3のいずれかに記載の方法。
The potassium content K (a) in the carbon precursor before being immersed in the organic acid aqueous solution, the magnesium content Mg (a), the calcium content Ca (a) and the iron content Fe (a), The potassium content K (b), the magnesium content Mg (b), the calcium in the carbon precursor after the content of the metal element and / or the nonmetal element is lowered by being immersed in the organic acid aqueous solution The ratio of the content Ca (b) and the content Fe (b) of iron is respectively
K (b) / K (a) ≦ 0.1
Mg (b) / Mg (a) ≦ 0.2
Ca (b) / Ca (a) ≦ 0.2
Fe (b) / Fe (a) ≦ 0.15
The method according to claim 1, wherein
炭化物は、50ppm以下のカリウムの含有量、50ppm以下のマグネシウムの含有量、50ppm以下のカルシウムの含有量、20ppm以下の鉄の含有量を有する、請求項1〜4のいずれかに記載の方法。   The method according to claim 1, wherein the carbide has a potassium content of 50 ppm or less, a magnesium content of 50 ppm or less, a calcium content of 50 ppm or less, and an iron content of 20 ppm or less.
JP2014178380A 2014-09-02 2014-09-02 Method for producing carbide derived from coffee bean Pending JP2016052958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014178380A JP2016052958A (en) 2014-09-02 2014-09-02 Method for producing carbide derived from coffee bean

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014178380A JP2016052958A (en) 2014-09-02 2014-09-02 Method for producing carbide derived from coffee bean

Publications (1)

Publication Number Publication Date
JP2016052958A true JP2016052958A (en) 2016-04-14

Family

ID=55744752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014178380A Pending JP2016052958A (en) 2014-09-02 2014-09-02 Method for producing carbide derived from coffee bean

Country Status (1)

Country Link
JP (1) JP2016052958A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111204731A (en) * 2020-01-07 2020-05-29 大连理工大学 Preparation method of hard carbon negative electrode material of sodium ion battery
KR20210089569A (en) * 2020-01-07 2021-07-16 에스케이씨 주식회사 Engineered carbon and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268823A (en) * 1999-03-19 2000-09-29 Sony Corp Carbon material and manufacture of nonaqueous electrolyte battery
JP2000327316A (en) * 1999-05-12 2000-11-28 Sony Corp Production of carbon material and non-aqueous electrolyte cell
JP2005330391A (en) * 2004-05-20 2005-12-02 Kondo Tekko:Kk Pellet for fuel and method for producing the same
JP2008516998A (en) * 2004-10-22 2008-05-22 ジン ショウ,コウ Pharmaceutical composition comprising edible acid and / or acid salt thereof and coffee and non-toxic coffee
WO2014038491A1 (en) * 2012-09-06 2014-03-13 株式会社クレハ Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries, and method for producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268823A (en) * 1999-03-19 2000-09-29 Sony Corp Carbon material and manufacture of nonaqueous electrolyte battery
JP2000327316A (en) * 1999-05-12 2000-11-28 Sony Corp Production of carbon material and non-aqueous electrolyte cell
JP2005330391A (en) * 2004-05-20 2005-12-02 Kondo Tekko:Kk Pellet for fuel and method for producing the same
JP2008516998A (en) * 2004-10-22 2008-05-22 ジン ショウ,コウ Pharmaceutical composition comprising edible acid and / or acid salt thereof and coffee and non-toxic coffee
WO2014038491A1 (en) * 2012-09-06 2014-03-13 株式会社クレハ Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries, and method for producing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111204731A (en) * 2020-01-07 2020-05-29 大连理工大学 Preparation method of hard carbon negative electrode material of sodium ion battery
KR20210089569A (en) * 2020-01-07 2021-07-16 에스케이씨 주식회사 Engineered carbon and manufacturing method thereof
KR20210089570A (en) * 2020-01-07 2021-07-16 에스케이씨 주식회사 Engineered carbon and manufacturing method thereof
KR102334254B1 (en) 2020-01-07 2021-12-06 에스케이씨 주식회사 Engineered carbon and manufacturing method thereof
KR102334252B1 (en) 2020-01-07 2021-12-06 에스케이씨 주식회사 Engineered carbon and manufacturing method thereof
CN111204731B (en) * 2020-01-07 2022-05-27 大连理工大学 Preparation method of hard carbon negative electrode material of sodium ion battery

Similar Documents

Publication Publication Date Title
DK2982649T3 (en) Process for the production of activated charcoal
US9533281B2 (en) Porositization process of carbon or carbonaceous materials
CN108144581B (en) Alkali modified pig manure biochar and preparation method and application thereof
JP2005120185A (en) Method for producing ashless coal
JP2012507470A5 (en)
JP2007023190A (en) Method for producing coke, and method for producing pig iron
JP2016530185A (en) Method for treating magnesium chloride solution
KR101631180B1 (en) Manufacturing method of active carbon derived from rice husks for hydrogen storage using chemical activation
CN105668567B (en) A kind of method that gasification of coal coke tar waste slag prepares Magnaglo activated carbon
WO2015119269A1 (en) Production method for activated carbon, and activated carbon
JP2016052958A (en) Method for producing carbide derived from coffee bean
CN106794989B (en) Method for purifying plant-derived carbon precursor
Kulkarni et al. Latest trends and advancement in porous carbon for biowaste organization and utilization
JP2013163620A (en) Method for producing high purity graphite powder
JP2016150894A (en) Carbide derived from vegetable raw material, and production method thereof
JP3198305B2 (en) Ashless coal production method
JP6300687B2 (en) Purification method of plant-derived carbon precursor
JP2023504231A (en) Environmentally friendly purification and reactivation method for carbon black obtained from the pyrolysis of used tires
JP6698658B2 (en) Carbon precursor derived from plant material
DK2509916T3 (en) Process for preparing phosphates and compounds containing phosphates, especially alkaline earth phosphates, alkaline earth silicophosphates or alkaline earth oxides.
JP2016150895A (en) Carbide derived from vegetable raw material, and production method thereof
KR101311389B1 (en) A method for preparing anthracite-based powdered activated carbon with high specific surface area from anthracites
CN103748196A (en) A process flow sheet for pre-treatment of high ash coal to produce clean coal
JP2016150897A (en) Carbide derived from vegetable raw material, and production method thereof
JP6285325B2 (en) Purification method of plant-derived carbon precursor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160510

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170329

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170329

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180731