JP2013163620A - Method for producing high purity graphite powder - Google Patents

Method for producing high purity graphite powder Download PDF

Info

Publication number
JP2013163620A
JP2013163620A JP2012028059A JP2012028059A JP2013163620A JP 2013163620 A JP2013163620 A JP 2013163620A JP 2012028059 A JP2012028059 A JP 2012028059A JP 2012028059 A JP2012028059 A JP 2012028059A JP 2013163620 A JP2013163620 A JP 2013163620A
Authority
JP
Japan
Prior art keywords
graphite powder
purity graphite
acid
high purity
acid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012028059A
Other languages
Japanese (ja)
Inventor
Tsunehei Kono
恒平 河野
Kenta Masuda
賢太 増田
Yukiteru Ichinotsubo
幸輝 一坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2012028059A priority Critical patent/JP2013163620A/en
Publication of JP2013163620A publication Critical patent/JP2013163620A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of producing high purity graphite powder simply in large amounts at low costs.SOLUTION: A method for producing high purity graphite powder includes: an immersion step for immersing graphite powder in an acid solution containing one or more of mineral acids selected from a group consisting of sulfuric acid, hydrochloric acid and nitric acid; and a recovering step for recovering high purity graphite powder by solid-liquid separation. The method for producing high purity graphite powder may further include a cleaning step for cleaning the high purity graphite powder recovered in the recovering step.

Description

本発明は、高純度黒鉛粉末の製造方法に関する。   The present invention relates to a method for producing high-purity graphite powder.

従来から、高純度の黒鉛を得るための様々な方法が提案されている。
例えば、特許文献1には、縮合多環式炭化水素またはこれを含有する物質を弗化水素、三弗化硼素の存在下で重合させて得られたメソフェーズピッチを加熱して発泡体を製造した後に粉砕する高黒鉛化性炭素粉末の製造方法が記載されている。
特許文献2には、炭素材を順次、焼成し、黒鉛化し、且つ高純度化する高純度黒鉛材の製造方法において、高純度化を真空乃至減圧下で高周波加熱手段により行う方法が記載されている。
特許文献3には、カーボンブラックの水性分散液を水溶性のキレート剤と接触させ、カーボンブラックに含まれる金属成分とキレート剤に捕捉して除去する高純度カーボンブラックの製法が記載されている。
特許文献4には、コークスと珪石を原料とし、間接式抵抗加熱炉(例えばアチソン炉)を用いて炭化珪素を生成し、連続して該炭化珪素を珪素の昇華温度以上、黒鉛の昇華温度以下の温度で加熱して、該炭化珪素中のケイ素原子を熱解離し、外部へ蒸散させ除去することにより、高純度の黒鉛を製造する方法が記載されている。
Conventionally, various methods for obtaining high-purity graphite have been proposed.
For example, in Patent Document 1, a foam is produced by heating a mesophase pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride or boron trifluoride. A method for producing a highly graphitizable carbon powder that is subsequently ground is described.
Patent Document 2 describes a method for producing a high-purity graphite material in which a carbon material is sequentially fired, graphitized, and highly purified, and the purification is performed by high-frequency heating means in a vacuum or under reduced pressure. Yes.
Patent Document 3 describes a method for producing high-purity carbon black in which an aqueous dispersion of carbon black is brought into contact with a water-soluble chelating agent, and is captured and removed by the metal component and chelating agent contained in the carbon black.
In Patent Document 4, coke and silica are used as raw materials, silicon carbide is generated using an indirect resistance heating furnace (for example, an Atchison furnace), and the silicon carbide is continuously sublimated from silicon to below the sublimation temperature of graphite. The method of producing high-purity graphite is described by heating at a temperature of 1 to thermally dissociate silicon atoms in the silicon carbide and evaporate it to the outside.

特開2003−212529号公報Japanese Patent Laid-Open No. 2003-212529 特開昭63−79759号公報JP-A 63-79759 特開2005−113091号公報JP 2005-113091 A 特開平9−157022号公報Japanese Patent Laid-Open No. 9-157022

特許文献1〜3に記載の方法は、処理工程が多く、設備または薬剤等のコストが高くなるという問題があった。
また、特許文献4に記載の方法は、膨大な電力が必要であり、コストが高くなるという問題があった。
そこで、本発明は、高純度黒鉛粉末を、簡易にかつ大量に、さらに低コストで製造することができる方法を提供することを目的とする。
The methods described in Patent Documents 1 to 3 have many processing steps, and there is a problem that the cost of equipment or chemicals becomes high.
Further, the method described in Patent Document 4 has a problem that enormous power is required and the cost is increased.
Then, an object of this invention is to provide the method which can manufacture a high purity graphite powder simply and in large quantities at further low cost.

本発明者は、上記課題を解決するために鋭意検討した結果、硫酸、塩酸、及び硝酸からなる群より選ばれる1種以上の鉱酸を含む酸溶液に、黒鉛粉末を浸漬させた後、高純度黒鉛粉末を固液分離によって回収することで、前記の目的を達成することができることを見出し、本発明を完成した。
すなわち、本発明は、以下の[1]〜[6]を提供するものである。
[1] 硫酸、塩酸、及び硝酸からなる群より選ばれる1種以上の鉱酸を含む酸溶液に、黒鉛粉末を浸漬させる浸漬工程と、浸漬工程の後、高純度黒鉛粉末を固液分離によって回収する、回収工程を含む、高純度黒鉛粉末の製造方法。
[2] 上記酸溶液中の鉱酸の濃度が、1.0体積%以上であり、かつ、上記黒鉛粉末の浸漬時間が24時間以上である、前記[1]に記載の高純度黒鉛粉末の製造方法。
[3] 上記浸漬工程において、上記酸溶液が過酸化水素と過塩素酸のいずれか一方、もしくは両方を含む、前記[1]または[2]に記載の高純度黒鉛粉末の製造方法。
[4] 上記浸漬工程における上記酸溶液の液温を、40℃以上に調整する、前記[1]〜[3]のいずれかに記載の高純度黒鉛粉末の製造方法。
[5] 上記回収工程で回収した、上記高純度黒鉛粉末を水で洗浄する洗浄工程を含む、前記[1]〜[4]のいずれかに記載の高純度黒鉛粉末の製造方法。
[6] 前記[1]〜[5]のいずれかに記載の製造方法で得られた高純度黒鉛粉末を、アチソン炉の電極間の発熱体材料として用いて、アチソン炉内の珪酸質原料と炭素質原料を反応させて、炭化珪素を得る、炭化珪素の製造方法。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have soaked graphite powder in an acid solution containing one or more mineral acids selected from the group consisting of sulfuric acid, hydrochloric acid, and nitric acid, The inventors have found that the above object can be achieved by collecting the pure graphite powder by solid-liquid separation, and completed the present invention.
That is, the present invention provides the following [1] to [6].
[1] A dipping step in which graphite powder is immersed in an acid solution containing one or more mineral acids selected from the group consisting of sulfuric acid, hydrochloric acid, and nitric acid, and after the dipping step, high-purity graphite powder is separated by solid-liquid separation. A method for producing high-purity graphite powder, which includes a collecting step of collecting.
[2] The high-purity graphite powder according to [1], wherein the concentration of the mineral acid in the acid solution is 1.0% by volume or more and the immersion time of the graphite powder is 24 hours or more. Production method.
[3] The method for producing high-purity graphite powder according to [1] or [2], wherein, in the dipping step, the acid solution contains one or both of hydrogen peroxide and perchloric acid.
[4] The method for producing high-purity graphite powder according to any one of [1] to [3], wherein the temperature of the acid solution in the immersion step is adjusted to 40 ° C. or higher.
[5] The method for producing high-purity graphite powder according to any one of [1] to [4], including a washing step of washing the high-purity graphite powder collected in the collecting step with water.
[6] Using the high-purity graphite powder obtained by the production method according to any one of [1] to [5] as a heating element material between the electrodes of the Atchison furnace, A method for producing silicon carbide, which comprises reacting a carbonaceous raw material to obtain silicon carbide.

本発明の製造方法によれば、高純度黒鉛粉末を、簡易にかつ大量に、さらに低コストで製造することができる。   According to the production method of the present invention, high-purity graphite powder can be produced easily and in large quantities at a lower cost.

本発明の高純度黒鉛粉末の製造方法の実施形態の一例を示すフロー図である。It is a flowchart which shows an example of embodiment of the manufacturing method of the high purity graphite powder of this invention.

以下、本発明の高純度黒鉛粉末の製造方法を詳しく説明する。
本発明の高純度黒鉛粉末の製造方法は、硫酸、塩酸、及び硝酸からなる群より選ばれる1種以上の鉱酸を含む酸溶液に、黒鉛粉末を浸漬させる浸漬工程と、浸漬工程の後、高純度黒鉛粉末を固液分離によって回収する、回収工程を含むものである。
本発明の製造方法で用いられる黒鉛粉末は特に限定されるものではなく、例えば、市販の黒鉛粉末(例えば、長径が2〜3mmの薄片状のもの)を用いればよい。また、アチソン炉に用いられた使用済みの電極用黒鉛等を粉砕して黒鉛粉末として再利用してもよい。
黒鉛粉末は、市販のものをそのまま用いてもよいが、粉末の粒径が大きい場合や、黒鉛の塊状物等を原料として用いる場合には、浸漬工程の前に、黒鉛を粉砕する粉砕工程を設けてもよい。
粉砕工程において、黒鉛は、粉砕装置(例えば、ジョークラッシャー、トップグラインダーミル、クロスビーターミル、ボールミル等)で所望の粒径に粉砕される。
黒鉛粉末の粒径は好ましくは1mm以下、より好ましくは0.5mm以下である。1mm以下とすることで、浸漬による不純物(Al、Fe、Ca、Ti、Ni、及びZn等)の除去効率を向上することができる。なお、粒径とは、最大寸法(例えば、断面が楕円状である粒状物においては、長径寸法)をいう。
黒鉛粉末は、硫酸、塩酸、及び硝酸からなる群より選ばれる1種以上の鉱酸を含む酸溶液に浸漬される。中でも硫酸を用いることが好ましい。これらの濃度は、好ましくは1.0体積%以上、より好ましくは3.0体積%以上、さらに好ましくは5.0体積%以上、さらに好ましくは7.0体積%以上、さらに好ましくは10.0体積%以上、特に好ましくは12.0体積以上である。酸溶液の濃度の上限は特に限定されないが、酸溶液の扱いやすさの観点から、好ましくは50.0体積%以下、より好ましくは40.0体積%以下、さらに好ましくは30.0体積%以下、特に好ましくは25.0体積%以下である。1.0体積%未満の場合、浸漬による不純物の除去が不十分となる場合がある。
酸溶液の量は、黒鉛粉末が十分に浸かればよい。黒鉛粉末が酸溶液に十分に浸からない場合、浸漬による不純物の除去が不十分となる。
Hereinafter, the manufacturing method of the high purity graphite powder of this invention is demonstrated in detail.
The method for producing high-purity graphite powder of the present invention comprises a dipping step of dipping graphite powder in an acid solution containing one or more mineral acids selected from the group consisting of sulfuric acid, hydrochloric acid, and nitric acid, and after the dipping step, It includes a recovery step of recovering high purity graphite powder by solid-liquid separation.
The graphite powder used in the production method of the present invention is not particularly limited. For example, a commercially available graphite powder (for example, a flake having a major axis of 2 to 3 mm) may be used. Further, used electrode graphite used in the Atchison furnace may be pulverized and reused as graphite powder.
Commercially available graphite powder may be used as it is, but when the particle size of the powder is large, or when a lump of graphite is used as a raw material, a pulverization step of pulverizing graphite is performed before the dipping step. It may be provided.
In the pulverization step, the graphite is pulverized to a desired particle size by a pulverizer (eg, jaw crusher, top grinder mill, cross beater mill, ball mill, etc.).
The particle size of the graphite powder is preferably 1 mm or less, more preferably 0.5 mm or less. By setting it to 1 mm or less, the removal efficiency of impurities (Al, Fe, Ca, Ti, Ni, Zn, etc.) by immersion can be improved. The particle diameter means the maximum dimension (for example, the major axis dimension in a granular material having an elliptical cross section).
The graphite powder is immersed in an acid solution containing one or more mineral acids selected from the group consisting of sulfuric acid, hydrochloric acid, and nitric acid. Among these, it is preferable to use sulfuric acid. These concentrations are preferably 1.0% by volume or more, more preferably 3.0% by volume or more, still more preferably 5.0% by volume or more, still more preferably 7.0% by volume or more, and still more preferably 10.0%. Volume% or more, particularly preferably 12.0 volume or more. The upper limit of the concentration of the acid solution is not particularly limited, but from the viewpoint of easy handling of the acid solution, it is preferably 50.0% by volume or less, more preferably 40.0% by volume or less, and further preferably 30.0% by volume or less. Especially preferably, it is 25.0 volume% or less. When the amount is less than 1.0% by volume, removal of impurities by immersion may be insufficient.
The amount of the acid solution may be sufficient if the graphite powder is sufficiently immersed. When the graphite powder is not sufficiently immersed in the acid solution, the removal of impurities by immersion is insufficient.

上記酸溶液と上記黒鉛粉末を混合した後、好ましくは2時間以上、より好ましくは3時間以上、さらに好ましくは10時間以上、特に好ましくは24時間以上浸漬することで、黒鉛粉末中の不純物を簡易な方法で、効率良く除去することができる。浸漬時間の上限は特に限定されないが、処理効率の観点から、好ましくは100時間以下、より好ましくは80時間以下、さらに好ましくは60時間以下、特に好ましくは50時間以下である。浸漬時間が2時間未満の場合、浸漬による不純物の除去が不十分となる場合がある。
なお、上記酸溶液と上記黒鉛粉末の混合方法は特に限定されるものではなく、(1)黒鉛粉末に酸溶液を加える方法、(2)酸溶液に黒鉛粉末を加える方法、(3)黒鉛粉末と酸溶液を同時に加える方法等によって混合される。
浸漬は静置状態で行えばよいが、不純物の除去効率を高める観点から、浸漬中に黒鉛粉末と酸溶液が入れられた容器を振盪しながら浸漬しても良く、黒鉛粉末と酸溶液を攪拌しながら浸漬してもよい。なお、攪拌機を用いて攪拌する場合、回転速度は200rpm以上が好ましい。また、黒鉛粉末と硫酸等の酸溶液に、超音波を好ましくは1時間以上照射してもよい。
上記浸漬を行う際の、酸溶液の温度は、特に限定されるものではなく、常温(例えば、10℃以上40℃未満)でもよいが、好ましくは常温を超える温度である。該常温を超える温度とは、好ましくは40℃以上、より好ましくは50℃以上、さらに好ましくは60℃以上、特に好ましくは80℃以上である。40℃以上で浸漬を行うことで、より高純度の黒鉛を得ることができる。また、短い浸漬時間で高純度の黒鉛粉末を得ることができる。酸溶液の温度の上限は特に限定されないが、コスト等の観点から、好ましくは100℃以下、より好ましくは95℃以下、特に好ましくは90℃以下である。
After mixing the acid solution and the graphite powder, the impurities in the graphite powder can be simplified by immersing preferably for 2 hours or more, more preferably for 3 hours or more, even more preferably for 10 hours or more, particularly preferably for 24 hours or more. In this way, it can be removed efficiently. Although the upper limit of immersion time is not specifically limited, From a viewpoint of processing efficiency, Preferably it is 100 hours or less, More preferably, it is 80 hours or less, More preferably, it is 60 hours or less, Most preferably, it is 50 hours or less. When the immersion time is less than 2 hours, the removal of impurities by immersion may be insufficient.
The mixing method of the acid solution and the graphite powder is not particularly limited, and (1) a method of adding the acid solution to the graphite powder, (2) a method of adding the graphite powder to the acid solution, and (3) the graphite powder. And the acid solution are mixed at the same time.
Immersion may be performed in a stationary state, but from the viewpoint of increasing the removal efficiency of impurities, the container containing the graphite powder and the acid solution may be immersed while being immersed, and the graphite powder and the acid solution may be stirred. It may be immersed while. In addition, when stirring using a stirrer, the rotational speed is preferably 200 rpm or more. Further, the graphite powder and an acid solution such as sulfuric acid may be irradiated with ultrasonic waves, preferably for 1 hour or longer.
The temperature of the acid solution at the time of the immersion is not particularly limited, and may be room temperature (for example, 10 ° C. or more and less than 40 ° C.), but is preferably a temperature exceeding room temperature. The temperature exceeding the normal temperature is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, further preferably 60 ° C. or higher, and particularly preferably 80 ° C. or higher. By performing immersion at 40 ° C. or higher, graphite with higher purity can be obtained. Moreover, high purity graphite powder can be obtained in a short immersion time. Although the upper limit of the temperature of an acid solution is not specifically limited, From a viewpoint of cost etc., Preferably it is 100 degrees C or less, More preferably, it is 95 degrees C or less, Most preferably, it is 90 degrees C or less.

上記浸漬工程において、酸溶液は、過酸化水素(H)と過塩素酸(HClO)の少なくともいずれか一方、もしくは両方を含むものでもよい。過酸化水素と過塩素酸の少なくともいずれか一方を含むことで、より高純度の黒鉛粉末を得ることができる。
過酸化水素と過塩素酸の少なくともいずれか一方を含む酸溶液中の、過酸化水素および過塩素酸の濃度の合計は、黒鉛粉末の高純度化、及び、薬剤コスト等の観点から、好ましくは0.5体積%以上、より好ましくは1体積%以上、特に好ましくは2〜5体積%である。
浸漬工程の後、回収工程において、高純度黒鉛粉末を固液分離によって回収する。固液分離は、フィルタープレス等の固液分離手段を用いて、固形分(黒鉛粉末)と液分(不純物を含む酸溶液)に分離してもよい。
In the immersion step, the acid solution may include at least one of hydrogen peroxide (H 2 O 2 ) and perchloric acid (HClO 4 ), or both. By containing at least one of hydrogen peroxide and perchloric acid, a graphite powder with higher purity can be obtained.
The total concentration of hydrogen peroxide and perchloric acid in the acid solution containing at least one of hydrogen peroxide and perchloric acid is preferably from the viewpoint of high purity of the graphite powder and chemical cost, etc. It is 0.5 volume% or more, More preferably, it is 1 volume% or more, Most preferably, it is 2-5 volume%.
After the dipping process, the high-purity graphite powder is recovered by solid-liquid separation in the recovery process. The solid-liquid separation may be separated into a solid content (graphite powder) and a liquid content (acid solution containing impurities) using solid-liquid separation means such as a filter press.

浸漬工程の後に、上記回収工程で回収した高純度黒鉛粉末を水で洗浄する洗浄工程を行ってもよい。
水で洗浄を行うことにより、前工程で得られた黒鉛粉末中にわずかに残存する、不純物を溶解して液分中に移行させることができ、より高純度の黒鉛粉末を得ることができる。
洗浄方法は特に限定されないが、例えば、回収工程で回収した高純度黒鉛粉末と水を混合して、該黒鉛粉末中に残存する不純物を溶解させた後、フィルタープレス等の固液分離手段を用いて、固形分(黒鉛粉末)と液分(不純物を含む水)に分離する方法が挙げられる。
本工程において、洗浄に用いられる水は、蒸留水が好ましい。また、水の使用量は、好ましくは、液固比(水/黒鉛粉末の質量比)が10以上となる量である。
洗浄工程は複数回行ってもよい。洗浄工程を複数回行うことで、より高純度の黒鉛粉末を得ることができる。洗浄工程は、黒鉛粉末と水の混合後のpHが好ましくは5.0以上になるまで、繰り返すことが好ましい。pHが5.0未満であると、黒鉛粉末に含まれる不純物の除去が不十分となる場合がある。
You may perform the washing | cleaning process which wash | cleans the high purity graphite powder collect | recovered at the said collection | recovery process with water after an immersion process.
By washing with water, impurities remaining slightly in the graphite powder obtained in the previous step can be dissolved and transferred into the liquid, and a higher purity graphite powder can be obtained.
The cleaning method is not particularly limited. For example, after mixing the high-purity graphite powder recovered in the recovery step and water to dissolve impurities remaining in the graphite powder, a solid-liquid separation means such as a filter press is used. And a method of separating into a solid content (graphite powder) and a liquid content (water containing impurities).
In this step, the water used for washing is preferably distilled water. The amount of water used is preferably such that the liquid-solid ratio (water / graphite powder mass ratio) is 10 or more.
You may perform a washing | cleaning process in multiple times. By performing the washing step a plurality of times, a higher purity graphite powder can be obtained. The washing step is preferably repeated until the pH after mixing the graphite powder and water is preferably 5.0 or more. If the pH is less than 5.0, removal of impurities contained in the graphite powder may be insufficient.

本発明の製造方法によって最終的に得られた黒鉛粉末は、適宜、乾燥処理を行うことができる。乾燥の条件は、例えば、105℃で24時間である。
本発明の製造方法によれば、黒鉛粉末中のアルミニウム(Al)、鉄(Fe)、カルシウム(Ca)、チタン(Ti)、ニッケル(Ni)及び亜鉛(Zn)等の不純物の総量を、処理前の黒鉛粉末中の不純物の総量と比べて、50ppm以上、好ましくは100ppm以上、より好ましくは200ppm以上、特に好ましくは250ppm以上低減することができる。
得られた黒鉛粉末は、例えば、アチソン炉等の電極間の発熱体用材料として使用することができる。具体的には、耐火煉瓦に囲まれたアチソン炉内に、珪酸質原料と炭素質原料を充填し、本発明の製造方法で得られた高純度黒鉛粉末をアチソン炉の電極間の発熱体用材料として用いて、通電加熱することで、上記珪酸質原料と炭素質原料を反応させて、炭化珪素(SiC)の塊状物を製造することができる。また、珪酸質原料として高純度の非晶質シリカ、炭素質原料として高純度のカーボンを使用することで、高純度の炭化珪素を得ることができる。
The graphite powder finally obtained by the production method of the present invention can be appropriately subjected to a drying treatment. The drying condition is, for example, 105 ° C. for 24 hours.
According to the production method of the present invention, the total amount of impurities such as aluminum (Al), iron (Fe), calcium (Ca), titanium (Ti), nickel (Ni) and zinc (Zn) in the graphite powder is treated. Compared with the total amount of impurities in the previous graphite powder, it can be reduced by 50 ppm or more, preferably 100 ppm or more, more preferably 200 ppm or more, and particularly preferably 250 ppm or more.
The obtained graphite powder can be used, for example, as a heating element material between electrodes of an Atchison furnace or the like. Specifically, in an Atchison furnace surrounded by refractory bricks, a siliceous raw material and a carbonaceous raw material are filled, and the high purity graphite powder obtained by the production method of the present invention is used for a heating element between the electrodes of the Atchison furnace. By using current heating as a material, the siliceous raw material and the carbonaceous raw material can be reacted to produce a lump of silicon carbide (SiC). Moreover, high-purity silicon carbide can be obtained by using high-purity amorphous silica as the siliceous material and high-purity carbon as the carbonaceous material.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
使用材料としては、以下に示す材料を使用した。
(1)電極用黒鉛粉末(太平洋セメント(株)製、試製品)
(2)硫酸(関東化学(株)製、特級)
(3)硝酸(関東化学(株)製、特級)
(4)塩酸(関東化学(株)製、特級)
(5)フッ化水素酸(森田化学工業(株)製、特級)
(6)過酸化水素水(和光純薬工業(株)製、特級)
(7)過塩素酸(関東化学(株)製、特級)
[実施例1]
黒鉛粉末(太平洋セメント(株)製、試製品)50gを、25体積%の硫酸500gに加えて混合した後、常温下(25℃)で24時間静置することで浸漬を行った。
浸漬後、減圧下でブフナー漏斗を用いて固液分離を行い、黒鉛粉末48gと、不純物を含む液分500gを得た。その後、得られた黒鉛粉末と蒸留水500gとを混合し、減圧下でブフナー漏斗を用いて固液分離を行い、黒鉛粉末と不純物を含む液分とを得る洗浄工程を、7回繰り返して、洗浄後の蒸留水のpHが5.0以上となるまで洗浄を行った。得られた黒鉛粉末を105℃で24時間乾燥させて、高純度黒鉛粉末45gを得た。
得られた高純度黒鉛粉末中の、Al、Fe、Ca、Ti、Ni、及びZnの含有率を「JIS R 1616」に記載された加圧酸分解法によるICP−AES分析に基づいて測定した。得られた結果を表1に示す。
[実施例2]
25体積%の硫酸の代わりに、12.5体積%の硫酸を用いる以外は、実施例1と同様にして、高純度黒鉛粉末44gを得た。
得られた高純度黒鉛粉末中の、Al、Fe、Ca、Ti、Ni、及びZnの含有率を実施例1と同様にして測定した。得られた結果を表1に示す。
[実施例3]
25体積%の硫酸の代わりに、6.25体積%の硫酸を用いる以外は、実施例1と同様にして、高純度黒鉛粉末45gを得た。
得られた高純度黒鉛粉末中の、Al、Fe、Ca、Ti、Ni、及びZnの含有率を実施例1と同様にして測定した。得られた結果を表1、及び表2に示す。
[実施例4]
25体積%の硫酸の代わりに、3.0体積%の硫酸を用いる以外は、実施例1と同様にして、高純度黒鉛粉末45gを得た。
得られた高純度黒鉛粉末中の、Al、Fe、Ca、Ti、Ni、及びZnの含有率を実施例1と同様にして測定した。得られた結果を表1、及び2に示す。
[実施例5]
黒鉛粉末(太平洋セメント(株)製、試製品)50gを、6.25体積%の硫酸500gに加えて混合した後、常温下(25℃)で3時間静置することで浸漬を行う以外は、実施例1と同様にして、高純度黒鉛粉末45gを得た。
得られた高純度黒鉛粉末中の、Al、Fe、Ca、Ti、Ni、及びZnの含有率を実施例1と同様にして測定した。得られた結果を表1、及び2に示す。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
As materials used, the following materials were used.
(1) Graphite powder for electrodes (manufactured by Taiheiyo Cement Co., Ltd., trial product)
(2) Sulfuric acid (Kanto Chemical Co., Ltd., special grade)
(3) Nitric acid (manufactured by Kanto Chemical Co., Ltd., special grade)
(4) Hydrochloric acid (Kanto Chemical Co., Ltd., special grade)
(5) Hydrofluoric acid (Morita Chemical Co., Ltd., special grade)
(6) Hydrogen peroxide solution (Wako Pure Chemical Industries, Ltd., special grade)
(7) Perchloric acid (Kanto Chemical Co., Ltd., special grade)
[Example 1]
50 g of graphite powder (manufactured by Taiheiyo Cement Co., Ltd., trial product) was added to and mixed with 500 g of 25% by volume sulfuric acid, and then immersed for 24 hours at room temperature (25 ° C.).
After immersion, solid-liquid separation was performed using a Buchner funnel under reduced pressure to obtain 48 g of graphite powder and 500 g of a liquid containing impurities. Thereafter, the obtained graphite powder and 500 g of distilled water are mixed, subjected to solid-liquid separation using a Buchner funnel under reduced pressure, and a washing process for obtaining a graphite powder and a liquid containing impurities is repeated seven times. Washing was performed until the pH of the distilled water after washing was 5.0 or more. The obtained graphite powder was dried at 105 ° C. for 24 hours to obtain 45 g of high-purity graphite powder.
The content of Al, Fe, Ca, Ti, Ni, and Zn in the obtained high-purity graphite powder was measured based on the ICP-AES analysis by the pressure acid decomposition method described in “JIS R 1616”. . The obtained results are shown in Table 1.
[Example 2]
44 g of high-purity graphite powder was obtained in the same manner as in Example 1 except that 12.5 vol% sulfuric acid was used instead of 25 vol% sulfuric acid.
The contents of Al, Fe, Ca, Ti, Ni, and Zn in the obtained high-purity graphite powder were measured in the same manner as in Example 1. The obtained results are shown in Table 1.
[Example 3]
45 g of high-purity graphite powder was obtained in the same manner as in Example 1 except that 6.25% by volume sulfuric acid was used instead of 25% by volume sulfuric acid.
The contents of Al, Fe, Ca, Ti, Ni, and Zn in the obtained high-purity graphite powder were measured in the same manner as in Example 1. The obtained results are shown in Tables 1 and 2.
[Example 4]
45 g of high-purity graphite powder was obtained in the same manner as in Example 1 except that 3.0 volume% sulfuric acid was used instead of 25 volume% sulfuric acid.
The contents of Al, Fe, Ca, Ti, Ni, and Zn in the obtained high-purity graphite powder were measured in the same manner as in Example 1. The obtained results are shown in Tables 1 and 2.
[Example 5]
Except for 50 g of graphite powder (manufactured by Taiheiyo Cement Co., Ltd., trial product) added to 500 g of 6.25 vol% sulfuric acid and mixed, and then immersed for 3 hours at room temperature (25 ° C.). In the same manner as in Example 1, 45 g of high-purity graphite powder was obtained.
The contents of Al, Fe, Ca, Ti, Ni, and Zn in the obtained high-purity graphite powder were measured in the same manner as in Example 1. The obtained results are shown in Tables 1 and 2.

[比較例1]
25体積%の硫酸の代わりに、6.25体積%のフッ酸を用いる以外は、実施例1と同様にして、黒鉛粉末46gを得た。
得られた黒鉛粉末中の、Al、Fe、Ca、Ti、Ni、及びZnの含有率を実施例1と同様にして測定した。得られた結果を表1に示す。
[比較例2]
黒鉛粉末(太平洋セメント(株)製、試製品)中の、Al、Fe、Ca、Ti、Ni、及びZnの含有率を実施例1と同様にして測定した。得られた結果を表1に示す。
[Comparative Example 1]
46 g of graphite powder was obtained in the same manner as in Example 1 except that 6.25 volume% hydrofluoric acid was used instead of 25 volume% sulfuric acid.
The content rates of Al, Fe, Ca, Ti, Ni, and Zn in the obtained graphite powder were measured in the same manner as in Example 1. The obtained results are shown in Table 1.
[Comparative Example 2]
The contents of Al, Fe, Ca, Ti, Ni, and Zn in the graphite powder (manufactured by Taiheiyo Cement Co., Ltd., trial product) were measured in the same manner as in Example 1. The obtained results are shown in Table 1.

Figure 2013163620
Figure 2013163620

[実施例6]
25体積%の硫酸の代わりに、6.25体積%の硝酸を用いる以外は、実施例1と同様にして、高純度黒鉛粉末45gを得た。
得られた高純度黒鉛粉末中の、Al、Fe、Ca、Ti、Ni、及びZnの含有率を実施例1と同様にして測定した。得られた結果を表2に示す。
[実施例7]
25体積%の硫酸の代わりに、6.25体積%の塩酸を用いる以外は、実施例1と同様にして、高純度黒鉛粉末44gを得た。
得られた高純度黒鉛粉末中の、Al、Fe、Ca、Ti、Ni、及びZnの含有率を実施例1と同様にして測定した。得られた結果を表2に示す。
[実施例8]
25体積%の硫酸の代わりに、3.125体積%の硝酸250gと3.125体積%の硫酸250gを混合した酸溶液を用いる以外は、実施例1と同様にして、高純度黒鉛粉末45gを得た。
得られた高純度黒鉛粉末中の、Al、Fe、Ca、Ti、Ni、及びZnの含有率を実施例1と同様にして測定した。得られた結果を表2に示す。
[Example 6]
45 g of high-purity graphite powder was obtained in the same manner as in Example 1 except that 6.25% by volume of nitric acid was used instead of 25% by volume of sulfuric acid.
The contents of Al, Fe, Ca, Ti, Ni, and Zn in the obtained high-purity graphite powder were measured in the same manner as in Example 1. The obtained results are shown in Table 2.
[Example 7]
44 g of high-purity graphite powder was obtained in the same manner as in Example 1 except that 6.25% by volume hydrochloric acid was used instead of 25% by volume sulfuric acid.
The contents of Al, Fe, Ca, Ti, Ni, and Zn in the obtained high-purity graphite powder were measured in the same manner as in Example 1. The obtained results are shown in Table 2.
[Example 8]
Instead of 25 volume% sulfuric acid, 45 g of high purity graphite powder was obtained in the same manner as in Example 1 except that an acid solution in which 250 g of 3.125 volume% nitric acid and 250 g of 3.125 volume% sulfuric acid were mixed was used. Obtained.
The contents of Al, Fe, Ca, Ti, Ni, and Zn in the obtained high-purity graphite powder were measured in the same manner as in Example 1. The obtained results are shown in Table 2.

Figure 2013163620
Figure 2013163620

[実施例9]
黒鉛粉末(太平洋セメント(株)製、試製品)50gを、6.25体積%の硝酸500gに加えて混合した後、恒温機を用いて70℃に保ちながら、24時間静置することで浸漬を行った。
浸漬後、減圧下でブフナー漏斗を用いて固液分離を行い、黒鉛粉末48gと、不純物を含む液分450gを得た。その後、得られた黒鉛粉末と蒸留水500gとを混合し、減圧下でブフナー漏斗を用いて固液分離して黒鉛粉末と不純物を含む液分とを得る洗浄工程を、7回繰り返して、洗浄後の蒸留水のpHが5.0以上となるまで洗浄を行った。得られた黒鉛粉末を105℃で24時間乾燥させ、高純度黒鉛粉末45gを得た。
得られた高純度黒鉛粉末中の、Al、Fe、Ca、Ti、Ni、及びZnの含有率を「JIS R 1616」に記載された加圧酸分解法によるICP−AES分析に基づいて測定した。得られた結果を表3に示す。
[実施例10]
6.25体積%の硝酸の代わりに、6.25体積%の硫酸を用いる以外は、実施例9と同様にして、高純度黒鉛粉末44gを得た。
得られた高純度黒鉛粉末中の、Al、Fe、Ca、Ti、Ni、及びZnの含有率を実施例9と同様にして測定した。得られた結果を表2に示す。
[実施例11]
6.25体積%の硝酸の代わりに、6.25体積%の硫酸を用いて、かつ、恒温機を用いて50℃に保ちながら、24時間静置する以外は、実施例9と同様にして高純度黒鉛粉末44gを得た。
得られた高純度黒鉛粉末中の、Al、Fe、Ca、Ti、Ni、及びZnの含有率を実施例9と同様にして測定した。得られた結果を表2に示す。
[実施例12]
6.25体積%の硝酸の代わりに、6.25体積%の硫酸を用いて、かつ、恒温機を用いて70℃に保ちながら、3時間静置する以外は、実施例9と同様にして高純度黒鉛粉末44gを得た。
得られた高純度黒鉛粉末中の、Al、Fe、Ca、Ti、Ni、及びZnの含有率を実施例9と同様にして測定した。得られた結果を表2に示す。
[Example 9]
50 g of graphite powder (manufactured by Taiheiyo Cement Co., Ltd., trial product) is added to 500 g of 6.25 vol% nitric acid and mixed, and then immersed for 24 hours while being kept at 70 ° C. using a thermostat. Went.
After immersion, solid-liquid separation was performed using a Buchner funnel under reduced pressure to obtain 48 g of graphite powder and 450 g of a liquid containing impurities. Thereafter, the obtained graphite powder and 500 g of distilled water are mixed and subjected to solid-liquid separation using a Buchner funnel under reduced pressure to obtain a graphite powder and a liquid containing impurities by repeating the washing process seven times. Washing was performed until the pH of the later distilled water became 5.0 or more. The obtained graphite powder was dried at 105 ° C. for 24 hours to obtain 45 g of high-purity graphite powder.
The content of Al, Fe, Ca, Ti, Ni, and Zn in the obtained high-purity graphite powder was measured based on the ICP-AES analysis by the pressure acid decomposition method described in “JIS R 1616”. . The obtained results are shown in Table 3.
[Example 10]
44 g of high-purity graphite powder was obtained in the same manner as in Example 9 except that 6.25% by volume of sulfuric acid was used instead of 6.25% by volume of nitric acid.
The contents of Al, Fe, Ca, Ti, Ni, and Zn in the obtained high-purity graphite powder were measured in the same manner as in Example 9. The obtained results are shown in Table 2.
[Example 11]
The same procedure as in Example 9 was conducted except that 6.25% by volume sulfuric acid was used instead of 6.25% by volume nitric acid, and the mixture was allowed to stand for 24 hours while being kept at 50 ° C. using a thermostat. 44 g of high purity graphite powder was obtained.
The contents of Al, Fe, Ca, Ti, Ni, and Zn in the obtained high-purity graphite powder were measured in the same manner as in Example 9. The obtained results are shown in Table 2.
[Example 12]
The same procedure as in Example 9 except that 6.25% by volume sulfuric acid was used instead of 6.25% by volume nitric acid, and the mixture was allowed to stand for 3 hours while being kept at 70 ° C. using a thermostat. 44 g of high purity graphite powder was obtained.
The contents of Al, Fe, Ca, Ti, Ni, and Zn in the obtained high-purity graphite powder were measured in the same manner as in Example 9. The obtained results are shown in Table 2.

Figure 2013163620
Figure 2013163620

[実施例13]
6.25体積%の硫酸500gに、過酸化水素水、及び過塩素酸を、酸溶液中に各々1体積%となるまで加えて混合し、得られた混合液に黒鉛粉末(太平洋セメント(株)製、試製品)50gを加えて混合した後、恒温機を用いて70℃に保ちながら、24時間静置することで浸漬を行った。
浸漬後、減圧下でブフナー漏斗を用いて固液分離を行い、黒鉛粉末48gと、不純物を含む液分510gを得た。その後、得られた黒鉛粉末と蒸留水500gとを混合し、減圧下でブフナー漏斗を用いて固液分離して黒鉛粉末と不純物を含む液分とを得る洗浄工程を、7回繰り返して、洗浄後の蒸留水のpHが5.0以上となるまで洗浄を行った。得られた黒鉛粉末を105℃で24時間乾燥させ、高純度黒鉛粉末45gを得た。
得られた高純度黒鉛粉末中の、Al、Fe、Ca、Ti、Ni、及びZnの含有率を「JIS R 1616」に記載された加圧酸分解法によるICP−AES分析に基づいて測定した。得られた結果を表4に示す。
[実施例14]
6.25体積%の硫酸500gに、過酸化水素水を、酸溶液中に1体積%となるまで加えて混合する以外は実施例13と同様にして、高純度黒鉛粉末44gを得た。
得られた高純度黒鉛粉末中の、Al、Fe、Ca、Ti、Ni、及びZnの含有率を実施例13と同様にして測定した。得られた結果を表2に示す。
[実施例15]
6.25体積%の硫酸500gに、過塩素酸を、酸溶液中に1体積%となるまで加えて混合する以外は実施例13と同様にして、高純度黒鉛粉末44gを得た。
得られた高純度黒鉛粉末中の、Al、Fe、Ca、Ti、Ni、及びZnの含有率を実施例13と同様にして測定した。得られた結果を表2に示す。
[Example 13]
Hydrogen peroxide water and perchloric acid were added to 500 g of 6.25% by volume sulfuric acid and mixed in the acid solution until 1% by volume each, and graphite powder (Pacific Cement Co., Ltd.) was added to the resulting mixture. ), Manufactured product) 50 g was added and mixed, and then immersed for 24 hours while being kept at 70 ° C. using a thermostat.
After immersion, solid-liquid separation was performed using a Buchner funnel under reduced pressure to obtain 48 g of graphite powder and 510 g of a liquid containing impurities. Thereafter, the obtained graphite powder and 500 g of distilled water are mixed and subjected to solid-liquid separation using a Buchner funnel under reduced pressure to obtain a graphite powder and a liquid containing impurities by repeating the washing process seven times. Washing was performed until the pH of the later distilled water became 5.0 or more. The obtained graphite powder was dried at 105 ° C. for 24 hours to obtain 45 g of high-purity graphite powder.
The content of Al, Fe, Ca, Ti, Ni, and Zn in the obtained high-purity graphite powder was measured based on the ICP-AES analysis by the pressure acid decomposition method described in “JIS R 1616”. . Table 4 shows the obtained results.
[Example 14]
44 g of high-purity graphite powder was obtained in the same manner as in Example 13, except that hydrogen peroxide was added to 500 g of 6.25% by volume sulfuric acid and mixed to 1% by volume in the acid solution.
The contents of Al, Fe, Ca, Ti, Ni, and Zn in the obtained high-purity graphite powder were measured in the same manner as in Example 13. The obtained results are shown in Table 2.
[Example 15]
44 g of high-purity graphite powder was obtained in the same manner as in Example 13 except that perchloric acid was added to 500 g of 6.25% by volume sulfuric acid and mixed to 1% by volume in the acid solution.
The contents of Al, Fe, Ca, Ti, Ni, and Zn in the obtained high-purity graphite powder were measured in the same manner as in Example 13. The obtained results are shown in Table 2.

Figure 2013163620
Figure 2013163620

Claims (6)

硫酸、塩酸、及び硝酸からなる群より選ばれる1種以上の鉱酸を含む酸溶液に、黒鉛粉末を浸漬させる浸漬工程と、
浸漬工程の後、高純度黒鉛粉末を固液分離によって回収する、回収工程を含む、高純度黒鉛粉末の製造方法。
An immersion step of immersing the graphite powder in an acid solution containing one or more mineral acids selected from the group consisting of sulfuric acid, hydrochloric acid, and nitric acid;
A method for producing high-purity graphite powder, comprising a recovery step of recovering high-purity graphite powder by solid-liquid separation after the dipping step.
上記酸溶液中の鉱酸の濃度が、1.0体積%以上であり、かつ、上記黒鉛粉末の浸漬時間が24時間以上である、請求項1に記載の高純度黒鉛粉末の製造方法。   The manufacturing method of the high purity graphite powder of Claim 1 whose density | concentration of the mineral acid in the said acid solution is 1.0 volume% or more, and the immersion time of the said graphite powder is 24 hours or more. 上記浸漬工程において、上記酸溶液が過酸化水素と過塩素酸のいずれか一方、もしくは両方を含む、請求項1または2に記載の高純度黒鉛粉末の製造方法。   The method for producing high-purity graphite powder according to claim 1 or 2, wherein, in the dipping step, the acid solution contains one or both of hydrogen peroxide and perchloric acid. 上記浸漬工程における上記酸溶液の液温を、40℃以上に調整する、請求項1〜3のいずれか1項に記載の高純度黒鉛粉末の製造方法。   The manufacturing method of the high purity graphite powder of any one of Claims 1-3 which adjusts the liquid temperature of the said acid solution in the said immersion process to 40 degreeC or more. 上記回収工程で回収した、上記高純度黒鉛粉末を水で洗浄する洗浄工程を含む、請求項1〜4のいずれか1項に記載の高純度黒鉛粉末の製造方法。   The manufacturing method of the high purity graphite powder of any one of Claims 1-4 including the washing | cleaning process of wash | cleaning the said high purity graphite powder collect | recovered at the said collection | recovery process with water. 請求項1〜5のいずれか1項に記載の製造方法で得られた高純度黒鉛粉末を、アチソン炉の電極間の発熱体材料として用いて、アチソン炉内の珪酸質原料と炭素質原料を反応させて、炭化珪素を得る、炭化珪素の製造方法。   The high purity graphite powder obtained by the production method according to any one of claims 1 to 5 is used as a heating element material between electrodes of an atchison furnace, and a siliceous raw material and a carbonaceous raw material in the atchison furnace are used. A method for producing silicon carbide, which is reacted to obtain silicon carbide.
JP2012028059A 2012-02-13 2012-02-13 Method for producing high purity graphite powder Pending JP2013163620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012028059A JP2013163620A (en) 2012-02-13 2012-02-13 Method for producing high purity graphite powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012028059A JP2013163620A (en) 2012-02-13 2012-02-13 Method for producing high purity graphite powder

Publications (1)

Publication Number Publication Date
JP2013163620A true JP2013163620A (en) 2013-08-22

Family

ID=49175239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012028059A Pending JP2013163620A (en) 2012-02-13 2012-02-13 Method for producing high purity graphite powder

Country Status (1)

Country Link
JP (1) JP2013163620A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016023115A (en) * 2014-07-23 2016-02-08 大王製紙株式会社 Method for manufacturing carbon particulate
CN112093798A (en) * 2020-10-29 2020-12-18 哈尔滨理工大学 Outfield-assisted graphite rapid purification method
KR102195865B1 (en) * 2020-04-07 2020-12-28 한국지질자원연구원 Method for high purification of graphite
KR102268996B1 (en) * 2020-10-26 2021-06-24 블랙머티리얼즈 주식회사 Manufacturing method of high purity graphite powder from anthracite coal
JP2021134131A (en) * 2020-02-28 2021-09-13 株式会社Nsc Black lead purification facility
CN113716559A (en) * 2021-09-03 2021-11-30 黑龙江省宝泉岭农垦溢祥石墨有限公司 Strong acid method scale graphite purification process and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938892A (en) * 1972-08-19 1974-04-11
JPS5388601A (en) * 1977-01-17 1978-08-04 Mitsubishi Metal Corp Method of recovering graphite and iron concentrate from gas ash formed by iron manufacturing process
JPS5622618A (en) * 1979-07-31 1981-03-03 Showa Denko Kk Continuous manufacture of sic
JPH08287910A (en) * 1995-04-10 1996-11-01 Hitachi Ltd Nonaqueous secondary battery and manufacture of graphite powder
JPH10214615A (en) * 1997-01-30 1998-08-11 Sharp Corp Manufacture of non-aqueous secondary battery and negative active material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938892A (en) * 1972-08-19 1974-04-11
JPS5388601A (en) * 1977-01-17 1978-08-04 Mitsubishi Metal Corp Method of recovering graphite and iron concentrate from gas ash formed by iron manufacturing process
JPS5622618A (en) * 1979-07-31 1981-03-03 Showa Denko Kk Continuous manufacture of sic
JPH08287910A (en) * 1995-04-10 1996-11-01 Hitachi Ltd Nonaqueous secondary battery and manufacture of graphite powder
JPH10214615A (en) * 1997-01-30 1998-08-11 Sharp Corp Manufacture of non-aqueous secondary battery and negative active material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016023115A (en) * 2014-07-23 2016-02-08 大王製紙株式会社 Method for manufacturing carbon particulate
JP2021134131A (en) * 2020-02-28 2021-09-13 株式会社Nsc Black lead purification facility
JP6991533B2 (en) 2020-02-28 2022-01-12 株式会社Nsc Graphite refining equipment
KR102195865B1 (en) * 2020-04-07 2020-12-28 한국지질자원연구원 Method for high purification of graphite
CN113493201A (en) * 2020-04-07 2021-10-12 韩国地质资源研究院 Purification method of high-purity graphite
KR102268996B1 (en) * 2020-10-26 2021-06-24 블랙머티리얼즈 주식회사 Manufacturing method of high purity graphite powder from anthracite coal
CN112093798A (en) * 2020-10-29 2020-12-18 哈尔滨理工大学 Outfield-assisted graphite rapid purification method
CN113716559A (en) * 2021-09-03 2021-11-30 黑龙江省宝泉岭农垦溢祥石墨有限公司 Strong acid method scale graphite purification process and device

Similar Documents

Publication Publication Date Title
JP2013163620A (en) Method for producing high purity graphite powder
JP6609562B2 (en) Method for producing graphene
JP5032223B2 (en) Method for cleaning polysilicon crushed material
CN106587046B (en) A kind of method of purification of diamond
JP2006248848A (en) Method for manufacturing porous carbon material and method for processing the same
JP2014205133A (en) Slag treatment method for extraction of silica and magnesia
Xie et al. Fixed carbon content and reaction mechanism of natural microcrystalline graphite purified by hydrochloric acid and sodium fluoride
JP2006347864A (en) Method for producing mesoporous carbon, and mesoporous carbon
WO2010029894A1 (en) High-purity crystalline silicon, high-purity silicon tetrachloride, and processes for producing same
CN108862272B (en) Method for preparing expanded graphite by using graphene oxide and nano carbon powder
JP2014122131A (en) Production method of high-purity silicon carbide powder
JP7252260B2 (en) Method for producing graphene oxide from electrode graphite scrap
KR101618773B1 (en) Method for manufacturing fullerene
JP2014051718A (en) Rare earth separation method and rare earth separation unit
CN110548485B (en) Modified waste cathode carbon material and preparation and application methods thereof
JP5247193B2 (en) Coke manufacturing method and pig iron manufacturing method
JP5797086B2 (en) Method for producing high purity silicon carbide powder
JP6698658B2 (en) Carbon precursor derived from plant material
CN109678147A (en) A kind of production method of high purity graphite
JP6707407B6 (en) Method for producing silicon carbide powder
JP2011121852A (en) Method for producing high purity silicon
JP2665437B2 (en) Purification method of silicon metal
JP2016052958A (en) Method for producing carbide derived from coffee bean
JP2008050180A (en) Purification method of metallic silicon
Anggraini et al. Homogenization of Green SiO2 from Rice Husk Burn through Potassium Hydroxide Solid-Liquid Extraction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151201