JP2014003268A - Wiring board manufacturing method - Google Patents

Wiring board manufacturing method Download PDF

Info

Publication number
JP2014003268A
JP2014003268A JP2012217124A JP2012217124A JP2014003268A JP 2014003268 A JP2014003268 A JP 2014003268A JP 2012217124 A JP2012217124 A JP 2012217124A JP 2012217124 A JP2012217124 A JP 2012217124A JP 2014003268 A JP2014003268 A JP 2014003268A
Authority
JP
Japan
Prior art keywords
main surface
insulating layer
copper foil
prepreg
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012217124A
Other languages
Japanese (ja)
Other versions
JP5992788B2 (en
Inventor
Shigeharu Kimura
茂治 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera SLC Technologies Corp
Original Assignee
Kyocera SLC Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera SLC Technologies Corp filed Critical Kyocera SLC Technologies Corp
Priority to JP2012217124A priority Critical patent/JP5992788B2/en
Publication of JP2014003268A publication Critical patent/JP2014003268A/en
Application granted granted Critical
Publication of JP5992788B2 publication Critical patent/JP5992788B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a wiring board which is thin and has high density wiring and less warpage.SOLUTION: A wiring board manufacturing method comprises: applying a tensile stress to an insulation layer 1 by copper foils F2, F3 fastened to both principal surfaces of the insulation layer 1, respectively, by performing stretch processing on the copper foils F2, F3 of stretching the copper foils F2, F3 in a direction parallel with the principal surface of the insulation layer 1; subsequently forming a wiring conductor 2 on one principal surface of the insulation layer 1 by etching a copper foil F1 in a predetermined wiring pattern; subsequently laminating a prepreg P2 and the copper foil F3 on the one principal surface of the insulation layer 1 and fastening an insulation layer 3 to the one principal surface of the insulation layer 1 and fastening the copper foil F3 to an outside principal surface of the insulation layer 3 by hardening the prepreg P2; and subsequently removing the copper foils F2, F3 by etching to release the tensile stress applied by the copper foils F2, F3 to the insulation layers 1, 3.

Description

本発明は、配線基板の製造方法に関し、より詳細には、第1のプリプレグを硬化させて成る第1の絶縁層上に第1の配線導体を形成し、さらにその上に第2のプリプレグを積層するとともに硬化させて第2の絶縁層を形成する工程を含む配線基板の製造方法に関するものである。   The present invention relates to a method of manufacturing a wiring board, and more specifically, a first wiring conductor is formed on a first insulating layer formed by curing a first prepreg, and a second prepreg is further formed thereon. The present invention relates to a method for manufacturing a wiring board including a step of forming a second insulating layer by laminating and curing.

近時、半導体素子等の電子部品を搭載するための配線基板には、その薄型化および高密度配線化が要求されことが多い。このような要求に答える配線基板を製造する方法として、第1のプリプレグを硬化させて成る第1の絶縁層の一方の主面に銅箔から成る第1の配線導体を形成した後、この一方の主面上に第1の配線導体を間に挟んで第2のプリプレグを積層するとともに硬化させて第2の絶縁層を形成し、次に第1の絶縁層の他方の主面から第1の配線導体に達する複数の第1のビアホールを形成するとともに第2の絶縁層の外側主面から第1の配線導体に達する複数の第2のビアホールを形成し、次に第1の絶縁層の他方の主面および第1のビアホール内に銅めっきから成る第2の配線導体を形成するとともに、第2の絶縁層の外側主面および第2のビアホール内に銅めっきから成る第3の配線導体を形成することにより薄型で高密度配線の配線基板を製造する方法がある。   Recently, wiring boards for mounting electronic components such as semiconductor elements are often required to be thin and high-density wiring. As a method of manufacturing a wiring board that meets such requirements, after forming a first wiring conductor made of copper foil on one main surface of a first insulating layer formed by curing a first prepreg, A second prepreg is laminated and cured on the main surface of the first insulating layer to form a second insulating layer, and then the second insulating layer is formed from the other main surface of the first insulating layer. Forming a plurality of first via holes reaching the first wiring conductor and forming a plurality of second via holes reaching the first wiring conductor from the outer main surface of the second insulating layer; A second wiring conductor made of copper plating is formed in the other main surface and the first via hole, and a third wiring conductor made of copper plating is formed in the outer main surface of the second insulating layer and in the second via hole. To form a thin and high-density wiring board. There is a method to.

しかしながら、この方法によると、第1のプリプレグを硬化させて成る第1の絶縁層の一方の主面に第2のプリプレグを積層するとともに硬化させて第2の絶縁層を形成する際に、第2の絶縁層に硬化収縮が起こる。その結果、第2の絶縁層が硬化収縮しようとする力により第2の絶縁層側が凹面となる大きな反りが配線基板に発生してしまう。   However, according to this method, when forming the second insulating layer by laminating and curing the second prepreg on one main surface of the first insulating layer formed by curing the first prepreg, Curing shrinkage occurs in the two insulating layers. As a result, a large warp in which the second insulating layer side becomes concave is generated in the wiring board due to the force of the second insulating layer to cure and shrink.

特開2003−46249号公報JP 2003-46249 A

本発明は、薄型で高密度配線を有する反りの小さな配線基板の製造方法を提供することを課題とするものである。   It is an object of the present invention to provide a method for manufacturing a wiring board with a small warp and a thin and high-density wiring.

本発明の配線基板の製造方法は、第1のプリプレグの一方の主面に第1の銅箔および他方の主面に第2の銅箔を積層するとともに前記第1のプリプレグを硬化させることにより、前記第1のプリプレグが硬化して成る第1の絶縁層の一方の主面に前記第1の銅箔および他方の主面に前記第2の銅箔を固着する第1の工程と、
前記第1および第2の銅箔に前記主面と平行な方向に引き伸ばす延伸加工を加えることにより、該延伸加工された前記第1および第2の銅箔により前記第1の絶縁層に前記主面と平行な方向の引っ張り応力を付与する第2工程と、
前記第1の銅箔を所定の配線パターンにエッチングすることにより、前記一方の主面上に前記第1の銅箔から成る第1の配線導体を形成する第3の工程と、
前記第1の配線導体が形成された前記一方の主面に第2のプリプレグおよび該第2のプリプレグの外側主面に第3の銅箔を重ねて積層するとともに前記第2のプリプレグを硬化させることにより、前記一方の主面上に前記第2のプリプレグが硬化して成る第2の絶縁層および該第2の絶縁層の外側主面上に前記第3の銅箔を固着する第4の工程と、
前記第1の絶縁層の他方の主面に固着された前記第2の銅箔および前記第2の絶縁層の外側主面に固着された前記第3の銅箔をエッチング除去することにより、前記第2の銅箔により前記第1の絶縁層に付与されていた前記引っ張り応力を開放する第5の工程と、
前記第1の絶縁層に前記他方の主面から前記第1の配線導体に達する複数の第1のビアホールおよび前記第2の絶縁層に前記外側主面から前記第1の配線導体に達する複数の第2のビアホールを形成する第6の工程と、
前記第1の絶縁層の前記他方の主面および前記第1のビアホール内に銅めっきから成る第2の配線導体を形成するとともに前記第2の絶縁層の前記外側主面および前記第2のビアホール内に銅めっきから成る第3の配線導体を形成する第7の工程と、を行なうことを特徴とするものである。
The method for manufacturing a wiring board according to the present invention includes laminating a first copper foil on one main surface of a first prepreg and a second copper foil on the other main surface and curing the first prepreg. A first step of fixing the first copper foil to one main surface of the first insulating layer formed by curing the first prepreg and the second copper foil to the other main surface;
By applying a stretching process to the first and second copper foils in a direction parallel to the main surface, the main insulating layer is formed on the first insulating layer by the stretched first and second copper foils. A second step of applying a tensile stress in a direction parallel to the surface;
A third step of forming a first wiring conductor made of the first copper foil on the one main surface by etching the first copper foil into a predetermined wiring pattern;
A second prepreg and a third copper foil are stacked on the outer main surface of the second prepreg on the one main surface on which the first wiring conductor is formed, and the second prepreg is cured. Thus, the second insulating layer formed by curing the second prepreg on the one main surface and the third copper foil fixed on the outer main surface of the second insulating layer are fixed. Process,
Etching and removing the second copper foil fixed to the other main surface of the first insulating layer and the third copper foil fixed to the outer main surface of the second insulating layer, A fifth step of releasing the tensile stress imparted to the first insulating layer by a second copper foil;
A plurality of first via holes reaching the first wiring conductor from the other main surface to the first insulating layer and a plurality of reaching the first wiring conductor from the outer main surface to the second insulating layer. A sixth step of forming a second via hole;
A second wiring conductor made of copper plating is formed in the other main surface of the first insulating layer and in the first via hole, and the outer main surface of the second insulating layer and the second via hole are formed. And a seventh step of forming a third wiring conductor made of copper plating therein.

本発明の配線基板の製造方法によれば、第2の工程において、第1の絶縁層の両主面に固着させた第1および第2の銅箔に第1の絶縁層の主面と平行な方向に引き伸ばす延伸加工を加えることにより、その延伸加工された第1および第2の銅箔により第1の絶縁層にその主面に沿った方向に引っ張り応力が付与された状態となる。その後、第4の工程において、第1の絶縁層の一方の主面上に第2のプリプレグと第3の銅箔とを重ねて積層するとともに第2のプリプレグを硬化させると、第2の絶縁層の硬化収縮により第2の絶縁層には第1の絶縁層および第3の銅箔によりその主面に沿った方向に引っ張りが付与される。その後、第5の工程において、第2および第3の銅箔をエッチング除去すると、第1の絶縁層および第2の絶縁層に付与されていた引っ張り応力が解放されて第1および第2の絶縁層が共に収縮しようとする。その結果、第1および第2の絶縁層の収縮により反ろうとする力が打ち消されて、反りの発生が低減される。したがって、反りの小さな配線基板を提供することが可能となる。   According to the method for manufacturing a wiring board of the present invention, in the second step, the first and second copper foils fixed to both main surfaces of the first insulating layer are parallel to the main surface of the first insulating layer. By applying a stretching process that stretches in any direction, a tensile stress is applied to the first insulating layer in the direction along the main surface by the stretched first and second copper foils. After that, in the fourth step, when the second prepreg and the third copper foil are laminated on one main surface of the first insulating layer and the second prepreg is cured, the second insulation is obtained. Due to the hardening shrinkage of the layer, the second insulating layer is pulled by the first insulating layer and the third copper foil in the direction along the main surface. Thereafter, in the fifth step, when the second and third copper foils are removed by etching, the tensile stress applied to the first insulating layer and the second insulating layer is released, and the first and second insulating layers are released. The layers try to shrink together. As a result, the warping force is canceled by the contraction of the first and second insulating layers, and the occurrence of warping is reduced. Therefore, it is possible to provide a wiring board with small warpage.

図1(a)〜(c)は、本発明の配線基板の製造方法の実施形態の一例を説明するための工程毎の概略断面図である。1A to 1C are schematic cross-sectional views for each step for explaining an example of an embodiment of a method for manufacturing a wiring board according to the present invention. 図2(d)〜(g)は、本発明の配線基板の製造方法の実施形態の一例を説明するための工程毎の概略断面図である。2D to 2G are schematic cross-sectional views for each process for explaining an example of the embodiment of the method for manufacturing a wiring board according to the present invention. 図3(h)〜(k)は、本発明の配線基板の製造方法の実施形態の一例を説明するための工程毎の概略断面図である。3 (h) to 3 (k) are schematic cross-sectional views for each process for explaining an example of the embodiment of the method for manufacturing a wiring board according to the present invention. 図4は、本発明の配線基板の製造方法の別の実施形態の一例を説明するための概略断面図である。FIG. 4 is a schematic cross-sectional view for explaining an example of another embodiment of the method for manufacturing a wiring board of the present invention.

次に、本発明の配線基板の製造方法における実施形態の一例を図1〜図3を基に説明する。   Next, an example of an embodiment of the method for manufacturing a wiring board according to the present invention will be described with reference to FIGS.

先ず、図1(a)に示すように、第1のプリプレグP1と、第1の銅箔F1および第2の銅箔F2とを準備する。第1のプリプレグP1は、例えばガラスクロスにエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂を含浸させるとともに半硬化させて成る。第1のプリプレグP1の寸法は、例えば厚みが40μm、縦が500mm横が600mmである。また、第1の銅箔F1および第2の銅箔F2は、電解銅箔から成る。第1の銅箔F1および第2の銅箔F2の寸法は、例えば厚みが18μmであり、縦横は第1のプリプレグP1と実質的に同じ大きさである。   First, as shown in FIG. 1A, a first prepreg P1, a first copper foil F1, and a second copper foil F2 are prepared. The first prepreg P1 is formed, for example, by impregnating a glass cloth with a thermosetting resin such as an epoxy resin or a bismaleimide triazine resin and semi-curing it. The dimensions of the first prepreg P1 are, for example, a thickness of 40 μm, a length of 500 mm, and a width of 600 mm. Moreover, the 1st copper foil F1 and the 2nd copper foil F2 consist of electrolytic copper foil. The dimensions of the first copper foil F1 and the second copper foil F2 are, for example, 18 μm in thickness, and the vertical and horizontal dimensions are substantially the same as those of the first prepreg P1.

次に、図1(b)に示すように、第1のプリプレグP1の一方の主面に第1の銅箔F1を、他方の主面第2の銅箔F2を積層するとともに、第1のプリプレグP1を熱硬化させることにより、第1のプリプレグP1が硬化して成る第1の絶縁層1の一方の主面に第1の銅箔F1を固着するとともに他方の主面に第2の銅箔F2を固着する。なお、積層には例えば真空プレス装置を用い、熱硬化には例えばオーブンを用いる。なお、図1(a),(b)で説明した工程を自ら行なう代わりに市販の両面銅張り板を用いてもよい。   Next, as shown in FIG. 1B, the first copper foil F1 is laminated on one main surface of the first prepreg P1, and the second copper foil F2 on the other main surface is laminated. By thermally curing the prepreg P1, the first copper foil F1 is fixed to one main surface of the first insulating layer 1 formed by curing the first prepreg P1, and the second copper is fixed to the other main surface. The foil F2 is fixed. For example, a vacuum press apparatus is used for lamination, and an oven is used for thermosetting. In addition, you may use a commercially available double-sided copper-clad board instead of performing the process demonstrated by Fig.1 (a), (b) by itself.

次に、図1(c)に示すように、第1の銅箔F1および第2の銅箔F2に、絶縁層1の主面に平行な方向に引き伸ばす延伸加工を加える。このような延伸加工には、例えばベルトサンダーSが用いられる。この延伸加工により、第1の絶縁層1に、その主面と平行な方向の引っ張り応力T1が付与される。なお、延伸加工には、ベルトサンダーに限らず、ロールサンダーや圧延ロール等の他の装置を用いることもできる。ベルトサンダーを用いる場合には、#320〜#1000程度の番手の研磨ベルトを用い、両方の銅箔F1,F2に対して延伸加工を行うことが好ましい。研磨ベルトの番手が#320未満である場合、銅箔F1,F2の表面に深い研磨痕が残り、その影響で微細な配線を形成することが困難になる。また、研磨ベルトの番手が#1000を超えると、銅箔F1,F2を引き伸ばす力が弱くなり、十分な延伸加工を加えることが困難になる。   Next, as shown in FIG. 1C, the first copper foil F <b> 1 and the second copper foil F <b> 2 are subjected to a stretching process that extends in a direction parallel to the main surface of the insulating layer 1. For such a stretching process, for example, a belt sander S is used. By this stretching process, a tensile stress T1 in a direction parallel to the main surface is applied to the first insulating layer 1. In addition, not only a belt sander but other apparatuses, such as a roll sander and a rolling roll, can also be used for an extending | stretching process. In the case of using a belt sander, it is preferable to use a polishing belt having a count of about # 320 to # 1000 and perform stretching on both copper foils F1 and F2. When the count of the polishing belt is less than # 320, deep polishing marks remain on the surfaces of the copper foils F1 and F2, and it is difficult to form fine wiring due to the influence. Moreover, when the count of the polishing belt exceeds # 1000, the force for stretching the copper foils F1 and F2 becomes weak, and it becomes difficult to apply sufficient stretching.

次に、図2(d)に示すように、第1の銅箔F1を周知のサブトラクティブ法を用いて所定の配線パターンにエッチングすることにより、絶縁層1の一方の主面に第1の配線導体2を形成する。この第1の配線導体2は、後述する第1のビアホール4および第2のビアホール5を介して後述する第2の配線導体6や第3の配線導体に接続するための複数のランドを含んでいる。ランドの直径は150μmである。   Next, as shown in FIG. 2 (d), the first copper foil F1 is etched into a predetermined wiring pattern using a known subtractive method, so that the first main surface of the insulating layer 1 has a first surface. The wiring conductor 2 is formed. The first wiring conductor 2 includes a plurality of lands for connecting to a second wiring conductor 6 and a third wiring conductor to be described later via a first via hole 4 and a second via hole 5 to be described later. Yes. The diameter of the land is 150 μm.

次に、図2(e)に示すように、第2のプリプレグP2と第3の銅箔F3とを準備する。第2のプリプレグP2は、第1のプリプレグP1と実質的に同じ材料および同じ寸法のものを用いる。また、第3の銅箔F3は、第1および第2の銅箔F1,F2と実質的に同じ材料および同じ寸法のものを用いる。なお、第2のプリプレグP2と第3の銅箔F3とを別々に準備する代わりに、第2のプリプレグP2の一方の主面に第3の銅箔F3が予め積層された片面銅箔付きのプリプレグを用いてもよい。   Next, as shown in FIG. 2E, a second prepreg P2 and a third copper foil F3 are prepared. The second prepreg P2 is made of substantially the same material and the same dimensions as the first prepreg P1. The third copper foil F3 is made of substantially the same material and the same size as the first and second copper foils F1 and F2. In addition, instead of preparing the second prepreg P2 and the third copper foil F3 separately, the one-side copper foil with the third copper foil F3 laminated in advance on one main surface of the second prepreg P2 is attached. A prepreg may be used.

次に、図2(f)に示すように、第1の配線導体2が形成された第1の絶縁層1の一方の主面に、第2のプリプレグP2と第3の銅箔F3とを順次重ねて積層するとともに第2のプリプレグP2を熱硬化させることより、絶縁層1の一方の主面に第2のプリプレグP2が硬化して成る絶縁層3を固着するとともに、絶縁層3の外側主面に第3の銅箔F3を固着する。このとき、絶縁層3には第2のプリプレグP2が熱硬化する際に硬化収縮が起こるので、第1の絶縁層1および第3の銅箔F3から第2の絶縁3層の主面と平行な方向の引っ張り応力T2が付与される。なお、積層には例えば真空プレス装置を用い、熱硬化には例えばオーブンを用いる。   Next, as shown in FIG. 2 (f), the second prepreg P2 and the third copper foil F3 are formed on one main surface of the first insulating layer 1 on which the first wiring conductor 2 is formed. The insulating layer 3 formed by curing the second prepreg P2 is fixed to one main surface of the insulating layer 1 by laminating the layers one after another and thermosetting the second prepreg P2. The third copper foil F3 is fixed to the main surface. At this time, since the insulating layer 3 undergoes curing shrinkage when the second prepreg P2 is thermally cured, the first insulating layer 1 and the third copper foil F3 are parallel to the main surface of the second insulating three layer. A tensile stress T2 in a specific direction is applied. For example, a vacuum press apparatus is used for lamination, and an oven is used for thermosetting.

次に、図2(g)に示すように、第2の銅箔F2と第3の銅箔F3とをエッチング除去する。これにより、第2の銅箔F2により付与されていた引っ張り応力T1と第3の銅箔F3により付与されていた引っ張り応力T2とが開放される。その結果、第1の絶縁層1と第2の絶縁層3との両方が収縮しようとするので、反ろうとする力が打ち消されて反りの発生が低減される。したがって、本発明によれば、反りの小さな配線基板を提供することが可能となる。なお、第2および第3の銅箔F2,F3をエッチング除去する際には、第1および第2の絶縁層1,3の外周部に第2および第3の銅箔F2,F3を枠状に残しておくことが好ましい。このような枠状に残った銅箔F2,F3により、第1の絶縁層1と第2の絶縁層3との積層体における機械的な強度を補強することができるとともに、後述する第2および第3の配線導体6,7を形成する際に、電解めっき用の電荷を供給する電解めっき装置の給電端子に接続される接続電極としてこれらの残った銅箔F2,F3を使用することができる。なお、このような銅箔F2,F3を残す外周部は、配線基板とはならない捨て代領域とし、配線基板の形成後に切除する。   Next, as shown in FIG. 2G, the second copper foil F2 and the third copper foil F3 are removed by etching. As a result, the tensile stress T1 applied by the second copper foil F2 and the tensile stress T2 applied by the third copper foil F3 are released. As a result, since both the first insulating layer 1 and the second insulating layer 3 try to contract, the warping force is canceled and the occurrence of warping is reduced. Therefore, according to the present invention, it is possible to provide a wiring board with small warpage. When the second and third copper foils F2 and F3 are removed by etching, the second and third copper foils F2 and F3 are formed in a frame shape on the outer periphery of the first and second insulating layers 1 and 3. It is preferable to leave it in The copper foils F2 and F3 remaining in such a frame shape can reinforce the mechanical strength in the laminate of the first insulating layer 1 and the second insulating layer 3, and the second and second described later. When the third wiring conductors 6 and 7 are formed, these remaining copper foils F2 and F3 can be used as connection electrodes connected to the power supply terminals of the electroplating apparatus that supplies electric charges for electroplating. . It should be noted that the outer peripheral portion where the copper foils F2 and F3 are left is a discarding area that cannot be a wiring board, and is cut out after the wiring board is formed.

次に、図3(h)に示すように、第1の絶縁層1にその他方の主面から第1の配線導体2に達する複数の第1のビアホール4を形成するとともに、第2の絶縁層3にその外側主面から第1の配線導体2に達する複数の第2のビアホール5を形成する。ビアホール4,5は、レーザ加工により形成する。ビアホール4,5の直径は、その底部で50μm、その開口部で70μmである。ビアホール4,5を形成した後は、デスミア処理を行なう。   Next, as shown in FIG. 3 (h), a plurality of first via holes 4 reaching the first wiring conductor 2 from the other principal surface are formed in the first insulating layer 1, and the second insulation is formed. A plurality of second via holes 5 reaching the first wiring conductor 2 from the outer principal surface thereof are formed in the layer 3. The via holes 4 and 5 are formed by laser processing. The via holes 4 and 5 have a diameter of 50 μm at the bottom and 70 μm at the opening. After the via holes 4 and 5 are formed, desmear processing is performed.

次に、図3(i)に示すように、第1の絶縁層1の他方主面および第1のビアホール4内に銅めっきから成る第2の配線導体6を形成するとともに、第2の絶縁層3の外側主面および第2のビアホール5内に銅めっきから成る第3の配線導体7を形成する。これらの配線導体6,7は、周知のセミアディティブ法を採用することにより形成する。セミアディティブ法を採用することにより、微細で高密度配線の配線導体6,7を形成することができる。   Next, as shown in FIG. 3I, a second wiring conductor 6 made of copper plating is formed in the other main surface of the first insulating layer 1 and in the first via hole 4, and the second insulation is formed. A third wiring conductor 7 made of copper plating is formed in the outer main surface of the layer 3 and in the second via hole 5. These wiring conductors 6 and 7 are formed by adopting a known semi-additive method. By adopting the semi-additive method, the wiring conductors 6 and 7 having fine and high-density wiring can be formed.

次に、図3(j)に示すように、第1の絶縁層1の他方の主面および第2の絶縁層3の外側主面にソルダーレジスト層8を形成する。ソルダーレジスト層8は、例えばアクリル変性エポキシ樹脂から成る感光性樹脂ペーストを第1の絶縁層1の他方の主面および第2の絶縁層3の外側主面上に塗布するとともに、周知のフォトリソグラフィー技術を採用して所定のパターンに露光および現像した後、熱硬化させることにより形成する。   Next, as shown in FIG. 3J, a solder resist layer 8 is formed on the other main surface of the first insulating layer 1 and the outer main surface of the second insulating layer 3. The solder resist layer 8 is formed by applying a photosensitive resin paste made of, for example, an acryl-modified epoxy resin on the other main surface of the first insulating layer 1 and the outer main surface of the second insulating layer 3, and well-known photolithography. The film is formed by exposing and developing into a predetermined pattern using a technique and then thermally curing.

最後に、図3(k)に示すように、配線基板10となる領域をダイシングマシーンやルータ等の切断装置を用いて切り出すことにより、薄型で高密度配線を有する反りの小さな配線基板10が製造される。   Finally, as shown in FIG. 3 (k), a wiring board 10 having a thin and high-density wiring is manufactured by cutting out a region to be the wiring board 10 using a cutting device such as a dicing machine or a router. Is done.

なお、本発明は上述の実施形態の一例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。例えば、上述の実施形態の一例においては、第1の銅箔F1および第2の銅箔F2に、絶縁層1の主面に平行な方向に引き伸ばす延伸加工を加えるときにベルトサンダーSを用いたが、これに代えてウェットブラスト法を用いてもよい。ウェットブラスト法を用いることで、第1および第2の銅箔F1、F2に対して絶縁層1の主面に平行な全ての方向に対してより均一な延伸を加えることが可能となり、第1の絶縁層1に均一な引っ張り応力T3が付与される。このようなウェットブラスト法による延伸加工は、先述の図1(a)および(b)を基に説明した工程を実施した後で、図1(c)を基に説明した工程に代えて実施する。具体的には、図4に示すように第1および第2の銅箔F1、F2の上下の位置にウェットブラスト用のノズルNを配置する。そして、水分に微細粉体を混入した研磨材の噴流Jをノズルから噴射することで、第1の銅箔F1および第2の銅箔F2に、第1の絶縁層1の主面に平行な方向に引き伸ばす延伸加工を加える。なお、微細粉体としては、酸化アルミや酸化ケイ素、あるいは酸化鉄や酸化チタンなどが用いられる。ウェットブラスト工法による工程が終了した後は、先述の図2および図3を基に説明した工程を順次実施するとよい。
In addition, this invention is not limited to an example of above-mentioned embodiment, A various change is possible if it is a range which does not deviate from the summary of this invention. For example, in the example of the above-described embodiment, the belt sander S is used when the first copper foil F1 and the second copper foil F2 are subjected to a drawing process that extends in a direction parallel to the main surface of the insulating layer 1. However, a wet blast method may be used instead. By using the wet blast method, the first and second copper foils F1 and F2 can be more uniformly stretched in all directions parallel to the main surface of the insulating layer 1. A uniform tensile stress T3 is applied to the insulating layer 1. Such a drawing process by the wet blast method is performed in place of the process described with reference to FIG. 1C after the process described with reference to FIGS. 1A and 1B is performed. . Specifically, as shown in FIG. 4, the nozzles N for wet blasting are arranged at positions above and below the first and second copper foils F1 and F2. And the jet J of the abrasive | polishing material which mixed the fine powder in the water | moisture content is sprayed from a nozzle, and it is parallel to the main surface of the 1st insulating layer 1 in the 1st copper foil F1 and the 2nd copper foil F2. Add a stretching process to stretch in the direction. As the fine powder, aluminum oxide, silicon oxide, iron oxide, titanium oxide, or the like is used. After the process by the wet blasting method is completed, the processes described based on FIG. 2 and FIG. 3 described above may be performed sequentially.

1 第1の絶縁層
2 第1の配線導体
3 第2の絶縁層
4 第1のビアホール
5 第2のビアホール
6 第2の配線導体
7 第3の配線導体
P1 第1のプリプレグ
P2 第2のプリプレグ
F1 第1の銅箔
F2 第2の銅箔
F3 第3の銅箔
DESCRIPTION OF SYMBOLS 1 1st insulating layer 2 1st wiring conductor 3 2nd insulating layer 4 1st via hole 5 2nd via hole 6 2nd wiring conductor 7 3rd wiring conductor P1 1st prepreg P2 2nd prepreg F1 1st copper foil F2 2nd copper foil F3 3rd copper foil

Claims (2)

第1のプリプレグの一方の主面に第1の銅箔および他方の主面に第2の銅箔を積層するとともに前記第1のプリプレグを硬化させることにより、前記第1のプリプレグが硬化して成る第1の絶縁層の一方の主面に前記第1の銅箔および他方の主面に前記第2の銅箔を固着する工程と、
前記第1および第2の銅箔に前記主面と平行な方向に引き伸ばす延伸加工を加えることにより、該延伸加工された前記第1および第2の銅箔により前記第1の絶縁層に前記主面と平行な方向の引っ張り応力を付与する工程と、
前記第1の銅箔を所定の配線パターンにエッチングすることにより、前記一方の主面上に前記第1の銅箔から成る第1の配線導体を形成する工程と、
前記第1の配線導体が形成された前記一方の主面に第2のプリプレグおよび該第2のプリプレグの外側主面に第3の銅箔を重ねて積層するとともに前記第2のプリプレグを硬化させることにより、前記一方の主面上に前記第2のプリプレグが硬化して成る第2の絶縁層および該第2の絶縁層の外側主面上に前記第3の銅箔を固着する工程と、
前記第1の絶縁層の他方の主面に固着された前記第2の銅箔および前記第2の絶縁層の外側主面に固着された前記第3の銅箔をエッチング除去することにより、前記第2の銅箔により前記第1の絶縁層に付与されていた前記引っ張り応力を開放する工程と、
前記第1の絶縁層に前記他方の主面から前記第1の配線導体に達する複数の第1のビアホールおよび前記第2の絶縁層に前記外側主面から前記第1の配線導体に達する複数の第2のビアホールを形成する工程と、
前記第1の絶縁層の前記他方の主面および前記第1のビアホール内に銅めっきから成る第2の配線導体を形成するとともに前記第2の絶縁層の前記外側主面および前記第2のビアホール内に銅めっきから成る第3の配線導体を形成する工程と、を行なうことを特徴とする配線基板の製造方法。
By laminating the first copper foil on one main surface of the first prepreg and the second copper foil on the other main surface and curing the first prepreg, the first prepreg is cured. Fixing the first copper foil to one main surface of the first insulating layer and the second copper foil to the other main surface;
By applying a stretching process to the first and second copper foils in a direction parallel to the main surface, the main insulating layer is formed on the first insulating layer by the stretched first and second copper foils. Applying a tensile stress in a direction parallel to the surface;
Forming the first wiring conductor made of the first copper foil on the one main surface by etching the first copper foil into a predetermined wiring pattern;
A second prepreg and a third copper foil are stacked on the outer main surface of the second prepreg on the one main surface on which the first wiring conductor is formed, and the second prepreg is cured. A second insulating layer formed by curing the second prepreg on the one main surface, and fixing the third copper foil on the outer main surface of the second insulating layer;
Etching and removing the second copper foil fixed to the other main surface of the first insulating layer and the third copper foil fixed to the outer main surface of the second insulating layer, Releasing the tensile stress applied to the first insulating layer by a second copper foil;
A plurality of first via holes reaching the first wiring conductor from the other main surface to the first insulating layer and a plurality of reaching the first wiring conductor from the outer main surface to the second insulating layer. Forming a second via hole;
A second wiring conductor made of copper plating is formed in the other main surface of the first insulating layer and in the first via hole, and the outer main surface of the second insulating layer and the second via hole are formed. And a step of forming a third wiring conductor made of copper plating therein.
前記延伸加工をウェットブラスト法を用いて行なうことを特徴とする請求項1に記載の配線基板の製造方法。   The method of manufacturing a wiring board according to claim 1, wherein the stretching process is performed using a wet blast method.
JP2012217124A 2012-05-24 2012-09-28 Wiring board manufacturing method Expired - Fee Related JP5992788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012217124A JP5992788B2 (en) 2012-05-24 2012-09-28 Wiring board manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012118558 2012-05-24
JP2012118558 2012-05-24
JP2012217124A JP5992788B2 (en) 2012-05-24 2012-09-28 Wiring board manufacturing method

Publications (2)

Publication Number Publication Date
JP2014003268A true JP2014003268A (en) 2014-01-09
JP5992788B2 JP5992788B2 (en) 2016-09-14

Family

ID=50036128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012217124A Expired - Fee Related JP5992788B2 (en) 2012-05-24 2012-09-28 Wiring board manufacturing method

Country Status (1)

Country Link
JP (1) JP5992788B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283859A (en) * 1993-03-25 1994-10-07 Hitachi Ltd Manufacture of multilayer circuit board
JPH09252171A (en) * 1995-10-19 1997-09-22 Nitto Denko Corp Flexible interconnection board
JP2000349435A (en) * 1999-06-02 2000-12-15 Ibiden Co Ltd Multilayered printed wiring board and manufacture thereof
JP2010050351A (en) * 2008-08-22 2010-03-04 Shinko Electric Ind Co Ltd Method of manufacturing wiring substrate
JP2011014847A (en) * 2009-07-06 2011-01-20 Shinko Electric Ind Co Ltd Multilayer wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283859A (en) * 1993-03-25 1994-10-07 Hitachi Ltd Manufacture of multilayer circuit board
JPH09252171A (en) * 1995-10-19 1997-09-22 Nitto Denko Corp Flexible interconnection board
JP2000349435A (en) * 1999-06-02 2000-12-15 Ibiden Co Ltd Multilayered printed wiring board and manufacture thereof
JP2010050351A (en) * 2008-08-22 2010-03-04 Shinko Electric Ind Co Ltd Method of manufacturing wiring substrate
JP2011014847A (en) * 2009-07-06 2011-01-20 Shinko Electric Ind Co Ltd Multilayer wiring board

Also Published As

Publication number Publication date
JP5992788B2 (en) 2016-09-14

Similar Documents

Publication Publication Date Title
US8356405B2 (en) Method of manufacturing printed circuit board
US9179553B2 (en) Method of manufacturing multilayer wiring board
JP2013229465A (en) Wiring board and method for manufacturing the same
CN106550554B (en) Protective structure for manufacturing a component carrier with a dummy core and two sheets of different materials thereon
US11812556B2 (en) Printed circuit board and manufacturing method thereof
JP6599853B2 (en) Method of forming a laminated structure having plated through holes using a removable cover layer
KR101216926B1 (en) Carrier member and method for manufacturing the same and method for manufacturing of printed circuit board using the same
US20140318834A1 (en) Wiring board and method for manufacturing the same
KR20130051424A (en) Method of manufacturing multilayer wiring substrate
KR20150083424A (en) Method for manufacturing wiring board
CN106550542B (en) Component carrier with a pure dielectric layer inserted into and adjacent to a protective structure
JP2016048768A (en) Wiring board and manufacturing method of semiconductor device
JP5992788B2 (en) Wiring board manufacturing method
KR101167422B1 (en) Carrier member and method of manufacturing PCB using the same
KR20130079118A (en) Method for manufacturing multi-layer circuit board and multi-layer circuit board manufactured by the same method
KR101055571B1 (en) Carrier member for substrate manufacturing and method for manufacturing substrate using same
KR101234759B1 (en) Fabrication method of single layer substrate
KR101975450B1 (en) Manufacturing method of multilayer printed circuit board comprising surface-treated insulating film
KR20130008487A (en) Carrier member
JP5549853B2 (en) Multi-wire wiring board and manufacturing method thereof
JP2006196567A (en) Method for manufacturing circuit formation substrate
US20190200465A1 (en) Multilayer wiring board
KR101156924B1 (en) Method of manufacturing printed curcuit board
JP6199818B2 (en) Wiring board manufacturing method
KR101109234B1 (en) A carrier for manufacturing a printed circuit board and a method of manufacturing the same and a method of manufacturing a printed circuit board using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150928

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160818

R150 Certificate of patent or registration of utility model

Ref document number: 5992788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees