JP2014001982A - 濃度測定装置 - Google Patents

濃度測定装置 Download PDF

Info

Publication number
JP2014001982A
JP2014001982A JP2012136259A JP2012136259A JP2014001982A JP 2014001982 A JP2014001982 A JP 2014001982A JP 2012136259 A JP2012136259 A JP 2012136259A JP 2012136259 A JP2012136259 A JP 2012136259A JP 2014001982 A JP2014001982 A JP 2014001982A
Authority
JP
Japan
Prior art keywords
concentration
light
detector
optical path
detection target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012136259A
Other languages
English (en)
Inventor
Tomoki Tanemura
友貴 種村
Shuichi Yamashita
秀一 山下
Hiroyuki Wado
弘幸 和戸
Yukihiro Takeuchi
竹内  幸裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012136259A priority Critical patent/JP2014001982A/ja
Publication of JP2014001982A publication Critical patent/JP2014001982A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】赤外線吸収式の濃度測定装置において、簡単な構成の光路体を有しつつ、測定可能な濃度範囲を拡張する。
【解決手段】この濃度測定装置は、赤外線を含む光を放射する赤外光源(11)と、該赤外光源から放射された光を受光して、特定波長の光を検出するIR検出器(12)と、赤外光源とIR検出器の間に配置され、光路長を規定し、被検知対象が充填される閉空間を備えた光路体(13)と、を有する。
そして、光路体に閉空間内の被検知対象の相を変化させるための状態変化部(14)を有する。
【選択図】図1

Description

本発明は、赤外線吸収式の濃度測定装置に関する。
流体などの被検知対象中に含まれる成分の濃度を測定する濃度測定装置として、非分散型赤外分光計(NDIR)が知られている。NDIRは、赤外の波長を含む光源(以下、赤外光源という)から放射された光を被検知対象に吸収させ、その吸収量を、赤外線センサを用いて測定する。ある分子構造を有する成分は、分子構造に応じた固有の赤外線吸収スペクトルを有する。このため、NDIRでは、被検知対象を透過した光を分光器により分光し、赤外域の特定波長の吸収量から、被検知対象の同定および濃度の定量を行う。
ところで、NDIRなど、光の吸収および透過を利用する濃度測定装置には、光が被検知対象中を通過する光路長に応じて測定可能な濃度範囲が存在する。光路長が短く設定されている場合、高濃度の被検知対象の測定は可能だが、低濃度の被検知対象では光の吸収量が小さすぎて、その変化を赤外線センサで検出できないことがある。一方、光路長が長く設定されている場合、低濃度の被検知対象の測定は可能だが、高濃度の被検知対象では赤外光源から放射された光のほとんどが吸収されてしまい、赤外線センサで検出できないことがある。
上記の問題点を解消するため、特許文献1に記載の発明は、長さの異なる複数の光路を長手方向の中央部で交差させた光路体を有し、この光路体が中央部を中心に、モータなどの機械的な機構により回転するようになっている。光路体を回転させることにより、光路長を切り替え、測定可能な濃度範囲を拡張することができる。
特開昭62−19736号公報
しかしながら、特許文献1に記載の発明では、被検知対象の濃度がppmオーダーである場合には数メートルの光路長を要する。これは濃度測定装置として現実的ではない。換言すれば、現実的な光路長とした場合に、低濃度側の感度を十分に確保できない。一方、被検知対象の濃度が100%近い場合には数ミリメートルの光路長としなければならない。これは製造が困難であるという問題がある。また、特許文献1のような構成は、光路体の構造が複雑化するという問題もある。
本発明は、上記問題点に鑑みてなされたものであり、簡単な構成の光路体を有しつつ、測定可能な濃度範囲を拡張することを目的とする。
上記目的を達成するために、本発明は、
赤外線を含む光を放射する赤外光源(11)と、
該赤外光源から放射された光を受光して、特定波長の光を検出するIR検出器(12)と、
赤外光源とIR検出器の間に配置され、光路長を規定し、被検知対象が充填される閉空間(21)を備えた光路体(13)と、を有する濃度測定装置であって、
閉空間における被検知対象の相を変化させるための状態変化部(14)を有することを特徴としている。
従来、NDIRによる濃度測定は、被検知対象が、気体または液体のいずれか一方の状態で行われてきた。ランベルト・ベールの法則によれば、光路長が一定、且つ、IR検出器の透過光の強度分解能が一定の下において、測定可能な濃度範囲は、被検知対象の吸収係数に依存する。吸収係数は、測定に用いられる赤外線の波長に依存するほか、被検知対象の相に依存する。一般に、吸収係数は、被検知対象の分子密度に依存し、気相の吸収係数は液相よりも低く、液相の吸収係数は固相よりも低い。従来のように、気体のみ、または液体のみを用いるといった構成においては、被検知対象が単一の相であるために、測定可能な濃度範囲が制限されていた。
これに対して、本発明では、1つの測定装置で、被検知対象を複数の相に変化させつつ測定を行うことができる。本発明の濃度測定装置は従来の構成に加えて、光路体における閉空間に充填された被検知対象の相を変化させる状態変化部を有する。このため、少なくとも1つの光路体を有するだけで(すなわち、光路長一定の下で)、被検知対象の三態のうち、少なくとも2つの相に係る濃度の測定範囲を確保することができる。したがって、簡単な構成の光路体を有しつつ、測定可能な濃度範囲を拡張することができる。
第1実施形態に係る濃度測定装置の構成を示す概略図である。 測定可能な下限濃度および上限濃度と光路長の関係を示すグラフである。 温度および圧力による被検知対象の相の状態を示す相図である。 被検知対象の相の三態による濃度の測定可能範囲を模式的に示したグラフである。 液体のエタノールの赤外線吸収スペクトルを示す図である。 エタノールの気体および液体における、濃度の測定可能範囲を示したグラフである。 水の気体および液体における、濃度の測定可能範囲を示したグラフである。 第2実施形態に係る濃度測定装置の構成を示す概略図である。 水の気体および液体における、濃度の測定可能範囲を示したグラフである。 第3実施形態に係る濃度測定装置の構成を示す概略図である。 液体のエタノールおよび水の赤外線吸収スペクトルを示す図である。 気体のエタノールおよび水の赤外線吸収スペクトルを示す図である。
以下、本発明の実施の形態を図面に基づいて説明する。なお、以下の各図相互において、互いに同一もしくは均等である部分に、同一符号を付与する。なお、被検知対象の濃度の単位として、比率、百分率(%)および百万分率(ppm)を用いるが、すべてモル分率である。また、吸収係数の単位も濃度の単位に合わせるものとする。すなわち、濃度の単位を比率で表す場合には、吸収係数の単位はm−1である。同様に、濃度の単位を百分率で表す場合には、吸収係数の単位は%−1−1であり、濃度の単位を百万分率で表す場合には、吸収係数の単位はppm−1−1である。
(第1実施形態)
本実施形態の濃度測定装置は、飲酒運転の取り締まりなどに用いられるアルコールチェッカや、自動車燃料中の成分濃度を測定するための濃度測定器に用いられる。
濃度を測定する原理は、ランベルト・ベールの法則による。すなわち、被検知対象中を初期強度Iの赤外線が光路長dで透過するとき、透過光の強度Iと、被検知対象の濃度Cおよび吸収係数εは、下記数式1を満たす。
Figure 2014001982
つまり、測定に用いる赤外線の初期強度Iと、光路長dを規定しておき、吸収係数εが判れば、透過光の強度Iに基づいて被検知対象の濃度Cを算出することができる。なお、吸収係数εは、赤外線の波長に依存し、測定に利用する赤外線の特定波長λが決まれば、既知の赤外線吸収スペクトルのデータから求めることができる。また、吸収係数εは、被検知対象の相によっても異なる。また、同相の場合においても、被検知対象の分子密度に依存する。
最初に、図1を参照して、本実施形態に係る濃度測定装置の概略構成について説明する。
この濃度測定装置10は、赤外光源11と、IR検出器12と、光路体13と、状態変化部14と、を有する。また、後述する閉空間(光路体13の内部空間)の温度をモニターするための温度センサ15と、閉空間の圧力をモニターするための圧力センサ16と、を有する。さらに、IR検出器12、状態変化部14、温度センサ15および圧力センサ16と通信可能に接続された第1制御部17と、該第1制御部17と通信可能に接続された第1メモリ部18と、を有し、IR検出器12と通信可能に接続された第2制御部19と、該第2制御部19と通信可能に接続された第2メモリ部20と、を有する。
赤外光源11は、赤外線を含む光を放射する光源(例えば、タングステン・ヨウ素ランプや高輝度セラミック光源)が用いられる。
IR検出器12は、分光器(例えば、積層膜で作製されたバンドパスフィルタなどの透過波長固定分光素子や、ファブリペロー型の干渉計や回折格子などの透過波長可変分光素子:図示せず)と赤外線センサ(例えば、ボロメータやサーモパイルなどの赤外線検知素子:図示せず)とを有する。IR検出器12は、入射した光を、分光器で分光し、赤外波長域に感度を有する赤外線センサで検出する。このIR検出器12は、分光器の光学条件を制御することにより、赤外線センサで検出される光の波長(特定波長λ)が変更できるようになっている。すなわち、IR検出器12は、分光器と赤外線センサとを有し、入射した光のうち、測定に利用する波長を分光器により選択し、その強度を赤外線センサにより測定する。
光路体13は、少なくとも一部が赤外光源11とIR検出器12との間に配置され、赤外光源11から放射された赤外線を含む光が光路体13の内部空間を透過するようになっている。光路体13には、被検知対象を導入するための導入孔13aと、被検知対象を排出する排出孔13bが形成されている。そして、導入孔13aと排出孔13bのそれぞれには、外部と光路体13の内部空間とを隔離するためのバルブ13cが設置されている。このバルブ13cが閉じられることにより、光路体13の内部空間は、被検知対象の物質量を一定に保持する閉空間21となる。
状態変化部14は、光路体13のうち、赤外光源11から放射されIR検出器12へ進む光を妨げない位置に配置されている。本実施形態における状態変化部14は、閉空間21の温度を変化させるための温度変化手段22と、閉空間21の圧力を変化させるための圧力変化手段23とを有する。具体的には、温度変化手段22は、例えばペルチェ素子である。後述する第1制御部17がペルチェ素子に印加する電圧を制御することで、閉空間21の温度が制御されている。また、圧力変化手段23は、例えばピストンである。後述する第1制御部17がピストンの運動を制御して閉空間21の体積を変化させることにより、閉空間21の圧力が制御されている。
温度センサ15は、閉空間21の温度を検出する。この温度センサ15は閉空間21の温度をモニターしつつ、後述する第1制御部17に温度の情報を送出する。
圧力センサ16は、閉空間21の圧力を検出する。この圧力センサ16は閉空間21の圧力をモニターしつつ、後述する第1制御部17に圧力の情報を送出する。
第1制御部17は、IR検出器12、状態変化部14(温度変化手段22および圧力変化手段23)に通信可能に接続されている。また、第1制御部17は、上記したように、温度センサ15および圧力センサ16に通信可能に接続され、閉空間21の温度および圧力の情報が上記センサ15,16から入力される。さらに、第1制御部17は、第1メモリ部18と通信可能に接続されている。この第1メモリ部18には、少なくとも被検知対象の相図情報および赤外線吸収スペクトル情報が記憶されている。ここでいう相図情報とは、ある温度および圧力の条件下で、被検知対象が三態のうちいずれの相にあるかを示すものである。また、赤外線吸収スペクトル情報とは、被検知対象の吸収係数の波長依存性を示すものである。第1制御部17は、温度センサ15、圧力センサ16、および、第1メモリ部18から呼び出す情報、すなわち、閉空間21の温度および圧力の情報と、被検知対象の相図情報および赤外線吸収スペクトル情報と、に基づいて、温度変化手段22、圧力変化手段23およびIR検出器12の少なくとも1つを制御する。そして、第1制御部17は、閉空間21に充填された被検知対象の温度および圧力の条件、または、IR検出器12が検出する赤外線の特定波長λを変化させることにより、濃度測定に利用する吸収係数εを変更させる。なお、被検知対象の温度および圧力の条件を変化させる、とは、被検知対象の相転移がおきるようなものであってもよいし、相転移が起こらなくとも、被検知対象の温度および圧力の変化により吸収係数εが変化するようなものであってもよい。
第2制御部19は、IR検出器12に通信可能に接続されている。また、第2制御部19は第2メモリ部20とも通信可能に接続されている。本実施形態において、第2制御部19および第2メモリ部20は、例えば、アルコールチェッカのように、人間の呼気中に含まれるエタノール濃度を測定する際に使用される要素である。第2制御部は、人間の呼気中の二酸化炭素濃度から、空気中に拡散するエタノールの希釈率を校正する(詳細は後述)。校正を行うため、被検者である人間の呼気に含まれる二酸化炭素の濃度Cを、IR検出器12により検出された透過光の強度Iに基づいてランベルト・ベールの法則により算出する。なお、このCを得るために、光路体13の光路長dと、二酸化炭素の吸収係数εと、入射光の強度Iと、を予め規定しておく。一方、第2メモリ部20には、人間の肺内における絶対的な二酸化炭素濃度Cと、エタノール濃度の酒気帯び運転に係る法規制値Pと、が少なくとも記憶される。なお、上記Cは、ほぼ一定値であり、略4%(4×10ppm)である。また、法規制値Pは、法律により定められるエタノール濃度であり、例えば、2012年5月現在の日本国における道路交通法第65条第1項および同法第117条の2の2第一号に規定するエタノール濃度として、0.15mg/L、すなわち、25℃において略67ppmと規定されている。そして、第2制御部19は、これらC、C、Pの値に基づいて、IR検出器12を制御し、後述するアルコールチェックに必要な条件を満たすように、エタノールの吸収係数を変化させる。
次に、図2〜図5を参照して、本実施形態に係る濃度測定装置10の作用効果について説明する。
まず、NDIRにおける測定可能な濃度範囲について説明する。光路体13の閉空間21に充填され、所定の吸収係数εとされた被検知対象の測定可能な濃度範囲は、光路長dと、赤外光源11から被検知対象に入射する入射光の強度Iと、IR検出器12の赤外光の強度分解能Δと、に依存する。
被検知対象の濃度が高い場合の透過光は、被検知対象の濃度が低い場合に較べて強度が低下する。IR検出器12で検出可能な透過光の強度は、IR検出器12の強度分解能Δが最小であり、Δよりも低強度の光を検出できない。したがって、測定可能な上限濃度は、被検知対象を透過した透過光の強度が強度分解能Δに等しいときにランベルト・ベールの法則から計算される濃度である。すなわち、測定可能な被検知対象の上限濃度Cmaxは、数式2に示すようになる。
Figure 2014001982
一方、被検知対象の濃度が低い場合、入射光のほとんどが被検知対象を透過する。そして、透過光の強度が、入射光の強度Iよりも強度分解能Δだけ減衰した(I−Δ)となるとIR検出器12により入射光の減衰を検出することができる。したがって、測定可能な下限濃度は、被検知対象を透過した透過光の強度が(I−Δ)に等しいときにランベルト・ベールの法則から計算される濃度である。すなわち、測定可能な被検知対象の下限濃度Cminは、数式3に示すようになる。
Figure 2014001982
図2に示すように、上記CmaxおよびCminを、縦軸を光路長d、横軸を被検知対象の濃度Cとした両対数グラフにプロットすると、所定の光路長dに対する濃度Cの測定限界線を示すことができる。上記Cmaxを示す測定限界線(図2中、A線と示す)と、上記Cminを示す測定限界線(図2中、B線と示す)は互いに平行になる。この測定限界線は、被検知対象と、光路長d、吸収係数ε、入射光の強度I、および、IR検出器12の強度分解能Δが判れば一意に決まるものであり、計算により求めることができる。図2に示すように、光路長dの光路体13を備えた濃度測定装置10の測定可能な濃度範囲は、図2に示すCminとCmaxとの間の範囲(図2中、測定可能範囲と示す)となる。光路長dを大きくすると透過光の強度が減少するため、上記CmaxおよびCminを低濃度側へシフトさせることができる。逆に、光路長dを小さくすると透過光の強度が増加するため、上記CmaxおよびCminを高濃度側へシフトさせることができる。すなわち、光路長dを変化させることにより、被検知対象の測定可能な濃度範囲を調整することができる。
加えて、数式2および数式3によれば、上限濃度Cmaxおよび下限濃度Cminは、吸収係数εにも依存する。このため、被検知対象の吸収係数εを意図的に変更することにより、光路長dを変更することなく、測定可能な濃度範囲を調整することができる。具体的には、吸収係数εを大きくすると、上記CmaxおよびCminを低濃度側へシフトさせることができる。逆に、吸収係数εを小さくすると、上記CmaxおよびCminを高濃度側へシフトさせることができる。なお、吸収係数εは、赤外線の波長に依存し、測定に利用する赤外線の特定波長λが決まれば、既知の赤外線吸収スペクトルのデータから求めることができる。また、吸収係数εは、被検知対象の相によっても異なる。また、同相の場合においても、被検知対象の分子密度に依存する。なお、吸収係数εは、一般に、被検知対象の分子密度が高いほど大きい。すなわち、気相に較べて液相の吸収係数は大きく、液相に較べて固相の吸収係数は大きい。
本実施形態は、吸収係数εの変更することにより、測定可能な濃度範囲を調整することを特徴としている。具体的には、本実施形態における濃度測定装置10は、被検知対象の相を変化させることにより吸収係数εを変化させるための状態変化部14を有する。また、IR検出器12は、吸収係数εを決定するための特定波長λが変更可能なようになっている。
上記したように、本実施形態においては、吸収係数εを変更させる手段として、2つの方法を用いることができる。一つは、被検知対象の相を変化させることである。もう一つは、IR検出器12が検出する光の特定波長λを適切に変更することである。
以下、吸収係数εを変更させる一つ目の手段である、被検知対象の相を変化させる手段について説明する。とくに、状態変化部14について説明する。
本実施形態における状態変化部14は、図1に示すように、温度変化手段22と圧力変化手段23とを有する。温度変化手段22と圧力変化手段23は、ともに第1制御部17と通信可能に接続されている。第1制御部17は、通信可能に接続された温度センサ15および圧力センサ16によりモニターされた閉空間21内の温度および圧力の情報と、第1メモリ部18に記憶された相図情報と、に基づいて、被検知対象の相の状態を判断する。そして、第1制御部17は、温度変化手段22および圧力変化手段23を制御し、閉空間21内の温度および圧力を変化させる。本実施形態における相図情報とは、図3に示すように、被検知対象の相を、温度と圧力の条件で分類したものである。
仮に、図3に示すような相図を呈する被検知対象が、温度T、圧力Pで閉空間21に充填されていたとする(図3中、点α)。このとき、被検知対象は気体であり、図2に示したような測定限界線をプロットすることができる。仮に、気体における測定限界線を図4に示すGA線およびGB線(実線)とすると、所定の光路長dに対して、被検知対象の相が気体の場合における測定可能範囲が規定される。
仮に、被検知対象の濃度が、相が気体である場合に規定される測定可能範囲から外れるときには、第1制御部17が温度変化手段22と圧力変化手段23とを制御して、被検知対象の相転移を行う。具体的には、図3における点αの状態から、温度を下降させるため、例えば、温度変化手段22としてのペルチェ素子に電圧を印加して被検知対象を冷却する。また、図3における点αの状態から、圧力を上昇させるため、例えば、圧力変化手段23としてのピストンを押しこんで閉空間21内の被検知対象を圧縮する。これにより、例えば、被検知対象の状態が温度T、圧力Pとされたとする(図3中、β点)。被検知対象は気体から液体へと状態変化する。被検知対象が気体である場合と同様、図2に示したような測定限界線をプロットすることができる。液体における測定限界線を図4に示すLA線およびLB線(一点鎖線)とすると、所定の光路長dに対して、被検知対象の相が液体の場合における測定可能範囲が規定される。なお、気体から液体への状態変化であるため、液体における測定限界線は、気体の測定限界線よりも低濃度側にシフトする。本実施形態では、図4に示すように、濃度Cについて、気体における下限濃度の測定限界線であるGB線が、液体における上限濃度の測定限界線であるLA線よりも低濃度側に位置している。すなわち、気体および液体における被検知対象の吸収係数をそれぞれε、εとすると、数式2および数式3から、数式4を満たすようになっている。
Figure 2014001982
すなわち、測定可能な濃度範囲が気液連続となっている。
上記したように、被検知対象の相を気体から液体へと状態変化させることにより、気体における測定可能範囲とともに、液体における測定可能範囲を利用することができる。したがって、簡単な構成の光路体13を有しつつ、測定可能な濃度範囲を拡張することができる。また本実施形態では、測定可能な濃度範囲が気液連続となっていることにより、被検知対象の濃度を連続的に測定することができる。
仮に、被検知対象の濃度が、相が液体である場合に規定される測定可能範囲から外れるときには、第1制御部17が温度変化手段22と圧力変化手段23とを制御して、被検知対象の相転移を行う。具体的には、図3における点βの状態から、温度を下降させるため、例えば、温度変化手段22としてのペルチェ素子に電圧を印加して被検知対象を冷却する。また、図3における点βの状態から、圧力を上昇させるため、例えば、圧力変化手段23としてのピストンを押しこんで閉空間21内の被検知対象を圧縮する。これにより、例えば、被検知対象の状態が温度T、圧力Pとされたとする(図3中、γ点)。被検知対象は液体から固体へと状態変化する。被検知対象が気体および液体である場合と同様、図2に示したような測定限界線をプロットすることができる。固体における測定限界線を図4に示すSA線およびSB線(二点鎖線)とすると、所定の光路長dに対して、被検知対象の相が固体の場合における測定可能範囲が規定される。なお、液体から固体への状態変化であるため、液体における測定限界線は、気体の測定限界線よりも低濃度側にシフトする。本実施形態では、図4に示すように、濃度Cについて、液体における下限濃度の測定限界線であるLB線が、固体における上限濃度の測定限界線であるSA線よりも低濃度側に位置している。すなわち、固体における被検知対象の吸収係数をεとすると、数式2および数式3から、数式5を満たすようになっている。
Figure 2014001982
すなわち、測定可能な濃度範囲が固液連続となっている。
上記したように、被検知対象の相を液体から固体へと状態変化させることにより、液体における測定可能範囲とともに、固体における測定可能範囲を利用することができる。したがって、簡単な構成の光路体13を有しつつ、測定可能な濃度範囲を拡張することができる。また本実施形態では、測定可能な濃度範囲が固液連続となっていることにより、被検知対象の濃度を連続的に測定することができる。
上記したように、本実施形態では、測定可能な濃度範囲が、気液連続かつ固液連続となっている。このため、従来のように、被検知対象の濃度をただ一つの相のもとで測定する構成に較べて、濃度の測定可能範囲を大幅に拡張することができる。
なお、被検知対象の濃度が測定可能範囲から外れる、とは、IR検出器12が透過光を検出できない(濃度が高すぎる)、あるいは透過光と入射光との強度差が見いだせない(濃度が低すぎる)ことを指す。第1制御部17が状態変化部14を制御するタイミングとして、被検知対象の濃度が測定可能範囲から外れることを第1制御部17自体が判断し、自動的に状態変化部14を制御するようにしてもよいし、使用者が第1制御部17に命令して状態変化部14を制御させてもよい。
また、吸収係数εを変更させるもう一つの手段である、IR検出器12が検出する光の特定波長λを変更する手段について説明する。
本実施形態におけるIR検出器12は、上記したように、検出する光の特定波長λを変更することができるようになっている。そして、図1に示すように、IR検出器12は、第1制御部17と通信可能に接続されており、第1制御部17の制御を受けて、特定波長λの変更が行われる。第1制御部17は、第1メモリ部18に記憶された赤外線吸収スペクトル情報に基づいて、IR検出器12の分光器(図示せず)を制御し、吸収係数εを変更させる。本実施形態における赤外線吸収スペクトル情報とは、図5に示すように、所定の被検知対象における、吸収係数εの波長依存性を指す。なお、図5は、液体のエタノールに関する赤外線吸収スペクトル情報である。
仮に、被検知対象(例えば、エタノール)の濃度測定を、特定波長λとして、図5の波長a(λ≒9.2μm)で測定していたとする。このとき、被検知対象の濃度が、規定される測定可能範囲から外れるときには、第1制御部17がIR検出器12の分光器を制御して、特定波長λを変更する。具体的には、例えば、特定波長λを波長aから波長b(λ≒9.5μm)に変更する。これにより、図5に示すように、エタノールの吸収係数εが増加する。このため、被検知対象の相が液相から固相に状態変化する場合と同様に、図2に示すような測定限界線を低濃度側にシフトさせることができる。すなわち、濃度の測定可能範囲を低濃度側に変更することができる。または、逆に、特定波長λを波長aから波長c(λ≒7.3μm)に変更する。これにより、図5に示すように、エタノールの吸収係数εが減少する。このため、被検知対象の相が液相から気相に状態変化する場合と同様に、図2に示すような測定限界線を高濃度側にシフトさせることができる。すなわち、濃度の測定可能範囲を高濃度側に変更することができる。
さらに、上記したような、IR検出器12において特定波長λが変更可能な構成とすることにより、被検知対象の測定可能な上限濃度を100%(C=1)とすることができる。
図4に示したように、濃度の測定可能範囲がもっとも高濃度側にある相は気相である。したがって、数式2において、Cmax>1を満たすように、気体における吸収係数εを調整することにより、被検知対象の濃度が100%の場合であっても、本実施形態に係る濃度測定装置10で濃度を測定することができる。すなわち、数式6を満たすように吸収係数εを調整することにより、被検知対象の濃度が100%の場合であっても、本実施形態に係る濃度測定装置10で濃度を測定することができる。
Figure 2014001982
なお、本実施形態では、数式6を満たすようにするために、吸収係数εを変化させる例を示したが、後述するように、光路長dが可変とされた光路体13を用いるような場合は、光路長dを変更して数式6を満たすようにしてもよい。
本実施形態では、上記した2つの手段により、吸収係数εを変更する方法を示した。これにより、光路体13の光路長dを変更することなく、測定可能な濃度範囲を拡張することができる。なお、1つ目の手段である、被検知対象の状態変化を伴う方法では、吸収係数εを、数百倍のオーダーで変化させることができる。このため、測定可能な濃度範囲を大幅に変更することができる。一方、2つ目の手段である、特定波長λを変化させる方法では、吸収係数εを、数倍のオーダーで変化させることができる。このため、特定波長λを変化させる方法は、被検知対象の状態変化による方法に較べて、測定可能な濃度範囲の微調整を行いやすい。また、IR検出器12の分光器の光学条件を変更するだけで実現できるので、測定可能な濃度範囲の調整が容易である。
第1制御部17がIR検出器12の分光器を制御するタイミングとして、被検知対象の濃度が測定可能範囲から外れることを第1制御部17自体が判断し、自動的にIR検出器12を制御するようにしてもよいし、使用者が第1制御部17に命令してIR検出器12を制御させてもよい。
なお、上記した2つの手段は、それぞれ独立に実施されても良いし、それぞれが連動して実施されても良い。連動して実施される場合、第1制御部17は、温度センサ15と圧力センサ16とから入力される、閉空間21の温度および圧力と、第1メモリ部18に記憶された相図情報および赤外線吸収スペクトル情報と、に基づいて、温度変化手段22、圧力変化手段23およびIR検出器12を制御して、閉空間21における被検知対象の光の吸収係数εを変化させる。
続いて、本実施形態における濃度測定装置10が備える第2制御部19の作用効果について説明する。なお、上記したように、第2制御部19は、通信可能に接続された第2メモリ部20とともに、アルコールチェッカのような、人間の呼気中に含まれるエタノール濃度を測定する際に使用される要素である。
従来、気体のエタノール濃度を測定する際には、エタノール濃度が10ppm程度であっても1m程度の光路長が必要であった。これに対して、本実施形態では、上記したように、被検知対象(エタノール)の相を気相から液相に変化させて吸収係数εを大きくすることができ、測定可能な下限濃度を低濃度側にシフトさせることができる。これにより、被検知対象の相が気相の場合に較べて光路長を短く設定することができる。
飲酒検知を行うアルコールチェッカでは、被検者の呼気中に含まれるエタノールについて、測定可能な下限濃度が、法規制値よりも低濃度である必要がある。また、光路体の構成の簡素化の観点から、光路長は固定であることが好ましい。本実施形態では、被検知対象の相を変化させることにより、光路長を短く設定しつつ測定可能な下限濃度を低濃度側にシフトできることに加え、第2制御部19を備える。第2制御部19は、エタノールを含んだ呼気が空気中に拡散することによるエタノールの希釈量をその場で演算し、測定可能なエタノールの下限濃度が、法規制値よりも低濃度となるように、測定可能な濃度範囲を変更させる。すなわち、エタノールの吸収係数εを変更させる。以下、詳細に説明する。
第2制御部19は、第2メモリ部20に記憶された、Cと、Cと、Pと、を用いて、測定必要濃度CALを数式7のように演算する。
Figure 2014001982
ここで、Cは第2制御部19が算出した呼気中の二酸化炭素濃度である。Cは人間の肺内における絶対的な二酸化炭素濃度であり、略4%である。Pは法律により定められる酒気帯び運転とされるエタノール濃度であり、例えば、2012年5月現在の日本国における道路交通法では、0.15mg/L、すなわち、25℃において略67ppmと規定されている。数式7において、C/Cは二酸化炭素の希釈率を表している。したがって、(C/C)・Pは、被検者が法規制値Pに等しい濃度のエタノールを呼気中に含んでいる場合に、本実施形態に係る濃度測定装置10で測定されるエタノール濃度に相当する。本実施形態では、この濃度(C/C)・Pの1/10を、測定する必要があるエタノール濃度である測定必要濃度CALとしている。すなわち、この測定必要濃度CALは、呼気が空気中に拡散してエタノールが希釈される希釈率を、肺内の濃度がほぼ決まっている二酸化炭素の濃度を用いて校正することにより求められたものである。
第2制御部19は、求められた測定必要濃度CALが、液体のエタノールにおける測定可能範囲に含まれるように、IR検出器12の分光器を制御して吸収係数εを変更する。すなわち、数式3に示す下限濃度Cminについて、Cmin<CALを満たすようにIR検出器12の分光器を制御する。つまり、数式8を満たすようにIR検出器12の分光器を制御する。
Figure 2014001982
なお、IR検出器12の制御については、第1制御部17が吸収係数を変更するためにIR検出器12を制御する場合と同様であるため、詳細は割愛する。
本実施形態における濃度測定装置10は、上記したような第2制御部19および第2メモリ部20を有していることにより、エタノールの空気中への拡散による希釈量を一回の測定ごとに校正しつつ、液体におけるエタノール濃度の測定可能範囲が常に測定必要濃度CALを含むようにすることができる。したがって、本実施形態における濃度測定装置10は、アルコールチェッカとして最適に用いることができる。
なお、本実施形態では、数式8を満たすようにするために、吸収係数εを変化させる例を示したが、後述するように、光路長dが可変とされた光路体13を用いるような場合は、光路長dを変更して数式8を満たすようにしてもよい。
次に、図6および図7を参照し、本実施形態に係る濃度測定装置10の作用効果について、具体的な被検知対象を例に挙げて説明する。
なお、下記例では、赤外光源11として、例えば、入射させる赤外線の強度Iが6.2mWであり、この強度が波長5μm〜10μmにおいてほぼ一定であるものを用いる。また、IR検出器12の赤外線センサとして、例えば、光量の分解能Δが0.045mWのものを用いる。
1.被検知対象がエタノールである例
この例では、第1メモリ部18に、エタノールの相図情報と、気体のエタノールの赤外線吸収スペクトル情報と、液体のエタノールの赤外線吸収スペクトル情報と、が少なくとも記憶されている。
エタノールが気体の状態において、この例では、特定波長λを9.4μmとして用いるとする。λ=9.4μmにおける気体のエタノールの吸収係数εはε=3.3×10−4ppm−1−1である。図2と同様に、数式2および数式3に上記定数を代入することにより、図6の実線(上限線:GA、下限線GB)に示すような、気体のエタノールにおける測定限界線をプロットすることができる。例えば、光路体13の光路長がd=6.4mmであるとすれば、測定可能な濃度範囲は、図6に示すように、1.5×10ppm以上、1.0×10ppm(100%)以下である。この例では、数式6の条件を満たすため、エタノールの測定可能な上限濃度が100%となる。一方、気体のエタノールでは、エタノールの濃度が1.5×10ppmよりも小さい場合には測定できない。そこで、第1制御部17が状態変化部14を制御してエタノールの相を液相に状態変化させるとともに、IR検出器12を制御して特定波長λを変更する。
すべてのエタノールを液体に変化させた状態において、この例では、特定波長λを9.2μmとして用いるとする。λ=9.2μmにおける液体のエタノールの吸収係数εはε=0.114ppm−1−1である。図2と同様に、数式2および数式3に上記定数を代入することにより、図6の一点鎖線(上限線:LA、下限線LB)に示すような、液体のエタノールにおける測定限界線をプロットすることができる。この例で、光路体13の光路長は6.4mmであり、測定可能な濃度範囲は、図6に示すように、4.3ppm以上、2.9×10ppm以下である。
この例では、液体におけるエタノールの測定可能な上限線(LA線)が、気体におけるエタノールの測定可能な下限線(GB線)よりも高濃度側にある。すなわち、数式4を満たすため、測定可能範囲が気液連続の関係にある。したがって、光路長が一定の簡単な構成の光路体13を有しつつ、測定可能な濃度範囲を、連続的に、4.3ppm以上、1.0×10ppm(100%)以下の範囲まで拡張することができる。
2.被検知対象が水である例
この例では、第1メモリ部18に、水の相図情報と、気体の水の赤外線吸収スペクトル情報と、液体の水の赤外線吸収スペクトル情報と、が少なくとも記憶されている。
水が気体の状態において、この例では、特定波長λを6.05μmとして用いるとする。λ=6.05μmにおける気体の水の吸収係数εはε=2.4×10−5ppm−1−1である。図2と同様に、数式2および数式3に上記定数を代入することにより、図7の実線(上限線:GA、下限線GB)に示すような、気体の水における測定限界線をプロットすることができる。例えば、光路体13の光路長がd=88mmであるとすれば、測定可能な濃度範囲は、図7に示すように、1.5×10ppm以上、1.0×10ppm(100%)以下である。この例では、数式6の条件を満たすため、水の測定可能な上限濃度が100%となる。一方、気体の水では、水の濃度が1.5×10ppmよりも小さい場合には測定できない。そこで、第1制御部17が状態変化部14を制御して水の相を液相に状態変化させるとともに、IR検出器12を制御して特定波長λを変更する。
すべての水を液体に変化させた状態において、この例では、特定波長λを4.95μmとして用いるとする。λ=4.95μmにおける液体の水の吸収係数εはε=1.8×10−2ppm−1−1である。図2と同様に、数式2および数式3に上記定数を代入することにより、図7の一点鎖線(上限線:LA、下限線LB)に示すような、液体の水における測定限界線をプロットすることができる。この例で、光路体13の光路長は88mmであり、測定可能な濃度範囲は、図7に示すように、2.0ppm以上、1.35×10ppm以下である。
この例では、液体における水の測定可能な上限線(LA線)が、気体における水の測定可能な下限線(GB線)よりも低濃度側にある。すなわち、数式4を満たさず、測定可能範囲が不連続となる。すなわち、1.35×10ppmから1.5×10ppmの範囲の測定を行うことができない。本実施形態の構成において、測定可能な濃度範囲を連続にするには、例えば、液体の水の濃度測定に際して、吸収係数εが小さくなるように特定波長λを変更すればよい。または、気体の水の濃度測定に際して、吸収係数εが大きくなるように特定波長λを変更すればよい。あるいは、気体の水の測定に際して、圧力変化手段23を制御して閉空間21内の圧力を増加させることにより、吸収係数εを増加させる方法を採用してもよい。
(第2実施形態)
第1実施形態では、光路体13の光路長が固定である例を示した。これに対して、本実施形態では、光路長が可変である例を示す。
図8に示すように、光路体13のうち、赤外光源11とIR検出器12の間であって、被検知対象の濃度測定に用いられる、光が透過する部分の光路長を可変にする可動部30が設けられている。可動部30は、例えば、圧電体で形成され、赤外光源11からIR検出器12に向かう光に進行方向と平行な方向に伸縮変形できるようになっている。すなわち、可動部30の変形により、赤外光源11から放射された光が光路体13に入射する入射面31と、光路体13からIR検出器12へ透過していく透過面32と、の間の距離(光路長)が、可変になっている。なお、本実施形態の構成は、光路長が可変になっていることを除いて、第1実施形態と同様であるので、詳細の記載を省略する。また、図8についても、各制御部17,19、各メモリ部18,20、および、温度センサ15、圧力センサ16の図示を省略している。
このような構成では、被検知対象の相転移や特定波長の変更による方法だけでなく、光路長を変化させる方法によって、被検知対象の濃度の測定可能範囲を調整することができる。具体的には、可動部30を駆動させ、入射面31と透過面32とが互いに離れる方向に変位させることによって光路長を大きくすることができる。これにより、測定可能な濃度範囲を低濃度側にシフトさせることができる。逆に、入射面31と透過面32とが互いに近づく方向に変位させることによって光路長を小さくすることができる。これにより、測定可能な濃度範囲を高濃度側にシフトさせることができる。
第1実施形態では、被検知対象の濃度が100%の場合の測定を可能とするために、気体における吸収係数εを調整する方法を示した。これに対して、本実施形態では、上記したような効果を奏するため、光路長dを変更することによっても数式6を満たすようにすることができる。したがって、吸収係数のみで数式6を満たさせることが困難な場合であっても、光路長を変化させることにより、被検知対象の測定可能な上限濃度を100%とすることができる。
また、第1実施形態では、液体におけるエタノール濃度の測定可能範囲が常に測定必要濃度CALを含むようにするために、液体における吸収係数εを調整する方法を示した。これに対して、本実施形態では、上記したような効果を奏するため、光路長dを変更することによっても数式8を満たすようにすることができる。したがって、吸収係数のみで数式8を満たさせることが困難な場合であっても、光路長を変化させることにより、エタノール濃度の測定可能範囲が常に測定必要濃度CALを含むようにすることができる。
さらに、被検知対象の相転移による吸収係数の変化を利用して測定可能な濃度範囲を拡張しても、第1実施形態に示した水の例のように、測定可能範囲が気液連続あるいは固液連続にならないことがある。このような場合には、測定時の被検知対象の相によって光路長を変更させることにより、測定可能範囲の連続性を確保することができる。以下、水の例について、図9を用いて説明する。
本実施形態でも、液体の水の濃度測定では、第1実施形態と同様に、光路長d=88mmとすることにより、測定可能な濃度範囲が、1.5×10ppm以上、1.0×10ppm以下、となる。第1実施形態に記載した水の例では、光路長が88mmとされたままで、液体の水についても濃度の測定を行うと、気液連続にならないことを示した。これに対して、本実施形態では、光路体13が可動部30を有することにより、光路長dを変更することができる。例えば、液体の水の濃度測定を行う場合に、光路長をd=80mmとする。このような光路長とすることにより、図9に示すように、液体の水における測定可能な濃度範囲を、2.2ppm以上、1.5×10ppm以下、とすることができる。すなわち、2.2ppm以上、1.0×10ppm(100%)の範囲で、連続的に濃度を測定することができる。
(第3実施形態)
上記した各実施形態では、光路体13のうち、赤外光源11から放射された光が透過する部分が一つである例を示した。これに対して、本実施形態では、赤外光源11から放射された光が透過する部分が複数形成されている。
図10に示すように、本実施形態では、光路体13が第1分岐路40と第2分岐路41とを有する。第1分岐路40における光路長は、第2分岐路41よりも大きくなっている。また、第1分岐路40および第2分岐路41は、切替封止バルブ42を介して、光路体13のうち、状態変化部14が設けられた部分(以下、基部43という)と接続されている。すなわち、切替封止バルブ42により、基部43の内部空間と第1分岐路40の内部空間とが連通されたときには、基部43の内部空間と第1分岐路40の内部空間とで閉空間21を形成する。また、切替封止バルブ42により、基部43の内部空間と第2分岐路41の内部空間とが連通されたときには、基部43の内部空間と第2分岐路41の内部空間とで閉空間21を形成する。なお、本実施形態の構成は、光路体13が分岐路40,41を有することを除いて、第1実施形態と同様であるので、詳細の記載を省略する。また、図10についても、各制御部17,19、各メモリ部18,20、および、温度センサ15、圧力センサ16の図示を省略している。
このような構成では、被検知対象の相によって測定に用いる分岐路40,41を切り替えることにより、第2実施形態に記載したような光路長を変化させることと同様の作用効果を奏することができる。例えば、第1実施形態に示した水の例のように、測定可能範囲が気液連続あるいは固液連続にならないことがある。このような場合には、測定時の被検知対象の相によって被検知対象が充填される分岐路40,41を切り替えることにより、光路長を変更させ、測定可能範囲の連続性を確保することができる。具体的には、第1実施形態に示した水の例について、第1分岐路40の光路長をd=88mmとし、第2分岐路41の光路長をd=80mmとする。そして、気体の水の測定に際しては第1分岐路40と基部43を連通させて(d=88mmで)測定を行い、液体の水の測定に際しては第2分岐路41と基部43を連通させて(d=80mmで)測定を行う。これにより、相の状態が異なる被検知対象に対して、それぞれ対応した光路長で濃度の測定を行うことができる。したがって、第2実施形態と同様に、2.2ppm以上、1.0×10ppm(100%)の範囲で、連続的に濃度を測定することができる。
(その他の実施形態)
以上、本発明の好ましい実施形態について説明したが、本発明は上述した実施形態になんら制限されることなく、本発明の主旨を逸脱しない範囲において、種々変形して実施することが可能である。
上記した各実施形態では、第1制御部17および第2制御部19の両方を備えた濃度測定装置10を示した。しかしながら、第1制御部17および第2制御部19のいずれか一方のみを備えていてもよいし、どちらも備えていない構成としてもよい。第1制御部17および第2制御部19のいずれも備えていない構成とする場合には、状態変化部14の制御およびIR検出器12の特定波長の調整は使用者により行われる。
また、濃度測定装置10をアルコールチェッカとして利用する場合、上記した各実施形態では、呼気が空気中に拡散してエタノールが希釈される希釈率を、肺内の濃度がほぼ決まっている二酸化炭素の濃度を用いて、その場で校正する例を示した。しかしながら、必ずしも、その場で希釈率を校正する必要はない。すなわち、測定必要濃度CALを、既知の希釈率を用いて算出し、固定値として第2メモリ部20に記憶させておいてもよい。具体的には、非特許文献(IEEE SENSORS JORNAL, VOL. 10, NO. 1, JANUARY 2010:Breth Analyzer for Alcolocks and Screening Devices, Bertil Hok et.al.)に基づき、希釈率をC/C=0.1とし、法規制値としてP=0.15mg/L≒67ppmとする。数式7にこれらの値を代入すると、CAL≒0.5ppm(比率としては5×10−7)となる。したがって、濃度測定装置10をアルコールチェッカとして利用する場合、光路長dと、液体のエタノールの吸収係数εとが、数式9を満たすようにIR検出器12の分光器を制御すればよい。
Figure 2014001982
この例のように、エタノールの希釈率をその場で校正せず、予め固定の測定必要濃度CALを利用することにより、校正に要する時間を削減することができ、測定を迅速に行うことができる。ただし、第1実施形態に記載したように、エタノールの希釈率の校正をその場で行うようにすれば、より高い精度でアルコールチェックが可能になる。
また、IR検出器12で検出可能な赤外線の特定波長として、8.5μm以上、10μm以下の範囲を含むことが望ましい。この波長域は、図11および図12に示す赤外線吸収スペクトル情報において、実線で示すように、気体および液体のエタノール特有の吸収係数ピークを含む波長域である。この波長域を用いることにより、被検知対象に含まれるエタノール以外の物質との分離が容易となり、濃度測定の精度を向上させることができる。
また、IR検出器12で検出可能な赤外線の特定波長として、5μm以上、7μm以下の範囲を含むことが望ましい。この波長域は、図11および図12に示す赤外線吸収スペクトル情報において、一点鎖線で示すように、気体および液体の水特有の吸収係数ピークを含む波長域である。この波長域を用いることにより、被検知対象に含まれる水以外の物質との分離が容易となり、濃度測定の精度を向上させることができる。
なお、上記した各実施形態では、第1制御部17が状態変化部14を制御する際に、被検知対象の相がどの相であるかを、第1メモリ部18に記憶された相図情報に基づいて判断する例を示した。しかしながら、この例に限定されるものではなく、例えば、第1メモリ部18に記憶された固相、液相および気相の、すべての赤外線吸収スペクトル情報に基づいて、相の状態を判断することもできる。これは、相の状態により、吸収係数のピークがシフトする事実に基づくものである。ピークのシフト量と、吸収係数の変化を勘案することにより、第1制御部17は、被検知対象の相が、固相、液相および気相の、いずれの状態にあるのかを判断することができる。
なお、上記した各実施形態では、温度変化手段22として、ペルチェ素子を用いる例を示したが、これに限定されるものではない。昇温させる手段として、ヒーターを用いても良いし、降温させる手段として、コンプレッサを用いても良い。
10・・・濃度測定装置
11・・・赤外光源
12・・・IR検出器
13・・・光路体
14・・・状態変化部
15・・・温度センサ
16・・・圧力センサ
22・・・温度変化手段
23・・・圧力変化手段

Claims (13)

  1. 赤外線を含む光を放射する赤外光源(11)と、
    該赤外光源から放射された光を受光して、特定波長の光を検出するIR検出器(12)と、
    前記赤外光源と前記IR検出器の間に配置され、光路長を規定し、被検知対象が充填される閉空間(21)を備えた光路体(13)と、を有する濃度測定装置であって、
    前記閉空間における前記被検知対象の相を変化させるための状態変化部(14)を有することを特徴とする濃度測定装置。
  2. 前記状態変化部は、
    前記閉空間の温度を変化させるための温度変化手段(22)と、
    前記閉空間の圧力を変化させるための圧力変化手段(23)の、少なくとも一方を有することを特徴とする請求項1に記載の濃度測定装置。
  3. 前記閉空間の温度を検出する温度センサ(15)と、
    前記閉空間の圧力を検出する圧力センサ(16)と、
    前記温度センサ、前記圧力センサ、前記状態変化部、および前記IR検出器と通信可能に接続された第1制御部(17)と、
    前記第1制御部と通信可能に接続され、前記被検知対象の相図情報および赤外線吸収スペクトル情報が記憶された第1メモリ部(18)と、を有し、
    前記第1制御部は、前記圧力センサおよび前記温度センサから入力される、前記閉空間の圧力および温度の情報と、前記第1メモリ部に記憶された前記相図情報および前記赤外線吸収スペクトル情報と、に基づいて、前記温度変化手段、前記圧力変化手段および前記IR検出器の少なくとも一つを制御して、前記閉空間における前記被検知対象の光の吸収係数を変化させることを特徴とする請求項2に記載の濃度測定装置。
  4. 前記第1制御部は、前記温度変化手段および前記圧力変化手段の少なくとも一方を制御して、前記閉空間内の温度および圧力の少なくとも一方を変化させることを特徴とする請求項3に記載の濃度測定装置。
  5. 前記第1制御部は、前記IR検出器を制御して、前記IR検出器が検出する前記特定波長を変更させることを特徴とする請求項3または請求項4に記載の濃度測定装置。
  6. 前記赤外光源の光のうち、前記特定波長をλ、強度をIとする光について、
    前記被検知対象が気体の状態における、波長λの光の吸収係数をεとし、
    前記被検知対象が液体の状態における、波長λの光の吸収係数をεとし、
    前記被検知対象が固体の状態における、波長λの光の吸収係数をεとし、
    前記IR検出器の光の強度分解能をΔとするとき、
    (1/ε)・log10(I/Δ)≧(1/ε)・log10[I/(I−Δ)]
    および、
    (1/ε)・log10(I/Δ)≧(1/ε)・log10[I/(I−Δ)]
    のうち、少なくとも1つの式の関係を満たすことを特徴とする請求項1〜5のいずれか1項に記載の濃度測定装置。
  7. 前記赤外光源の光のうち、前記特定波長をλ、強度をIとする光について、
    前記被検知対象が気体の状態における、波長λの光の吸収係数をεとし、
    前記IR検出器の光の強度分解能をΔとするとき、
    前記光路長dが、
    (1/[d×ε])・log10(I/Δ)>1
    の関係を満たすことを特徴とする請求項1〜6のいずれか1項に記載の濃度測定装置。
  8. 前記被検知対象が人間の呼気であって、
    前記IR検出器に通信可能に接続された第2制御部(19)と、
    該第2制御部と通信可能に接続され、人間の肺内に絶対的に含まれる二酸化炭素の濃度Cと、エタノール濃度の酒気帯び運転に係る法規制値Pと、が記憶された第2メモリ部(20)と、を有し、
    前記第2制御部は、
    前記IR検出器が検出した光の出力から前記呼気中の二酸化炭素の濃度Cを算出し、
    前記C、前記C、および、前記Pに基づいて、エタノールの測定必要濃度CALを、
    AL=(1/10)・(C/C)・P
    に基づいて演算するとともに、
    前記赤外光源の光のうち、前記特定波長をλ、強度をIとする光について、
    前記被検知対象としてのエタノールが液体の状態における、波長λの光の吸収係数をεとし、
    前記IR検出器の光の強度分解能をΔ、前記光路長をdとするとき、
    AL>[1/(d×ε)]・log10[I/(I−Δ)]
    の関係を満たすように、前記IR検出器を制御して、前記IR検出器が検出する前記特定波長を変更させることを特徴とする請求項1〜7のいずれか1項に記載の濃度測定装置。
  9. 前記被検知対象が人間の呼気であって、
    前記赤外光源の光のうち、前記特定波長をλ、強度をIとする光について、
    前記被検知対象としてのエタノールが液体の状態における、波長λの光の吸収係数をεとし、
    前記IR検出器の光の強度分解能をΔ、前記光路長をdとするとき、
    5×10−7>[1/(d×ε)]・log10[I/(I−Δ)]
    の関係を満たすことを特徴とする請求項1〜7のいずれか1項に記載の濃度測定装置。
  10. 前記光路体は、前記光路長が可変とされることを特徴とする請求項1〜9のいずれか1項に記載の濃度測定装置。
  11. 前記光路体のうち、前記赤外光源の光が透過する部分が複数に分岐して形成されることを特徴とする請求項1〜10のいずれか1項に記載の濃度測定装置。
  12. 前記IR検出器として、前記特定波長が、8.5μm以上、10μm以下の範囲を含むことを特徴とする請求項1〜11のいずれか1項に記載の濃度測定装置。
  13. 前記IR検出器として、前記特定波長が、5μm以上、7μm以下の範囲を含むことを特徴とする請求項1〜12のいずれか1項に記載の濃度測定装置。
JP2012136259A 2012-06-15 2012-06-15 濃度測定装置 Pending JP2014001982A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012136259A JP2014001982A (ja) 2012-06-15 2012-06-15 濃度測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012136259A JP2014001982A (ja) 2012-06-15 2012-06-15 濃度測定装置

Publications (1)

Publication Number Publication Date
JP2014001982A true JP2014001982A (ja) 2014-01-09

Family

ID=50035301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012136259A Pending JP2014001982A (ja) 2012-06-15 2012-06-15 濃度測定装置

Country Status (1)

Country Link
JP (1) JP2014001982A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113218893A (zh) * 2020-02-05 2021-08-06 阿自倍尔株式会社 测定装置以及测定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347398A (ja) * 1993-06-04 1994-12-22 Tsurumi Soda Co Ltd ガス中の水分の定量方法
JPH0933346A (ja) * 1995-07-22 1997-02-07 Horiba Ltd Ftirを用いたプロセス監視方法
JP2003521688A (ja) * 2000-01-25 2003-07-15 ザ ステイト オブ オレゴン アクティング バイ アンド スルー ザ ステイト ボード オブ ハイヤー エデュケイション オン ビハーフ オブ ポートランド ステイト ユニヴァーシティ 分析用のサンプルを濃縮するための方法及び装置
JP2007155674A (ja) * 2005-12-08 2007-06-21 Horiba Ltd マイクロセル

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347398A (ja) * 1993-06-04 1994-12-22 Tsurumi Soda Co Ltd ガス中の水分の定量方法
JPH0933346A (ja) * 1995-07-22 1997-02-07 Horiba Ltd Ftirを用いたプロセス監視方法
JP2003521688A (ja) * 2000-01-25 2003-07-15 ザ ステイト オブ オレゴン アクティング バイ アンド スルー ザ ステイト ボード オブ ハイヤー エデュケイション オン ビハーフ オブ ポートランド ステイト ユニヴァーシティ 分析用のサンプルを濃縮するための方法及び装置
JP2007155674A (ja) * 2005-12-08 2007-06-21 Horiba Ltd マイクロセル

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113218893A (zh) * 2020-02-05 2021-08-06 阿自倍尔株式会社 测定装置以及测定方法

Similar Documents

Publication Publication Date Title
US8143581B2 (en) Absorption biased NDIR gas sensing methodology
AU2010255551B2 (en) Device and method for determining the composition of a mixture of fluids
US8586930B2 (en) Simplified beam splitter for IR gas sensor
US6512230B1 (en) Method and an arrangement for initiating radiation absorption measurements of gaseous media
US10101266B2 (en) Method and system for gas concentration measurement of gas dissolved in liquids
KR20010042378A (ko) Ndir 계기
US10036702B2 (en) Method, device and sensor for determining an absorption behavior of a medium
AU2007330582A1 (en) Leak detection system and method
RU2493554C2 (ru) Датчик с полосовыми фильтрами
US8003944B2 (en) Saturation filtering NDIR gas sensing methodology
JP2011149965A (ja) 吸光分析計
Sang et al. Impact of H2O on atmospheric CH4 measurement in near-infrared absorption spectroscopy
CN112229818A (zh) 具有宽扫描可调谐二极管激光器的光谱仪
CA2837588A1 (en) Re-calibration of ab ndir gas sensors
JP2008157874A (ja) 吸光分析計
JP2014001982A (ja) 濃度測定装置
Bauke et al. Optical sensor system for time-resolved quantification of methane concentrations: Validation measurements in a rapid compression machine
JP4641410B2 (ja) 光路長設定支援装置及び濃度測定システム
RU2596035C1 (ru) Инфракрасный оптический газоанализатор
JP2003536066A (ja) 光学フィルターを使用する非分散赤外線ガス測定法
KR101571859B1 (ko) 원자 흡광법을 이용한 원소 농도 분석 장치 및 방법
JP4115896B2 (ja) 吸光式分析計
RU2710083C1 (ru) Инфракрасный оптический газоанализатор c автоматической температурной коррекцией
JP5421148B2 (ja) ガス濃度算出装置およびガス濃度計測モジュール
CN114270175A (zh) 多通道气体传感器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151201