JP2014001539A - Artificial tideland structure and repair method of artificial tideland - Google Patents

Artificial tideland structure and repair method of artificial tideland Download PDF

Info

Publication number
JP2014001539A
JP2014001539A JP2012136630A JP2012136630A JP2014001539A JP 2014001539 A JP2014001539 A JP 2014001539A JP 2012136630 A JP2012136630 A JP 2012136630A JP 2012136630 A JP2012136630 A JP 2012136630A JP 2014001539 A JP2014001539 A JP 2014001539A
Authority
JP
Japan
Prior art keywords
layer
sand
tidal flat
lower layer
artificial tidal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012136630A
Other languages
Japanese (ja)
Other versions
JP5979999B2 (en
Inventor
Noriko Kikuhara
紀子 菊原
Takahiro Kumagai
隆宏 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2012136630A priority Critical patent/JP5979999B2/en
Publication of JP2014001539A publication Critical patent/JP2014001539A/en
Application granted granted Critical
Publication of JP5979999B2 publication Critical patent/JP5979999B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Revetment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an artificial tideland structure that has stability against ocean waves and takes long-term operation and maintenance into consideration, and to provide a repair method of artificial tideland.SOLUTION: The artificial tideland structure has a sand-cover layer 12 provided on a filling material layer 11. The sand-cover layer 12 comprises: a lower layer 13 that is provided on the filling material layer and formed of a material having a particle diameter of 2 mm or more and a specific gravity of 2.6 or more; and an upper layer 14 that is provided on the lower layer and formed of sand having a particle diameter of less than 2 mm.

Description

本発明は、長期的な維持管理を考慮した人工干潟構造およびその補修方法に関する。   The present invention relates to an artificial tidal flat structure considering long-term maintenance and a repair method thereof.

従来の人工干潟構造は、囲まれた潜堤内に浚渫土を投入し、覆砂したものが一般的である。干潟が圧密沈下により干出域が減少した場合は、再度砂を投入し、地盤高を回復させている。   Conventional artificial tidal flat structures are generally constructed by dredging clay in the enclosed dike and covering it with sand. When the tidal flat is reduced due to consolidation settlement, sand is thrown in again to restore the ground height.

特許文献1は、干潟造成時に覆砂層下部にシート状の袋を敷設しておき、圧密沈下により干出域が減少した時は、この袋に粘土を注入することで地盤高を回復させるようにした人工干潟の沈下補修方法を提案する。   According to Patent Document 1, a sheet-like bag is laid at the bottom of the sand-covering layer when creating a tidal flat, and when the drainage area decreases due to consolidation settlement, clay is poured into this bag to restore the ground height. We propose a method for repairing settlement of artificial tidal flats.

特開2005-281999号公報JP 2005-281999 JP

従来の干潟構造は、波浪により覆砂層が局所的に薄くなり、浚渫土層が露出しやすい。干出域の減少の度に砂を投入するため、天然資源である砂を大量に必要とし、維持管理費が高くなる。また、砂の追加投入毎により、生息する生物が死滅してしまい、形成された生態系がリセットされてしまう。   In the conventional tidal flat structure, the sand-covering layer is locally thinned by the waves, and the dredged soil layer is easily exposed. Since sand is introduced every time the dry area is reduced, a large amount of sand, which is a natural resource, is required, resulting in high maintenance costs. In addition, every time sand is added, living organisms are killed and the formed ecosystem is reset.

特許文献1の人工干潟の沈下補修方法は、造成時に袋の埋設を行っていない干潟には適用できない。また、時間経過と共に袋が劣化し、粘土注入時に袋が破断する可能性がある。さらに、修復範囲は袋の埋設位置や大きさにより制限されるため、本来修復すべき範囲を修復できない可能性がある。浚渫土を中詰材として利用する以上、長期的な維持管理・修復工は必要であるため、予め生物の生息にも配慮した修復を考慮した(前提にした)干潟構造が必要である。   The subsidence repair method for artificial tidal flats in Patent Document 1 cannot be applied to tidal flats in which bags are not buried at the time of creation. In addition, the bag may deteriorate over time, and the bag may break when clay is injected. Furthermore, since the repair range is limited by the burying position and size of the bag, there is a possibility that the range that should be repaired cannot be repaired. As long as dredged soil is used as a filling material, long-term maintenance and restoration work is necessary, so a tidal flat structure that takes into account the restoration of living creatures in advance is necessary.

本発明は、上述のような従来技術の問題に鑑み、波浪に対し安定性を有し、長期的な維持管理を考慮した人工干潟構造および人工干潟の補修方法を提供することを目的とする。   An object of the present invention is to provide an artificial tidal flat structure and a method for repairing an artificial tidal flat that are stable against waves and take long-term maintenance into account, in view of the above-described problems of the prior art.

上記目的を達成するために、本実施形態による人工干潟構造は、中詰材層の上に覆砂層を設けた人工干潟構造であって、前記覆砂層は、前記中詰材層の上に設けた粒径2mm以上、比重2.6以上の材料からなる下部層と、前記下部層の上に設けた粒径2mm未満の砂からなる上部層と、を備えることを特徴とする。   In order to achieve the above object, the artificial tidal flat structure according to the present embodiment is an artificial tidal flat structure in which a sand covering layer is provided on the filling material layer, and the sand covering layer is provided on the filling material layer. A lower layer made of a material having a particle size of 2 mm or more and a specific gravity of 2.6 or more, and an upper layer made of sand having a particle size of less than 2 mm provided on the lower layer.

この人工干潟構造によれば、覆砂層の下部に粒径の大きい材料を配置することにより波浪に対する安定性を確保できる。すなわち、下部層の材料は、個々の粒子が砂の粒子よりも重く、覆砂層の上部の砂材料は、波浪によって移動・流出しやすいが、下部層の材料は波に対して安定で、移動しないため、中詰材の露出や流出等が生じない。   According to this artificial tidal flat structure, stability against waves can be ensured by disposing a material having a large particle size under the sand-capping layer. In other words, the material of the lower layer is heavier than the particles of sand, and the sand material at the top of the sand-capping layer is easy to move and flow out by waves, but the material of the lower layer is stable against waves and moves Therefore, there is no exposure or outflow of the filling material.

また、覆砂層の下部層の材料の間隙には上部の砂材料が充填され、その密度は砂のみや砕石のみの場合よりも大きくなるので、覆砂層全体の重さが大きくなる。将来、人工干潟の干出域が圧密沈下により減少したとき、スラリー状材料を中詰材層内に圧入することで地盤を隆起させて地盤高を回復させることができるが、このときの載荷重を下部層により確保することができる。このように、長期的な維持管理を考慮した人工干潟構造を実現できる。   In addition, the gap between the materials of the lower layer of the sand covering layer is filled with the upper sand material, and the density thereof is higher than that of the case of only sand or crushed stone, so that the weight of the entire sand covering layer is increased. In the future, when the drainage area of the artificial tidal flat decreases due to consolidation settlement, the ground can be raised and the ground height can be restored by pressing the slurry-like material into the filling material layer. Can be secured by the lower layer. In this way, an artificial tidal flat structure considering long-term maintenance can be realized.

上記人工干潟構造において前記下部層の材料が、砕石、コンクリート塊および鉄鋼スラグのうちのいずれか1つまたはいずれか2つ以上の混合物であることが好ましい。   In the artificial tidal flat structure, it is preferable that the material of the lower layer is any one of crushed stone, concrete block, and steel slag, or a mixture of any two or more.

また、前記下部層は0.15〜0.3mの層厚を有することが好ましい。この層厚であると、波浪の作用により上部の砂材料が流出した状態(下部層の材料のみ残存した状態)で、人が歩いて載荷しても踏み抜かない支持力を確保することができる。   The lower layer preferably has a layer thickness of 0.15 to 0.3 m. With this layer thickness, it is possible to secure a supporting force that does not step out even if a person walks and loads in a state where the sand material of the upper part flows out due to the action of waves (only the material of the lower layer remains). .

前記中詰材層と前記下部層との間に面状補強材を配置することで、干潟補修のとき、スラリー状材料の圧入時の揚圧力(土圧)に対し、面状補強材の張力が働き、スラリー状材料の噴出や局所的な隆起を抑制できる。   By placing a planar reinforcement between the filling material layer and the lower layer, the tension of the planar reinforcement against the lifting pressure (earth pressure) when the slurry-like material is pressed in during tidal flat repair. Works and can suppress the ejection of the slurry-like material and local bulge.

本実施形態による人工干潟の補修方法は、上述の人工干潟構造を有する人工干潟を補修する方法であって、前記人工干潟の干出域が沈下により減少したとき、スラリー状材料を前記中詰材層内に圧入することで地盤高を回復させることを特徴とする。   An artificial tidal flat repair method according to the present embodiment is a method for repairing an artificial tidal flat having the above-described artificial tidal flat structure, and when the drainage area of the artificial tidal flat is reduced by subsidence, the slurry-like material is replaced with the filling material. It is characterized by recovering the ground height by press-fitting into the layer.

この人工干潟の補修方法によれば、上記人工干潟構造において前記下部層の材料の間隙には上部の砂材料が充填され、覆砂層の下部層の密度は砂のみや砕石のみの場合よりも大きくなるので、覆砂層全体の重さが大きくなるが、人工干潟の干出域が圧密沈下などにより減少したとき、スラリー状材料を中詰材層内に圧入することで地盤を隆起させて地盤高を回復させることができる。このときの載荷重を下部層により確保することができる。   According to this artificial tidal flat repair method, in the artificial tidal flat structure, the gap between the material of the lower layer is filled with the upper sand material, and the density of the lower layer of the sand cover layer is larger than that of only sand or crushed stone. As a result, the total weight of the sand-covering layer increases, but when the artificial tidal flat area decreases due to consolidation settlement, etc., the ground is raised by pressing the slurry-like material into the filling material layer. Can be recovered. The loading load at this time can be ensured by the lower layer.

本発明によれば、波浪に対し安定性を有し、長期的な維持管理を考慮した人工干潟構造および人工干潟の補修方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, it has stability with respect to a wave, and can provide the repair method of the artificial tidal flat structure and artificial tidal flat which considered long-term maintenance management.

本実施形態による人工干潟構造を概略的に示す断面図である。It is sectional drawing which shows roughly the artificial tidal flat structure by this embodiment. 図1と同様の人工干潟構造を概略的に示す断面図で、補修工程(a)〜(c)を示す。It is sectional drawing which shows the artificial tidal flat structure similar to FIG. 1, and shows repair process (a)-(c). 図2(b)の補修圧入工程を説明するための要部断面図で、圧入前(a)、覆砂層が下部層と上部層を有する場合の圧入後(b)、覆砂層が砂のみの場合の圧入後(c)の各状態を概略的に示す。It is principal part sectional drawing for demonstrating the repair press-fit process of FIG.2 (b), Before press-fit (a), after press-fit in the case where a sand covering layer has a lower layer and an upper layer (b), the sand covering layer is only sand. Each state after press-fitting in (c) is schematically shown. 本実験例で用いた実験土槽の概略的な平面図(a)および図4(a)のB-B線方向に切断してみた図(b)である。It is the figure (b) which cut | disconnected in the BB line direction of the schematic top view (a) of FIG. 4 (a), and the experimental soil tank used by this experiment example. 本実験例の結果を示すグラフで、圧入位置(噴射位置)からの距離と計測した隆起量との関係を示す。It is a graph which shows the result of this experiment example, and shows the relationship between the distance from a press-fit position (injection position) and the measured amount of protrusion.

以下、本発明を実施するための形態について図面を用いて説明する。図1は本実施形態による人工干潟構造を概略的に示す断面図である。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view schematically showing an artificial tidal flat structure according to the present embodiment.

図1に示す人工干潟構造は、護岸1と潜堤2との間に浚渫土などを投入して緩く傾斜するように配置された中詰材層11と、中詰材層11の上に砂などを投入して配置された覆砂層12と、から構成される。   The artificial tidal flat structure shown in FIG. 1 includes an intermediate filler layer 11 disposed so as to be gently inclined by inserting dredged soil between the revetment 1 and the submerged dike 2, and sand on the intermediate filler layer 11. And the sand-covering layer 12 arranged by putting them in.

覆砂層12は、中詰材層11の上に配置された粒径2mm以上、比重2.6以上の砕石からなる下部層13と、下部層13の上に配置された粒径2mm未満の砂からなる上部層14と、から構成される。下部層13の層厚hは0.15〜0.3mであることが好ましい。   The sand covering layer 12 is composed of a lower layer 13 made of crushed stone having a particle size of 2 mm or more and a specific gravity of 2.6 or more arranged on the filling material layer 11 and sand having a particle size of less than 2 mm arranged on the lower layer 13. And an upper layer 14. The layer thickness h of the lower layer 13 is preferably 0.15 to 0.3 m.

図1の人工干潟構造では、護岸1から水面以下の潜堤2に向けて緩やかに傾斜し高さが減少しており、護岸1から潜堤2に向けて所定の距離で干出域Aが形成されている。   In the artificial tidal flat structure shown in FIG. 1, the height gradually decreases from the revetment 1 toward the submerged dike 2 below the surface of the water, and the dry area A extends from the revetment 1 toward the submerged dike 2 at a predetermined distance. Is formed.

図1の人工干潟構造によれば、覆砂層12において、下部層13の材料(粒径2mm以上、比重2.6以上の砕石)は粒子重量が砂の粒子よりも大きいため波に対して安定で移動しない。したがって、下部層13は、波浪作用時に上部層14の材料(粒径2mm未満の砂)が流失しても残存し、中詰材層11の浚渫土等の露出や流出を防ぎ、干潟地盤を維持することができる。このように、覆砂層12の下部層13に粒径の大きい材料(砕石)を配置することにより、波浪に対する安定性を確保できる。   According to the artificial tidal flat structure of FIG. 1, the material of the lower layer 13 (crushed stone having a particle size of 2 mm or more and a specific gravity of 2.6 or more) in the sand-clad layer 12 is stable against waves because the particle weight is larger than that of sand particles. do not do. Therefore, the lower layer 13 remains even if the material of the upper layer 14 (sand having a particle size of less than 2 mm) is washed away during the wave action, and prevents the padding layer 11 from being exposed and discharged, and the tidal flat ground Can be maintained. Thus, by arranging a material (crushed stone) having a large particle size in the lower layer 13 of the sand covering layer 12, stability against waves can be ensured.

また、覆砂層12において、下部層13の粒径が大きい砕石の空隙内に上部層14の砂が入り込むため、土の密度が増加する。すなわち、下部層13の砕石の間隙には、上部の材料(砂)が充填される形態になる。このため、下部層13の土の密度は砂のみや砕石のみの場合よりも大きい。下部層13の重さが大きいので、補修時にスラリー状粘土を中詰材層11内に圧入して地盤を隆起させるときの載荷重を確保することができる。すなわち、砂のみによる覆砂構造に比べて密度が大きく載荷重が大きくなる。   In the sand covering layer 12, the sand density of the upper layer 14 increases because the sand of the upper layer 14 enters the crushed stone gaps in which the particle size of the lower layer 13 is large. That is, the gap between the crushed stones of the lower layer 13 is filled with the upper material (sand). For this reason, the density of the soil of the lower layer 13 is larger than the case of only sand or crushed stone. Since the weight of the lower layer 13 is large, it is possible to secure a loading load when the ground clay is raised by press-fitting slurry clay into the filling material layer 11 during repair. That is, the density is large and the load is large as compared with the sand-covered structure using only sand.

また、砂に比べて、角ばった形状の砕石は内部摩擦角が大きくせん断強度が大きい。波浪作用に対して防護機能を持つため、覆砂層12が完全に流出してしまうおそれがなく、長期的に干潟が機能できる。   Also, crushed stones with a square shape have a larger internal friction angle and a higher shear strength than sand. Since it has a protective function against the wave action, there is no risk that the sand-covering layer 12 will flow out completely, and the tidal flat can function for a long time.

また、覆砂層12において下部層13は0.15〜0.3mの層厚hを有することで、波浪の作用により上部層14の砂が流出した状態(下部層13の砕石のみ残存した状態)で、人が歩いて載荷しても踏み抜かない支持力を確保することができる。   Further, in the sand covering layer 12, the lower layer 13 has a layer thickness h of 0.15 to 0.3 m, so that the sand of the upper layer 14 flows out due to the action of waves (the state where only the crushed stone of the lower layer 13 remains). Even if you walk and load, you can secure the support force that will not step on.

次に、図1の人工干潟が圧密沈下により干出域が減少した場合の補修方法について図2,図3を参照して説明する。図2は、図1と同様の人工干潟構造を概略的に示す断面図であり、補修工程(a)〜(c)を示す。図3は、図2(b)の補修圧入工程を説明するための要部断面図で、圧入前(a)、覆砂層が下部層と上部層を有する場合の圧入後(b)、覆砂層が砂のみの場合の圧入後(c)の各状態を概略的に示す。   Next, a repairing method when the artificial tidal flat shown in FIG. 1 is reduced due to consolidation settlement will be described with reference to FIGS. FIG. 2 is a cross-sectional view schematically showing an artificial tidal flat structure similar to FIG. 1 and shows repair steps (a) to (c). FIG. 3 is a cross-sectional view of the main part for explaining the repair press-fitting process of FIG. 2 (b), before press-fitting (a), after press-fitting when the sand covering layer has a lower layer and an upper layer (b), and the sand covering layer. Each state after press-fitting in the case where the sand is only sand is schematically shown.

図1の人工干潟が圧密沈下の進行により、図1の干出域Aが図2(a)のように減少し、距離の短い干出域A’となった場合、次のようにして人工干潟を補修し地盤高さを回復させる。   When the artificial tidal flat in FIG. 1 decreases as shown in FIG. 2 (a) due to the progress of consolidation settlement, the artificial tidal flat in FIG. Repair the tidal flat and restore the ground height.

まず、図3(a)のように、地表面から覆砂層12を貫通して圧入管20を中詰材層11に挿入する。   First, as shown in FIG. 3A, the press-fit pipe 20 is inserted into the filling material layer 11 from the ground surface through the sand covering layer 12.

次に、図2(b)、図3(b)のように、圧入管20を通してスラリー状の粘土をコンプレッサ(図示省略)などにより中詰材層11内へ圧入し注入することで、中詰材層11内にスラリー状粘土からなる圧入部21を形成する。   Next, as shown in FIGS. 2 (b) and 3 (b), the slurry-like clay is press-fitted into the filling material layer 11 through a press-fitting pipe 20 by means of a compressor (not shown) or the like, and injected. A press-fit portion 21 made of slurry clay is formed in the material layer 11.

上述のようにして、中詰材層11内にスラリー状粘土からなる圧入部21を形成することで、図2(c)、図3(b)のように、圧入口近傍で局所的な隆起が生じることなく、比較的広範囲にわたって緩やかに地盤高を回復することができる。すなわち、下部層13があるため覆砂層12の載荷重が大きくせん断抵抗力が大きいため、干潟修復のためにスラリー状粘土を干潟内部に圧入した場合、圧入口近傍で局所的な隆起が生じることなく、広範囲にわたって緩やかに地盤を隆起させて地盤高を回復することができる。   By forming the press-fit portion 21 made of slurry clay in the filling material layer 11 as described above, a local bulge is formed in the vicinity of the pressure inlet as shown in FIGS. 2 (c) and 3 (b). Therefore, the ground height can be recovered gradually over a relatively wide range. In other words, since the lower layer 13 is present, the load on the sand-capping layer 12 is large and the shear resistance is large, so that when the clay clay is pressed into the tidal flat for the restoration of the tidal flat, local bulging occurs in the vicinity of the inlet. However, it is possible to recover the ground height by gently raising the ground over a wide area.

本実施形態の人工干潟の補修方法によれば、図1の人工干潟が圧密沈下により干出域が減少したとき、スラリー状粘土を中詰材層11内に圧入することで広範囲にわたって緩やかに地盤を隆起させ地盤高を回復させることができる。このため、従来のような砂の再投入が不要となるので、天然資源の砂を使用せずにすみ、維持管理費もかさまない。また、砂の追加投入により生息する生物が死滅し形成された生態系がリセットされてしまうこともない。   According to the repair method of the artificial tidal flat of this embodiment, when the artificial tidal flat of FIG. 1 reduces the squeezed area due to consolidation settlement, the clay is pressed into the filling material layer 11 and the ground is gently spread over a wide area. Can be raised to restore the ground height. For this reason, it is not necessary to re-input sand as in the past, so it is not necessary to use natural resource sand, and maintenance costs are not increased. Moreover, living organisms are killed by additional inputs of sand and the formed ecosystem is not reset.

スラリー状粘土を圧入して地盤を隆起させる際、図3(b)のように揚圧力が中詰材層11から覆砂層12に向かって45°に分散して作用する。図3(c)のように従来の砂のみの覆砂層19の場合と比べて、図3(b)のように内部摩擦角が大きくせん断強度の高い砕石からなる下部層13が配置されることで、揚圧力に対して覆砂層12がせん断破壊することなく、より広範囲にわたって緩やかに地盤が隆起しやすい。   When the ground clay is raised by press-fitting slurry clay, the lifting pressure acts by dispersing 45 ° from the intermediate filler layer 11 toward the sand covering layer 12 as shown in FIG. Compared to the case of the conventional sand-only sand covering layer 19 as shown in FIG. 3C, the lower layer 13 made of crushed stone having a large internal friction angle and high shear strength is arranged as shown in FIG. 3B. Thus, the ground cover layer 12 is likely to rise gently over a wider range without shear failure of the sand-clad layer 12 against the lifting pressure.

また、干潟地盤中に局所的な軟弱部や不連続面が存在する場合、圧入されたスラリー状粘土が干潟内部からその軟弱部や不連続面に集中して割裂破壊を生じさせ、地盤表面に噴出する懸念があるのに対し、本実施形態のように下部層13を配置することで、覆砂層12の載荷重が大きくなるので、そのような軟弱部や不連続面での割裂破壊を生じにくくさせる効果を奏する。なお、載荷重が小さい場合や覆砂層のせん断強度が小さい場合は、中詰材層内にスラリー状粘土を圧入しても、水平に広がらずに圧入位置近傍で噴出しやすくなってしまう。   In addition, when there are local soft parts or discontinuous surfaces in the tidal flats, the injected slurry clay concentrates on the soft parts or discontinuous surfaces from the inside of the tidal flats, causing split fractures, and on the ground surface. Although there is a concern of jetting out, placing the lower layer 13 as in the present embodiment increases the load of the sand-capping layer 12, which causes split fractures at such soft parts and discontinuous surfaces. There is an effect to make it difficult. When the loaded load is small or the shear strength of the sand-capping layer is small, even if slurry-like clay is pressed into the filling material layer, it does not spread horizontally but is likely to be ejected near the press-fit position.

上述のように覆砂層12の載荷重大きくすることで地盤中の軟弱部や不連続面において割裂破壊を生じにくくさせる効果についてさらに説明する。粘土等の非排水せん断強度を求める試験(一軸圧縮試験(「土の一軸圧縮試験方法」JIS A 1216: 2009)、三軸(UU)試験(「土の非圧密非排水(UU)三軸圧縮試験方法」,JGS 0521))の適用状況から類推することが可能である。すなわち、クラック等の弱部が存在するような供試体に対し、拘束圧を与えない条件で行う一軸圧縮試験では、そのような弱部に応力が集中してせん断破壊を生じやすく、土本来の強度に比べて低い強度が評価される。一方、供試体に拘束圧を与えた条件で行う三軸(UU)試験では、弱部への応力集中がなく、土本来の強度を調べることができることが知られている。土質試験において、クラック等の弱部があるような条件で正確な非排水せん断強度を調査する場合、3軸(UU)試験が採用されている。以上のことから、覆砂の上載圧が大きく干潟地盤を拘束する圧力が高い方が、干潟地盤中に割裂破壊を起こすことなく、安定して粘土スラリーを圧入できると考えられる。   The effect which makes it difficult to produce a split fracture in the soft part in a ground and a discontinuous surface by enlarging the loading load of the sand covering layer 12 as mentioned above is further demonstrated. Tests to determine the undrained shear strength of clay (uniaxial compression test ("Soil uniaxial compression test method" JIS A 1216: 2009), triaxial (UU) test ("unconsolidated undrained (UU) triaxial compression of soil)" It can be inferred from the application status of “Test method”, JGS 0521)). In other words, in a uniaxial compression test performed under conditions that do not give restraint pressure to specimens where weak parts such as cracks exist, stress is likely to concentrate in such weak parts and shear failure occurs. A lower strength is evaluated compared to the strength. On the other hand, it is known that in the triaxial (UU) test performed under the condition that a restraint pressure is applied to the specimen, the original strength of the soil can be examined without stress concentration on the weak part. In the soil test, a triaxial (UU) test is adopted when investigating accurate undrained shear strength under conditions where there are weak parts such as cracks. From the above, it is considered that clay slurry can be stably injected without causing splitting fracture in the tidal flat ground when the pressure on the sand cover is large and the pressure that restrains the tidal flat ground is high.

(実験例)
次に、本発明の効果を確認した実験例について説明する。本実験例は、図4(a)(b)の実験土槽を用いて行った。図4は本実験例で用いた実験土槽の概略的な平面図(a)および図4(a)のB-B線方向に切断してみた図(b)である。
(Experimental example)
Next, experimental examples in which the effect of the present invention has been confirmed will be described. This experimental example was performed using the experimental soil tank of FIGS. 4 (a) and 4 (b). FIG. 4 is a schematic plan view (a) of the experimental soil tank used in the present experimental example and a diagram (b) obtained by cutting in the BB line direction of FIG.

実験条件は次のとおりである。
・原地盤:徳山港粘土(w=130%)層厚50cm
・覆砂層の材料:
ケース1無し
ケース2有り(砂)粒径2.0mm未満、層厚10cm
ケース3有り(砕石)粒径10mm前後、層厚10cm
・圧入粘土:セメントベントナイト(徳山港粘土(W=165%)と同程度のフロー値となる性状)
・圧入工程:圧入速度15L/minで75L圧入(5分間)
The experimental conditions are as follows.
・ Original ground: Tokuyama Port clay (w = 130%) layer thickness 50cm
・ Material of sand cover layer:
Without case 1 With case 2 (sand) Particle size less than 2.0mm, layer thickness 10cm
Case 3 (crushed stone) particle size around 10mm, layer thickness 10cm
・ Press-in clay: Cement bentonite (property with the same flow value as Tokuyama Port clay (W = 165%))
・ Press-in process: 75L press-in at a press-in speed of 15L / min (5 minutes)

粘土層の上部に、覆砂材として砂(ケース2)、砕石(ケース3)を設け、ケース1では覆砂材無しとした実験土槽で、スラリー状粘土を粘土層に圧入した際の地表面の隆起量を計測した。図5は、本実験例の結果を示すグラフで、圧入位置(噴射位置)からの距離と計測した隆起量との関係を示す。   In the upper part of the clay layer, sand (case 2) and crushed stone (case 3) are provided as sand-capping material. The amount of surface bulge was measured. FIG. 5 is a graph showing the results of this experimental example, and shows the relationship between the distance from the press-fitting position (injection position) and the measured bulge amount.

実験の結果、覆砂材無しでは圧入直後にスラリー状粘土が図5の噴出範囲で噴出し、覆砂材有(砂)では図5のように隆起勾配が急であった。これに対し、覆砂材有(砕石)では図5のように隆起勾配が緩やかで、かつ、広範囲の隆起が認められた。本実験例のケース1と2の比較により覆砂の上載荷重の効果を確認できた。また、ケース2と3の比較により覆砂にせん断強度の大きい材料を用いることの効果を確認できた。   As a result of the experiment, the slurry-like clay was ejected in the ejection range of FIG. 5 immediately after the press-fitting without the sand-capping material, and the uplift gradient was steep as shown in FIG. 5 with the sand-capping material present (sand). On the other hand, in the presence of sand-capping material (crushed stone), as shown in FIG. By comparing Cases 1 and 2 of this experimental example, the effect of the overlay load on the sand was confirmed. Moreover, the effect of using a material with large shear strength for covering sand was confirmed by comparing Cases 2 and 3.

上述のように、図1の下部層13(砕石)の望ましい層厚hは0.15〜0.3m程度であるが、これは波浪の作用により上部材料が流出した状態(下部層13の材料のみ残存した状態)で、人が載荷しても踏み抜かない支持力を確保できる層厚を算出した結果に基づく。この算出について以下、説明する。   As described above, the desired layer thickness h of the lower layer 13 (crushed stone) in FIG. 1 is about 0.15 to 0.3 m, but this is a state in which the upper material flows out by the action of waves (only the material of the lower layer 13 remains). Based on the result of calculating the layer thickness that can secure the supporting force that cannot be stepped on even if a person is loaded. This calculation will be described below.

人間による上載荷重は次の表1のようになる。この計算は下部層の層厚h=0.2mの場合である。   Table 1 shows the loading load by humans. This calculation is for the case where the thickness of the lower layer is h = 0.2 m.

Figure 2014001539
Figure 2014001539

また、粘性土の支持力は次の表2のようになる。   Moreover, the bearing capacity of the clay is as shown in Table 2 below.

Figure 2014001539
Figure 2014001539

以上の下部層の層厚0.2mと同様の計算を下部層の層厚0.1,0.15,0.3,0.4,0.5mについても行い、それらの計算結果を表3に示す。下部層13(砕石)の層厚hが0.15〜0.3mであると、上載荷重(下部層(砕石)+人間)が粘性土の支持力よりも小さく、人間が粘性土地盤を踏み抜かないと考えられる。   The same calculation as for the lower layer thickness of 0.2 m is performed for the lower layer thicknesses of 0.1, 0.15, 0.3, 0.4, and 0.5 m, and the calculation results are shown in Table 3. If the layer thickness h of the lower layer 13 (crushed stone) is 0.15-0.3m, the upper load (lower layer (crushed stone) + human) is smaller than the supporting capacity of the viscous soil, and humans have to step on the viscous land Conceivable.

Figure 2014001539
Figure 2014001539

以上のように本発明を実施するための形態について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。たとえば、覆砂層の下部層の材料(粒径2mm以上、比重2.6以上)として、本実施形態では、砕石を用いたが、本発明はこれに限定されず、補修工事の作業に支障がなければ、砕石以外に水硬性がないまたは低い材料も代替可能であり、たとえば、コンクリート塊や鉄鋼スラグ(脱リン・脱炭等)などを使用でき、これらの混合物であってもよい。   As described above, the modes for carrying out the present invention have been described. However, the present invention is not limited to these, and various modifications can be made within the scope of the technical idea of the present invention. For example, although crushed stone was used in this embodiment as the material for the lower layer of the sand-capping layer (particle size 2 mm or more, specific gravity 2.6 or more), the present invention is not limited to this, and there is no problem in repair work. In addition to the crushed stone, a material having no or low hydraulic property can be substituted. For example, a concrete lump, steel slag (dephosphorization / decarburization, etc.) can be used, and a mixture thereof may be used.

また、図1において中詰材層11と下部層13との間にジオテキスタイル等の面状補強材を敷設するようにしてもよい。覆砂層12の下部層13の材料(砕石)は比重が大きいため、砕石が中詰材層11へめりこむおそれがあるが、かかるめりこみを防止できる。また、人工干潟の補修のためのスラリー状材料の圧入時の揚圧力(土圧)に対し、面状補強材の張力が働き、スラリー状粘土の噴出や局所的な隆起を抑制できる。   In FIG. 1, a planar reinforcing material such as a geotextile may be laid between the filling material layer 11 and the lower layer 13. Since the material (crushed stone) of the lower layer 13 of the sand covering layer 12 has a large specific gravity, the crushed stone may sink into the filling material layer 11, but this can be prevented. In addition, the tension of the planar reinforcing material works against the lifting pressure (earth pressure) when the slurry-like material is pressed in to repair the artificial tidal flat, and the slurry-like clay eruption and local uplift can be suppressed.

11 中詰材層
12 覆砂層
13 下部層
14 上部層
20 圧入管
21 圧入部
A 干出域
h 下部層の層厚
DESCRIPTION OF SYMBOLS 11 Filling material layer 12 Sand covering layer 13 Lower layer 14 Upper layer 20 Press-in pipe 21 Press-in part A Drying area h Lower layer thickness

Claims (5)

中詰材層の上に覆砂層を設けた人工干潟構造であって、
前記覆砂層は、前記中詰材層の上に設けた粒径2mm以上、比重2.6以上の材料からなる下部層と、前記下部層の上に設けた粒径2mm未満の砂からなる上部層と、を備えることを特徴とする人工干潟構造。
An artificial tidal flat structure with a sand-covering layer on the filling material layer,
The sand covering layer is a lower layer made of a material having a particle size of 2 mm or more and a specific gravity of 2.6 or more provided on the filling material layer, and an upper layer made of sand having a particle size of less than 2 mm provided on the lower layer. An artificial tidal flat structure characterized by comprising.
前記下部層の材料が、砕石、コンクリート塊、および鉄鋼スラグのうちのいずれか1つまたはいずれか2つ以上の混合物であることを特徴とする請求項1に記載の人工干潟構造。   The artificial tidal flat structure according to claim 1, wherein the material of the lower layer is any one of a crushed stone, a concrete lump, and a steel slag, or a mixture of any two or more. 前記下部層は0.15〜0.3mの層厚を有することを特徴とする請求項1または2に記載の人工干潟構造。   The artificial tidal flat structure according to claim 1 or 2, wherein the lower layer has a layer thickness of 0.15 to 0.3 m. 前記中詰材層と前記下部層との間に面状補強材を配置したことを特徴とする請求項1〜3のいずれか1項に記載の人工干潟構造。   The artificial tidal flat structure according to any one of claims 1 to 3, wherein a planar reinforcing material is disposed between the filling material layer and the lower layer. 請求項1〜4のいずれか1項に記載の人工干潟構造を有する人工干潟を補修する方法であって、
前記人工干潟の干出域が沈下により減少したとき、スラリー状材料を前記中詰材層内に圧入することで地盤高を回復させることを特徴とする人工干潟の補修方法。
A method for repairing an artificial tidal flat having the artificial tidal flat structure according to any one of claims 1 to 4,
A method for repairing an artificial tidal flat characterized in that when the drained area of the artificial tidal flat decreases due to subsidence, the ground height is recovered by press-fitting a slurry-like material into the filling material layer.
JP2012136630A 2012-06-18 2012-06-18 Artificial tidal flat structure and repair method of artificial tidal flat Active JP5979999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012136630A JP5979999B2 (en) 2012-06-18 2012-06-18 Artificial tidal flat structure and repair method of artificial tidal flat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012136630A JP5979999B2 (en) 2012-06-18 2012-06-18 Artificial tidal flat structure and repair method of artificial tidal flat

Publications (2)

Publication Number Publication Date
JP2014001539A true JP2014001539A (en) 2014-01-09
JP5979999B2 JP5979999B2 (en) 2016-08-31

Family

ID=50034957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012136630A Active JP5979999B2 (en) 2012-06-18 2012-06-18 Artificial tidal flat structure and repair method of artificial tidal flat

Country Status (1)

Country Link
JP (1) JP5979999B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107704850A (en) * 2017-10-30 2018-02-16 河海大学 A kind of Creek system landform identifying processing method
CN110258445A (en) * 2019-07-23 2019-09-20 中交上海航道勘察设计研究院有限公司 Multifunction fishing levee body system
CN115012362A (en) * 2022-06-14 2022-09-06 中交上海航道局有限公司 Construction process of flood drainage channel for deep silt layer in intertidal zone

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109723029A (en) * 2018-12-18 2019-05-07 中交上海航道勘察设计研究院有限公司 A kind of semi open type blowing-filling sludge beach and its make beach method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001098525A (en) * 1999-09-29 2001-04-10 Nittodaito Construction Co Ltd Sandy beach erosion protection method
JP3582447B2 (en) * 2000-03-09 2004-10-27 Jfeスチール株式会社 Water bottom structure and bottom / water purification method
JP2004305971A (en) * 2003-04-10 2004-11-04 Fujita Corp Method for purifying bottom sediment in closed water area by crushed shell material
JP2005006598A (en) * 2003-06-20 2005-01-13 Jfe Steel Kk Artificial sand for raising shellfish and method for producing the same
JP2005226256A (en) * 2004-02-10 2005-08-25 Toyo Constr Co Ltd Reclaimed tideland and reclaimed shallow place creating method
JP2005330731A (en) * 2004-05-20 2005-12-02 Penta Ocean Constr Co Ltd Artificial tideland material using dredged cohesive soil, manufacturing device for the same, and artificial tideland construction method
JP2006214085A (en) * 2005-02-01 2006-08-17 Jfe Steel Kk Method for developing shallows and the like
JP2006274690A (en) * 2005-03-30 2006-10-12 Penta Ocean Constr Co Ltd Tideland sand covering material, tideland developing method, tideland sand covering method, and tideland sand covering structure
JP2007061054A (en) * 2005-09-01 2007-03-15 Jfe Steel Kk Sand cover structure and sand cover method at water bottom
US20070196173A1 (en) * 2006-02-23 2007-08-23 William C. Shehan Manmade island and methods
JP2010094619A (en) * 2008-10-17 2010-04-30 Nisshin Steel Co Ltd Sand replacement material and method for manufacturing the same
JP2011117245A (en) * 2009-12-07 2011-06-16 Penta Ocean Construction Co Ltd Repair method for raising dry beach

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001098525A (en) * 1999-09-29 2001-04-10 Nittodaito Construction Co Ltd Sandy beach erosion protection method
JP3582447B2 (en) * 2000-03-09 2004-10-27 Jfeスチール株式会社 Water bottom structure and bottom / water purification method
JP2004305971A (en) * 2003-04-10 2004-11-04 Fujita Corp Method for purifying bottom sediment in closed water area by crushed shell material
JP2005006598A (en) * 2003-06-20 2005-01-13 Jfe Steel Kk Artificial sand for raising shellfish and method for producing the same
JP2005226256A (en) * 2004-02-10 2005-08-25 Toyo Constr Co Ltd Reclaimed tideland and reclaimed shallow place creating method
JP2005330731A (en) * 2004-05-20 2005-12-02 Penta Ocean Constr Co Ltd Artificial tideland material using dredged cohesive soil, manufacturing device for the same, and artificial tideland construction method
JP2006214085A (en) * 2005-02-01 2006-08-17 Jfe Steel Kk Method for developing shallows and the like
JP2006274690A (en) * 2005-03-30 2006-10-12 Penta Ocean Constr Co Ltd Tideland sand covering material, tideland developing method, tideland sand covering method, and tideland sand covering structure
JP2007061054A (en) * 2005-09-01 2007-03-15 Jfe Steel Kk Sand cover structure and sand cover method at water bottom
US20070196173A1 (en) * 2006-02-23 2007-08-23 William C. Shehan Manmade island and methods
JP2010094619A (en) * 2008-10-17 2010-04-30 Nisshin Steel Co Ltd Sand replacement material and method for manufacturing the same
JP2011117245A (en) * 2009-12-07 2011-06-16 Penta Ocean Construction Co Ltd Repair method for raising dry beach

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107704850A (en) * 2017-10-30 2018-02-16 河海大学 A kind of Creek system landform identifying processing method
CN107704850B (en) * 2017-10-30 2019-10-15 河海大学 A kind of Creek system landform identifying processing method
CN110258445A (en) * 2019-07-23 2019-09-20 中交上海航道勘察设计研究院有限公司 Multifunction fishing levee body system
CN115012362A (en) * 2022-06-14 2022-09-06 中交上海航道局有限公司 Construction process of flood drainage channel for deep silt layer in intertidal zone
CN115012362B (en) * 2022-06-14 2023-07-21 中交上海航道局有限公司 Construction process of flood drainage canal of deep silt layer of intertidal zone

Also Published As

Publication number Publication date
JP5979999B2 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
JP5979999B2 (en) Artificial tidal flat structure and repair method of artificial tidal flat
CN104947650B (en) Grouting behind shaft or drift lining closed reinforcing method after sand drain piling prepressing
CN107366303A (en) Construction method and retaining wall of the aluminum alloy mould plate as highway gravity retaining wall template
CN102296591A (en) Rapid drainage solidifying treatment method of soft soil foundation
CN104652411B (en) Composite foundation treatment method based on reinforcement, pretreatment and dynamic compaction of sandy soil
CN101906785B (en) Method of anti-leak treatment on petroleum drilling place by adopting composite geo-membrane
JP2010196464A (en) Construction method for countermeasure against liquefaction of sandy ground
Sun et al. Pilot tests on methods to form working platform on soft clay
KR20160142009A (en) Method for generating ground settlement and adjusting consolidation settlement using adjustment of ground water level in aquifer
Ali Tasalloti et al. Field investigation on compaction and strength performance of two coal wash-BOS slag mixtures
Bhattacherjee et al. Effect of hybrid geosynthetic layers on soil walls with marginal backfill subjected to rainfall
KR101552644B1 (en) Soft soil improvement analysis method of Light-weighted Foam Soils
KR20160029477A (en) Numerical Analysis method of Light-weight Air Foamed Soils Using Dredged Soils for Ground Treatment and Backfill, and The Recording Medium
KR100857922B1 (en) A sand mat execution method according to the cause that can make sand reduction through unnecessary section reduction for impeachment
KR20150021098A (en) Waterside structures reinforced method
Tang et al. Groundwater engineering problem and Prevention
KR20130008967A (en) The accelerating method of drain equipments for settling and settlement at reclaimed materials
CN108824410A (en) The shallow processing method of depth liquefaction applied to liquified sand foundation
Lüftenegger et al. Innovative solutions for supporting excavations in slopes
RU2442856C1 (en) Liquid industrial waste storage unit
TW463011B (en) Ground base modification: horizontal compaction method
Lee et al. Treatment of soft ground by Fibredrain and highenergy impact in highway embankment construction
Le et al. Application of vibro stone columns for a fabrication yard in Vietnam
Leung et al. Principles and Case Histories of Deep Vibro Techniques
Rahadian et al. THE FAILURE OF A ROAD EMBANKMENT OVER NORTH JAVA SOFT SOILS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160726

R150 Certificate of patent or registration of utility model

Ref document number: 5979999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250