JP2014001112A - Method for manufacturing ceramic film precursor solution and method for manufacturing piezoelectric ceramic film - Google Patents

Method for manufacturing ceramic film precursor solution and method for manufacturing piezoelectric ceramic film Download PDF

Info

Publication number
JP2014001112A
JP2014001112A JP2012138482A JP2012138482A JP2014001112A JP 2014001112 A JP2014001112 A JP 2014001112A JP 2012138482 A JP2012138482 A JP 2012138482A JP 2012138482 A JP2012138482 A JP 2012138482A JP 2014001112 A JP2014001112 A JP 2014001112A
Authority
JP
Japan
Prior art keywords
acetate
acid
ceramic film
acetic acid
precursor solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012138482A
Other languages
Japanese (ja)
Inventor
Kazuya Kitada
和也 北田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2012138482A priority Critical patent/JP2014001112A/en
Publication of JP2014001112A publication Critical patent/JP2014001112A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a ceramic film precursor solution having high film uniformity without using a high hazardous material in a manufacturing process.SOLUTION: The method for manufacturing a ceramic film precursor solution comprises: the mixed solution preparing step (S1) of mixing acetate of metal and aliphatic carboxylic acid except acetic acid to obtain a mixed solution; the heating step (S2) of heating the mixed solution at a temperature equal to or more than the boiling point of the acetic acid and equal to or less than the boiling point of the aliphatic carboxylic acid except the acetic acid to obtain a complex solution including a metal complex replaced by a ligand with the aliphatic carboxylic acid except the acetic acid; and the solvent adding step (S3) of adding acetic acid or propionic acid to the complex solution.

Description

本発明は、セラミックス膜を作製するためのセラミックス膜前駆体溶液の製造方法及び圧電セラミックス膜の製造方法に関する。   The present invention relates to a method for producing a ceramic film precursor solution for producing a ceramic film and a method for producing a piezoelectric ceramic film.

セラミックス膜を形成するための原料としては、有機金属化合物を溶剤に溶解した溶液が広く用いられている。例えば、セラミックス膜は、有機金属化合物を溶剤に溶解した、セラミック膜前駆体溶液を被対象物上に塗布した後、これを乾燥して焼成させることにより形成される。そして、セラミックス膜前駆体溶液に好適に用いられる有機金属化合物として、2−エチルヘキサン酸等の脂肪族カルボン酸を配位子とする金属錯体が挙げられる。
ここで、2−エチルヘキサン酸を配位子とした金属錯体について、例えば、バリウムの場合、バリウム原料として金属バリウムを使用し、2−メトキシエタノール及び2−エチルヘキサン酸中に添加して反応させることにより2−エチルヘキサン酸を配位子とするバリウム錯体溶液を得る方法が提案されている(特許文献1参照)。
As a raw material for forming a ceramic film, a solution in which an organometallic compound is dissolved in a solvent is widely used. For example, the ceramic film is formed by applying a ceramic film precursor solution, in which an organometallic compound is dissolved in a solvent, onto an object, and then drying and firing the solution. And the metal complex which uses aliphatic carboxylic acid, such as 2-ethylhexanoic acid, as a ligand as an organometallic compound used suitably for a ceramic membrane precursor solution is mentioned.
Here, for a metal complex having 2-ethylhexanoic acid as a ligand, for example, in the case of barium, metal barium is used as a barium raw material and added to 2-methoxyethanol and 2-ethylhexanoic acid for reaction. Thus, a method for obtaining a barium complex solution having 2-ethylhexanoic acid as a ligand has been proposed (see Patent Document 1).

特表平8−502946号公報Japanese National Patent Publication No. 8-502946

しかしながら、特許文献1に記載の方法では、腐食性や反応性が高い金属バリウムを原料として使用しており、また、危険有害性の高い2−メトキシエタノールを使用しているため、製造工程において環境汚染や作業者の安全性、健康被害等の問題があった。
本発明はこのような事情に鑑み、製造工程において危険有害性の高い材料を用いることなく、膜均一性の高いセラミックス膜前駆体溶液の製造方法を提供することを目的とする。
However, the method described in Patent Document 1 uses metal barium, which is highly corrosive and reactive, as a raw material, and uses 2-methoxyethanol, which is highly hazardous. There were problems such as contamination, worker safety and health hazards.
In view of such circumstances, an object of the present invention is to provide a method for producing a ceramic film precursor solution having high film uniformity without using a highly hazardous material in the production process.

上記課題を解決する本発明の態様は、金属の酢酸塩と、酢酸を除く脂肪族カルボン酸とを混合し混合溶液を得る工程と、前記混合溶液を酢酸の沸点以上、酢酸を除く脂肪族カルボン酸の沸点未満の温度に加熱して、酢酸を除く脂肪族カルボン酸に配位子置換した金属錯体を含む錯体溶液を得る工程と、前記錯体溶液に酢酸またはプロピオン酸の少なくとも1つを添加して、セラミック膜前駆体溶液を得る工程と、を備え、前記セラミックス膜前駆体溶液の粘度が7cP以下であることを特徴とするセラミックス前駆体溶液の製造方法にある。
かかる態様では、製造工程において危険有害性の高い材料を用いることなく、膜均一性が良好なセラミックス膜前駆体溶液を容易に製造することができる。
An aspect of the present invention that solves the above problems includes a step of mixing a metal acetate and an aliphatic carboxylic acid excluding acetic acid to obtain a mixed solution; Heating to a temperature below the boiling point of the acid to obtain a complex solution containing a metal complex ligand-substituted with an aliphatic carboxylic acid excluding acetic acid, and adding at least one of acetic acid or propionic acid to the complex solution And a step of obtaining a ceramic film precursor solution, wherein the ceramic film precursor solution has a viscosity of 7 cP or less.
In such an embodiment, a ceramic film precursor solution with good film uniformity can be easily manufactured without using a highly hazardous material in the manufacturing process.

本発明の実施態様としては、前記金属の酢酸塩が、酢酸バリウム、酢酸ストロンチウム、酢酸カルシウム、酢酸ビスマス、酢酸鉛、酢酸クロム、酢酸マンガン、酢酸鉄、酢酸コバルト、酢酸ニッケル、酢酸亜鉛、酢酸ランタン、酢酸セリウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウムからなる群から選択される少なくとも1つのものが挙げられる。   As an embodiment of the present invention, the metal acetate is barium acetate, strontium acetate, calcium acetate, bismuth acetate, lead acetate, chromium acetate, manganese acetate, iron acetate, cobalt acetate, nickel acetate, zinc acetate, lanthanum acetate , Cerium acetate, sodium acetate, potassium acetate, and at least one selected from the group consisting of lithium acetate.

本発明の実施態様としては、前記カルボン酸が、プロピオン酸、酪酸、イソ酪酸、吉草酸、ペラルゴン酸、カプリン酸、ネオデカン酸、2−エチルペンタン酸、2−エチルヘキサン酸、からなる群から選択される少なくとも1つのものが挙げられる。   In an embodiment of the present invention, the carboxylic acid is selected from the group consisting of propionic acid, butyric acid, isobutyric acid, valeric acid, pelargonic acid, capric acid, neodecanoic acid, 2-ethylpentanoic acid, and 2-ethylhexanoic acid. At least one of the following.

本発明の他の態様は、上記セラミックス膜前駆体溶液の製造方法により製造された前駆体溶液を塗布し、焼成する工程を備えることを特徴とする圧電セラミックス膜の製造方法にある。
かかる態様によれば、製造工程において危険有害性の高い材料を用いることなく、膜均一性が良好な圧電セラミックス膜を製造することができる。
Another aspect of the present invention lies in a method for manufacturing a piezoelectric ceramic film, comprising the steps of applying and baking the precursor solution manufactured by the above-described method for manufacturing a ceramic film precursor solution.
According to this aspect, a piezoelectric ceramic film having good film uniformity can be manufactured without using a highly hazardous material in the manufacturing process.

実施形態のセラミックス膜前駆体溶液の製造方法を示すフローチャート図。The flowchart figure which shows the manufacturing method of the ceramic film precursor solution of embodiment. 実施形態の圧電セラミックス膜の製造方法を示すフローチャート図。The flowchart figure which shows the manufacturing method of the piezoelectric ceramic film | membrane of embodiment. 実施例1の1H−NMRスペクトルを示すグラフ。2 is a graph showing the 1 H-NMR spectrum of Example 1. 実施例1のTG−DTA測定結果を示すグラフ。3 is a graph showing a TG-DTA measurement result of Example 1. 比較例1のTG−DTA測定結果を示すグラフ。The graph which shows the TG-DTA measurement result of the comparative example 1. 実施例2のXRD測定結果を示すグラフ。6 is a graph showing the XRD measurement result of Example 2.

図1に、実施形態におけるセラミックス膜前駆体溶液の製造方法を表すフローチャート図を示した。
図1において、セラミックス膜前駆体溶液の製造方法は、金属の酢酸塩と、酢酸を除く脂肪族カルボン酸と、を含む混合溶液を調製する混合溶液調整工程としてのステップ1(S1)と、混合溶液を酢酸の沸点以上、酢酸を除く脂肪族カルボン酸の沸点未満の温度に加熱して、酢酸を除く脂肪族カルボン酸に配位子置換した金属錯体を含む錯体溶液を得る加熱工程としてのステップ2(S2)と、錯体溶液に酢酸またはプロピオン酸の少なくとも1つを添加する溶媒添加工程としてのステップ3(S3)と、を備え、セラミックス膜前駆体溶液を得るものである。
The flowchart figure showing the manufacturing method of the ceramic film precursor solution in embodiment in FIG. 1 was shown.
In FIG. 1, the manufacturing method of the ceramic film precursor solution includes step 1 (S1) as a mixed solution adjusting step for preparing a mixed solution containing a metal acetate and an aliphatic carboxylic acid excluding acetic acid, and mixing. A step as a heating process in which the solution is heated to a temperature not lower than the boiling point of acetic acid and lower than the boiling point of the aliphatic carboxylic acid excluding acetic acid to obtain a complex solution containing a metal complex in which the ligand is substituted for the aliphatic carboxylic acid excluding acetic acid. 2 (S2) and Step 3 (S3) as a solvent addition step of adding at least one of acetic acid or propionic acid to the complex solution, to obtain a ceramic film precursor solution.

具体的には、まず、混合溶液調製工程(S1)において、金属の酢酸塩と、酢酸を除く脂肪族カルボン酸と、を含む不均一系の混合溶液を調製する。金属の酢酸塩としては、例えば、酢酸バリウム、酢酸ストロンチウム、酢酸カルシウム、酢酸ビスマス、酢酸鉛、酢酸クロム、酢酸マンガン、酢酸鉄、酢酸コバルト、酢酸ニッケル、酢酸亜鉛、酢酸ランタン、酢酸セリウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウムが挙げられ、これらは2種以上配合するようにしてもよい。また、配位子とする酢酸を除く脂肪族カルボン酸としては、例えば、プロピオン酸、酪酸、イソ酪酸、吉草酸、ペラルゴン酸、カプリン酸、ネオデカン酸、2−エチルペンタン酸、2−エチルヘキサン酸が挙げられる。   Specifically, first, in the mixed solution preparation step (S1), a heterogeneous mixed solution containing a metal acetate and an aliphatic carboxylic acid excluding acetic acid is prepared. Examples of metal acetates include barium acetate, strontium acetate, calcium acetate, bismuth acetate, lead acetate, chromium acetate, manganese acetate, iron acetate, cobalt acetate, nickel acetate, zinc acetate, lanthanum acetate, cerium acetate, and sodium acetate. , Potassium acetate, and lithium acetate, and two or more of these may be blended. Examples of the aliphatic carboxylic acid excluding acetic acid as a ligand include, for example, propionic acid, butyric acid, isobutyric acid, valeric acid, pelargonic acid, capric acid, neodecanoic acid, 2-ethylpentanoic acid, and 2-ethylhexanoic acid. Is mentioned.

次に、加熱工程(S2)において、混合溶液を酢酸の沸点以上、酢酸を除く脂肪族カルボン酸の沸点未満の温度に加熱する。これにより、配位子置換反応が進行し、酢酸を除く脂肪族カルボン酸に配位子が置換した金属錯体を含む錯体溶液を得ることができる。   Next, in the heating step (S2), the mixed solution is heated to a temperature not lower than the boiling point of acetic acid and lower than the boiling point of the aliphatic carboxylic acid excluding acetic acid. Thereby, ligand substitution reaction advances and the complex solution containing the metal complex which the ligand substituted by the aliphatic carboxylic acid except acetic acid can be obtained.

以下ではわかりやすくするため、酢酸バリウムを例として、2−エチルヘキサン酸との反応を説明する。
酢酸バリウム(Ba(OOCCH32)と2−エチルヘキサン酸(CH3(CH23CH(C25)COOH)とを混合した場合、平衡反応である場合は、下記の2つの平衡が存在することになる。
In the following, for the sake of clarity, the reaction with 2-ethylhexanoic acid will be described using barium acetate as an example.
When barium acetate (Ba (OOCCH 3 ) 2 ) and 2-ethylhexanoic acid (CH 3 (CH 2 ) 3 CH (C 2 H 5 ) COOH) are mixed and the reaction is an equilibrium reaction, There will be an equilibrium.

Figure 2014001112
したがって、上述した平衡は、下記式のような平衡反応とみなすことができる。
Figure 2014001112
Therefore, the above-described equilibrium can be regarded as an equilibrium reaction represented by the following formula.

Figure 2014001112
Figure 2014001112

しかしながら、酢酸バリウムと2−エチルヘキサン酸とを混合した場合、酢酸バリウムは、2−エチルヘキサン酸への溶解度が低い。すなわち、実施形態で用いる混合溶液は、不均一系の混合溶液となっている。このような不均一系の混合溶液は、通常の加熱温度、例えば、40〜80℃程度に混合溶液を昇温させても、配位子置換反応はほとんど進行しない。   However, when barium acetate and 2-ethylhexanoic acid are mixed, barium acetate has low solubility in 2-ethylhexanoic acid. That is, the mixed solution used in the embodiment is a heterogeneous mixed solution. Even when such a heterogeneous mixed solution is heated to a normal heating temperature, for example, about 40 to 80 ° C., the ligand substitution reaction hardly proceeds.

本発明では、加熱工程(S2)において、混合溶液を酢酸の沸点以上2−エチルヘキサン酸の沸点未満の温度に加熱することにより、下記に示すように、酢酸が選択的に揮発して非平衡状態となり、2−エチルヘキサン酸を配位子とした金属錯体が生成する。   In the present invention, in the heating step (S2), by heating the mixed solution to a temperature not lower than the boiling point of acetic acid and lower than the boiling point of 2-ethylhexanoic acid, the acetic acid is selectively volatilized as shown below, resulting in non-equilibrium. A metal complex having 2-ethylhexanoic acid as a ligand is formed.

Figure 2014001112
Figure 2014001112

上述したように、実施形態の加熱工程(S2)では、混合溶液を高温に加熱することにより、生成する酢酸を除去して反応を進行させる、すなわち、酢酸を除去することにより、(Ba(OOC(C25)CH(CH23CH32)生成側へ反応を進行させている。なお、この配位子置換反応は、酢酸を除去していることで不可逆反応である。
また、混合溶液が酢酸バリウム、2−エチルへキサン酸以外の他の金属の酢酸塩(M(OOCCH3x)や脂肪族カルボン酸(RCOOH R=脂肪族炭化水素)を含有する場合は、加熱工程(S2)において、同様の反応が進行して、酢酸を除く脂肪族カルボン酸に配位子置換した金属錯体(MOOCR)が形成される。
As described above, in the heating step (S2) of the embodiment, by heating the mixed solution to a high temperature, the generated acetic acid is removed and the reaction proceeds, that is, by removing the acetic acid, (Ba (OOC) (C 2 H 5) CH ( CH 2) 3 CH 3) 2) and the reaction allowed to proceed to the product side. This ligand substitution reaction is irreversible because acetic acid is removed.
Further, when the mixed solution contains acetate (M (OOCCH 3 ) x ) or aliphatic carboxylic acid (RCOOH R = aliphatic hydrocarbon) other than barium acetate and 2-ethylhexanoic acid, In the heating step (S2), a similar reaction proceeds to form a metal complex (MOOCR) in which an aliphatic carboxylic acid other than acetic acid is substituted with a ligand.

Figure 2014001112
Figure 2014001112

なお、加熱工程(S2)では、実際には酢酸を除く脂肪族カルボン酸の揮発も起こるが、酢酸の揮発量と比較して非常に少ない。このため、混合溶液調製工程(S1)において、混合溶液が酢酸を除く脂肪族カルボン酸を十分量(具体的には、配位子として必要な量及び揮発量を考慮した量)含むように調製したり、加熱工程(S2)において酢酸を除く脂肪族カルボン酸の不足分を系中に添加したりすることにより、特に問題とはならない。
加熱工程(S2)により得られる錯体溶液は、酢酸を除く脂肪族カルボン酸を配位子とした金属錯体を含むものとなる。
In addition, in the heating step (S2), volatilization of the aliphatic carboxylic acid excluding acetic acid actually occurs, but it is very small compared to the volatilization amount of acetic acid. For this reason, in the mixed solution preparation step (S1), the mixed solution is prepared so as to contain a sufficient amount of aliphatic carboxylic acid excluding acetic acid (specifically, an amount necessary for the ligand and an amount considering volatilization amount). Or by adding a shortage of aliphatic carboxylic acid excluding acetic acid to the system in the heating step (S2).
The complex solution obtained by the heating step (S2) includes a metal complex having an aliphatic carboxylic acid excluding acetic acid as a ligand.

さらに、溶媒添加工程(S3)において、加熱工程(S2)により得られた錯体溶液に、酢酸またはプロピオン酸の少なくとも1つを添加する。
酢酸またはプロピオン酸を添加することにより、加熱工程(S2)により得られた錯体溶液の濃度や粘度を調整し、膜厚が一定で膜均一性が良好なセラミックス膜を形成することができる。
Further, in the solvent addition step (S3), at least one of acetic acid or propionic acid is added to the complex solution obtained in the heating step (S2).
By adding acetic acid or propionic acid, the concentration and viscosity of the complex solution obtained by the heating step (S2) can be adjusted, and a ceramic film having a uniform film thickness and good film uniformity can be formed.

濃度や粘度の調整としては、例えば、n−オクタンや2−エチルへキサン酸、1−ブタノールなどを用いることができるが、n−オクタンなどの揮発性が高いものを用いた場合、常温においても揮発し易いため、濃度変調や塗布時に膜ムラなどの原因となる。また、2−エチルへキサン酸などの粘度が高いものを用いた場合、塗布性が悪く膜ムラの原因となる。1−ブタノールのようなアルコールの場合、加熱工程(S2)により得られる錯体溶液は配位子として用いたカルボン酸を含むため、下記式のような酸とアルコールとのエステル化反応により、副生成物としてエステルと水が生成してしまう。   For the adjustment of concentration and viscosity, for example, n-octane, 2-ethylhexanoic acid, 1-butanol and the like can be used, but when a highly volatile material such as n-octane is used, even at room temperature. Since it tends to volatilize, it causes density unevenness and film unevenness during coating. In addition, when a high viscosity material such as 2-ethylhexanoic acid is used, the coating property is poor and it causes film unevenness. In the case of an alcohol such as 1-butanol, the complex solution obtained by the heating step (S2) contains a carboxylic acid used as a ligand. Esters and water are produced as products.

Figure 2014001112
ここで生成する水の存在のため、アルコキシ基を有するような溶液と混合した場合、水と反応して加水分解を行い、酸化物、水酸化物などの沈殿が生じる可能性がある。
Figure 2014001112
Due to the presence of water generated here, when mixed with a solution having an alkoxy group, it reacts with water to undergo hydrolysis, and precipitation of oxides, hydroxides, and the like may occur.

一方、酢酸やプロピオン酸は、常温における揮発も極僅かであり、また、粘度も比較的低いため、膜均一性が良好なセラミックス膜を得ることができる。また、配位子と同様の脂肪族カルボン酸であるため、アルコールを用いた場合のような反応も起こらない。   On the other hand, acetic acid and propionic acid have very little volatilization at room temperature and have a relatively low viscosity, so that a ceramic film with good film uniformity can be obtained. Moreover, since it is the same aliphatic carboxylic acid as a ligand, reaction like the case where alcohol is used does not occur.

なお、上述したセラミックス膜前駆体溶液の粘度は、7cP以下であることが好ましい。溶液濃度が高いことなどにより、セラミックス膜前駆体溶液の粘度が7cP以上であった場合、セラミックス膜前駆体溶液の塗布性が悪化し、均一な膜を得ることが難しくなる。   The viscosity of the ceramic film precursor solution described above is preferably 7 cP or less. When the viscosity of the ceramic film precursor solution is 7 cP or more due to a high solution concentration, the applicability of the ceramic film precursor solution is deteriorated, and it becomes difficult to obtain a uniform film.

上述したように、金属の酢酸塩と、酢酸を除く脂肪族カルボン酸と、を含む混合溶液を調製し、混合溶液を酢酸の沸点以上酢酸を除く脂肪族カルボン酸の沸点未満の温度に加熱することにより、製造工程において、危険有害性の高い材料、例えば、トルエンや2−メトキシエタノールを用いることなく、酢酸を除く脂肪族カルボン酸に配位子置換した金属錯体を含む錯体溶液を容易に製造することができる。   As described above, a mixed solution containing a metal acetate and an aliphatic carboxylic acid excluding acetic acid is prepared, and the mixed solution is heated to a temperature not lower than the boiling point of acetic acid and lower than the boiling point of the aliphatic carboxylic acid excluding acetic acid. In the production process, a complex solution containing a metal complex in which a ligand is substituted with an aliphatic carboxylic acid other than acetic acid is easily produced without using highly hazardous materials such as toluene or 2-methoxyethanol. can do.

さらに、実施形態では、錯体溶液と、酢酸またはプロピオン酸の少なくとも1つと、を添加してセラミックス膜前駆体溶液としている。これにより、製造工程において、2−メトキシエタノールやトルエン等の危険有害性の高い溶媒を含まず、化学的に安定で且つ膜厚が一定で膜均一性が良好なセラミックス膜を形成することができるセラミックス膜前駆体溶液とすることができる。   Furthermore, in the embodiment, a complex solution and at least one of acetic acid or propionic acid are added to form a ceramic film precursor solution. As a result, in the manufacturing process, a ceramic film that does not contain a highly hazardous solvent such as 2-methoxyethanol and toluene, is chemically stable, has a constant film thickness, and good film uniformity can be formed. It can be set as a ceramic film precursor solution.

なお、実施形態におけるセラミックス膜前駆体溶液を用いて圧電セラミックス膜を製造する方法に特に限定されないが、ゾル−ゲル法やMOD(Metal−Organic Decomposition)法等の化学溶液法により製造することができる。
具体的には、セラミックス膜前駆体溶液を塗布乾燥し、さらに高温で焼成して結晶化することで金属酸化物からなるセラミックス膜を得ることができる。
The method for manufacturing the piezoelectric ceramic film using the ceramic film precursor solution in the embodiment is not particularly limited, but it can be manufactured by a chemical solution method such as a sol-gel method or a MOD (Metal-Organic Decomposition) method. .
Specifically, a ceramic film made of a metal oxide can be obtained by applying and drying a ceramic film precursor solution and further baking and crystallizing the solution.

図2に、実施形態における圧電セラミックス膜の製造方法を表すフローチャート図を示した。
詳述すると、例えば、圧電セラミックス膜の製造方法は、まず、セラミックス膜前駆体溶液を被対象物上にスピンコート法、ディップコート法、インクジェット法等で塗布しセラミックス膜前駆体膜を形成する塗布工程としてのステップ1(S1)を行なう。次いで、このセラミックス膜前駆体膜を所定温度(例えば140〜200℃程度)に加熱して一定時間乾燥させる乾燥工程としてのステップ2(S2)を行なう。次に、乾燥したセラミックス膜前駆体膜を所定温度(例えば300〜400℃程度)に加熱して一定時間保持することによって脱脂する脱脂工程としてのステップ3(S3)を行なう。なお、ここで言う脱脂とは、セラミックス膜前駆体膜に含まれる有機成分を、例えば、NO2、CO2、H2O等として離脱させることである。
次に、セラミックス膜前駆体膜を所定温度(550〜800℃、好ましくは、600〜750℃程度)に加熱して一定時間保持することによって結晶化させ、例えば0.1〜2.0μmのセラミックス膜を形成する焼成工程としてのステップ4(S4)を行なう。
FIG. 2 is a flowchart showing the method for manufacturing the piezoelectric ceramic film in the embodiment.
More specifically, for example, a method for manufacturing a piezoelectric ceramic film is a coating method in which a ceramic film precursor solution is first applied on an object by spin coating, dip coating, ink jet, or the like to form a ceramic film precursor film. Step 1 (S1) as a process is performed. Next, Step 2 (S2) is performed as a drying process in which the ceramic film precursor film is heated to a predetermined temperature (for example, about 140 to 200 ° C.) and dried for a predetermined time. Next, Step 3 (S3) is performed as a degreasing process in which the dried ceramic film precursor film is heated to a predetermined temperature (for example, about 300 to 400 ° C.) and held for a certain period of time. Here, degreasing refers, the organic components contained in the ceramic film precursor film, for example, is to be detached as NO 2, CO 2, H 2 O or the like.
Next, the ceramic film precursor film is crystallized by heating to a predetermined temperature (550 to 800 ° C., preferably about 600 to 750 ° C.) and holding it for a certain time, for example, 0.1 to 2.0 μm ceramics. Step 4 (S4) is performed as a baking process for forming a film.

なお、乾燥工程(S2)、脱脂工程(S3)及び焼成工程(S4)で用いられる加熱装置としては、例えば、赤外線ランプの照射により加熱するRTA(Rapid Thermal Annealing)装置やホットプレート等が挙げられる。また、上記では一定時間所定温度に保持した状態で、乾燥・脱脂・焼成を行う方法を例示したが、昇温し続けてもよい。
また、セラミックス膜は、上述した塗布工程(S1)、乾燥工程(S2)及び脱脂工程(S3)や、塗布工程(S1)、乾燥工程(S2)、脱脂工程(S3)及び焼成工程(S4)を所望の膜厚等に応じて複数回繰り返すことにより、複数層のセラミックス膜からなるものとしてもよい。
The heating device used in the drying step (S2), the degreasing step (S3), and the firing step (S4) includes, for example, an RTA (Rapid Thermal Annealing) device or a hot plate that is heated by irradiation with an infrared lamp. . Moreover, although the method of performing drying, degreasing, and baking in the state hold | maintained at the predetermined temperature for the fixed time above was illustrated above, you may continue raising temperature.
Further, the ceramic film is formed by applying the above-described coating step (S1), drying step (S2) and degreasing step (S3), coating step (S1), drying step (S2), degreasing step (S3) and firing step (S4). It is good also as what consists of a ceramic film of multiple layers by repeating this several times according to a desired film thickness.

セラミックス膜前駆体溶液から形成されるセラミックス膜としては、チタン酸バリウム系、鉄酸ビスマス系、チタン酸ビスマスナトリウム系、チタン酸鉛系、ニオブ酸カリウム系のペロブスカイト構造の複合酸化物が挙げられる。   Examples of the ceramic film formed from the ceramic film precursor solution include barium titanate, bismuth ferrate, bismuth sodium titanate, lead titanate, and potassium niobate complex oxides.

チタン酸バリウム系としては、チタン酸バリウム(BaTiO3)、チタン酸バリウムストロンチウム((Ba,Sr)TiO3)などがある。上述した複合酸化物に、例えば、Bi(Zn1/2Ti1/2)O3、(Bi1/2Na1/2)TiO3、BiFeO3、(Na,K)NbO3、PbTiO3を添加してもよい。 Examples of the barium titanate system include barium titanate (BaTiO 3 ) and barium strontium titanate ((Ba, Sr) TiO 3 ). For example, Bi (Zn 1/2 Ti 1/2 ) O 3 , (Bi 1/2 Na 1/2 ) TiO 3 , BiFeO 3 , (Na, K) NbO 3 , PbTiO 3 are added to the above-described composite oxide. It may be added.

鉄酸ビスマス系としては、鉄酸ビスマス(BiFeO3)、鉄酸マンガン酸チタン酸ビスマスバリウム((Bi,Ba)(Fe,Mn,Ti)O3)などがある。上述した複合酸化物に、例えば、BaTiO3、Bi(Zn1/2Ti1/2)O3、(Bi1/2Na1/2)TiO3、(Na,K)NbO3、PbTiO3を添加してもよい。 Examples of bismuth ferrates include bismuth ferrate (BiFeO 3 ), bismuth barium titanate manganate ((Bi, Ba) (Fe, Mn, Ti) O 3 ), and the like. For example, BaTiO 3 , Bi (Zn 1/2 Ti 1/2 ) O 3 , (Bi 1/2 Na 1/2 ) TiO 3 , (Na, K) NbO 3 , PbTiO 3 are added to the above-described composite oxide. It may be added.

チタン酸ビスマスナトリウム系としては、チタン酸ビスマスナトリウム(Bi1/2Na1/2)TiO3)、チタン酸ビスマスカリウム(Bi1/21/2)TiO3)などがある。上述した複合酸化物に、例えば、BaTiO3、Bi(Zn1/2Ti1/2)O3、BiFeO3、(Na,K)NbO3、PbTiO3を添加してもよい。 Examples of the bismuth sodium titanate system include bismuth sodium titanate (Bi 1/2 Na 1/2 ) TiO 3 ) and bismuth potassium titanate (Bi 1/2 K 1/2 ) TiO 3 ). For example, BaTiO 3 , Bi (Zn 1/2 Ti 1/2 ) O 3 , BiFeO 3 , (Na, K) NbO 3 , PbTiO 3 may be added to the composite oxide described above.

チタン酸鉛系としては、チタン酸鉛(PbTiO3)、チタン酸ジルコン酸鉛(Pb(Zr,Ti)O3)などがある。上述した複合酸化物に、例えば、BaTiO3、Bi(Zn1/2Ti1/2)O3、(Bi1/2Na1/2)TiO3、BiFeO3、(Na,K)NbO3を添加してもよい。ニオブ酸カリウム系としては、ニオブ酸カリウム(KNbO3)、ニオブ酸ナトリウム(NaNbO3)、ニオブ酸ナトリウムカリウム((Na,K)NbO3)などがある。上述した複合酸化物に、例えば、BaTiO3、Bi(Zn1/2Ti1/2)O3、(Bi1/2Na1/2)TiO3、BiFeO3、PbTiO3を添加してもよい。 Examples of the lead titanate series include lead titanate (PbTiO 3 ) and lead zirconate titanate (Pb (Zr, Ti) O 3 ). For example, BaTiO 3 , Bi (Zn 1/2 Ti 1/2 ) O 3 , (Bi 1/2 Na 1/2 ) TiO 3 , BiFeO 3 , (Na, K) NbO 3 are added to the composite oxide described above. It may be added. Examples of the potassium niobate type include potassium niobate (KNbO 3 ), sodium niobate (NaNbO 3 ), and sodium potassium niobate ((Na, K) NbO 3 ). For example, BaTiO 3 , Bi (Zn 1/2 Ti 1/2 ) O 3 , (Bi 1/2 Na 1/2 ) TiO 3 , BiFeO 3 , PbTiO 3 may be added to the composite oxide described above. .

以下、実施形態におけるセラミックス膜前駆体溶液の製造方法を実施例および比較例に基づいてさらに詳細に説明する。
(実施例1)
まず、酢酸バリウム2.55g(0.01mol)、及び2−エチルヘキサン酸10mlをビーカーに加えた。これを200℃のホットプレート上で約30分間加熱攪拌して、錯体溶液を得た。この錯体溶液に、プロピオン酸を加え、全体で20mlとすることで、0.5mol/l濃度の実施例1のセラミックス膜前駆体溶液を製造した。
Hereinafter, the manufacturing method of the ceramic film precursor solution in the embodiment will be described in more detail based on Examples and Comparative Examples.
Example 1
First, 2.55 g (0.01 mol) of barium acetate and 10 ml of 2-ethylhexanoic acid were added to a beaker. This was heated and stirred on a hot plate at 200 ° C. for about 30 minutes to obtain a complex solution. Propionic acid was added to this complex solution to make a total of 20 ml, thereby producing a ceramic film precursor solution of Example 1 having a concentration of 0.5 mol / l.

(比較例1)
実施例1と同様に、酢酸バリウム2.55g(0.01mol)、及び2−エチルヘキサン酸10mlをビーカーに加えた。これを200℃のホットプレート上で約30分間加熱攪拌して、錯体溶液を得た。この錯体溶液に、n−オクタンを加え、全体で20mlとすることで、実施例1のプロピオン酸をn−オクタンに変更した比較例1のセラミックス膜前駆体溶液を製造した。
(Comparative Example 1)
In the same manner as in Example 1, 2.55 g (0.01 mol) of barium acetate and 10 ml of 2-ethylhexanoic acid were added to a beaker. This was heated and stirred on a hot plate at 200 ° C. for about 30 minutes to obtain a complex solution. By adding n-octane to this complex solution to make a total of 20 ml, a ceramic film precursor solution of Comparative Example 1 in which the propionic acid of Example 1 was changed to n-octane was produced.

実施例1と比較例1とを、以下に示す試験例によって比較した。
(試験例1)
Varian社製『Varian/500NB』を使用し、室温にて実施例1で得られた錯体溶液の1H−NMR測定を行った。
図3に実施例1の錯体溶液の1H−NMRスペクトルを示す。図3に示すように、酢酸に帰属されるピークは観測されず、酢酸と2−エチルヘキサン酸の配位子置換、及び酢酸の揮発は十分に進行していることがわかった。
Example 1 and Comparative Example 1 were compared by the following test examples.
(Test Example 1)
Using a “Varian / 500NB” manufactured by Varian, 1 H-NMR measurement of the complex solution obtained in Example 1 was performed at room temperature.
FIG. 3 shows the 1 H-NMR spectrum of the complex solution of Example 1. As shown in FIG. 3, no peak attributed to acetic acid was observed, and it was found that ligand substitution of acetic acid and 2-ethylhexanoic acid and volatilization of acetic acid proceeded sufficiently.

(試験例2)
ブルカー社製『TG−DTA 2000SA』を使用し、実施例1及び比較例1のセラミックス膜前駆体溶液の室温から500℃までのTG−DTA測定を行なった。図4に実施例1のセラミックス膜前駆体溶液のTG−DTA測定結果を示す。また、図5に比較例1のセラミックス膜前駆体溶液のTG−DTA測定結果を示す。
図4より、プロピオン酸を添加したセラミックス膜前駆体溶液では、溶媒の揮発に伴う急峻な重量減少は45℃程度から始まっているのがわかる。これに対し、図5に示すように、n−オクタンを添加したセラミックス膜前駆体溶液では、測定を開始した室温からすでに溶媒の揮発に伴う急峻な重量減少が起こっているのがわかった。
(Test Example 2)
Using TG-DTA 2000SA manufactured by Bruker, TG-DTA measurement was performed from room temperature to 500 ° C. of the ceramic film precursor solutions of Example 1 and Comparative Example 1. The TG-DTA measurement result of the ceramic film precursor solution of Example 1 is shown in FIG. Moreover, the TG-DTA measurement result of the ceramic film precursor solution of Comparative Example 1 is shown in FIG.
As can be seen from FIG. 4, in the ceramic film precursor solution to which propionic acid is added, the rapid weight reduction accompanying the volatilization of the solvent starts from about 45 ° C. On the other hand, as shown in FIG. 5, it was found that in the ceramic film precursor solution to which n-octane was added, a steep weight reduction was already caused by the volatilization of the solvent from the room temperature at which the measurement was started.

以下、実施形態における圧電セラミックス膜及びその製造方法を実施例に基づいてさらに詳細に説明する。
(実施例2)
実施例1で得られたセラミックス膜前駆体溶液と、チタン化合物(具体的には、2・エチルヘキサン酸チタン)を含むセラミックス膜前駆体溶液と、を、バリウムとチタンとのモル比が1:1となるように混合し、基板上にスピンコート法により圧電セラミックス膜を形成した。基板としては、サイズが一辺2.5cmでプラチナ被覆シリコン基板、具体的には、Pt/TiOx/SiO2/Siを使用した。
Hereinafter, the piezoelectric ceramic film and the manufacturing method thereof according to the embodiment will be described in more detail based on examples.
(Example 2)
The ceramic film precursor solution obtained in Example 1 and the ceramic film precursor solution containing a titanium compound (specifically, 2 · ethyl hexanoic acid titanium) have a molar ratio of barium to titanium of 1: 1 was mixed, and a piezoelectric ceramic film was formed on the substrate by spin coating. As the substrate, a platinum-coated silicon substrate having a size of 2.5 cm on a side, specifically, Pt / TiO x / SiO 2 / Si was used.

まず、塗布工程(S1)として、セラミックス膜前駆体溶液を基板上に滴下し、1500rpmで基板を回転させて圧電セラミックス膜前駆体膜を形成した。
次に、乾燥工程(S2)及び脱脂工程(S3)として、ホットプレート上に基板を置き、180℃で2分間加熱した後、350℃で3分間加熱した。この工程を3回繰り返した。
焼成工程(S4)として、Rapid Thermal Annel(RTA)を使用し、800℃で5分間焼成して結晶化させた。これにより、計3層からなる厚さ約150〜400nmの実施例2の圧電セラミックス膜を形成した。
First, as a coating process (S1), a ceramic film precursor solution was dropped on a substrate, and the substrate was rotated at 1500 rpm to form a piezoelectric ceramic film precursor film.
Next, as a drying step (S2) and a degreasing step (S3), the substrate was placed on a hot plate, heated at 180 ° C. for 2 minutes, and then heated at 350 ° C. for 3 minutes. This process was repeated three times.
As the firing step (S4), Rapid Thermal Annel (RTA) was used, and crystallization was performed by firing at 800 ° C. for 5 minutes. As a result, a piezoelectric ceramic film of Example 2 having a total thickness of about 150 to 400 nm consisting of three layers was formed.

実施例2を、以下に示す試験例によって比較した。
(試験例3)
ブルッカ社製『D8 Discover』を用い、X線源にCuKα線を使用したX線回折(X−ray diffraction:XRD)により、室温で実施例2の圧電セラミックス膜のX線回折チャートを求めた。結果を図6に示す。
図6に示すように、実施例2の圧電セラミックス膜においてペロブスカイト構造単相のチタン酸バリウムの回折ピークが得られ、チタン酸バリウムが形成されていることが明らかとなった。
以上のことから、実施例1のセラミックス膜前駆体溶液は、チタン酸バリウム薄膜形成に適した溶液であることがわかった。
Example 2 was compared by the following test examples.
(Test Example 3)
An X-ray diffraction chart of the piezoelectric ceramic film of Example 2 was obtained at room temperature by X-ray diffraction (XRD) using CuKα ray as an X-ray source using “D8 Discover” manufactured by Bruca. The results are shown in FIG.
As shown in FIG. 6, the diffraction peak of barium titanate having a single phase perovskite structure was obtained in the piezoelectric ceramic film of Example 2, and it was revealed that barium titanate was formed.
From the above, it was found that the ceramic film precursor solution of Example 1 was a solution suitable for forming a barium titanate thin film.

(他の実施形態)
本発明のセラミックス膜前駆体溶液の製造方法により製造されるセラミックス膜前駆体溶液は、強誘電体デバイス、焦電体デバイス、圧電体デバイス、及び光学フィルターの強誘電体薄膜を形成するのに好適に用いることができる。
強誘電体デバイスとしては、強誘電体メモリー(FeRAM)等が挙げられ、焦電体デバイスとしては、温度センサー、赤外線検出器、温度−電気変換器等が挙げられる。圧電体デバイスとしては、液体吐出装置、超音波モーター、加速度センサー、圧力−電気変換器等が挙げられ、光学フィルターとしては、赤外線等の有害光線の遮断フィルター、量子ドット形成によるフォトニック結晶効果を使用した光学フィルター、薄膜の光干渉を利用した光学フィルターが挙げられる。
また、本発明の金属錯体の製造方法により形成される金属錯体は、上述したようなセラミックス膜を形成することができるセラミックス膜前駆体溶液の原料として好適なものであるが、例えば、ガラス、金属皮膜等を形成するための原料としても好適に用いることができるものである。
(Other embodiments)
The ceramic film precursor solution produced by the method for producing a ceramic film precursor solution of the present invention is suitable for forming ferroelectric thin films of ferroelectric devices, pyroelectric devices, piezoelectric devices, and optical filters. Can be used.
Examples of the ferroelectric device include a ferroelectric memory (FeRAM), and examples of the pyroelectric device include a temperature sensor, an infrared detector, and a temperature-electric converter. Examples of the piezoelectric device include a liquid ejection device, an ultrasonic motor, an acceleration sensor, a pressure-electric converter, and the optical filter includes a filter for blocking harmful rays such as infrared rays and a photonic crystal effect due to quantum dot formation. Examples thereof include an optical filter used and an optical filter utilizing light interference of a thin film.
The metal complex formed by the method for producing a metal complex of the present invention is suitable as a raw material for the ceramic film precursor solution capable of forming the ceramic film as described above. For example, glass, metal It can also be suitably used as a raw material for forming a film or the like.

Claims (4)

金属の酢酸塩と、酢酸を除く脂肪族カルボン酸と、を混合し混合溶液を得る工程と、
前記混合溶液を酢酸の沸点以上、酢酸を除く脂肪族カルボン酸の沸点未満の温度に加熱して、酢酸を除く脂肪族カルボン酸に配位子置換した金属錯体を含む錯体溶液を得る工程と、
前記錯体溶液に、酢酸またはプロピオン酸の少なくとも1つを添加して、セラミック膜前駆体溶液を得る工程と、を備え、
前記セラミックス膜前駆体溶液の粘度が7cP以下である
ことを特徴とするセラミックス膜前駆体溶液の製造方法。
A step of mixing a metal acetate and an aliphatic carboxylic acid excluding acetic acid to obtain a mixed solution;
Heating the mixed solution to a temperature not lower than the boiling point of acetic acid and lower than the boiling point of the aliphatic carboxylic acid excluding acetic acid to obtain a complex solution containing a metal complex ligand-substituted to the aliphatic carboxylic acid excluding acetic acid;
Adding at least one of acetic acid or propionic acid to the complex solution to obtain a ceramic membrane precursor solution,
The method for producing a ceramic film precursor solution, wherein the ceramic film precursor solution has a viscosity of 7 cP or less.
前記金属の酢酸塩が、酢酸バリウム、酢酸ストロンチウム、酢酸カルシウム、酢酸ビスマス、酢酸鉛、酢酸クロム、酢酸マンガン、酢酸鉄、酢酸コバルト、酢酸ニッケル、酢酸亜鉛、酢酸ランタン、酢酸セリウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウムからなる群から選択される少なくとも1つである
ことを特徴とする請求項1に記載のセラミックス膜前駆体溶液の製造方法。
The metal acetate is barium acetate, strontium acetate, calcium acetate, bismuth acetate, lead acetate, chromium acetate, manganese acetate, iron acetate, cobalt acetate, nickel acetate, zinc acetate, lanthanum acetate, cerium acetate, sodium acetate, acetic acid It is at least 1 selected from the group which consists of potassium and lithium acetate. The manufacturing method of the ceramic film precursor solution of Claim 1 characterized by the above-mentioned.
前記酢酸を除く脂肪族カルボン酸が、プロピオン酸、酪酸、イソ酪酸、吉草酸、ペラルゴン酸、カプリン酸、ネオデカン酸、2−エチルペンタン酸、2−エチルヘキサン酸からなる群から選択される少なくとも1つである
ことを特徴とする請求項1又は2に記載のセラミックス膜前駆体溶液の製造方法。
The aliphatic carboxylic acid excluding the acetic acid is at least one selected from the group consisting of propionic acid, butyric acid, isobutyric acid, valeric acid, pelargonic acid, capric acid, neodecanoic acid, 2-ethylpentanoic acid, and 2-ethylhexanoic acid. The method for producing a ceramic film precursor solution according to claim 1 or 2, wherein:
請求項1〜3のいずれか一項に記載のセラミックス膜前駆体溶液の製造方法により製造された前駆体溶液を塗布し、焼成する工程を備える
ことを特徴とする圧電セラミックス膜の製造方法。
The manufacturing method of the piezoelectric ceramic film characterized by including the process of apply | coating and baking the precursor solution manufactured by the manufacturing method of the ceramic film precursor solution as described in any one of Claims 1-3.
JP2012138482A 2012-06-20 2012-06-20 Method for manufacturing ceramic film precursor solution and method for manufacturing piezoelectric ceramic film Pending JP2014001112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012138482A JP2014001112A (en) 2012-06-20 2012-06-20 Method for manufacturing ceramic film precursor solution and method for manufacturing piezoelectric ceramic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012138482A JP2014001112A (en) 2012-06-20 2012-06-20 Method for manufacturing ceramic film precursor solution and method for manufacturing piezoelectric ceramic film

Publications (1)

Publication Number Publication Date
JP2014001112A true JP2014001112A (en) 2014-01-09

Family

ID=50034667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012138482A Pending JP2014001112A (en) 2012-06-20 2012-06-20 Method for manufacturing ceramic film precursor solution and method for manufacturing piezoelectric ceramic film

Country Status (1)

Country Link
JP (1) JP2014001112A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016131241A (en) * 2015-01-09 2016-07-21 キヤノン株式会社 Piezoelectric material, piezoelectric element, laminated piezoelectric element, liquid discharge head, liquid discharge device, ultrasonic motor, optical apparatus, vibration device, dust removal device, imaging device, electronic apparatus and piezoelectric device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016131241A (en) * 2015-01-09 2016-07-21 キヤノン株式会社 Piezoelectric material, piezoelectric element, laminated piezoelectric element, liquid discharge head, liquid discharge device, ultrasonic motor, optical apparatus, vibration device, dust removal device, imaging device, electronic apparatus and piezoelectric device

Similar Documents

Publication Publication Date Title
CN100420654C (en) Precursor solution, method for manufacturing precursor solution, PZTN compound oxide, method for manufacturing PZTN compound oxide, uses
JP2013505189A (en) Method for producing ferroelectric thin film at low temperature, ferroelectric thin film obtained by the method, and application thereof
JP4329287B2 (en) PLZT or PZT ferroelectric thin film, composition for forming the same and method for forming the same
JP6887770B2 (en) Method of forming PZT ferroelectric film
JP6264447B2 (en) Mn and Nb-doped PZT-based piezoelectric film forming liquid composition
KR102384736B1 (en) Mn-doped pzt-based piezoelectric film formation composition and mn-doped pzt-based piezoelectric film
JP6036460B2 (en) Method for forming PNbZT ferroelectric thin film
TWI635633B (en) Method for pzt-based piezoelectric film
JP2012136487A (en) Method for producing composition for forming ceramic film, piezoelectric ceramic film, and method for producing bismuth 2-ethylhexanoate
JP2014001112A (en) Method for manufacturing ceramic film precursor solution and method for manufacturing piezoelectric ceramic film
JP4329289B2 (en) SBT ferroelectric thin film, composition for forming the same, and method for forming the same
JP2010064942A (en) Method for producing perovskite oxide thin film, and perovskite oxide thin film
JP4329288B2 (en) BLT or BT ferroelectric thin film, composition for forming the same and method for forming the same
JP2018137334A (en) Pzt-based ferroelectric thin film and method of producing the same
JP6075144B2 (en) Composition for forming LaNiO3 thin film and method for forming LaNiO3 thin film using this composition
JP2012158496A (en) Method for manufacturing ceramic film precursor composition and method for manufacturing piezoelectric ceramic film
JP2001139329A (en) METHOD FOR FORMING Pb-BASE PEROVSKITE TYPE METAL OXIDE THIN FILM AND Pb-BASE PEROVSKITE TYPE METAL OXIDE THIN FILM
TWI619689B (en) Composition for forming a strong dielectric film and manufacturing method thereof
LU101884B1 (en) Material deposition method
JP2012144470A (en) Method for producing ceramic film-forming composition, piezoelectric ceramic film, and method for producing alkaline earth metal complex
JP2012136488A (en) Method for producing composition for forming ceramic film, piezoelectric ceramic film, and method for producing iron 2-ethylhexanoate
JP3107084B1 (en) Composition for forming ferroelectric thin film and method for forming ferroelectric thin film
JP4407103B2 (en) Ferroelectric thin film with excellent fatigue resistance and composition for forming the same
JPH07232961A (en) Preparation of oxide thin film
JP2004359485A (en) Solution for forming ferroelectric thin film

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150108