JP2014000314A - Heat radiation structure of endoscope distal end - Google Patents

Heat radiation structure of endoscope distal end Download PDF

Info

Publication number
JP2014000314A
JP2014000314A JP2012138947A JP2012138947A JP2014000314A JP 2014000314 A JP2014000314 A JP 2014000314A JP 2012138947 A JP2012138947 A JP 2012138947A JP 2012138947 A JP2012138947 A JP 2012138947A JP 2014000314 A JP2014000314 A JP 2014000314A
Authority
JP
Japan
Prior art keywords
heat
endoscope
cavity
circuit board
thermoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012138947A
Other languages
Japanese (ja)
Inventor
Atsushi Koshi
敦 小師
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2012138947A priority Critical patent/JP2014000314A/en
Publication of JP2014000314A publication Critical patent/JP2014000314A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a heat radiation structure of an endoscope distal end efficiently radiating heat and having a small endoscope distal end.SOLUTION: The heat radiation structure of the endoscope distal end includes: an imaging device 22 provided at an imaging device section 18 of the endoscope; a shield member 40; and a circuit board 24 provided on a backside of the imaging device 22. The shield member 40 covers peripheries of transmission cables 28. A cavity 34 is provided on a surface in an opposite side of the imaging device 22 of the circuit board 24. The transmission cable 28 fetches an image signal from the imaging device 22. The cavity 34 includes a thermoelement 36 for radiating heat generated from the imaging device 22. A connection plate in the heat radiation side of the thermoelement 36 is joined with the shield member 40.

Description

本発明は、内視鏡先端部の放熱構造に関し、より詳しくは先端部が小型の放熱構造に関する。   The present invention relates to a heat dissipation structure for an endoscope distal end portion, and more particularly to a heat dissipation structure having a small distal end portion.

従来、内視鏡先端部における撮像素子の積極的な熱対策として、撮像素子や能動部品近傍に熱伝導性の高い放熱部材を、撮像素子の枠に固定して設けることにより放熱する構造が知られている(特許文献1)。また、直接撮像素子に熱伝導性の高い部材を密着させて複合ケーブル側に放熱させる構造も提案されている(特許文献2)。しかし、近年CMOSイメージセンサ(以降CIS)を搭載することに伴い、多くの熱を生成する多機能の回路が同一チップに搭載されることがある。このため、放熱構造だけでは昇温による画像劣化を防止出来ず、回路基板の長手方向に熱電素子を設けることでより効率的に放熱する構造も提案されている(特許文献3)。   Conventionally, as a proactive heat countermeasure for the image sensor at the distal end of the endoscope, a structure that dissipates heat by fixing a heat radiating member having high thermal conductivity in the vicinity of the image sensor and active components to the frame of the image sensor is known. (Patent Document 1). In addition, a structure has also been proposed in which a member having high thermal conductivity is brought into close contact with the image pickup element to dissipate heat toward the composite cable (Patent Document 2). However, in recent years, with the mounting of a CMOS image sensor (hereinafter CIS), a multi-functional circuit that generates a lot of heat may be mounted on the same chip. For this reason, image degradation due to temperature rise cannot be prevented with the heat dissipation structure alone, and a structure for more efficiently dissipating heat by providing a thermoelectric element in the longitudinal direction of the circuit board has been proposed (Patent Document 3).

特開2002−291693号公報JP 2002-291893 A 特開2010−279527号公報JP 2010-279527 A 特開2010−035815号公報JP 2010-035815 A

しかし、長手方向に熱電素子を実装すると、内視鏡先端の硬性部が大きくなるという問題がある。   However, when the thermoelectric element is mounted in the longitudinal direction, there is a problem that the hard portion at the tip of the endoscope becomes large.

そこで本発明は、効率的に放熱し、かつ、内視鏡先端部が小さい内視鏡先端部の放熱構造を提供することを目的としている。   Accordingly, an object of the present invention is to provide a heat dissipation structure for an endoscope distal end portion that efficiently radiates heat and has a small endoscope distal end portion.

本発明に係る内視鏡先端部の放熱構造は、内視鏡の先端硬性部に設けられた撮像素子と、撮像素子からの画像信号を取出すための伝送ケーブルの周面を覆うシールド部材と、撮像素子の裏面に設けられた回路基板とを備え、回路基板の撮像素子とは反対側の面にはキャビティが設けられ、キャビティには、撮像素子から発せられた熱を放射する熱電素子が設けられ、熱電素子の放熱面がシールド部材と接合することを特徴とする。   An endoscope distal-end heat dissipation structure according to the present invention includes an imaging element provided at a distal-end rigid part of an endoscope, a shield member that covers a peripheral surface of a transmission cable for taking out an image signal from the imaging element, A circuit board provided on the back surface of the image sensor, a cavity is provided on the surface of the circuit board opposite to the image sensor, and a thermoelectric element that radiates heat generated from the image sensor is provided in the cavity. The heat dissipation surface of the thermoelectric element is joined to the shield member.

また、熱電素子は、吸熱板が設けられた吸熱部と放熱板に放熱用ランドが設けられた放熱部とを有し、放熱部を除く部分がキャビティに埋め込まれることが好ましい。また、回路基板の側面にケーブル取付ランドが設けられてもよい。   Moreover, it is preferable that a thermoelectric element has a heat absorption part in which the heat absorption plate was provided, and a heat radiation part in which the heat dissipation plate was provided with a heat dissipation land, and a portion excluding the heat dissipation part was embedded in the cavity. A cable mounting land may be provided on the side surface of the circuit board.

さらに、回路基板は、撮像素子と接する面が撮像素子と略等しい面積を有する張出部と、張出部の中央から後端方向に延び横断面が張出部よりも小さい中間部と、中間部からさらに後端方向に延び横断面が中間部よりも大きく且つ張出部より小さい取付部とからなり、取付部の側面にケーブル取付ランドが設けられても良い。張出部には、電子部品が備えられることが好ましい。電子部品を張出部に配置することにより先端部をより小型化できる。また、撮像素子は、CISであっても良い。CCDと比較してCISは多機能な回路が盛り込まれることが多く発熱量が多くなる場合があるが、本発明の構造によって省スペースで、かつ、効率的に放熱することが可能となる。撮像素子がBGA型であることが好ましい。BGA型であれば、外部電極接続ランドが不要となり、先端硬性部をさらに小型化することが可能となる。   In addition, the circuit board includes an overhanging portion having a surface that is in contact with the image pickup device and an area substantially equal to the image pickup device, an intermediate portion extending from the center of the overhanging portion toward the rear end and having a smaller cross section than the overhanging portion, The cable may further include a mounting portion that extends in the rear end direction from the portion and has a cross section that is larger than the intermediate portion and smaller than the protruding portion, and a cable mounting land may be provided on the side surface of the mounting portion. The overhanging portion is preferably provided with an electronic component. By disposing the electronic component on the overhang portion, the tip portion can be further reduced in size. The image sensor may be a CIS. Compared with a CCD, a CIS often includes a multi-functional circuit and may generate a large amount of heat. However, the structure of the present invention enables space-saving and efficient heat dissipation. The imaging element is preferably a BGA type. In the case of the BGA type, the external electrode connection land is not necessary, and the tip rigid portion can be further reduced in size.

本発明によれば、効率的に放熱し、かつ、内視鏡先端部が小さい内視鏡先端部の放熱構造を提供することが出来る。   ADVANTAGE OF THE INVENTION According to this invention, the heat dissipation structure of the endoscope front-end | tip part which thermally radiates efficiently and an endoscope front-end | tip part is small can be provided.

本発明の実施形態を適用した内視鏡の全体図である。1 is an overall view of an endoscope to which an embodiment of the present invention is applied. 第1の実施形態における撮像素子部の縦断面を表す図である。It is a figure showing the longitudinal cross-section of the image pick-up element part in 1st Embodiment. 図2を基端方向から見た立体図である。It is the three-dimensional view which looked at FIG. 2 from the base end direction. 第2の実施形態における撮像素子部の斜視図である。It is a perspective view of the image sensor part in a 2nd embodiment. 図4を基端方向から見た立体図である。It is the three-dimensional view which looked at FIG. 4 from the base end direction.

以下、本発明の第1の実施形態について図面を参照して説明する。図1を参照すると、内視鏡10は、体内に挿入される内視鏡可撓管11と、内視鏡10を操作するために使用者によって把持される操作部15と、内視鏡10をプロセッサ(図示せず)に接続するためのコネクタ16を備える。内視鏡可撓管11は、可撓性を有する可撓部12と、可撓部12の先端に接続される湾曲部13と、湾曲部13の先端に接続された先端硬性部14とを備える。操作部15は、ユニバーサルケーブル17を介してコネクタ16に接続される。   Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. Referring to FIG. 1, an endoscope 10 includes an endoscope flexible tube 11 that is inserted into a body, an operation unit 15 that is gripped by a user to operate the endoscope 10, and the endoscope 10. Is connected to a processor (not shown). The endoscope flexible tube 11 includes a flexible portion 12 having flexibility, a bending portion 13 connected to the distal end of the flexible portion 12, and a distal end rigid portion 14 connected to the distal end of the bending portion 13. Prepare. The operation unit 15 is connected to the connector 16 via the universal cable 17.

先端硬性部14において撮影された体内の光学像は、先端硬性部14に設けられた撮像素子部18によって電気信号に変換される。電気信号は、ユニバーサルケーブル17及びコネクタ16を介し、プロセッサにおいて画像処理され、画像はオペレータにより観察される。   The in-vivo optical image photographed at the distal end rigid portion 14 is converted into an electrical signal by the imaging element portion 18 provided at the distal end rigid portion 14. The electrical signal is image processed in the processor via the universal cable 17 and the connector 16, and the image is observed by the operator.

図2を参照し、撮像素子部18の構成を説明する。撮像素子部18は、カバーガラス20に保護されたCIS撮像素子22を有し、撮像素子22の裏面には回路基板24が設けられる。積層セラミックである回路基板24の側面には、複数のケーブル取付ランド26が設けられ、ケーブル取付ランド26には、伝送ケーブル28の接続部30が接続される。撮像素子22からの電気信号は、伝送ケーブル28を介して内視鏡の基端部へ伝送される。また、撮像素子22の外部電極32は、ケーブル取付ランド26へ接続される。   With reference to FIG. 2, the structure of the image pick-up element part 18 is demonstrated. The image sensor unit 18 includes a CIS image sensor 22 protected by a cover glass 20, and a circuit board 24 is provided on the back surface of the image sensor 22. A plurality of cable attachment lands 26 are provided on the side surface of the circuit board 24 that is a multilayer ceramic, and the connection portion 30 of the transmission cable 28 is connected to the cable attachment lands 26. An electrical signal from the image sensor 22 is transmitted to the proximal end portion of the endoscope via the transmission cable 28. Further, the external electrode 32 of the image sensor 22 is connected to the cable mounting land 26.

回路基板24の撮像素子22とは反対側の面の中央部には、キャビティ34が形成される。キャビティ34には撮像素子22から発せられた熱を放射する熱電素子36が設けられる。熱電素子36は、吸熱面35と放熱面37との間にN型、P型半導体を交互に直列接続させた構造で、放熱面37を除く部分がキャビティ34に埋め込まれる。すなわち、放熱面37は回路基板24から突出する。キャビティ34の底部、すなわち撮像素子22に近い面には熱電素子36の複数の半導体を直列につなぐための接続回路が形成される。また、熱電素子36の発熱側である放熱面37は、回路基板24に接触しない位置に設けられる。ここで、熱電素子36とキャビティ34との間には空間が形成されるか又は断熱樹脂が充填される。これにより、放熱側から吸熱側へ熱が伝導することを防止できる。   A cavity 34 is formed at the center of the surface of the circuit board 24 opposite to the imaging element 22. The cavity 34 is provided with a thermoelectric element 36 that radiates heat generated from the imaging element 22. The thermoelectric element 36 has a structure in which N-type and P-type semiconductors are alternately connected in series between the heat-absorbing surface 35 and the heat-dissipating surface 37, and a portion excluding the heat-dissipating surface 37 is embedded in the cavity 34. That is, the heat radiating surface 37 protrudes from the circuit board 24. A connection circuit for connecting a plurality of semiconductors of the thermoelectric element 36 in series is formed at the bottom of the cavity 34, that is, the surface close to the imaging element 22. Further, the heat radiating surface 37 on the heat generating side of the thermoelectric element 36 is provided at a position where it does not contact the circuit board 24. Here, a space is formed between the thermoelectric element 36 and the cavity 34 or is filled with a heat insulating resin. Thereby, heat can be prevented from conducting from the heat radiating side to the heat absorbing side.

熱電素子36の放熱面は、接続板41に接続され、放熱用ランド38(図3参照)を介してシールド線束(シールド部材)40に接続されて放熱経路を形成する。シールド線束40は、シールド線を束ねたものが一旦はんだ処理されて形成された後、はんだ付け等により放熱用ランド38に接合される。このように、放熱用ランド38にシールド線束40が接合されると、接合されない場合と比較して大幅に放熱効率が上がる。   The heat dissipation surface of the thermoelectric element 36 is connected to the connection plate 41 and is connected to a shield wire bundle (shield member) 40 via a heat dissipation land 38 (see FIG. 3) to form a heat dissipation path. The shield wire bundle 40 is formed by once soldering a bundle of shield wires, and then joined to the heat radiation land 38 by soldering or the like. Thus, when the shield wire bundle 40 is joined to the heat radiation land 38, the heat radiation efficiency is significantly increased as compared with the case where the shield wire bundle 40 is not joined.

図3を参照して、撮像素子部18の立体構造を説明する。先端面と平行な撮像素子22の面は約3mm角の正方形状であり、この面と接する回路基板24の面は、略同形状である。回路基板24の撮像素子22とは反対側の面には、2mm角の正方形状で深さ1mmのキャビティ34が設けられる。このキャビティ34にはキャビティ34の深さよりも高さのある熱電素子36が配置される。熱電素子36の吸熱面35は撮像素子22に近い方に配置され、対向する位置には熱電素子36の放熱面37(図2参照)が配置される。また、キャビティ34の開口と同一面上では、キャビティ34の開口を取り巻くように電子部品21が配置される。   With reference to FIG. 3, the three-dimensional structure of the image sensor section 18 will be described. The surface of the image sensor 22 parallel to the front end surface is a square shape of about 3 mm square, and the surface of the circuit board 24 in contact with this surface is substantially the same shape. A cavity 34 having a square shape of 2 mm square and a depth of 1 mm is provided on the surface of the circuit board 24 opposite to the imaging element 22. A thermoelectric element 36 having a height higher than the depth of the cavity 34 is disposed in the cavity 34. The heat absorption surface 35 of the thermoelectric element 36 is disposed closer to the image sensor 22, and the heat radiation surface 37 (see FIG. 2) of the thermoelectric element 36 is disposed at the opposite position. Further, on the same plane as the opening of the cavity 34, the electronic component 21 is disposed so as to surround the opening of the cavity 34.

キャビティ34の内部に備えられて、突出した熱電素子36の放熱面37の上面には、接続板41が設けられる。接続板41の表面において、放熱用ランド38と、熱電素子36の電源電極と導通する電源電極用ランド42とが露出される。放熱用ランド38には、上述のシールド線束40(図2参照)が接続される。これにより、熱電素子36の吸熱面35から放熱面37に移動した熱は、シールド線束40によって吸収されて放射され、撮像素子22が冷却される。   A connection plate 41 is provided on the upper surface of the heat radiating surface 37 of the thermoelectric element 36 that is provided inside the cavity 34 and protrudes. On the surface of the connection plate 41, the heat radiation land 38 and the power electrode land 42 that is electrically connected to the power electrode of the thermoelectric element 36 are exposed. The shield wire bundle 40 (see FIG. 2) is connected to the heat radiation land 38. As a result, the heat transferred from the heat absorbing surface 35 of the thermoelectric element 36 to the heat radiating surface 37 is absorbed and radiated by the shield wire bundle 40, and the imaging element 22 is cooled.

このように、回路基板24に設けられたキャビティ34内に熱電素子36が配置されることで、撮像素子部18(図2参照)が太く又は長くなることはない。より具体的には、熱電素子36の厚みの80%以上がキャビティ34に収められ、従来と同等の寸法でケーブルが配置可能となる。これにより、内視鏡の先端硬性部14の寸法に影響を与えることの無い放熱構造が実現される。   As described above, the thermoelectric element 36 is disposed in the cavity 34 provided in the circuit board 24, so that the imaging element unit 18 (see FIG. 2) does not become thick or long. More specifically, 80% or more of the thickness of the thermoelectric element 36 is accommodated in the cavity 34, and the cable can be arranged with the same size as the conventional one. Thereby, the heat dissipation structure which does not affect the dimension of the distal end rigid portion 14 of the endoscope is realized.

次に、図4を参照し、第2の実施形態を説明する。第1の実施形態との違いは、撮像素子22がTCP(Tape Carrier Package)型ではなくBGA(Ball Grid Array)型であることである。これにより、以下に詳述するように、回路基板24の形状が異なる。また、第1の実施形態と同じ部材には同符号を付している。   Next, a second embodiment will be described with reference to FIG. The difference from the first embodiment is that the image sensor 22 is not a TCP (Tape Carrier Package) type but a BGA (Ball Grid Array) type. Thereby, as will be described in detail below, the shape of the circuit board 24 is different. The same members as those in the first embodiment are denoted by the same reference numerals.

回路基板24は、撮像素子22と電気的に接続される面が、撮像素子22と略等しい面積の張出部62を有する。張出部62と撮像素子22とは、BGAバンプ60によって電気的に接続される。張出部62の中央から後端方向には、横断面が張出部62よりも小さい中間部64が延設される。中間部64からさらに後端方向には、横断面が中間部64よりも大きく且つ張出部62より小さい取付部66が延設される。すなわち、第2の実施形態における回路基板24は、張出部62と中間部64と取付部66とから成る。   The surface of the circuit board 24 that is electrically connected to the image sensor 22 has a protruding portion 62 having an area substantially equal to that of the image sensor 22. The overhang 62 and the image sensor 22 are electrically connected by a BGA bump 60. From the center of the overhang portion 62 to the rear end direction, an intermediate portion 64 having a transverse section smaller than that of the overhang portion 62 is extended. A mounting portion 66 having a transverse section larger than that of the intermediate portion 64 and smaller than the overhang portion 62 extends from the intermediate portion 64 in the rear end direction. In other words, the circuit board 24 according to the second embodiment includes the overhang portion 62, the intermediate portion 64, and the attachment portion 66.

図5を参照すると、中間部64(図示せず)の周囲すなわち張出部62には、中間部64を囲むように電子部品21が配置される。これにより、電子部品21の配置スペースを別途設ける必要が無く、撮像素子部18を小さく設計することが出来る。また、取付部66の側面には、ケーブル取付ランド26が設けられ、伝送ケーブル28(図4参照)の接続部30(図4参照)が接続される。ここで、撮像素子22はBGA型であり、外部電極32が撮像素子の外周面に無いため、回路基板24の外周面に外部電極32(図2参照)との接続用ランドを用意する必要は無い。したがって、撮像素子22の大きさに依らず、取付部66を細く設けることが可能となる。つまり、ケーブル取付ランド26に接続される伝送ケーブル28は、第1の実施形態と比較して小さくまとめられる。   Referring to FIG. 5, the electronic component 21 is disposed so as to surround the intermediate portion 64 around the intermediate portion 64 (not shown), that is, the overhang portion 62. Thereby, it is not necessary to separately provide an arrangement space for the electronic component 21, and the imaging element unit 18 can be designed to be small. Moreover, the cable attachment land 26 is provided on the side surface of the attachment portion 66, and the connection portion 30 (see FIG. 4) of the transmission cable 28 (see FIG. 4) is connected thereto. Here, since the image pickup device 22 is a BGA type and the external electrode 32 is not on the outer peripheral surface of the image pickup device, it is necessary to prepare a land for connection with the external electrode 32 (see FIG. 2) on the outer peripheral surface of the circuit board 24. No. Therefore, it is possible to provide the attachment portion 66 narrowly regardless of the size of the image sensor 22. That is, the transmission cable 28 connected to the cable mounting land 26 is reduced in size as compared with the first embodiment.

このように、第2の実施形態では、張出部62のスペースを利用して電子部品21を配置でき、また、伝送ケーブル28を取付部66の外周面に沿って小さくまとめることができる。これにより、第1の実施形態よりも撮像素子部18を小さく設計することが可能となる。   As described above, in the second embodiment, the electronic component 21 can be arranged using the space of the overhang portion 62, and the transmission cable 28 can be made small along the outer peripheral surface of the attachment portion 66. Thereby, it is possible to design the image sensor unit 18 smaller than in the first embodiment.

なお、回路基板24の幾何学的な中心部位置には回路が無いため、キャビティ34が形成されても電気的な構成に問題は生じない。また、回路基板24は、積層アルミナセラミックであるため熱伝導性及び放熱性に優れ、昇温をより効果的に抑制可能である。   In addition, since there is no circuit in the geometric center part position of the circuit board 24, even if the cavity 34 is formed, a problem does not arise in an electrical configuration. Moreover, since the circuit board 24 is a laminated alumina ceramic, it is excellent in thermal conductivity and heat dissipation, and the temperature rise can be more effectively suppressed.

14 先端硬性部
22 撮像素子
24 回路基板
26 ケーブル取付ランド
28 伝送ケーブル
34 キャビティ
35 吸熱面(吸熱部)
36 熱電素子
37 放熱面
38 放熱用ランド
40 シールド線束(シールド部材)
62 張出部
64 中間部
66 取付部
14 Hard end portion 22 Image sensor 24 Circuit board 26 Cable mounting land 28 Transmission cable 34 Cavity 35 Heat absorbing surface (heat absorbing portion)
36 Thermoelectric element 37 Heat radiation surface 38 Land for heat radiation 40 Shield wire bundle (shield member)
62 Overhanging portion 64 Intermediate portion 66 Mounting portion

Claims (7)

内視鏡の先端硬性部に設けられた撮像素子と、
前記撮像素子からの画像信号を取出すための伝送ケーブルの周面を覆うシールド部材と、
前記撮像素子の裏面に設けられた回路基板とを備え、
前記回路基板の前記撮像素子とは反対側の面にはキャビティが設けられ、前記キャビティには、前記撮像素子から発せられた熱を放熱する熱電素子が設けられ、
前記熱電素子の放熱面が前記シールド部材と接合することを特徴とする内視鏡先端部の放熱構造。
An image sensor provided at the distal rigid portion of the endoscope;
A shield member for covering a peripheral surface of a transmission cable for taking out an image signal from the image sensor;
A circuit board provided on the back surface of the imaging device,
A cavity is provided on the surface of the circuit board opposite to the imaging element, and the cavity is provided with a thermoelectric element that dissipates heat generated from the imaging element.
A heat dissipation structure for an endoscope distal end, wherein a heat dissipation surface of the thermoelectric element is joined to the shield member.
前記熱電素子は、吸熱面が設けられた吸熱部と放熱面に放熱用ランドが設けられた放熱部とを有し、前記放熱部を除く部分が前記キャビティに埋め込まれることを特徴とする請求項1に記載の内視鏡先端部の放熱構造。   The thermoelectric element has a heat absorbing portion provided with a heat absorbing surface and a heat radiating portion provided with a heat radiating land on the heat radiating surface, and a portion excluding the heat radiating portion is embedded in the cavity. The heat dissipation structure of the endoscope front end part according to 1. 前記熱電素子は、吸熱面が設けられた吸熱部と放熱面に放熱用ランドが設けられた放熱部とを有し、前記放熱部は前記回路基板から突出するように、前記キャビティに埋め込まれることを特徴とする請求項1に記載の内視鏡先端部の放熱構造。   The thermoelectric element has a heat absorbing portion provided with a heat absorbing surface and a heat radiating portion provided with a heat radiating land on the heat radiating surface, and the heat radiating portion is embedded in the cavity so as to protrude from the circuit board. The heat dissipating structure for the distal end portion of the endoscope according to claim 1. 前記キャビティは回路基板の前記撮像素子とは反対側の面における中央部に形成されることを特徴とする請求項1に記載の内視鏡先端部の放熱構造。   The heat dissipation structure for an endoscope distal end portion according to claim 1, wherein the cavity is formed in a central portion on a surface of the circuit board opposite to the imaging element. 前記回路基板は、撮像素子と接する面が撮像素子と略等しい面積を有する張出部と、
前記張出部の中央から後端方向に延び横断面が前記張出部よりも小さい中間部と、
前記中間部からさらに後端方向に延び横断面が前記中間部よりも大きく且つ前記張出部より小さい取付部とからなり、
前記取付部の側面にケーブル取付ランドが設けられることを特徴とする請求項2に記載の内視鏡先端部の放熱構造。
The circuit board has a projecting portion whose surface in contact with the image sensor has an area substantially equal to the image sensor,
An intermediate portion extending in the rear end direction from the center of the overhang portion and having a smaller cross section than the overhang portion,
The intermediate portion further extends in the rear end direction and has a cross section that is larger than the intermediate portion and smaller than the protruding portion,
The endoscope heat dissipating structure according to claim 2, wherein a cable mounting land is provided on a side surface of the mounting portion.
前記突出している熱電素子の放熱部の上面に接続板が設けられ、前記接続板表面には放熱用ランドと前記熱電素子の電源電極と導通する電源電極用ランドとが露出し、前記放熱用ランドは、前記シールド部材と接合することを特徴とする請求項3に記載の内視鏡先端部の放熱構造。   A connecting plate is provided on the upper surface of the heat radiating portion of the protruding thermoelectric element, and a heat radiating land and a power electrode land that is electrically connected to the power electrode of the thermoelectric element are exposed on the surface of the connecting plate. The endoscope heat-radiating structure according to claim 3, wherein the structure is joined to the shield member. 前記熱電素子は複数の半導体を有し、前記半導体の接続回路が前記キャビティの底部に形成されることを特徴とする請求項6に記載の放熱構造。   The heat dissipation structure according to claim 6, wherein the thermoelectric element includes a plurality of semiconductors, and a connection circuit of the semiconductors is formed at a bottom portion of the cavity.
JP2012138947A 2012-06-20 2012-06-20 Heat radiation structure of endoscope distal end Pending JP2014000314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012138947A JP2014000314A (en) 2012-06-20 2012-06-20 Heat radiation structure of endoscope distal end

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012138947A JP2014000314A (en) 2012-06-20 2012-06-20 Heat radiation structure of endoscope distal end

Publications (1)

Publication Number Publication Date
JP2014000314A true JP2014000314A (en) 2014-01-09

Family

ID=50034110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012138947A Pending JP2014000314A (en) 2012-06-20 2012-06-20 Heat radiation structure of endoscope distal end

Country Status (1)

Country Link
JP (1) JP2014000314A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015173736A (en) * 2014-03-13 2015-10-05 Hoya株式会社 Semiconductor device and endoscope
CN107710730A (en) * 2016-01-28 2018-02-16 奥林巴斯株式会社 Image unit, photographing module and endoscope
JP6307697B1 (en) * 2016-05-10 2018-04-11 オリンパス株式会社 Electronic circuit unit, imaging unit, imaging module, and endoscope
WO2018221075A1 (en) * 2017-05-29 2018-12-06 パナソニックIpマネジメント株式会社 Imaging module

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015173736A (en) * 2014-03-13 2015-10-05 Hoya株式会社 Semiconductor device and endoscope
CN107710730A (en) * 2016-01-28 2018-02-16 奥林巴斯株式会社 Image unit, photographing module and endoscope
US10362929B2 (en) 2016-01-28 2019-07-30 Olympus Corporation Imaging unit, imaging module, and endoscope
EP3410690A4 (en) * 2016-01-28 2019-08-07 Olympus Corporation Imaging unit, imaging module, and endoscope
CN107710730B (en) * 2016-01-28 2020-05-05 奥林巴斯株式会社 Image pickup unit, image pickup module, and endoscope
JP6307697B1 (en) * 2016-05-10 2018-04-11 オリンパス株式会社 Electronic circuit unit, imaging unit, imaging module, and endoscope
US10610090B2 (en) 2016-05-10 2020-04-07 Olympus Corporation Electronic circuit unit, imaging unit, imaging module, and endoscope
WO2018221075A1 (en) * 2017-05-29 2018-12-06 パナソニックIpマネジメント株式会社 Imaging module

Similar Documents

Publication Publication Date Title
JP5501724B2 (en) Semiconductor radiation source
JP6076048B2 (en) Imaging apparatus and endoscope
JP5775984B1 (en) Endoscope device
WO2012137267A1 (en) Solid-state image pickup device, and method for manufacturing solid-state image pickup device
JP2009082503A (en) Imaging device and endoscope equipped with the same
US10485412B2 (en) Image pickup apparatus and endoscope
JP6880777B2 (en) Optical module
JP2010035815A (en) Imaging module for endoscope apparatus
JP2010069217A (en) Imaging apparatus for electronic endoscope and electronic endoscope
JP2011120065A (en) Heat dissipation structure of imaging device package
JP2013123628A (en) Imaging unit for endoscope
JP2014000314A (en) Heat radiation structure of endoscope distal end
JP6315229B2 (en) Heat dissipation parts, electronic equipment
TWI495423B (en) Thermal module and electronic device incorporating the same
JP6605710B2 (en) Hand-held device, and hand-held gimbal and electronic device using the hand-held device
JP2017005455A (en) Cooling structure of photoelectric conversion element
JP2015217162A (en) Imaging module and endoscope
JP2017073634A (en) Solid state image pickup device
JP2006339291A (en) Hollow package, semiconductor device using the same and solid-state image pickup device
JP2008227653A (en) Semiconductor device having imaging element
JP2014042810A (en) Heat radiator using cable and endoscope
JP2010205780A (en) Imaging unit
JP2014027419A (en) Heat radiator of imaging element
JP6120733B2 (en) Imaging apparatus and endoscope
JP2017104203A (en) Ultrasonic probe