JP2013544674A - Thick film polyimide metal-clad laminate - Google Patents

Thick film polyimide metal-clad laminate Download PDF

Info

Publication number
JP2013544674A
JP2013544674A JP2013534820A JP2013534820A JP2013544674A JP 2013544674 A JP2013544674 A JP 2013544674A JP 2013534820 A JP2013534820 A JP 2013534820A JP 2013534820 A JP2013534820 A JP 2013534820A JP 2013544674 A JP2013544674 A JP 2013544674A
Authority
JP
Japan
Prior art keywords
polyimide
metal
clad laminate
film
thick film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013534820A
Other languages
Japanese (ja)
Other versions
JP5973449B2 (en
Inventor
ホ スブ キム
デ ニョウン キム
スン フン ジュン
ビュン ウク ジョ
ユン ド キム
ウェオン ジュン チェ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Innovation Co Ltd
SK Energy Co Ltd
Original Assignee
SK Innovation Co Ltd
SK Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SK Innovation Co Ltd, SK Energy Co Ltd filed Critical SK Innovation Co Ltd
Publication of JP2013544674A publication Critical patent/JP2013544674A/en
Application granted granted Critical
Publication of JP5973449B2 publication Critical patent/JP5973449B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/02Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/12Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2379/00Other polymers having nitrogen, with or without oxygen or carbon only, in the main chain
    • B32B2379/08Polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、厚膜ポリイミド金属張積層体に関し、工程安定性と寸法安定性に優れた製品を製造するための厚膜ポリイミド金属張積層体に関する。より具体的に、本発明は、ポリイミド積層体とその片面または両面にラミネートにより金属箔を積層させる厚膜(thick layer)ポリイミド金属張積層体であって、前記ポリイミド積層体は、IPC‐TM‐650(2.4.19)法によって測定された伸率が30%以下であり、引張強度が3GPa以上であり、100〜250℃で測定された線熱膨張係数(CTE)が5〜30ppm/℃であるポリイミドフィルムとその片面または両面に熱可塑性ポリイミド層を含む厚膜ポリイミド金属張積層体に関する。  The present invention relates to a thick film polyimide metal-clad laminate, and relates to a thick film polyimide metal-clad laminate for producing a product having excellent process stability and dimensional stability. More specifically, the present invention relates to a polyimide laminate and a thick layer polyimide metal-clad laminate in which a metal foil is laminated on one or both sides of the polyimide laminate, and the polyimide laminate is IPC-TM- The elongation measured by the 650 (2.4.19) method is 30% or less, the tensile strength is 3 GPa or more, and the linear thermal expansion coefficient (CTE) measured at 100 to 250 ° C. is 5 to 30 ppm / The present invention relates to a thick film polyimide metal-clad laminate including a polyimide film at 0 ° C. and a thermoplastic polyimide layer on one or both sides thereof.

Description

本発明は、厚膜ポリイミド金属張積層体に関し、工程安定性と寸法安定性に優れた製品を製造するためのポリイミドフィルムの物性範囲に関する。   The present invention relates to a thick film polyimide metal-clad laminate, and relates to a physical property range of a polyimide film for producing a product excellent in process stability and dimensional stability.

フレキシブルプリント回路基板(Flexible Printed Circuit Board)の製造に使用されるフレキシブル金属張積層体(Flexible Metal Clad Laminate)は、伝導性金属箔(Metal Foil)と絶縁樹脂の積層体であり、微細回路加工および狭い空間での折り曲げが可能なことにより、電子機器が小型化および軽量化するにつれてその活用が増加している。このようなフレキシブル金属張積層体は、通常、2層レイヤ構造と3層レイヤ構造に製造される。   A flexible metal clad laminate used in the manufacture of a flexible printed circuit board is a laminate of a conductive metal foil and an insulating resin. Since it is possible to bend in a narrow space, its use is increasing as electronic devices become smaller and lighter. Such a flexible metal-clad laminate is usually manufactured in a two-layer structure and a three-layer structure.

3層レイヤ構造を有する製品は、エポキシ系接着剤またはウレタン系の接着剤を使用してポリイミドフィルムと金属箔とを結合させて製造する。この場合、接着剤層の存在により耐熱性と難燃性が低下し、エッチング工程と熱処理工程における寸法変化が大きいため、プリント回路基板の製造工程に支障を与えることが多い。前記の欠点を解消するために接着剤を使用しない2層レイヤ構造のフレキシブル金属張積層体が開発されて用いられている。耐熱性に優れた2層レイヤ構造のフレキシブル金属張積層体を製造するための方法としては、キャスト法とラミネート法が挙げられる。キャスト法は、導電性金属箔上にポリアミック酸を塗布した後、硬化過程を経て導電性金属箔上にポリイミドを形成し、フレキシブル金属張積層体を製造する方法であり、必要に応じて、ポリイミドの最外層に熱可塑性ポリイミド層を導入した後、伝導性金属箔とのラミネートにより両面金属張積層体を製造してもよい。ラミネート法は、ポリイミドフィルム上の片面または両面に熱可塑性ポリイミド層を形成した後、金属箔とのラミネートにより、片面金属張積層体または両面金属張積層体を製造する方法である。   A product having a three-layer structure is manufactured by bonding a polyimide film and a metal foil using an epoxy adhesive or a urethane adhesive. In this case, the heat resistance and flame retardancy are reduced due to the presence of the adhesive layer, and the dimensional change in the etching process and the heat treatment process is large, which often hinders the printed circuit board manufacturing process. In order to eliminate the above-mentioned drawbacks, a flexible metal-clad laminate having a two-layer structure that does not use an adhesive has been developed and used. Examples of a method for producing a flexible metal-clad laminate having a two-layer structure excellent in heat resistance include a casting method and a laminating method. The cast method is a method for producing a flexible metal-clad laminate by applying a polyamic acid on a conductive metal foil and then forming a polyimide on the conductive metal foil through a curing process. After introducing a thermoplastic polyimide layer into the outermost layer, a double-sided metal-clad laminate may be produced by laminating with a conductive metal foil. The laminating method is a method for producing a single-sided metal-clad laminate or a double-sided metal-clad laminate by forming a thermoplastic polyimide layer on one or both sides of a polyimide film and then laminating with a metal foil.

一方、キャスト法を用いて厚いポリイミド層の金属張積層体を製造する際には、表面またはポリイミド層間の界面において発泡現象のような外観不良が生じることがあり、ポリイミド前駆体であるポリアミック酸の硬化度が低下して機械的強度と耐化学性が減少し、フィルムの内部に存在する溶媒を除去し難くなり寸法安定性が低下する問題が生じ得る。   On the other hand, when manufacturing a metal-clad laminate of a thick polyimide layer using a casting method, appearance defects such as foaming may occur at the surface or at the interface between polyimide layers, and the polyimide precursor polyamic acid The degree of cure is reduced, the mechanical strength and chemical resistance are reduced, and it is difficult to remove the solvent present in the film, resulting in a problem that the dimensional stability is lowered.

このような欠点を解消するために、ラミネート法を用いてポリイミド層の厚さが厚い厚膜ポリイミド金属張積層体を製造する方法を用いることができる。本発明者らは、ラミネート法で2層のフレキシブル銅箔積層体を製造する場合、ラミネート工程中に製品の外観不良(しわ、斜線、縦縞、など)が生じ、寸法安定性が低下することを見出し、このような問題を解決するために鋭意研究の結果、本発明を完成するに至った。   In order to eliminate such drawbacks, a method of manufacturing a thick film polyimide metal-clad laminate having a thick polyimide layer using a laminating method can be used. When the present inventors manufacture a two-layer flexible copper foil laminate by the laminating method, the appearance defect of the product (wrinkles, diagonal lines, vertical stripes, etc.) occurs during the laminating process, and the dimensional stability decreases. As a result of diligent research to solve such problems, the present invention has been completed.

本発明の目的は、ラミネート法を用いて厚膜ポリイミド金属張積層体を製造する場合、良好な外観と物性を有する製品を製造するために要求されるポリイミドフィルムの物性を提供することにある。   The objective of this invention is providing the physical property of the polyimide film requested | required in order to manufacture the product which has a favorable external appearance and physical property, when manufacturing a thick film polyimide metal-clad laminate using a lamination method.

本発明は、厚膜ポリイミド金属張積層体に関し、ラミネート法を用いてポリイミド積層体の厚さが厚い厚膜ポリイミド金属張積層体を製造するにあたり、コア層として使用されるポリイミドフィルムの物性が特定範囲にある場合、工程安定性と寸法安定性に優れた製品を製造することができることを見出し、本発明を完成した。   The present invention relates to a thick-film polyimide metal-clad laminate, and the physical properties of the polyimide film used as the core layer are specified in producing a thick-film polyimide metal-clad laminate with a thick polyimide laminate using a laminating method. When it is within the range, it has been found that a product excellent in process stability and dimensional stability can be produced, and the present invention has been completed.

本発明に係る厚膜ポリイミド金属張積層体は、ラミネート工程によって製造することができ、ラミネート工程時に製品の外観不良(しわ、斜線、縦縞、など)を改善し、寸法安定性に優れている。   The thick-film polyimide metal-clad laminate according to the present invention can be manufactured by a laminating process, improves appearance defects (wrinkles, diagonal lines, vertical stripes, etc.) of the product during the laminating process, and has excellent dimensional stability.

具体的に、本発明は、ポリイミド積層体とその片面または両面にラミネート法により金属箔を積層させる厚膜(thick layer)ポリイミド金属張積層体であって、
前記ポリイミド積層体は、IPC‐TM‐650(2.4.19)法によって測定された伸率が30%以下であり、引張弾性率が3GPa以上であり、100〜250℃で測定された線熱膨張係数(CTE)が5〜30ppm/℃であるポリイミドフィルムとその片面または両面に熱可塑性ポリイミド層を含む厚膜ポリイミド金属張積層体に関する。
Specifically, the present invention is a polyimide layered product and a thick layer polyimide metal-clad laminate in which a metal foil is laminated on one or both sides by a laminating method,
The polyimide laminate has an elongation measured by the IPC-TM-650 (2.4.19) method of 30% or less, a tensile elastic modulus of 3 GPa or more, and a line measured at 100 to 250 ° C. The present invention relates to a polyimide film having a coefficient of thermal expansion (CTE) of 5 to 30 ppm / ° C. and a thick film polyimide metal-clad laminate including a thermoplastic polyimide layer on one or both sides thereof.

特に、前記ポリイミドフィルムの物性範囲を限定することにより、ラミネート工程時に発生する外観上の問題点を改善し、ポリイミド金属張積層体の寸法安定性を高める方法を見出し、本発明を完成した。   In particular, by limiting the physical property range of the polyimide film, a problem in appearance that occurs during the laminating process was improved, and a method for improving the dimensional stability of the polyimide metal-clad laminate was found, and the present invention was completed.

すなわち、前記ポリイミドフィルムの物性は、IPC‐TM‐650(2.4.19)法によって測定された伸率が30%以下であり、引張弾性率が3GPa以上であり、100〜250℃で測定された線熱膨張係数が(CTE)5〜30ppm/℃であることを特徴とし、前記範囲を満たす場合、ラミネート工程により金属張積層体を製造することができ、寸法安定性が極めて優れた金属張積層体を製造することができることを見出し、本発明を完成した。   That is, the physical properties of the polyimide film were measured by the IPC-TM-650 (2.4.19) method with an elongation of 30% or less, a tensile modulus of 3 GPa or more, and measured at 100 to 250 ° C. The linear thermal expansion coefficient is (CTE) 5-30 ppm / ° C., and when the above range is satisfied, a metal-clad laminate can be manufactured by a laminating process, and the metal has extremely excellent dimensional stability. The present inventors have found that a stretch laminate can be produced and completed the present invention.

本発明において、前記ポリイミドフィルムは、伸率が30%以下、より具体的には25%以下、より好ましくは5〜30%の範囲である際にラミネート工程により金属箔との積層が可能である。30%を超える場合にはうねりが生じ、ラミネート後の製品に縦縞としわが生じるなど、外観上の不良が現れて、良好な外観を有する製品を製造することができない。   In the present invention, the polyimide film can be laminated with a metal foil by a laminating step when the elongation is 30% or less, more specifically 25% or less, more preferably 5 to 30%. . When it exceeds 30%, undulation occurs, and vertical defects such as vertical stripes and wrinkles appear in the product after lamination, and a product having a good appearance cannot be manufactured.

また、前記ポリイミドフィルムは、引張弾性率が3GPa以上、より具体的には4GPa以上のものを使用することが好ましく、より好ましくは、4〜8GPaのものを使用することが好ましい。3GPa未満の場合には軟性を有し、伸率が高いため、上述したように外観不良が発生する可能性が高い。   The polyimide film preferably has a tensile modulus of 3 GPa or more, more specifically 4 GPa or more, more preferably 4 to 8 GPa. If it is less than 3 GPa, it is soft and has a high elongation rate, so there is a high possibility that an appearance defect will occur as described above.

前記ポリイミドフィルムは、100〜250℃で測定された線熱膨張係数(CTE)が5〜30ppm/℃、より好ましくは10〜25ppm/℃の範囲のものを使用すると、寸法安定性に優れた金属張積層体を製造することができる。30ppm/℃を超える場合、または5ppm/℃未満の場合には、金属箔、特に銅箔とのCTE差が大きいため、製品の寸法変化率が増加する可能性がある。   When the polyimide film has a coefficient of linear thermal expansion (CTE) measured at 100 to 250 ° C. in the range of 5 to 30 ppm / ° C., more preferably 10 to 25 ppm / ° C., a metal having excellent dimensional stability. A tension laminate can be produced. If it exceeds 30 ppm / ° C. or less than 5 ppm / ° C., the dimensional change rate of the product may increase because of a large CTE difference with metal foil, particularly copper foil.

前記ポリイミドフィルムは、厚さが25μm以上、より具体的には25〜150μmのものが、厚膜ポリイミド金属張積層体を製造することができるため好ましい。   The polyimide film preferably has a thickness of 25 μm or more, more specifically 25 to 150 μm, since a thick film polyimide metal-clad laminate can be produced.

本発明において、前記ポリイミド金属張積層体は、コア層として使用されるポリイミドフィルムの片面または両面に熱可塑性ポリアミック酸樹脂をコーティングし、乾燥および熱処理を経て製造する。本発明において、前記ラミネート工程は、前記ポリイミド積層体と導電性金属箔を高温ラミネートにより接着させて製造することであり、導電性金属箔がポリイミド積層体の片面または両面に存在する形態をすべて含む。   In the present invention, the polyimide metal-clad laminate is manufactured by coating a thermoplastic polyamic acid resin on one or both sides of a polyimide film used as a core layer, followed by drying and heat treatment. In the present invention, the laminating step is to manufacture the polyimide laminate and the conductive metal foil by high temperature lamination, and includes all forms in which the conductive metal foil exists on one or both sides of the polyimide laminate. .

ここで、導電性金属箔は、銅箔、ステンレス箔、アルミ箔、ニッケル箔または2種以上の合金箔などが挙げられ、本発明が達成しようとする目的を満たす限り、その種類は制限されない。また、導電性金属箔の厚さは制限されないが、9〜70μmであることが工程において有利であるため好ましい。   Here, examples of the conductive metal foil include a copper foil, a stainless steel foil, an aluminum foil, a nickel foil, or two or more alloy foils, and the type thereof is not limited as long as the object to be achieved by the present invention is satisfied. Moreover, although the thickness of electroconductive metal foil is not restrict | limited, since it is advantageous in a process that it is 9-70 micrometers, it is preferable.

コア層として使用されるポリイミドフィルムは、熱可塑性ポリイミド層との接着力を向上させるために、表面処理、例えば、コロナ処理、プラズマ処理などを施すことができ、本発明が達成しようとする目的を満たす限り、その方法は制限されない。このような表面処理法を用いてポリイミドフィルムの表面層の粗さを増加させるか化学構造を変化させる過程を含んでもよい。   The polyimide film used as the core layer can be subjected to surface treatment, for example, corona treatment, plasma treatment, etc. in order to improve the adhesive strength with the thermoplastic polyimide layer. As long as it is satisfied, the method is not limited. The surface treatment method may be used to increase the roughness of the surface layer of the polyimide film or to change the chemical structure.

本発明に使用される熱可塑性ポリイミド樹脂層を製造する方法は特に制限されない。本発明では、熱可塑性ポリイミド樹脂の前駆体であるポリアミック酸樹脂溶液をコア層として使用されるポリイミドフィルムの片面または両面に塗布した後、乾燥および熱処理を経て、ポリイミドフィルム上に新たな熱可塑性ポリイミド樹脂層を形成する。ポリアミック酸樹脂溶液を塗布する方法としては、ナイフコーティング(knife coating)、ロールコーティング(roll coating)、ダイコーティング(die coating)、カーテンコーティング(curtain coating)などが挙げられ、本発明が達成しようとする目的を満たす限り、その方法は制限されない。   The method for producing the thermoplastic polyimide resin layer used in the present invention is not particularly limited. In the present invention, after a polyamic acid resin solution, which is a precursor of a thermoplastic polyimide resin, is applied to one or both sides of a polyimide film used as a core layer, a new thermoplastic polyimide is formed on the polyimide film through drying and heat treatment. A resin layer is formed. Examples of the method for applying the polyamic acid resin solution include knife coating, roll coating, die coating, curtain coating, and the like, and the present invention is intended to achieve. As long as the purpose is satisfied, the method is not limited.

本発明では、ポリイミド前駆体であるポリアミック酸樹脂溶液を塗布した後、これを熱的変換過程または化学的変換過程によりポリイミド樹脂に変換することができる。熱処理方法としては任意の方法を適用してもよいが、半硬化状態のポリイミド樹脂またはポリイミド前駆体樹脂の塗布および乾燥によりゲルフィルムを形成した後、これを乾燥炉内で所定時間定置させたり、所定時間連続して乾燥炉内を移動させて熱処理を施すことが一般的である。熱処理温度は通常300℃以上であり、より好ましくは300〜500℃の高温処理を行う。熱処理方式としては、本発明の目的を満たす限り、公知の加熱方式を適用することができる。   In this invention, after apply | coating the polyamic acid resin solution which is a polyimide precursor, this can be converted into a polyimide resin by a thermal conversion process or a chemical conversion process. Although any method may be applied as the heat treatment method, after forming a gel film by applying and drying a semi-cured polyimide resin or polyimide precursor resin, this may be placed in a drying furnace for a predetermined time, Generally, heat treatment is performed by moving the inside of the drying furnace continuously for a predetermined time. The heat treatment temperature is usually 300 ° C. or higher, and more preferably, a high temperature treatment of 300 to 500 ° C. is performed. As a heat treatment method, a known heating method can be applied as long as the object of the present invention is satisfied.

本発明で使用された熱可塑性ポリイミドおよび熱可塑性ポリアミック酸は、完全にイミド化した後のガラス転移温度(T)が180℃以上、より好ましくは200〜300℃であり、熱可塑性特性を有する熱可塑性ポリイミド樹脂やポリアミック酸樹脂を用いればよく、種類は特に限定されない。 The thermoplastic polyimide and thermoplastic polyamic acid used in the present invention have a glass transition temperature (T g ) of 180 ° C. or higher, more preferably 200 to 300 ° C. after complete imidization, and have thermoplastic properties. A thermoplastic polyimide resin or polyamic acid resin may be used, and the type is not particularly limited.

また、前記熱可塑性ポリイミド層の最終硬化後の厚さが3〜20μmであることが、金属箔との安定した接着力を確保でき、製造工程上の利点があるため好ましい。   Moreover, it is preferable that the thickness after the final curing of the thermoplastic polyimide layer is 3 to 20 μm because a stable adhesive force with the metal foil can be secured and there are advantages in the manufacturing process.

本発明において、ラミネート工程における温度は特に制限されないが、熱可塑性ポリイミド樹脂のガラス転移温度以上の温度に加熱することが好ましい。熱可塑性ポリイミド樹脂の加熱温度が十分でない場合には、金属箔との圧着に必要な十分な流動性を確保することができず、そのため安定した接着力を確保することができない。圧着時の加熱温度は、通常、熱可塑性ポリイミド樹脂のガラス転移温度(T)より30〜200℃高いことが好適である。また、ラミネート圧力については、線圧力として50〜200kgf/cmが好適である。圧力の高い場合には、ラミネート温度を下げることができる利点があるため、できるだけ高い圧力で作業を行うことが有利である。 In the present invention, the temperature in the laminating step is not particularly limited, but it is preferably heated to a temperature equal to or higher than the glass transition temperature of the thermoplastic polyimide resin. When the heating temperature of the thermoplastic polyimide resin is not sufficient, sufficient fluidity necessary for pressure bonding with the metal foil cannot be ensured, and thus stable adhesive force cannot be ensured. The heating temperature at the time of pressure bonding is usually preferably 30 to 200 ° C. higher than the glass transition temperature (T g ) of the thermoplastic polyimide resin. Moreover, about the lamination pressure, 50-200 kgf / cm is suitable as linear pressure. When the pressure is high, there is an advantage that the laminating temperature can be lowered. Therefore, it is advantageous to work at a pressure as high as possible.

他の特徴および様相は、後述する詳細な説明、図面、および請求項により明らかになる。   Other features and aspects will become apparent from the following detailed description, drawings, and claims.

本発明は、ラミネート法を用いてポリイミド層の厚さが厚い厚膜金属張積層体を製造するにあたり、工程安定性と寸法安定性に優れた製品を製造するためのコア層として使用されるポリイミドフィルムの物性を提案する。これにより、ラミネート法を用いて厚膜金属張積層体を製造する際に発生し得る工程上の問題を最小化することができ、優れた物性を有する厚膜金属張積層体を製造することができる。   The present invention provides a polyimide used as a core layer for producing a product having excellent process stability and dimensional stability in producing a thick film metal-clad laminate having a thick polyimide layer using a laminating method. Propose the physical properties of the film. As a result, it is possible to minimize the process problems that may occur when manufacturing a thick film metal-clad laminate using a laminate method, and to manufacture a thick film metal-clad laminate having excellent physical properties. it can.

以下、本発明の具現的な説明のために実施例を挙げて説明するが、本発明は下記実施例に限定されない。   Hereinafter, although an example is given and explained for the concrete explanation of the present invention, the present invention is not limited to the following example.

1.外観の評価
本発明に係る金属張積層体を製造する過程で、工程において現れる現象または製造後の金属張積層体の外観を目視で確認した。うねりは、ラミネーターロールの全段でフィルムが高温のロールに接触することで波状を示す現象である。うねりが発生する場合、その程度によって金属箔と積層された後に銅箔にしわ(リンクル)が発生することがあり、これによって製品の外観不良が発生する。うねりが発生する場合、その程度によって以下の基準に従って評価する。
1. Appearance Evaluation In the process of producing the metal-clad laminate according to the present invention, the phenomenon appearing in the process or the appearance of the metal-clad laminate after production was visually confirmed. The undulation is a phenomenon in which the film is wavy when the film is in contact with the high-temperature roll in all stages of the laminator roll. When waviness occurs, the copper foil may be wrinkled after being laminated with the metal foil depending on the degree of the waviness. If undulation occurs, the evaluation is made according to the following criteria depending on the degree of swell.

○は、大きいうねりが発生して、ラミネーターロールを通過した後にしわが生じたものを意味し、△は、うねりが弱く発生して、ラミネーターロールを通過した後にしわが生じていないものを意味し、×は、うねりが発生していない良好な工程安定性を有するものを意味する。ラミネートが終了した後に製品の外観にしわが生じた場合、その程度によって○、△、×のなどのレベルに判断した。   ○ means that a large swell occurred and wrinkled after passing through the laminator roll, and △ means that a swell occurred weakly and no wrinkle occurred after passing through the laminator roll. , X means having good process stability with no undulation. When wrinkles occurred on the appearance of the product after the lamination was completed, the level was judged as ◯, Δ, or X depending on the degree.

本発明で言及した物性は、次の測定法に従う。   The physical properties mentioned in the present invention follow the following measuring methods.

2.機械的物性
IPC‐TM‐650、2.4.19の測定法に従って物性を測定した。引張強度および伸率を測定するための試片を製作した後、UTM(Universal Testing Machine)を用いて引張強度および伸率を測定した。これにより引張弾性率を計算した。
2. Mechanical properties Physical properties were measured according to the measuring method of IPC-TM-650, 2.4.19. After producing specimens for measuring the tensile strength and the elongation, the tensile strength and the elongation were measured using UTM (Universal Testing Machine). This calculated the tensile modulus.

3.線熱膨張係数(CTE、Coefficient of Thermal Linear Expansion)の測定
線熱膨張係数は、TMA(Thermomechanical Analyzer)を使用して5℃/分の速度で400℃まで昇温しながら測定した熱膨張値のうち、100℃から250℃までの値の平均値により求めた。
3. Measurement of linear thermal expansion coefficient (CTE, Coefficient of Thermal Linear Expansion) The linear thermal expansion coefficient is the value of the thermal expansion value measured while increasing the temperature to 400 ° C. at a rate of 5 ° C./minute using TMA (Thermal Mechanical Analyzer). Among these, it calculated | required by the average value of the value from 100 degreeC to 250 degreeC.

4.エッチング後および熱処理後の寸法変化率
IPC‐TM‐650、2.2.4のMethod Bに従った。生地をMDおよびTDがそれぞれ275×255mmの正方形試片に裁断した後、四つの頂点に位置認識用の穴を開け、23℃、50%RHの恒温恒湿器に24時間保管した後、各穴間の距離を3回繰り返して測定した後、平均値を求めた。次に、金属箔をエッチングし、23℃、50%RHの恒温恒湿器に24時間保管した後、穴間の距離を再度測定した。このように測定した値のMD方向およびTD方向への変化率を計算してエッチングした後、寸法変化率を求めた。測定後、150℃で30分間再度熱処理を施してから23℃、50%RHの恒温恒湿器に24時間保管した後、各穴間の距離を再測定した。先に測定された生地の各穴間の距離と比較して、MD方向およびTD方向への熱処理後の寸法変化率を計算した。
4). Dimensional change after etching and heat treatment IPC-TM-650, Method B of 2.2.4 was followed. After the dough was cut into square specimens each having MD and TD of 275 × 255 mm, holes for position recognition were made at the four vertices and stored in a constant temperature and humidity chamber at 23 ° C. and 50% RH for 24 hours. After measuring the distance between the holes three times, an average value was obtained. Next, the metal foil was etched and stored in a constant temperature and humidity chamber at 23 ° C. and 50% RH for 24 hours, and then the distance between the holes was measured again. The dimensional change rate was determined after calculating the etching rate of the values measured in this way in the MD direction and the TD direction and etching. After the measurement, heat treatment was performed again at 150 ° C. for 30 minutes, and after storing for 24 hours in a constant temperature and humidity chamber at 23 ° C. and 50% RH, the distance between the holes was measured again. Compared with the distance between each hole of the cloth | dough measured previously, the dimensional change rate after the heat processing to MD direction and TD direction was calculated.

下記製造例で使用された略語は、次のとおりである。
‐DMAc:N,N‐ジメチルアセトアミド(N,N‐dimethylacetamide)
‐BPDA:3,3´,4,4´‐ビフェニルテトラカルボン酸二無水物(3,3´,4,4´‐biphenyltetracarboxylic acid dianhydride)
‐BTDA:3,3´,4,4´‐ベンゾフェノンテトラカルボン酸二無水物(3,3,4,4‐benzophenonetetracarboxylic dianhydride)
‐PDA:パラ‐フェニレンジアミン(p‐phenylenediamine)
‐ODA:4,4´‐ジアミノジフェニルエーテル(4,4´‐diaminodiphenylether)
‐TPER:1,3‐ビス(4‐アミノフェノキシ)ベンゼン(1,3‐bis(4‐aminophenoxy)benzene)
Abbreviations used in the following production examples are as follows.
-DMAc: N, N-dimethylacetamide (N, N-dimethylacetamide)
-BPDA: 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride (3,3', 4,4'-biphenyltetracarboxylic acid dianhydride)
-BTDA: 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride (3,3,4,4-benzophenonetetracarboxylic dianhydride)
-PDA: para-phenylenediamine (p-phenylenediamine)
-ODA: 4,4'-diaminodiphenyl ether (4,4'-diaminodiphenylether)
-TPER: 1,3-bis (4-aminophenoxy) benzene (1,3-bis (4-aminophenoxy) benzene)

[製造例1]
2006gのDMAc溶液にTPER 119.06gおよびPDA 14.68gのジアミンを窒素雰囲気下で攪拌して完全に溶解した後、二無水物としてBPDA95.88gとBTDA70gを3回に分けて添加した。次に、約24時間攪拌してポリアミック酸溶液を製造した。このように製造したポリアミック酸溶液を20μmの厚さのフィルム状にキャストした後、60分間350℃まで昇温して30分間維持し、硬化した。測定されたガラス転移温度は223℃であった。
[Production Example 1]
The diamine of TPER 119.06 g and PDA 14.68 g was completely dissolved by stirring under nitrogen atmosphere in 2006 g of DMAc solution, and then 95.88 g of BPDA and 70 g of BTDA were added in three portions as dianhydrides. Next, the solution was stirred for about 24 hours to produce a polyamic acid solution. The polyamic acid solution thus produced was cast into a film having a thickness of 20 μm, and then heated to 350 ° C. for 60 minutes and maintained for 30 minutes to be cured. The measured glass transition temperature was 223 ° C.

[製造例2]
2425gのDMAc溶液にTPER 49.7gおよびODA 102.1gのジアミンを窒素雰囲気下で攪拌して完全に溶解した後、二無水物としてBPDA 200gを3回に分けて添加した。次に、約24時間攪拌してポリアミック酸溶液を製造した。このように製造したポリアミック酸溶液を20μmの厚さのフィルム状にキャストした後、60分間350℃まで昇温して30分間維持し、硬化した。測定されたガラス転移温度は236℃であった。
[Production Example 2]
To 2425 g of DMAc solution, 49.7 g of TPER and 102.1 g of ODA were completely dissolved by stirring under a nitrogen atmosphere, and then 200 g of BPDA was added in three portions as a dianhydride. Next, the solution was stirred for about 24 hours to produce a polyamic acid solution. The polyamic acid solution thus produced was cast into a film having a thickness of 20 μm, and then heated to 350 ° C. for 60 minutes and maintained for 30 minutes to be cured. The measured glass transition temperature was 236 ° C.

[製造例3]
2112gのDMAc溶液にTPER 90.7gおよびPDA 33.55gのジアミンを窒素雰囲気下で攪拌して完全に溶解した後、二無水物としてBPDA 91.3gとBTDA 100gを3回に分けて添加した。次に、約24時間攪拌してポリアミック酸溶液を製造した。このように製造したポリアミック酸溶液を20μmの厚さのフィルム状にキャストした後、60分間350℃まで昇温して30分間維持し、硬化した。測定されたガラス転移温度は252℃であった。
[Production Example 3]
To 2112 g of DMAc solution, 90.7 g of TPER and 33.55 g of PDA were completely dissolved by stirring under a nitrogen atmosphere, and then 91.3 g of BPDA and 100 g of BTDA were added in three portions as a dianhydride. Next, the solution was stirred for about 24 hours to produce a polyamic acid solution. The polyamic acid solution thus produced was cast into a film having a thickness of 20 μm, and then heated to 350 ° C. for 60 minutes and maintained for 30 minutes to be cured. The measured glass transition temperature was 252 ° C.

表1には本発明に使用されたポリイミドフィルムの機械的物性と厚さ、およびMD/TD方向のCTE値を示した。   Table 1 shows the mechanical properties and thickness of the polyimide film used in the present invention, and the CTE value in the MD / TD direction.

Figure 2013544674
Figure 2013544674

[実施例1]
プラズマ処理を経た38μmの厚さのポリイミドフィルム(A)の両面に、製造例2で製造したポリアミック酸溶液を、最終硬化後の片面の厚さが6μmになるように塗布した後、130℃の乾燥炉で熱風乾燥して、ポリイミドフィルム上にポリアミック酸前駆体フィルムを製造した。
[Example 1]
After applying the polyamic acid solution produced in Production Example 2 to both sides of the 38 μm-thick polyimide film (A) that has been subjected to the plasma treatment so that the thickness of one side after final curing is 6 μm, Drying with hot air in a drying furnace produced a polyamic acid precursor film on the polyimide film.

このように製造したフィルムを窒素雰囲気下で150℃から395℃まで20℃/分の速度で昇温しながら9分間熱処理を施してイミド化し、熱可塑性ポリイミド層を形成した。   The film thus produced was imidized by heat treatment for 9 minutes while raising the temperature from 150 ° C. to 395 ° C. at a rate of 20 ° C./min in a nitrogen atmosphere to form a thermoplastic polyimide layer.

次に、高温ラミネーターロールを用いて100kgf/cmの圧力で厚さ12μmの電解銅箔を前記フィルムの両面に圧着し、両面金属張積層体を製造した。   Next, an electrolytic copper foil having a thickness of 12 μm was pressure-bonded to both surfaces of the film at a pressure of 100 kgf / cm using a high-temperature laminator roll to produce a double-sided metal-clad laminate.

[実施例2]
厚さ18μmの圧延銅箔を使用したこと以外は、実施例1とすべて同じ工程により両面金属張積層体を製造した。
[Example 2]
A double-sided metal-clad laminate was manufactured by the same process as in Example 1 except that a rolled copper foil having a thickness of 18 μm was used.

[実施例3]
厚さ18μmの圧延銅箔を使用し、製造例1で製造したポリアミック酸溶液を使用したこと以外は、実施例1とすべて同じ工程により両面金属張積層体を製造した。
[Example 3]
A double-sided metal-clad laminate was produced by the same process as in Example 1 except that a rolled copper foil having a thickness of 18 μm was used and the polyamic acid solution produced in Production Example 1 was used.

[実施例4]
実施例1で使用したポリイミドフィルムと物性が異なるポリイミドフィルム(B)を使用し、厚さ18μmの電解銅箔を使用したこと以外は、実施例1とすべて同じ工程により金属張積層体を製造した。
[Example 4]
A metal-clad laminate was manufactured by the same process as Example 1 except that a polyimide film (B) having different physical properties from the polyimide film used in Example 1 was used and an electrolytic copper foil having a thickness of 18 μm was used. .

[実施例5]
厚さ12μmの圧延銅箔を使用し、製造例3で製造したポリアミック酸溶液を使用したこと以外は、実施例4とすべて同じ工程により金属張積層体を製造した。
[Example 5]
A metal-clad laminate was produced in the same manner as in Example 4 except that a rolled copper foil having a thickness of 12 μm was used and the polyamic acid solution produced in Production Example 3 was used.

[実施例6]
実施例1で使用したポリイミドフィルムと物性が異なるポリイミドフィルム(C)を使用したこと以外は、実施例1とすべて同じ工程により金属張積層体を製造した。
[Example 6]
A metal-clad laminate was produced by the same process as Example 1 except that a polyimide film (C) having different physical properties from the polyimide film used in Example 1 was used.

[実施例7]
実施例1で使用したポリイミドフィルムと物性が異なるポリイミドフィルム(D)を使用したこと以外は、実施例1とすべて同じ工程により両面金属張積層体を製造した。
[Example 7]
A double-sided metal-clad laminate was manufactured by the same process as Example 1 except that a polyimide film (D) having different physical properties from the polyimide film used in Example 1 was used.

[実施例8]
プラズマ処理を経た50μmの厚さのポリイミドフィルム(E)の両面に、製造例1で製造したポリアミック酸溶液を、最終硬化後の片面の厚さが3μmになるように塗布した後、130℃の乾燥炉で熱風乾燥し、ポリイミドフィルム上にポリアミック酸前駆体フィルムを製造した。
[Example 8]
After applying the polyamic acid solution produced in Production Example 1 on both sides of the polyimide film (E) having a thickness of 50 μm that has been subjected to plasma treatment so that the thickness of one side after final curing is 3 μm, Drying with hot air in a drying furnace produced a polyamic acid precursor film on the polyimide film.

このように製造したフィルムを窒素雰囲気下で150℃から395℃まで20℃/分の速度で昇温しながら9分間熱処理を施してイミド化し、熱可塑性ポリイミド層を形成した。   The film thus produced was imidized by heat treatment for 9 minutes while raising the temperature from 150 ° C. to 395 ° C. at a rate of 20 ° C./min in a nitrogen atmosphere to form a thermoplastic polyimide layer.

次に、高温ラミネートロールを用いて、100kgf/cmの圧力で厚さ35μmの電解銅箔を前記フィルムの両面に圧着し、両面金属張積層体を製造した。   Next, using a high-temperature laminating roll, an electrolytic copper foil having a thickness of 35 μm was pressure-bonded to both surfaces of the film at a pressure of 100 kgf / cm to produce a double-sided metal-clad laminate.

[実施例9]
厚さ12μmの電解銅箔を使用したこと以外は、実施例8とすべて同じ工程により両面金属張積層体を製造した。
[Example 9]
A double-sided metal-clad laminate was manufactured by the same process as Example 8 except that an electrolytic copper foil having a thickness of 12 μm was used.

[実施例10]
厚さ18μmの圧延銅箔を使用したこと以外は、実施例8とすべて同じ工程により両面金属張積層体を製造した。
[Example 10]
A double-sided metal-clad laminate was manufactured by the same process as Example 8 except that a rolled copper foil having a thickness of 18 μm was used.

[比較例1]
実施例8と物性が異なる50μmの厚さのポリイミドフィルム(F)を使用し、厚さ35μmの圧延銅箔を使用したこと以外は、実施例8とすべて同じ工程により金属張積層体を製造した。
[Comparative Example 1]
A metal-clad laminate was manufactured by the same process as in Example 8, except that a polyimide film (F) having a thickness of 50 μm different from that in Example 8 was used and a rolled copper foil having a thickness of 35 μm was used. .

[比較例2]
実施例8と物性が異なる50μmの厚さのポリイミドフィルム(G)を使用し、厚さ12μmの圧延銅箔を使用したこと以外は、実施例8とすべて同じ工程により金属張積層体を製造した。
[Comparative Example 2]
A metal-clad laminate was produced by the same process as in Example 8, except that a polyimide film (G) having a thickness of 50 μm different from that in Example 8 was used and a rolled copper foil having a thickness of 12 μm was used. .

表2には、表1に示したポリイミドフィルムを用いて厚膜ポリイミド銅箔積層体を製造した際に現れる外観上の問題点と、製品製造後の寸法変化結果を示した。   Table 2 shows problems in appearance that appear when a thick film polyimide copper foil laminate is manufactured using the polyimide film shown in Table 1, and the results of dimensional changes after product manufacture.

Figure 2013544674
Figure 2013544674

前記表2から分かるように、本発明の物性範囲、すなわち、伸率が30%以下であり、引張弾性率が3GPa以上であり、100〜250℃で測定された線熱膨張係数(CTE)が5〜30ppm/℃であるポリイミドフィルムを用いて金属張積層体を製造する場合、ラミネート法により金属箔を積層することができることを確認した。また、引張弾性率が4GPa以上であり、伸率が25%以下と低い場合、工程安定性がより向上し、寸法安定性に優れることが分かった。   As can be seen from Table 2, the physical property range of the present invention, that is, the elongation is 30% or less, the tensile modulus is 3 GPa or more, and the linear thermal expansion coefficient (CTE) measured at 100 to 250 ° C. When manufacturing a metal-clad laminated body using the polyimide film which is 5-30 ppm / degreeC, it confirmed that metal foil could be laminated | stacked by the laminating method. Further, it was found that when the tensile elastic modulus is 4 GPa or more and the elongation is as low as 25% or less, the process stability is further improved and the dimensional stability is excellent.

しかし、比較例1および比較例2から分かるように、伸率と引張弾性率および線熱膨張係数が本発明の範囲から外れる場合、うねりが発生し、ラミネート後の製品に縦縞としわが生じるなど、外観上の不良が発生してラミネート工程を適用することができないことが分かった。   However, as can be seen from Comparative Example 1 and Comparative Example 2, when the elongation and tensile modulus and linear thermal expansion coefficient are out of the scope of the present invention, undulation occurs, vertical stripes and wrinkles occur in the product after lamination, etc. It was found that a defect in appearance occurred and the laminating process could not be applied.

したがって、工程安定性および寸法安定性に優れた金属張積層体を製造するためには、コア層に使用されるポリイミドフィルムの機械的物性、特に、伸率と引張弾性率およびCTE値が適した範囲を有しなければならないことが分かった。   Therefore, in order to produce a metal-clad laminate excellent in process stability and dimensional stability, the mechanical properties of the polyimide film used for the core layer, in particular, the elongation, tensile modulus and CTE value are suitable. It has been found that it must have a range.

Claims (10)

ポリイミド積層体とその片面または両面にラミネート法により金属箔を積層させた厚膜(thick layer)ポリイミド金属張積層体であって、
前記ポリイミド積層体は、IPC‐TM‐650(2.4.19)法によって測定された伸率が30%以下であり、かつ引張弾性率が3GPa以上であり、100〜250℃で測定された線熱膨張係数(CTE)が5〜30ppm/℃であるポリイミドフィルムとその片面または両面に熱可塑性ポリイミド層を含む、厚膜ポリイミド金属張積層体。
A thick film (thick layer) polyimide metal-clad laminate in which a metal foil is laminated on one or both sides of a polyimide laminate by a laminating method,
The polyimide laminate had an elongation measured by the IPC-TM-650 (2.4.19) method of 30% or less, a tensile modulus of 3 GPa or more, and was measured at 100 to 250 ° C. A thick film polyimide metal-clad laminate comprising a polyimide film having a coefficient of linear thermal expansion (CTE) of 5 to 30 ppm / ° C and a thermoplastic polyimide layer on one or both sides thereof.
前記ポリイミドフィルムは、伸率が25%以下であり、引張弾性率が4GPa以上であり、線熱膨張係数(CTE)が10〜25ppm/℃である、請求項1に記載の厚膜ポリイミド金属張積層体。   2. The thick film polyimide metal tension according to claim 1, wherein the polyimide film has an elongation of 25% or less, a tensile elastic modulus of 4 GPa or more, and a linear thermal expansion coefficient (CTE) of 10 to 25 ppm / ° C. 3. Laminated body. 前記ポリイミドフィルムは、厚さが25〜150μmである、請求項1に記載の厚膜ポリイミド金属張積層体。   The thick polyimide metal-clad laminate according to claim 1, wherein the polyimide film has a thickness of 25 to 150 μm. 前記金属箔は、銅箔、ステンレス箔、アルミ箔、ニッケル箔または2種以上の合金箔から選択される、請求項1に記載の厚膜ポリイミド金属張積層体。   2. The thick film polyimide metal-clad laminate according to claim 1, wherein the metal foil is selected from copper foil, stainless steel foil, aluminum foil, nickel foil, or two or more alloy foils. 前記熱可塑性ポリイミド層は、ポリアミック酸樹脂溶液を塗布および乾燥してゲルフィルムを形成した後、乾燥炉で定置させるか熱処理を施したものである、請求項1に記載の厚膜ポリイミド金属張積層体。   2. The thick polyimide metal-clad laminate according to claim 1, wherein the thermoplastic polyimide layer is formed by applying and drying a polyamic acid resin solution to form a gel film, and then placing it in a drying furnace or performing heat treatment. body. 前記熱可塑性ポリイミド層は、ガラス転移温度が180〜300℃である、請求項5に記載の厚膜ポリイミド金属張積層体。   The thick film polyimide metal-clad laminate according to claim 5, wherein the thermoplastic polyimide layer has a glass transition temperature of 180 to 300C. 前記熱可塑性ポリイミド層の最終硬化後の厚さが3〜20μmである、請求項5に記載の厚膜ポリイミド金属張積層体。   The thick film polyimide metal-clad laminate according to claim 5, wherein a thickness of the thermoplastic polyimide layer after final curing is 3 to 20 µm. 前記ラミネート工程における加熱圧着は、熱可塑性ポリイミド樹脂のガラス転移温度以上の温度で行われる、請求項1に記載の厚膜ポリイミド金属張積層体。   The thick film polyimide metal-clad laminate according to claim 1, wherein the thermocompression bonding in the laminating step is performed at a temperature equal to or higher than a glass transition temperature of a thermoplastic polyimide resin. 前記加熱圧着は、熱可塑性ポリイミド樹脂のガラス転移温度より30〜200℃高い温度で行われる、請求項8に記載の厚膜ポリイミド金属張積層体。   The thick film polyimide metal-clad laminate according to claim 8, wherein the thermocompression bonding is performed at a temperature 30 to 200 ° C. higher than a glass transition temperature of a thermoplastic polyimide resin. 前記加熱圧着は、50〜200kgf/cmで行われる、請求項8に記載の厚膜ポリイミド金属張積層体。   The thick film polyimide metal-clad laminate according to claim 8, wherein the thermocompression bonding is performed at 50 to 200 kgf / cm.
JP2013534820A 2010-10-19 2011-10-19 Thick film polyimide metal-clad laminate Active JP5973449B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020100101830A KR101282170B1 (en) 2010-10-19 2010-10-19 Thick layer polyimide metal clad laminate
KR10-2010-0101830 2010-10-19
PCT/KR2011/007799 WO2012053826A1 (en) 2010-10-19 2011-10-19 Thick layer polyimide metal clad laminate

Publications (2)

Publication Number Publication Date
JP2013544674A true JP2013544674A (en) 2013-12-19
JP5973449B2 JP5973449B2 (en) 2016-08-23

Family

ID=45975422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013534820A Active JP5973449B2 (en) 2010-10-19 2011-10-19 Thick film polyimide metal-clad laminate

Country Status (5)

Country Link
JP (1) JP5973449B2 (en)
KR (1) KR101282170B1 (en)
CN (1) CN103180135B (en)
TW (1) TWI526304B (en)
WO (1) WO2012053826A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017149128A (en) * 2016-02-24 2017-08-31 現代自動車株式会社Hyundai Motor Company Soft copper foil laminate, soft printed circuit board including the same, and method for producing thereof
WO2023162745A1 (en) * 2022-02-24 2023-08-31 株式会社カネカ Non-thermoplastic polyimide film, multilayer polyimide film, and metal-clad laminated plate

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6650958B2 (en) * 2012-04-27 2020-02-19 キヤノン株式会社 Electronic component, electronic module, and manufacturing method thereof
KR102160000B1 (en) * 2013-12-23 2020-09-28 주식회사 넥스플렉스 Thick polyimide metal-clad laminate and manufacturing method for thereof
KR101865725B1 (en) * 2016-02-24 2018-06-08 현대자동차 주식회사 Flexible copper clad laminate for vehicle led lamp, flexible printed circuit board comprisisng the same and manufacturing method of the same
KR102187038B1 (en) * 2018-12-21 2020-12-07 (주)이녹스첨단소재 Flexible Copper Clad Layer
KR102199544B1 (en) * 2018-12-21 2021-01-07 (주)이녹스첨단소재 Flexible Copper Clad Layer
CN113244050B (en) * 2021-07-17 2021-09-24 南通鹏举纺织有限公司 High antibacterial property bandage suitable for medical surgery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185101A (en) * 2008-02-01 2009-08-20 Ube Ind Ltd Polyimide film and manufacturing method of the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3506524A1 (en) * 1985-02-25 1986-08-28 Akzo Gmbh, 5600 Wuppertal FLEXIBLE POLYIMIDE MULTILAYER LAMINATES
KR100917101B1 (en) * 2000-08-04 2009-09-15 도요 보세키 가부시키가이샤 Flexible metal laminate and production method thereof
WO2003097725A1 (en) * 2002-05-21 2003-11-27 Kaneka Corporation Polyimide film and method for production thereof, and polyimide/metal laminate using polyimide
CN100522603C (en) * 2004-01-13 2009-08-05 株式会社钟化 Adhesive film, flexible metal-clad laminate of enhanced dimensional stability obtained therefrom and process for producing the same
CN100523052C (en) * 2005-06-03 2009-08-05 长春人造树脂厂股份有限公司 New type polyimide resin, and preparation method
KR20070041402A (en) * 2005-10-14 2007-04-18 미쓰이 긴조꾸 고교 가부시키가이샤 Flexible copper clad laminate, flexible printed circuit manufactured using the same, film carrier tape manufactured using the same, semiconductor device manufactured using the same, method for manufacturing the same, and method for manufacturing the film carrier tape
KR100845328B1 (en) * 2006-01-20 2008-07-10 주식회사 코오롱 Polyimide film
KR100793177B1 (en) * 2006-02-24 2008-01-10 주식회사 코오롱 Double side conductor laminates and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185101A (en) * 2008-02-01 2009-08-20 Ube Ind Ltd Polyimide film and manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017149128A (en) * 2016-02-24 2017-08-31 現代自動車株式会社Hyundai Motor Company Soft copper foil laminate, soft printed circuit board including the same, and method for producing thereof
WO2023162745A1 (en) * 2022-02-24 2023-08-31 株式会社カネカ Non-thermoplastic polyimide film, multilayer polyimide film, and metal-clad laminated plate

Also Published As

Publication number Publication date
TW201223751A (en) 2012-06-16
JP5973449B2 (en) 2016-08-23
CN103180135A (en) 2013-06-26
KR101282170B1 (en) 2013-07-04
CN103180135B (en) 2015-09-02
KR20120040422A (en) 2012-04-27
WO2012053826A1 (en) 2012-04-26
TWI526304B (en) 2016-03-21

Similar Documents

Publication Publication Date Title
JP5973449B2 (en) Thick film polyimide metal-clad laminate
JP6282230B2 (en) Flexible metal-clad laminate and manufacturing method thereof
KR101514221B1 (en) manufacturing method of multi layer polyimide flexible metal-clad laminate
JP5615253B2 (en) Method for producing thick film polyimide flexible metal laminate
JP5095142B2 (en) Flexible printed wiring board substrate and manufacturing method thereof
KR100620474B1 (en) Process for producing heat-resistant flexible laminate and heat-resistant flexible laminate produced thereby
JP2020104517A (en) Method for manufacturing flexible metal-clad laminated plate
JP4859462B2 (en) Method for producing flexible laminate
JP4757645B2 (en) Method for producing double-sided metal-clad laminate
JP6412012B2 (en) Multilayer flexible metal-clad laminate and manufacturing method thereof
JP2007062274A (en) Flexible laminated board cladded with copper layer on single site and manufacturing method of it
JP2004237596A (en) Flexible copper-clad laminated plate and its production method
KR20120134666A (en) Manufacturing method of thick polyimide flexible metal clad laminate
JP2009071021A (en) Method for manufacturing multilayer wiring circuit board
TWI614108B (en) Method for manufacturing thick polyimide flexible metal-clad laminate
JP2018126886A (en) Method for producing multilayered polyimide film
JP2018126887A (en) Method for producing multilayered polyimide film
JP4823884B2 (en) Method for producing flexible copper-clad laminate
JP2007265543A (en) Method for manufacturing layered body for hdd suspension
JP2006328407A (en) Polyimide film and substrate for electric and electronic apparatus using same
JP2024134620A (en) Manufacturing method of laminate and manufacturing method of single-sided and double-sided flexible metal-clad laminate
JP2007272941A (en) Method of manufacturing laminate for hdd suspension
JP2008062469A (en) Manufacturing method of laminate for hdd suspension
JP2007265561A (en) Layered material for hdd suspension

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160714

R150 Certificate of patent or registration of utility model

Ref document number: 5973449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250