JP2013530033A - 混合および乳化のためのキャビテーション生成のための方法および装置 - Google Patents

混合および乳化のためのキャビテーション生成のための方法および装置 Download PDF

Info

Publication number
JP2013530033A
JP2013530033A JP2013511333A JP2013511333A JP2013530033A JP 2013530033 A JP2013530033 A JP 2013530033A JP 2013511333 A JP2013511333 A JP 2013511333A JP 2013511333 A JP2013511333 A JP 2013511333A JP 2013530033 A JP2013530033 A JP 2013530033A
Authority
JP
Japan
Prior art keywords
cavitation chamber
nozzle
opening
solution
cavitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013511333A
Other languages
English (en)
Other versions
JP2013530033A5 (ja
Inventor
チャールズ ディー. マーカート
ポール ディー. デロジア
Original Assignee
カビトロニクス コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カビトロニクス コーポレイション filed Critical カビトロニクス コーポレイション
Publication of JP2013530033A publication Critical patent/JP2013530033A/ja
Publication of JP2013530033A5 publication Critical patent/JP2013530033A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/25Mixing by jets impinging against collision plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Colloid Chemistry (AREA)

Abstract

本発明は、混合物を乳化させる機器に関する。該機器は、キャビテーションチャンバを画定する本体を含み、該本体は第1開口部および第2開口部、ならびに入口ポートおよび出口ポートを含むキャビテーションチャンバを含む。第1開口部は入口ポートに接続されており、第2開口部は出口ポートに接続されている。該機器は、入口ポートに位置する置換式ノズルと、ノズルからキャビテーションチャンバに入る溶液の流れと衝突するようにキャビテーションチャンバに位置する調節式カウンターバッフルとを含む。また、混合物の乳化方法を開示する。この方法は、本発明の機器を提供すること、機器の第1開口部へ混合物を誘導すること、機器の第2開口部から乳化溶液を回収することを含む。

Description

本願は、2010年5月19日に出願された米国仮特許出願第61/346,072号に優先権の恩典を主張し、これらは参照することによりその全体が本明細書に組み込まれる。
発明の分野
本発明は、混合および乳化のためのキャビテーション生成のための機器および方法に関する。
発明の背景
乳化技術は、多種多様の業界(例えば、食品業界、化粧品業界、製薬、医療プロセスおよび手順、油および気体プロセス化、水処理、ならびに代替燃料など)で使用されている。ほとんどの場合、高流体圧および複数の流体ならびに化学的乳化剤もしくは添加物が、安定した乳液生成物を産生するために必要とされる。最終的な乳液性質に好都合と考えられるナノメーター構造の乳滴を得ることが望まれる場合が多い。乳液の質は、乳液の保存寿命(すなわち、経時的な流体分離の回避)に基づいて判断されることが多い。
油中水型乳液は、産業界で有用かつ有益な燃料として、一般大衆の認識観点から着実に信用が得られている。油中水型乳液は、主に乳化剤または界面活性剤を使用して作製されるが、経時的な分離を避けるには安定性が不十分である。生成物が生成され、ボイラーバーナーおよび機関に使用されるまで油中水型乳液のより良好でより効果的な送達が試験される。
乳化剤の主要機能は、溶液中の不連続/分散物質の液滴を小さくする補助および表面張力を低減してそれら液滴を小さいまま保つことによる液滴合一プロセスの遅延化である。現状では、乳化技術分野は、超音波、機械的、および流体力学的手段による乳液作製のための様々な機器およびプロセスを含む。これらの方法としては、例えば、流体乱流状態を高める流れを再指向させる手段により圧力下で液体および物質が流れるようにすることが挙げられる。乱流は、圧力を著しく低下させて生成したキャビテーションエネルギーと併せて、不混和性液(互いに溶解していない液体)および/または含有物質に併合乳濁液またはコロイドを形成させる。コロイドは、微粒物質が別の媒質に分散される不均一混合物として定義される。コロイド溶液と呼ばれる場合もあるが、分散粒子は、典型的には分子レベルよりも大きい。2つ以上の液体相である不均一混合物は、乳液として定義される。
Kreveldの米国特許第2,271,982号(特許文献1)に記載の1つの機器において、液体および液体を含む混合物の均質化(材料全体の化学組成物、外観、および性質の変換)方法が記載されている。この機器は200大気圧の範囲の高圧下で使用されるが、キャビテーションチャンバ内における様々なキャビテーション、乱流、流れ、および圧力パラメータの制御能が限定的である難点がある。
所望される乳濁液またはコロイドの達成は、溶液中分散物質の液滴サイズを制御または操作し、広範囲の乳化剤の存在下における安定溶液の作製能または維持能に依存する。
多くの乳化技術系は非常に複雑である。さらに、該プロセスは、非常に複雑で込み入っている可能性がある。例えば、乳化技術に使用される多くの機械的機器は複雑および/または移動部含有であり、頻繁に修復する必要があり、信頼できない。したがって、目的生成物の単位容量当たりの費用を抑えるためにより効率的に乳液を産生する機器および方法が必要とされている。
本発明は、当該技術分野におけるこれらおよび他の制限の克服に関する。
米国特許第2,271,982号
本発明の1つの態様は、混合物を乳化させる機器に関する。該機器は、キャビテーションチャンバを画定する本体を含み、該本体は第1開口部および第2開口部、ならびに入口ポートおよび出口ポートを含むキャビテーションチャンバを含む。第1開口部は乳化される混合物が本体およびキャビテーションチャンバに入るための入口ポートに接続されており、第2開口部は乳化溶液がキャビテーションチャンバおよび本体から出るための出口ポートに接続されている。該機器はまた、キャビテーションチャンバ内へ溶液が流れるように方向付けるキャビテーションチャンバの入口ポートに位置する置換式ノズルおよびノズルからキャビテーションチャンバに入る溶液の流れと衝突する位置でキャビテーションチャンバに位置する調節式カウンターバッフルを含む。カウンターバッフルは、カウンターバッフルとノズル間の距離を調節するために可動的に本体に取り付けられている。
本発明の別の態様は、混合物の乳化方法に関する。この方法は、本発明の機器を提供することおよび機器の第1開口部へ混合物を誘導することを含む。該混合物はノズルを通過し、キャビテーションチャンバ内で乳化される。乳化溶液は、機器の第2開口部から回収される。
本発明は、不混和性液および他の物質の混合および乳化に関する。本発明の機器および方法は、流体ストリームに高エネルギー入力を付与する高剪断力を実現する手段、より具体的には、制御された流体乱流およびキャビテーションエネルギーを利用して乳液を形成するために、不混和性液と他の物質を混合する手段を提供する。キャビテーションは、本発明の目的のために、過剰ストレス下の液体媒質の途切れ(breaking)として定義できる。
本発明の機器および方法は、非常に効果的で有用な油中水型乳液を作製する機器および方法の改良において著しい進歩である。本発明は、他の従来の機器よりはるかに低い圧および流れで使用できる、簡易で、移動部がなく、流体力学的乳液を産生する機器を提供する。本発明の機器および方法は、他の乳液の中でも、それらの最終使用時点に、要求に応じて、長期保存寿命または安定性を備えている必要なく産生される油中水型乳液を産生するために使用できる。例えば、かかる用途の1つは、(灯油式給湯器、タービン、ならびに静止単位もしくは移動単位のいずれかのための内燃または外燃機関などの)燃料消費時点の使用のために燃料乳液中に水を形成することである。
本発明の機器および方法は、乳化技術においてこれまで未知であったかまたは誤解されていた特性を最大限に利用する。本発明の機器は、既存の技術で成し遂げることができるものを越えた用途のために、より効果的、多様で、効率的な乳液産生を集合的に提供する構造的特性と併せて低圧または高圧で操作することもできる。
本発明の溶液を乳化させる機器の1つの実施形態の縦断面斜視図である。 本発明の溶液を乳化させる機器の1つの実施形態の縦断面平面図である。 本発明の溶液を乳化させる機器の1つの実施形態の分解縦断面平面図である。 本発明の溶液を乳化させる機器の1つの実施形態の縦断面平面図である。矢印は、機器の内外へ、左から右へ、大部分の溶液の方向流を示すために提示する。 本発明の機器のカウンターバッフル構成部品の衝撃領域の1つの実施形態の縦断面平面図である。 本発明の機器のカウンターバッフル構成部品の衝撃領域の1つの実施形態の縦断面平面図である。 本発明の機器のカウンターバッフル構成部品の衝撃領域の1つの実施形態の縦断面平面図である。 本発明の機器の置換式ノズル構成部品の1つの実施形態の縦断面平面図である。 本発明の機器の置換式ノズル構成部品の1つの実施形態の縦断面平面図である。 本発明の機器の置換式ノズル構成部品の1つの実施形態の縦断面平面図である。
発明の詳細な説明
本発明の1つの態様は、混合物を乳化させる機器に関する。該機器は、キャビテーションチャンバを画定する本体を含み、該本体は第1開口部および第2開口部、ならびに入口ポートおよび出口ポートを含むキャビテーションチャンバを含む。第1開口部は乳化する混合物が本体およびキャビテーションチャンバに入るための入口ポートに接続されており、第2開口部は乳化溶液がキャビテーションチャンバおよび本体から出るための出口ポートに接続されている。該機器はまた、キャビテーションチャンバ内へ溶液が流れるように方向付けるキャビテーションチャンバの入口ポートに位置する置換式ノズルおよびノズルからキャビテーションチャンバに入る溶液の流れと衝突する位置でキャビテーションチャンバに位置する調節式カウンターバッフルを含む。カウンターバッフルは、カウンターバッフルとノズル間の距離が調節できるように可動的に本体に取り付けられている。
本明細書で使用する「混合物を乳化する」という語句は、2つ以上の不混和性液からの乳液またはコロイドの形成について言及するために使用される。乳液は、ある液体(分散相と呼ばれる)を別の液体(連続相と呼ばれる)中に分散形態で含むことが一般に理解されている。したがって、乳化される「混合物」について言及される場合、液体を含み得、気体成分も同様に含み得る乳液またはコロイドを形成できる2つ以上の液体不均一成分との混合物を意味することを意図する。
ここで図1および図2を参照して、機器10は、キャビテーションチャンバ14を画定する本体12を含む。本体12は、第1開口部16および第2開口部28を含む。図1および図2に示す特定の実施形態では、第2開口部28は、第1開口部16から離れた位置に位置し、第1開口部16が位置する平面に対して垂直な平面上にある。第1開口部16は、チャネル24を介してキャビテーションチャンバ14の入口ポート20に接続されている。図1および図2に示す実施形態では、チャネル24は、壁26の直円柱シリンダー内である。しかしながら、チャネル24の壁26は、非対称でもあり得る。
本体12の第2開口部28は、キャビテーションチャンバ14の出口ポート22である。図1および図2に示す実施形態では、キャビテーター挿入物30は、前壁18に対向してキャビテーションチャンバ14に位置する。キャビテーター挿入物30は、流れに干渉し得る前壁18に沿って隅部に形成される渦流をなくす役目を果たす。キャビテーター挿入物30は、本発明の1つの実施形態によれば、経時的なキャビテーション損傷に対して抵抗性の材料から作製される。
第1開口部16および第2開口部28は、1つの実施形態によれば、機器10内外へのパイプ、ホース、または他の付属物結合の連結を可能とするねじ連結構造を備える。加えて、第1開口部16および/または第2開口部28は、機器10内外への溶液の流れを制御するために調節式弁構造を備え得るかまたは該弁構造に接続し得る。さらに、第1開口部16および/または第2開口部28は、例えば、機器10に入る溶液および機器10から出る乳液の流速、圧力、温度、または他の性質をモニタリングする検出機を任意に備える。
機器10は、キャビテーションチャンバ14の入口ポート20に位置する置換式ノズル32を有する。置換式ノズル32は、ノズル開口部36に導くノズル壁34を有する。置換式ノズル32は、チャネル24に接続されている。図1および図2に示す実施形態では、置換式ノズル32は、前壁18と境を接するキャビテーター挿入物30に適合する。図3に示すように、置換式ノズル32は、入口ポート20でチャネル24内の雌ねじ穴56内の雄ねじ58と機械加工する。ノズル32を入口ポート20に位置づける他の手段も使用し得る。好ましい実施形態では、チャネル24と置換式ノズル32間の移行は滑らかで継ぎ目がない。
図1および図2をさらに参照して、キャビテーションチャンバ14には調節式カウンターバッフル40が位置する。カウンターバッフル40は、凹面凹部44を含む衝撃領域42を有する。図1および図2に示す特定の実施形態では、衝撃領域42は、凹面凹部44を有する。図1および図2に示すように、凹面凹部44の投影領域の直径はノズル開口部36の直径より大きい。また、凹面凹部44およびランド(land)領域64は、ノズル32、キャビテーション挿入物30、または前壁18(キャビテーター挿入物30が使用されていない時)と接触していない。カウンターバッフル40は、柄46によりキャビテーションチャンバ14内の定位置に保持される。柄46は、近端48および遠端50を有する。柄46の近端48はキャビテーションチャンバ14内でカウンターバッフル40に接続している。図1および図2に示す特定の実施形態では、柄46は、本体12の外部から後壁54内開口部52を通ってキャビテーションチャンバ14内へ伸びる。
機器10およびその構成部品部分は一般に液体輸送および混合適用に使用される周知の材料により構築し得る。材料の例としては、既知の逆流体キャビテーション環境からの表面損傷に対する高い抵抗性が十分に立証されているステンレス鋼およびニッケル合金が挙げられるが、これらに限定されない。加えて、新規の冶金構築材料技術の使用は、機器10の有用な耐用年限を著しく延長する可能性がある。1つの特定の実施形態では、溶液に露出する機器10部分(すなわち、機器10内のチャネル、壁、またはチャンバ)は、高値二乗平均平方根(RMS)表面仕上げである。
機器10の物理的サイズは、任意の特定の適用に適応できる。すなわち、機器10は、広範な動的パラメータ範囲で溶液を使用できる他に、(以下に詳細に論じられる)広範囲の圧力および流量状態への適応のために拡大縮小可能である。
機器10の特定の利益の1つは、乳化プロセス中にいずれの移動部も必要としない点である。ノズル32は置換式でありカウンターバッフル40は調節可能である一方、これらの構成部品は、機器10の作動中に固定化および静止できる。
作動中、溶液(すなわち、乳化させる混合物)は、ノズル32を通ってチャネル24を下降する第1開口部16を通って機器10内およびキャビテーションチャンバ14内に流入する。機器10は、広範囲の化学的および物理的性質ならびに任意の種類の溶液(広範囲の粘性溶液など)および流体混合物(懸濁固体など)を包含するほとんどのタイプの流体に対応できる。1つの特定の実施形態では、開口部16から入る溶液は、乳化させる2つ以上の不混和性液を含み得る。例えば、水と油の混合物を含む溶液は、開口部16で機器10に入り得、次いで乳液として第2開口部28で機器10から出る。流体は、先に上流で混合して第1開口部16内に誘導されてもよいし、混合されずに誘導されてもよい。しかしながら、開口部16内への誘導前の初めの純粋な流体の前混合は、第2開口部28で生成した流出乳液の品質特徴を高める。
ここで図4に移り、機器10を通る溶液の流れは矢印方向で示す。図に示すように、溶液は、一般に左から右へ機器10を通って流れ、溶液は開口部16から機器10に入り、チャネル24およびノズル32を通って流れ、カウンターバッフル40の衝撃領域42に向かう。図4に示す特定の実施形態では、凹面凹部44先端の衝撃領域42は、ノズル32からキャビテーションチャンバ14内への溶液の流れに対して垂直である。図4に示す特定の実施形態では、溶液の流れは、凹面凹部44での衝突により影響されて、流体の混合乱流を増し、流体への追加エネルギーを与え、流速を変化させ、および流体にチャネル62を通過させる。容量チャネル62は、ノズル32および周囲ランド領域64面で囲まれる。溶液(すなわち、乳液)は次いで出口ポート22を通ってキャビテーションチャンバ14から出て、第2開口部28を通って機器10から出る。
上記のように、本発明の1つの実施形態によれば、第1開口部16から機器10に入る前に2つ以上の液体を混合することが所望され得る。したがって、開始投入物質の初回混合は、例えば、従来の圧流源の前または後のいずれかに、従来の圧流源(容積式ギアポンプおよび/または従来の静的混合機器など)通路を通って、機器10の上流で実現できる。
機器10に入る溶液は、加圧する必要がある。機器10に適した操作圧は、多くの要因(乳化される溶液タイプ、所望の乳液生成物、機器10の構成部品の特定の設計および/もしくは形ならびに考慮下の適用の特定の必要条件を含む)に依存する。典型的には、広範囲の灯油式給湯器の操作圧範囲は約5〜25大気圧である。溶液は、約5〜10大気圧で機器10に入る。1つの特定の実施形態では、燃料中水型乳液の投入操作圧は、約 6〜8大気圧の範囲で実行する。勿論、他の適用のために必要に応じて、より高い(または低い)操作圧範囲を生成できることが理解されるであろう。後に詳述するように、機器10に入る溶液の圧力調節は、最終乳液生成物に影響を及ぼす多くの要因の1つである。機器10のある用途は溶液が定圧で開口部16に入る際に最適な結果を達し得る一方、特定の結果を達するために機器10に入る溶液の圧力および/または率を変更することが望まれる場合もある。他の機器に勝る機器10の具体的な利点の1つは、多くの適用に最も望ましい範囲の水滴で、Kreveldの米国特許第2,271,982号に記載の機器のための200大気圧と比較して比較的低圧での乳液の送達能である。
第1開口部16から機器10に入る溶液の圧力は、溶液がカウンターバッフル40の衝撃領域42内の凹面凹部44にて衝突速度に作用し、溶液速度は使用される置換式ノズル32の特定の設計によっても制御される。例えば、置換式ノズル32は、ノズル開口部36に向かって移動する流体が衝突時、溶液のノズル開口部36を出る速度を、チャネル24内の速度と比較して増大させる収束壁34を(図4に示すように)有し得る。代替的な実施形態では、置換式ノズル32の壁34は、チャネル壁34と開口部36間の小直径の部分を含む。この特定の実施形態では、溶液がノズル開口部36から出る速度は開口部36領域、壁34内の収縮角度、溶液粘性、および溶液に適用する圧力に依存する。
置換式ノズル32の特定の設計は、特に流体が通るようにして収束的に成形されたノズルの流量領域が低減した際に、キャビテーションチャンバ14内でキャビテーションの本質的な流量状態に影響を及ぼす可能性がある。ノズル32は置換式であるため、機器10は、溶液がノズル開口部36から出た際にカウンターバッフル40の衝撃領域42内で凹面凹部44にて衝突する際に最適速度に達するために作動圧で調整に対応できる。例えば、理論に束縛されないが、溶液圧は、出た直後に著しく低減されるため、ノズル32(すなわち、ノズル開口部36)の最小流量領域の縮流部効果流量レジメは、溶液がノズル開口部36から出る時点(および、あるノズル立体構造では出る前)でキャビテーション生成を補助する。かかる状態は蒸気圧未満の溶液圧で急速な低減を引き起こし、それによりキャビテーションに必要な状態を生成する。
産出乳液の物理的性質は、本発明の機器の具体的および可変的な設計特性により制御できる。図4をさらに参照して、機器10は、例えば、低マイクロメーター(ミクロン)直径範囲の分散相乳滴を作製する上で非常に効率的である。特に、機器10は、約1〜20ミクロン、好ましくは約2〜10ミクロンの範囲の分散相乳滴に達することができる。
1つの特定の適用、例えば、燃料(連続相)乳液中の水(分散相)において、典型的にこのタイプの乳液において最も所望される範囲である約 2〜10ミクロン範囲の乳滴に到達できる。機器10のこの特定の使用に起因する乳液(水および炭化水素燃料)は、工業用の熱産生ならびに他の推進適用のための炭化水素燃料の使用量を抑える便益を備える。加えて、この特定の適用は、温室効果ガス(GHG)などの汚染排出を抑えることにより、燃料中水型乳液の便益を達成することができる。
本発明の機器は、機器10からの産出乳液の本質的な品質要因を制御するための設計能において特に有益である。置換式ノズル32および調節式カウンターバッフル40は、かかる制御の提供に特に適している。特に、調節式カウンターバッフル40は、キャビテーションチャンバ14内でキャビテーション現象の最大化および最適化に役立つ。図4をさらに参照して、カウンターバッフル40の衝撃領域42の距離は、溶液の圧力および流速の調製能を可能とするために広容量チャネル62を調節することも狭容量チャネル62を調節することもできる。これは、順に、キャビテーションチャンバ14内で産生した乳液中の分散相滴の直径(サイズ)および分布の制御を可能とする。
本発明の機器は、ノズル32から出る溶液の流れと衝突するカウンターバッフルの凹面凹部44の具体的な設計および適応も可能とする。凹面凹部44は、チャンバ14内で(それぞれ異なるクラスの適用用に)具体的に設計されて適切に位置し、機器10の出力口で最終的に産生される乳液の品質パラメータ調節の様々な追加的制御能を可能とする独特な制御表面を提供する。図 5〜7に示すように、本発明の機器の調節式カウンターバッフルは、機器から産出された乳液の品質パラメータを最適化するために様々な形で改変し得る。調節式カウンターバッフルの衝撃領域の特定の設計の変更は、周囲ランド領域を変え、キャビテーションチャンバ内で生成された容量チャネル角度も変え得る。衝撃領域のサイズおよび形は、初回段階の乱流混合において重要な変数である。典型的には、接触表面は、圧入領域を除いて平面である。1つの実施形態では、凹面凹部の設計は、ノズル出口開口部直径より大きなキャビテーションチャンバの中央線に垂直な最大直径を有する。凹面凹部の特定の設計特性は、キャビテーションチャンバ内で溶液の乱流レベル制御に寄与する。例えば、凹面凹部の形、サイズ、および深さは、例えば、断面の球面または放物線において変わり得る。他の断面形を使用できる。図5に示す特定の実施形態では、衝撃領域142は、凹面圧入である圧入144を有する。加えて、接触表面142の周囲ランド領域164は、圧入144に向かって角度がついている。図6に示す実施形態では、圧入244は比較的浅く、衝撃領域242でより浅い圧入で生成する。図7に示す実施形態では、圧入344は、衝撃領域342で比較的深い圧入で放物線状である。カウンターバッフルの衝撃領域は、本発明の機器の特定の使用に応じて、任意のサイズまたは形であり得る。
本発明の機器内における乳液の品質パラメータの制御能および調節能は、本発明の顕著で新規の特徴である。かかる制御および調節は、置換式ノズルの適切な設計選択、カウンターバッフル位置の調製能、カウンターバッフルの凹面凹部の表面および形の設計、ならびに周囲ランド領域の位置および幅により達成される。かかる特性は、乳液産生プロセスの多くのパラメータ(ノズル開口部を通る溶液の溶液圧、温度および流量パラメータ;溶液の不混和性成分の絶対的粘性およびそれらの各粘性率;溶液成分の蒸気分圧;ならびに容量チャネルおよびキャビテーションチャンバから排出されるノズルの下流の圧力および流量パラメータを含むが、これらに限定されない)の制御を可能とする。
図4を再び参照して、置換式ノズル32に関するため、この構成部品は、上流流体速度の加速値を高め、同時に著しく減圧する(分散相の蒸気圧未満)ように変更するように調節できる。流体の操作プロセスパラメータの変化は、ノズル32および容量チャネル62から出る前、比較的低いレイノルズ数(2100強)で非常に強力な渦流で乱流を迅速に増大する間に激しいキャビテーションを開始できる。このキャビテーション初回開始中に形成される分散相滴の平均直径は、エネルギー密度および形成される乱流渦サイズに正比例する。これらの効果は、選択されるノズル32の特定の設計により影響を受ける可能性がある。
ノズル設計の特定の3つの実施例を図 8〜10に示す。図8では、ノズル132は、ノズル開口部136で最も狭い点にまで漸減される収束壁134を有する。ノズル132は、本発明の機器の雌ねじ穴にはまる雄ねじ158を有してノズル132を定位置に保持する。
図9に示す実施形態では、ノズル232内の小さな円筒型チャネル234B長は、カウンターバッフルの凹面凹部内に、高速な水力ジェットに流体をより強制的に形成させる手段を提供する。このジェットの凹面凹部への形成、形状および消失は、小さな円筒型チャネル234B長およびノズル開口部236内端輪郭により主に制御される。ノズル232から出る流体ジェットの形状および消失形成は、カウンターバッフル内の凹面凹部に適した形に適合して、流体のその後の流速、エネルギー含量、およびカウンターバッフル内のノズルと周囲ランド領域間のキャビテーション乱流状態を最適に制御する。流体がノズル232から出始める前、流体には、ノズル232の小さな円筒型チャネル234Bに乱流及びキャビテーション流量パターンが生じる。乱流およびキャビテーション流量パターンは、小さな円筒型チャネル234B内で流体の速度水頭に変換されているノズル232の収束部234Aに流体を蓄積する突然の劇的な圧力水頭の結果として生成される。小さな円筒型チャネル234Bの注入口側近辺のこの連続変換プロセスは、局所絶対流体圧の著しい低下(流体の流れるストリーム中の水の蒸気分圧未満であり、従来のキャビテーション状態を生成する)に相当する著しく増大した速度(ノズル232の上流側より約10大きな要因)で流体を推進する。この時間の間ならびにキャビテーションおよび乱流流体がノズル232の開口部236から流出する際、ミクロンサイズの水滴は、キャビテーション流量パターンで生成された渦流により形成され、サイズはこれら渦流に類似する。ノズル232は、本発明の機器の雌ねじ穴にはまる雄ねじ258を有して、ノズル232およびキャビテーション挿入を定位置に保持する。
図10に示す実施形態では、ノズル332は、ノズル開口部336に導く狭いチャネル334Bに突然変化する広範なチャネル334Aを有する。ノズル332は、本発明の機器の雌ねじ穴にはまる雄ねじ358を有して、ノズル332を定位置に保持する。
図4をさらに参照して、乳液の第2段階の混合/キャビテーションとしての役目を果たす凹面凹部44に溶液が接触時、図4にて矢印方向で示すように流体の流れる方向が変化する。したがって、凹面凹部44の特定の形は、例えば、球面または放物線反射物理原理によって選択し得、サイズは、所望の独特な乳液生成物のプロセス流体性質によって選択し得る。凹面凹部44は、所望の最終乳液の品質パラメータ発現を補助し、これは、不混和流体成分の分散相および連続相の初回物理的性質の影響を強く受ける。例えば、不混和流体成分は、粘性が低く、粘性率が、ある所定範囲内の値である場合、生成物の乳化プロセスは通常、より容易である。
図4をさらに参照して、周囲ランド領域64は、周囲ランド領域64とノズル32間の容量チャネル62を画定するランド領域を提供する。容量チャネル62もまた、キャビテーションチャンバ14内で溶液の品質パラメータの制御を補助する。特に、容量チャネル62の放射状位置の幅および/または長さの調節能は、キャビテーションチャンバ14のより広い領域に入る前に溶液の速度および圧力を変更するために使用でき、それゆえ、衝撃流体(すなわち、容量チャネル62の上)の品質パラメータを操作する必要な局所プロセス制御能を提供する。キャビテーションチャンバ14内で(すなわち、容量チャネル62の上)、溶液の圧力および速度は、溶液が出口ポート22に移動し、第2開口部28から出る際に著しく低減される。この圧力および速度の低減は、液滴の分散相質を安定化させる効果を有する。それゆえ、周囲ランド領域64は、機器10内で生じる独特な乳液プロセスの全体的設計特徴は、この構造的特徴のために、発明の総制御能および操作計画要素でもある容量チャネル62の画定に役立つ。
容量チャネル62は、凹面凹部44および周囲ランド領域64の特定の設計に応じて、平行側壁を有することも非対称側壁を有することもできる。例えば、ここで図5を参照して、周囲ランド領域164は角度がついており、したがって非対称側壁で容量チャネルを形成する。図6および図7に示す代替的実施形態では、周囲ランド領域264(図6)および364(図7)は容量チャネルの平行側壁を形成する。容量チャネル62のサイズまたは形を調節するこの特定の調節能は、乳液の品質パラメータに影響を及ぼす可能性がある局所流体プロセスパラメータの追加的な制御能度合を可能とする。具体的には、溶液が容量チャネルを横断して残余キャビテーションチャンバ14に達する際、乳液の品質パラメータを調整する必要があり得るため、溶液のプロセス制御パラメータの局所調節を行う。容量チャネル62内の局所プロセスパラメータの制御能範囲は、容量チャネル62寸法により、精密かつ正確に測定できる。
図4を再び参照して、容量チャネル62幅は、ノズル32からカウンターバッフル40までの距離により調節できる。これは、後壁54の開口部52を通って伸びる柄46を調節することにより行われる。ノズル32からカウンターバッフル40までの距離を調節するために任意の適切な調節機序を適用し得る。図1および図2に示す特定の実施形態では、柄46は、開口部52内のねじがはまるねじスピンドル部68を有する。この実施形態によれば、ハンドル66は、柄46の遠端50に内包され、ここでハンドル66を調節することにより、ノズル32とカウンターバッフル40間の距離が伸縮し、それにより容量チャネル62幅が拡大縮小する。
図4を再び参照して、チャネル62の容量寸法は、分散相滴の品質パラメータ(サイズ、量、サイズ分布、および相滴の分布ピーク消散など)の総制御計画に寄与する。この制御能(すなわち、分散相滴性質を制御するための容量チャネル62サイズの調節)は、カウンターバッフルの様々なサイズ、形、および直径の凹面凹部44の利用能と併せて、キャビテーションチャンバ14内に流入する溶液を測量し、乳液生成物を最適化するために本発明の機器を調節する全体的な調節能に寄与する。
本発明の機器10の追加の制御可能な特徴は、キャビテーションチャンバ14の背圧(容量チャネル62の外側)であり、これは本発明からの乳液流の最終安定品質パラメータに影響を及ぼす可能性がある。この背圧は、例えば、出口ポート22および/または第2開口部28内で標準的な流量制御機器を用いて制御し得る。
本発明の別の態様は、混合物の乳化方法に関する。この方法は、本発明の機器を提供することおよび該機器の第1開口部へ混合物を誘導することを含む。混合物はノズルを通過し、キャビテーションチャンバ内で乳化される。乳化溶液は、機器の第2開口部から回収される。
好ましい実施形態を本明細書に示して詳述してきたが、本発明の真意から逸脱することなく、様々な改変、追加、置換などを行うことができ、したがって、特許請求の範囲に定義される発明の範囲内であるとみなされることが当業者にとって明らかであろう。

Claims (39)

  1. 以下を含む、混合物を乳化させる機器:
    キャビテーションチャンバを画定する本体であって、前記本体は第1開口部および第2開口部、ならびに入口ポートおよび出口ポートを含むキャビテーションチャンバを含み、混合物が本体およびキャビテーションチャンバに入って乳化されるための入口ポートに第1開口部が接続されており、かつ乳化溶液がキャビテーションチャンバおよび本体から出るための出口ポートに第2開口部が接続されている、本体;
    キャビテーションチャンバ内へ溶液が流れるように方向付けるキャビテーションチャンバの入口ポートに位置する置換式ノズル;ならびに
    ノズルからキャビテーションチャンバに入る溶液の流れと衝突する位置でキャビテーションチャンバに位置する調節式カウンターバッフルであって、前記カウンターバッフルは、カウンターバッフルとノズル間の距離を調節するために可動的に本体に取り付けられている、調節式カウンターバッフル。
  2. 前記本体の第1開口部が、チャネルを介してキャビテーションチャンバの入口ポートに接続されている、請求項1に記載の機器。
  3. 前記チャネルが平行壁を有する、請求項2に記載の機器。
  4. 前記キャビテーションチャンバの出口ポートが、キャビテーションチャンバの入口ポートに対して垂直位置にある、請求項1に記載の機器。
  5. 前記カウンターバッフルが衝撃領域を含み、前記ノズルからの溶液の流れが、カウンターバッフルにより、キャビテーションチャンバ内の前記衝撃領域で衝突する、請求項1に記載の機器。
  6. 前記カウンターバッフルの衝撃領域が凹部を含む、請求項5に記載の機器。
  7. 前記凹部が凹面凹部である、請求項6に記載の機器。
  8. 前記衝撃領域が流れに対して垂直でありかつ前記凹部を除いて平面であり、かつ前記凹部が全体の衝撃領域より少ない、請求項6に記載の機器。
  9. 前記衝撃領域が、ノズルからキャビテーションチャンバ内への溶液の流れに対して垂直である、請求項5に記載の機器。
  10. 前記衝撃領域が、ノズル開口部の直径より大きな軸投影表面直径を有する、請求項5に記載の機器。
  11. 前記衝撃領域がキャビテーションチャンバ内壁に接触していない、請求項5に記載の機器。
  12. 前記カウンターバッフルが、キャビテーションチャンバを画定する壁に連結し、前記壁がキャビテーションチャンバの入口ポートに対向している、請求項5に記載の機器。
  13. 本体を通って伸びかつ入口ポートに対向している壁を通ってキャビテーションチャンバ内へ伸びる柄をさらに含み、前記柄はキャビテーションチャンバ内のカウンターバッフルに第1端で接続してカウンターバッフルを支え、かつ本体外側のハンドルに第2端で接続してノズルから衝撃領域までの距離を調節する、請求項12に記載の機器。
  14. 前記柄が、キャビテーションチャンバの入口ポートと対向している壁内にねじがかみ合うねじ山を切ったスピンドルを含む、請求項13に記載の機器。
  15. 前記本体がステンレス鋼および合金材料からなる群から選択される材料を含む、請求項1に記載の機器。
  16. 前記ノズルが収束形状を有するチャネルを含む、請求項1に記載の機器。
  17. 前記チャネルが非収束部分を有する、請求項16に記載の機器。
  18. 以下の段階を含む、混合物の乳化方法:
    請求項1に記載の機器を提供する段階;
    第1開口部に混合物を誘導する段階であって、前記混合物はノズルを通過し、かつキャビテーションチャンバ内で乳化される、段階;ならびに
    第2開口部から乳化溶液を回収する段階。
  19. 前記混合物が2つ以上の不混和性液を含む、請求項18に記載の方法。
  20. 前記混合物が固相粒子を含む、請求項18に記載の方法。
  21. 前記混合物が気相粒子を含む、請求項18に記載の方法。
  22. 前記混合物が固相粒子および気相粒子を含む、請求項18に記載の方法。
  23. 本体の第1開口部が、チャネルを介してキャビテーションチャンバの入口ポートに接続されている、請求項18に記載の方法。
  24. 前記チャネルが平行壁を有する、請求項23に記載の方法。
  25. 前記キャビテーションチャンバの出口ポートが、キャビテーションチャンバの入口ポートに対して垂直位置にある、請求項18に記載の方法。
  26. カウンターバッフルが衝撃領域を含み、前記ノズルからの混合物の流れが、ノズルから出る前、出る間、出た後、またはそれらの任意の組み合わせから選択された時点でキャビテーションされ、かつキャビテーションチャンバ内において衝撃領域でカウンターバッフルにより衝突されて溶液が乱流混合される、請求項18に記載の方法。
  27. 前記カウンターバッフルの衝撃領域が凹部を含む、請求項26に記載の方法。
  28. 前記凹部が凹面凹部である、請求項27に記載の方法。
  29. 前記衝撃領域が前記凹部を除いて平面であり、かつ前記凹部が全衝撃領域より小さい、請求項27に記載の方法。
  30. 前記衝撃領域が、ノズルからキャビテーションチャンバ内への溶液の流れに対して垂直である、請求項26に記載の方法。
  31. 前記衝撃領域が、ノズル開口部の直径より大きな軸投影表面直径を有する、請求項26に記載の方法。
  32. 前記衝撃領域がキャビテーションチャンバ内壁に接触していない、請求項26に記載の方法。
  33. 前記カウンターバッフルが、キャビテーションチャンバを画定する壁に結合し、前記壁がキャビテーションチャンバの入口ポートに対向している、請求項18に記載の方法。
  34. 本体を通って伸びかつ入口ポートに対向している壁を通ってキャビテーションチャンバ内へ伸びる柄をさらに含み、前記柄はキャビテーションチャンバ内のカウンターバッフルに第1端で接続してカウンターバッフルを支え、かつ本体外側のハンドルに第2端で接続してノズルから衝撃領域までの距離を調節する、請求項33に記載の方法。
  35. 前記柄が、キャビテーションチャンバの入口ポートと対向している壁内にねじがかみ合うねじ山を切ったスピンドルを含む、請求項34に記載の方法。
  36. ハンドルを調節することによって、前記機器から回収される乳化溶液の性質を調節する段階をさらに含む、請求項34に記載の方法。
  37. 前記ノズルが収束形状を有する、請求項18に記載の方法。
  38. 前記誘導する段階が加圧型混合物を第1開口部へ誘導することを含む、請求項18に記載の方法。
  39. 第2開口部からの乳化溶液の回収率を調節することにより、キャビテーションチャンバ圧を調節する段階をさらに含む、請求項18に記載の方法。
JP2013511333A 2010-05-19 2011-05-18 混合および乳化のためのキャビテーション生成のための方法および装置 Pending JP2013530033A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US34607210P 2010-05-19 2010-05-19
US61/346,072 2010-05-19
PCT/US2011/037004 WO2011146622A1 (en) 2010-05-19 2011-05-18 Method and apparatus for creating cavitation for blending and emulsifying

Publications (2)

Publication Number Publication Date
JP2013530033A true JP2013530033A (ja) 2013-07-25
JP2013530033A5 JP2013530033A5 (ja) 2014-07-03

Family

ID=44992044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013511333A Pending JP2013530033A (ja) 2010-05-19 2011-05-18 混合および乳化のためのキャビテーション生成のための方法および装置

Country Status (6)

Country Link
US (1) US20130215706A1 (ja)
EP (1) EP2571611A4 (ja)
JP (1) JP2013530033A (ja)
CA (1) CA2799578A1 (ja)
SG (1) SG185633A1 (ja)
WO (1) WO2011146622A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014134115A1 (en) * 2013-02-26 2014-09-04 Cavitronix Corporation Variable velocity apparatus and method for blending and emulsifying
KR20150079190A (ko) * 2013-12-31 2015-07-08 두산중공업 주식회사 용존공기 부상 장치용 노즐
US9682355B2 (en) * 2014-06-18 2017-06-20 Arisdyne Systems, Inc. Method for conducting sonochemical reactions and processes
US10751675B2 (en) 2014-11-10 2020-08-25 Eme Finance Ltd. Device for mixing water and diesel oil, apparatus and process for producing a water/diesel oil micro-emulsion
WO2016144566A1 (en) * 2015-03-06 2016-09-15 Fluid-Quip, Inc. Radial flow processor and method for using same
ITUB20159709A1 (it) * 2015-12-18 2017-06-18 Mesea Tech S R L Impianto per la preparazione di un olio combustibile a partire da un residuo bituminoso.
IT201600132801A1 (it) 2016-12-30 2018-06-30 Eme International Ltd Apparato e processo per produrre liquido derivante da biomassa, biocarburante e biomateriale
CN107782663B (zh) * 2017-11-27 2023-07-25 清华大学 方便易用可控的空泡可视化实验装置及实验方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2271982A (en) * 1938-03-11 1942-02-03 Condensfabriek Friesland Coop Homogenization of liquid matter
JP2002085949A (ja) * 2000-09-13 2002-03-26 Asupu:Kk 超微細気泡発生装置
US6502979B1 (en) * 2000-11-20 2003-01-07 Five Star Technologies, Inc. Device and method for creating hydrodynamic cavitation in fluids
JP2003190752A (ja) * 2001-12-26 2003-07-08 Morinaga Milk Ind Co Ltd 均質バルブおよび均質機
US20040071044A1 (en) * 2002-10-15 2004-04-15 Kozyuk Oleg V. Homogenization device and method of using same
US20060050608A1 (en) * 2004-09-07 2006-03-09 Kozyuk Oleg V Device and method for creating hydrodynamic cavitation in fluids
JP2008036600A (ja) * 2006-08-10 2008-02-21 Morinaga Milk Ind Co Ltd 均質バルブ
JP2010022981A (ja) * 2008-07-23 2010-02-04 Izumi Food Machinery Co Ltd 乳化分散装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL63806C (ja) * 1900-01-01
US1654268A (en) * 1927-02-16 1927-12-27 Electrophone Record Corp Homogenizing procedure and apparatus therefor
GB2326356A (en) * 1998-03-21 1998-12-23 Sobegina Trading Limited Preparing emulsions by reflecting a liquid mixture

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2271982A (en) * 1938-03-11 1942-02-03 Condensfabriek Friesland Coop Homogenization of liquid matter
JP2002085949A (ja) * 2000-09-13 2002-03-26 Asupu:Kk 超微細気泡発生装置
US6502979B1 (en) * 2000-11-20 2003-01-07 Five Star Technologies, Inc. Device and method for creating hydrodynamic cavitation in fluids
US20040042336A1 (en) * 2000-11-20 2004-03-04 Kozyuk Oleg V Device and method for creating hydrodynamic cavitation in fluids
JP2003190752A (ja) * 2001-12-26 2003-07-08 Morinaga Milk Ind Co Ltd 均質バルブおよび均質機
US20040071044A1 (en) * 2002-10-15 2004-04-15 Kozyuk Oleg V. Homogenization device and method of using same
US20060193199A1 (en) * 2002-10-15 2006-08-31 Kozyuk Oleg V Homogenization device and method of using same
US20060050608A1 (en) * 2004-09-07 2006-03-09 Kozyuk Oleg V Device and method for creating hydrodynamic cavitation in fluids
JP2008036600A (ja) * 2006-08-10 2008-02-21 Morinaga Milk Ind Co Ltd 均質バルブ
JP2010022981A (ja) * 2008-07-23 2010-02-04 Izumi Food Machinery Co Ltd 乳化分散装置

Also Published As

Publication number Publication date
EP2571611A1 (en) 2013-03-27
US20130215706A1 (en) 2013-08-22
CA2799578A1 (en) 2011-11-24
EP2571611A4 (en) 2016-03-16
WO2011146622A1 (en) 2011-11-24
SG185633A1 (en) 2012-12-28

Similar Documents

Publication Publication Date Title
JP2013530033A (ja) 混合および乳化のためのキャビテーション生成のための方法および装置
US5720551A (en) Forming emulsions
JP5032703B2 (ja) 剪断力及び/又はキャビテーションを生成することにより液体を混合するための装置
US8556494B2 (en) System for manufacturing emulsified/dispersed liquid
EP1789684B1 (en) Jet pump
US11084004B2 (en) Device for mixing water and diesel oil, apparatus and process for producing a water/diesel oil micro-emulsion
ITMI992228A1 (it) Apparecchio e metodo per la formazione di microemulsioni atomizzate stabilizzate
Lin et al. Dynamics of bubble formation in highly viscous liquid in co-flowing microfluidic device
US8453997B2 (en) Supersonic nozzle
WO2014134115A1 (en) Variable velocity apparatus and method for blending and emulsifying
JP4791287B2 (ja) 均質バルブ
EP1501626B1 (en) Device and method of creating hydrodynamic cavitation in fluids
JP2007029909A (ja) 乳化方法とその装置
EP2525901A1 (en) Apparatus and method for producing an emulsion of a fuel and an emulsifiable component
JP4559021B2 (ja) 混合方法
Håkansson et al. On flow-fields in a high pressure homogenizer and its implication on drop fragmentation
Mohr High-pressure homogenization. Part II. The influence of cavitation on liquid-liquid dispersion in turbulence fields of high energy density
RU167023U1 (ru) Аппарат для контакта газа с жидкостью
JP6022899B2 (ja) 流体混合器
RU2732142C1 (ru) Микродиспергатор с периодической структурой с переменным шагом для генерирования капель
JP2008238117A (ja) 転相温度乳化装置及び乳化方法
Zhou et al. Preparation of micro water droplets in micro-channel by digital jetting
Abiev et al. 15th European Conference on Mixing June 28–July 3, 2015 Saint-Petersburg, Russia
KR20070096677A (ko) 유체처리장치
WO2009154587A1 (ru) Устройство для смешивания текучих сред

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150330

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150930