JP2013517218A5 - - Google Patents

Download PDF

Info

Publication number
JP2013517218A5
JP2013517218A5 JP2012550120A JP2012550120A JP2013517218A5 JP 2013517218 A5 JP2013517218 A5 JP 2013517218A5 JP 2012550120 A JP2012550120 A JP 2012550120A JP 2012550120 A JP2012550120 A JP 2012550120A JP 2013517218 A5 JP2013517218 A5 JP 2013517218A5
Authority
JP
Japan
Prior art keywords
gas
absorption zone
sulfur
sulfuric acid
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012550120A
Other languages
English (en)
Other versions
JP2013517218A (ja
JP5800833B2 (ja
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/US2011/021928 external-priority patent/WO2011139390A2/en
Publication of JP2013517218A publication Critical patent/JP2013517218A/ja
Publication of JP2013517218A5 publication Critical patent/JP2013517218A5/ja
Application granted granted Critical
Publication of JP5800833B2 publication Critical patent/JP5800833B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明またはその好ましい実施形態の要素を導入するとき、冠詞「a」、「an」、「the」および「said」は、1つ以上の要素が存在することを意味することが意図される。用語「含む(comprising)」、「含む(including)」および「有する(having)」は、包括的であり、列挙された要素以外の追加の要素が存在してもよいことを意味することが意図される。
本発明は以下の実施の態様を含むものである。
[1]
硫酸の調製方法であって:
過剰な酸素を含む乾燥ガス中で硫黄元素を燃焼させて、二酸化硫黄と酸素とを含む燃焼ガスを含む硫黄酸化物担持ガス流を生成する工程と;
前記燃焼ガスを含む前記硫黄酸化物担持ガス流を、二酸化硫黄を三酸化硫黄に転化するための触媒と接触させることによって、前記硫黄酸化物担持ガス流を、SO 3 を含有する転化ガスに転化する工程と;
前記転化ガスを、第1の吸収(熱回収)ゾーンにおいて、硫酸を含む第1の吸収液体と接触させることによって、硫酸を前記転化ガスから前記第1の吸収液体へと移す工程と;
前記ガスにおける当量の水蒸気含量を、前記第1の吸収ゾーンに入る前記ガスにおける全当量の硫黄酸化物ガス含量のモル当たり約0.55〜約0.98モルまで増加させるのに十分な割合で、前記ガス流の方向に対して前記第1の吸収ゾーンの上流の前記転化ガス中に水蒸気を導入することにより、前記第1の吸収ゾーンに入る前記転化ガスの温度が、約290℃〜約340℃であるとともにその露点を少なくとも約40℃上回り、前記硫黄酸化物担持ガス流中に導入される水蒸気の割合、前記吸収ゾーンに導入される前記吸収液体における前記硫酸の強度および温度、ならびに前記吸収ゾーンにおけるL/G比は、SO 3 に対する硫酸蒸気のモル比が、吸収ゾーン内の、そのガス入口とガス出口との中間にある位置で、最大値で少なくとも約1.2に達するようになる工程と;
前記吸収液体を、前記第1の吸収ゾーンと間接式熱交換器との間で循環させる工程であって、三酸化硫黄と水との反応、硫酸の凝縮、および/または前記第1の吸収液体中への三酸化硫黄の吸収によって生成される熱が、前記間接式熱交換器においてボイラー給水へと伝達されることによって、前記第1の吸収ゾーンにおいて前記第1の吸収液体へのSO 3 の吸収によって生成される硫酸のトン当たり少なくとも0.4メガパスカル(4バール)の圧力で、少なくとも0.55トンの蒸気を生成する工程と;
前記吸収液体濃度と前記共沸混合物との差が、前記第1の吸収ゾーン全体にわたって、約−0.2重量%以上または約+1.0重量%超となるよう、前記吸収液体の前記硫酸濃度を制御する工程と;
前記第1の吸収ゾーンを出る前記ガス流を、第2の吸収ゾーンにおいて、硫酸を含む第2の吸収液体と接触させる工程であって、前記第2の吸収ゾーンに入る前記ガス流に含まれる残りのSO 3 が、前記第2の吸収液体において硫酸として回収され、前記第1の吸収ゾーンを出る前記酸流の濃度および温度ならびに前記第1の吸収ゾーンに入る前記転化ガス流の温度および露点が、前記第2の吸収ゾーンを出る前記ガス流を、20g/Nm 3 以下の硫酸ミストを含有すべく制御できるようにするようなものであり、前記第2の吸収ゾーンに入る前記ガス流および前記第2の吸収ゾーンに入る前記第2の吸収液体流の相対流量が、前記気相の局所バルク温度と、前記ガスが接触している前記第2の吸収液相の局所バルク温度との差が、前記第2の吸収ゾーンの前記液体入口または液体出口の両方において約15℃〜約35℃であるようなものである工程と;
前記第2の吸収ゾーンを出るガス流を、ガス流の方向に対して横方向に、ミストエリミネータ要素表面積の平方メートル当たり少なくとも300Nm 3 /時の速度でミストエリミネータシステムに通す工程であって、前記ミストエリミネータシステムを出る前記ガスが、0.1g/Nm 3 未満の酸ミストを含有する工程と
を含む方法。
[2]
硫酸の調製方法であって:
過剰な酸素を含む乾燥ガス中で硫黄を燃焼させて、二酸化硫黄と、酸素と、SO 2 のモル当たり0.005モル以下の水蒸気とを含む燃焼ガスを含む硫黄酸化物担持ガス流を生成する工程と;
前記燃焼ガスを含む前記硫黄酸化物担持ガス流を、二酸化硫黄を三酸化硫黄に転化するための触媒と接触させることによって、前記硫黄酸化物担持ガス流を、SO 3 のモル当たり0.005モル以下の水蒸気を含有する転化ガスに転化する工程と;
前記転化ガスを、第1の熱回収吸収ゾーンにおいて、硫酸を含む吸収液体と接触させることによって、硫酸を前記転化ガスから前記吸収液体へと移す工程と;
前記ガスにおける当量の水蒸気含量を、前記第1の吸収ゾーン中に前記ガス流が入る前に全当量の硫黄酸化物ガス含量のモル当たり少なくとも約0.55モルまで増加させるのに十分な割合で、ガス流の方向に対して前記第1の吸収ゾーンの上流の前記硫黄酸化物担持ガス中に水蒸気を導入する工程と;
前記吸収液体を、前記第1の吸収ゾーンと間接式熱交換器との間で循環させる工程であって、三酸化硫黄と水との反応、硫酸の凝縮、および/または前記吸収液体中への三酸化硫黄の吸収によって生成される熱が、伝熱流体に伝達されることによって、前記伝熱流体を少なくとも150℃まで加熱する工程と
を含む方法。
[3]
前記硫黄酸化物担持ガス流が、二酸化硫黄と、酸素と、SO 2 のモル当たり0.002モル以下の水蒸気とを含む燃焼ガスを含む、前記2に記載の方法。
[4]
酸素含有ガスが、乾燥剤と接触されて、乾燥された酸素含有ガスが得られ;
硫黄および前記乾燥された酸素含有ガスが、前記燃焼ゾーンに導入される、前記3に記載の方法。
[5]
前記当量の水蒸気含量を、前記第1の吸収ゾーンに入る前記ガスにおける全当量の硫黄酸化物ガス含量のモル当たり少なくとも約0.55モルまで増加させるのに十分な割合で、前記転化ガス中に水蒸気が導入される、前記2〜4のいずれか1つに記載の方法。
[6]
前記転化ガスが、前記水蒸気噴射ゾーンと前記第1の吸収ゾーンとの間で前記硫黄酸化物担持ガス流のいかなる成分の途中の凝縮もなく、前記第1の吸収ゾーンに導入される、前記2〜5のいずれか1つに記載の方法。
[7]
前記転化ガスが、前記水蒸気噴射ゾーンと前記第1の吸収ゾーンとの間で、前記転化ガスからの熱を途中で除去することなく、前記第1の吸収ゾーンに導入される、前記6に記載の方法。
[8]
前記第1の吸収ゾーンに入る当量の三酸化硫黄に対する前記第1の吸収ゾーンに入る前記吸収液体の質量流量比が、約30〜約50である、前記2〜7のいずれか1つに記載の方法。
[9]
三酸化硫黄と水との反応、硫酸の凝縮、および/または前記吸収液体中への三酸化硫黄の吸収によって生成される熱が、前記第1の吸収ゾーンに入る当量のSO 3 のキログラム当たり少なくとも約1160KJ(当量のSO 3 のポンド当たり500Btu)の量で伝熱流体に伝達されることによって、前記伝熱流体を少なくとも150℃まで加熱する、前記2〜8のいずれか1つに記載の方法。
[10]
三酸化硫黄と水との反応、硫酸の凝縮、および/または前記吸収液体中への三酸化硫黄の吸収によって生成される熱が、前記第1の吸収ゾーンに入る当量のSO 3 のキログラム当たり少なくとも約1220KJ、少なくとも約1270KJまたは少なくとも約1330KJ(当量のSO 3 のポンド当たり、525Btu、少なくとも約550Btu、または少なくとも約575Btu)の量で伝熱流体に伝達されることによって、前記伝熱流体を少なくとも150℃まで加熱する、前記9に記載の方法。
[11]
熱が前記吸収酸から伝達されて前記熱交換器における少なくとも0.3メガパスカル(3バール)ゲージの圧力で蒸気を生成し、生成される蒸気の量が、前記第1の吸収ゾーンに入る前記SO 3 から生成される硫酸のトン当たり少なくとも0.45トンである、前記9または10に記載の方法。
[12]
生成される蒸気の量が、前記第1の吸収ゾーンに入る前記SO 3 から生成される硫酸のトン当たり少なくとも約0.55トンである、前記11に記載の方法。
[13]
前記蒸気が、少なくとも約0.07メガパスカル(0.7バール)の圧力で生成される、前記10または11に記載の方法。
[14]
前記第1の吸収ゾーンを出る前記ガス流を、第2の吸収ゾーンにおいて、硫酸を含む第2の吸収液体と接触させる工程であって、前記第2の吸収ゾーンに入る前記ガス流に含まれる残りのSO 3 が、前記第2の吸収液体において硫酸として回収される工程をさらに含み、
前記第1の吸収ゾーンを出る前記酸流の濃度および温度ならびに前記第1の吸収ゾーンに入る前記転化ガス流の温度および露点が、前記第2の吸収ゾーンを出る前記ガス流が20g/Nm 3 以下の硫酸ミストを含有すべく制御できるようにするようなものである、前記2〜13のいずれか1つに記載の方法。
[15]
前記第1の吸収ゾーンの実質的に全体にわたる前記第1の吸収液体の濃度が、約99.1重量%〜約99.3重量%のH 2 SO 4 である、前記2〜14のいずれか1つに記載の方法。
[16]
前記第2の吸収ゾーンを出る前記ガス流が、ガス流の方向に対して横方向に、ミストエリミネータ要素表面積の平方メートル当たり少なくとも300Nm 3 /時の速度でミストエリミネータシステムに通され、前記ミストエリミネータシステムを出る前記ガスが、0.1g/Nm 3 未満の酸ミストを含有する、前記14に記載の方法。
[17]
ミスト制御要素を通る線速度が、少なくとも約200m/時である、前記16に記載の方法。
[18]
前記ミスト制御要素を通る前記ガスの線速度が、約200〜約650m/時である、前記16または17に記載の方法。
[19]
三酸化硫黄と水との反応、硫酸の凝縮、および/または前記吸収液体中への三酸化硫黄の吸収によって生成される熱が、ガス流の方向に対して横方向に、ミストエリミネータ面積の平方メートル当たり少なくとも約19ジュール/秒(平方フィート当たり25,000Btu/時)の量で伝熱流体に伝達される、前記2〜18のいずれか1つに記載の方法。
[20]
前記第1の吸収ゾーンの実質的に全体にわたる前記第1の吸収液体の濃度が、約99.3重量%〜約99.7重量%のH 2 SO 4 である、前記2〜19のいずれか1つに記載の方法。
[21]
前記第2の吸収ゾーンを出る前記ガスが、ガス流の方向に対して横方向に、ミストエリミネータ要素表面積の平方メートル当たり約340〜約500Nm 3 /時の速度でミストエリミネータシステムに通される、前記14〜20のいずれか1つに記載の方法。
[22]
前記転化ガスの温度を約270℃〜約330℃まで上昇させるのに十分な割合で前記転化ガス中に水蒸気が導入され;前記転化ガスが、約270℃〜330℃の温度で前記熱回収吸収ゾーンに導入される、前記2〜21のいずれか1つに記載の方法。
[23]
前記転化ガスが、約290℃〜約330℃の温度で前記熱回収ゾーンに導入される、前記22に記載の方法。
[24]
前記転化ガスの温度を約270℃〜約320℃または約280℃〜約320℃まで上昇させるのに十分な割合で前記転化ガス中に水蒸気が導入される、前記22に記載の方法。
[25]
前記転化ガスの温度を少なくとも約300℃まで上昇させるのに十分な割合で前記転化ガス中に水蒸気が導入される、前記22に記載の方法。
[26]
前記吸収液体が、前記吸収ゾーンと、主要な間接式熱交換器および補助的な間接式熱交換器の両方との間で循環され、前記熱交換器のそれぞれにおいて、三酸化硫黄と水との反応、硫酸の凝縮、および/または前記吸収液体中への三酸化硫黄の吸収によって生成される熱が、前記循環する吸収液体から伝達され、熱が、前記主要な熱交換器において主要な伝熱流体へと伝達されることによって、前記主要な伝熱流体を少なくとも150℃まで加熱し、熱が前記補助的な熱交換器において水流へと伝達されることによって、前記吸収ゾーンの上流の前記硫黄酸化物担持ガス流中に噴射するための前記水蒸気を生成する、前記2〜25のいずれか1つに記載の方法。
[27]
前記主要な熱交換器および補助的な熱交換器が、前記循環する吸収液体の流れに対して直列している、前記26に記載の方法。
[28]
前記主要な熱交換器を出る酸が、第1の吸収液体と第2の熱回収液体とを提供すべく分けられ、前記第1の吸収液体が、前記第1の吸収ゾーンに導入されてそこでそれが前記転化ガスと接触し、前記第2の熱回収液体が、前記補助的な熱交換器に通されてそこでそれが冷却され、前記第1の吸収ゾーンを出る前記ガス流が、第2の吸収ゾーンに導入されてそこでそれが前記冷却された第2の熱回収液体を含む第2の吸収液体と接触される、前記27に記載の方法。
[29]
前記第1の吸収ゾーンが、前記熱回収吸収ゾーンを含む、前記28に記載の方法。
[30]
前記循環する液体が、主要な循環酸流と、補助的な循環酸流とに分けられ、前記主要な循環酸流が、前記主要な熱交換器に通され、前記補助的な循環酸流が、前記補助的な熱交換器に通される、前記26に記載の方法。
[31]
前記硫黄酸化物担持ガス流中に導入される水蒸気の割合、前記吸収ゾーンに導入される前記吸収液体における前記硫酸の強度および温度、ならびに前記吸収ゾーンにおけるL/G比は、SO 3 に対する硫酸蒸気のモル比が、前記吸収ゾーン内の、そのガス入口とガス出口との中間にある位置で、最大値で少なくとも約1.2に達するようなものである、前記2〜30のいずれか1つに記載の方法。
[32]
SO 3 に対する硫酸蒸気の前記モル比が、前記吸収ゾーン内の前記ガス入口およびガス出口の中間の位置で、最大値で少なくとも約1.5に達する、前記31に記載の方法。
[33]
前記吸収ゾーンを出る前記ガス中のSO 3 に対する気相硫酸の前記モル比が、約1.0〜約3.0である、前記31または32に記載の方法。
[34]
前記第1の吸収ゾーンを出る前記ガス流を、第2の吸収ゾーンにおいて、硫酸を含む第2の吸収液体と接触させる工程であって、前記第2の吸収ゾーンに入る前記ガス流に含まれる残りのSO 3 が、前記第2の吸収液体中の硫酸として回収される工程をさらに含み、前記第2の吸収ゾーンに入る全ガス流に対する前記吸収ゾーンに入る前記第2の吸収液体の質量流量比が、約0.4〜約1.5である、前記2〜33のいずれか1つに記載の方法。
[35]
前記第2の吸収ゾーンを出る前記ガスが、ガス流の方向に対して横方向に、ミストエリミネータ要素表面積の平方メートル当たり約340〜約500Nm 3 /時の速度でミストエリミネータシステムに通される、前記34に記載の方法。
[36]
前記第2の吸収ゾーンに入る全ガス流に対する前記吸収ゾーンに入る前記第2の吸収液体の質量流量比が、約0.4〜約1.0である、前記34または35に記載の方法。
[37]
前記第2の吸収ゾーンに入る前記ガス流および前記第2の吸収ゾーンに入る前記第2の吸収液体流の相対流量が、気相の温度と、前記ガスが接触している前記第2の吸収液相の温度との最大局所積分平均差が、約35℃以下であるようなものであり、このような局所積分平均接触温度差が、前記液体入口から前記ゾーンまでの一定の距離によって画定される前記ゾーン内の気/液接触の任意の箇所にわたる積分によって決定される、前記14、16〜18、21、28、29、または34〜36のいずれか1つに記載の方法。
[38]
前記第2の吸収ゾーンを出る前記ガスが、ガス流の方向に対して横方向に、ミストエリミネータ要素表面積の平方メートル当たり約340〜約500Nm 3 /時の速度でミストエリミネータシステムに通される、前記37に記載の方法。
[39]
前記第2の吸収ゾーンに入る前記ガス流および前記第2の吸収ゾーンに入る前記第2の吸収液体流の相対流量は、前記気相の局所バルク温度と、前記ガスが接触している前記第2の吸収液相の局所バルク温度との最大差が、前記液体入口から前記ゾーンまでの一定の距離によって画定される前記ゾーン内の気/液接触の任意の箇所内において約35℃以下であるようなものである、前記14、16〜18、21、28、29、または34〜38のいずれか1つに記載の方法。
[40]
前記第2の吸収ゾーンを出る前記ガスが、ガス流の方向に対して横方向に、ミストエリミネータ要素表面積の平方メートル当たり約340〜約500Nm 3 /時の速度でミストエリミネータシステムに通される、前記39に記載の方法。
[41]
前記第2の吸収ゾーンに入る前記ガス流および前記第2の吸収ゾーンに入る前記第2の吸収液体流の相対流量は、前記気相の局所バルク温度と、前記ガスが接触している前記第2の吸収液相の局所バルク温度との差が、前記第2の吸収ゾーンの前記液体入口または液体出口のいずれにおいても約35℃以下であるようなものである、前記14、16〜18、21、28、29、または33〜40のいずれか1つに記載の方法。
[42]
前記第2の吸収ゾーンを出る前記ガスが、ガス流の方向に対して横方向に、ミストエリミネータ要素表面積の平方メートル当たり約340〜約500Nm 3 /時の速度でミストエリミネータシステムに通される、前記41に記載の方法。
[43]
前記吸収液体を、前記吸収ゾーンと主要な間接式熱交換器との間で循環させる工程であって、熱が、主要な伝熱流体に伝達されることによって、前記主要な伝熱流体を少なくとも150℃まで加熱する工程と;
前記主要な熱交換器を出る前記吸収液体流を分けて、前記熱回収吸収ゾーンに再循環される主要な吸収液体流と、補助的な吸収液体流とを提供する工程と;
前記補助的な液体流を、ボイラー給水脱気装置の補助的な間接式熱交換器に通す工程であって、熱が、前記脱気装置の補助的な熱交換器において、前記補助的な液体から、脱気蒸気を生成するための水流へと伝達される工程と;
前記脱気蒸気を前記脱気装置に送る工程であって、ボイラー給水が、前記ボイラー給水からの非凝縮物を取り除くために前記脱気蒸気と接触される工程と;
脱気装置排気流を前記脱気装置から除去する工程であって、前記脱気装置排気流が水蒸気と非凝縮性ガスとを含む工程と
をさらに含む、前記2〜42のいずれか1つに記載の方法。
[44]
前記脱気装置排気流に含まれる水蒸気を、ガス流の方向に対して前記吸収ゾーンの上流の前記硫黄酸化物担持ガス中に導入する工程をさらに含む、前記43に記載の方法。
[45]
実質的に全ての前記脱気装置排気流が、ガス流の方向に対して前記吸収ゾーンの上流の前記硫黄酸化物担持流中に導入される、前記44に記載の方法。
[46]
前記脱気装置の補助的な熱交換器において生成される蒸気に、前記脱気装置に導入される別の供給源からの蒸気が追加される、前記43〜45のいずれか1つに記載の方法。
[47]
追加の蒸気が、前記脱気装置に一定の速度で導入される、前記46に記載の方法。
[48]
前記吸収ゾーンに入る前記ガス流中の当量の三酸化硫黄に対する当量の水蒸気の比率を制御すべく制御された速度で、前記排気流を前記硫黄酸化物担持流中に導入する前に、追加の蒸気が前記排気流中に導入される、前記46に記載の方法。
[49]
前記排気流を前記硫黄酸化物担持流中に導入する前に、蒸気の第2の追加の供給が、前記排気流中に導入され、前記第2の追加の供給の速度が、前記吸収ゾーンに入る前記ガス流中の当量の三酸化硫黄に対する当量の水蒸気の比率を制御すべく制御される、前記48に記載の方法。
[50]
前記脱気装置において脱気される水が、蒸気を生成するためのボイラー給水の供給源として前記主要な熱交換器に導入される、前記43〜49のいずれか1つに記載の方法。
[51]
前記脱気装置において脱気される水が、間接式熱交換器を含む脱気された水の予熱器に通され、熱が前記補助的な液体から前記脱気された水へと伝達されて加圧されたボイラー給水を前記主要な熱交換器に提供する、前記50に記載の方法。
[52]
前記脱気された水の予熱器が、補助的な液体酸流の方向に対して前記脱気装置の補助的な熱交換器の上流にある、前記51に記載の方法。
[53]
前記脱気された水が、前記脱気された水の予熱器において、少なくとも約80℃、好ましくは少なくとも95℃、より好ましくは少なくとも約105℃の温度まで加熱される、前記51または52に記載の方法。
[54]
前記脱気装置の補助的な熱交換器を出る前記補助的な吸収液体が、間接式熱交換器に通され、熱が、前記補助的な吸収液体からボイラー給水へと伝達される、前記43〜53のいずれか1つに記載の方法。
[55]
前記脱気装置の補助的な熱交換器を出る補助的な液体酸が、間接式熱交換器を含む脱気装置予熱器に通され、熱が、前記補助的な液体から脱気されていない水へと伝達されて、前記脱気されていない水を前記脱気装置に導入する前にそれを予熱する、前記54に記載の方法。
[56]
前記脱気装置に入る脱気されていない水の流量および温度ならびに前記脱気装置の補助的な熱交換器における前記補助的な吸収液体から前記水流への熱伝達の速度の組合せは、前記吸収ゾーンに入る当量の三酸化硫黄に対する前記脱気装置を出る脱気されたボイラー給水の質量流量比が、少なくとも約1.0、好ましくは少なくとも約1.5、より好ましくは少なくとも約2.0、典型的に約2.0〜約3.0であるような組合せである、前記43〜55のいずれか1つに記載の方法。
[57]
前記脱気装置排気流における前記水蒸気含量が、前記硫黄酸化物担持ガス流における全当量の硫黄酸化物ガス含量のモル当たり、少なくとも約0.55モル、好ましくは少なくとも約0.60モル、より好ましくは少なくとも約0.70モル、最も好ましくは少なくとも約0.80モルである、前記43〜55のいずれか1つに記載の方法。
[58]
前記脱気装置に入る脱気されていない水の流量および温度ならびに前記脱気装置の補助的な熱交換器における前記補助的な液体から前記水流への熱伝達の速度の組合せが、前記脱気装置の補助的な熱交換器において、前記硫黄酸化物担持ガス流における全当量の硫黄酸化物ガス含量のモル当たり、少なくとも約0.55モル、好ましくは少なくとも約0.60モル、より好ましくは少なくとも約0.70モル、最も好ましくは少なくとも約0.80モルの速度で蒸気を生成するのに十分である、前記57に記載の方法。
[59]
前記脱気装置排気流が、約2psig以下の圧力で前記脱気装置を出る、前記57または58に記載の方法。
[60]
前記脱気装置排気流が、約18水柱インチ以下の圧力で前記脱気装置を出る、前記59に記載の方法。
[61]
硫黄の前記供給源が硫黄元素を含む、前記43〜60のいずれか1つに記載の方法。
[62]
インターパス吸収器を含む接触式硫酸製造施設において行われる方法であって、前記施設が、前記第2の吸収ゾーンとして操作されるべく改造されている、前記14、16〜18、21、28、29、または33〜42のいずれか1つに記載の方法。
[63]
前記第2の吸収ゾーンが、前記改造の前に前記施設に存在しているインターパス吸収器によって構成され、前記第2の吸収ゾーンにおけるガスに対する前記第2の吸収液体の質量流量比が、約1.0〜約7.0または約14〜約18である、前記62に記載の方法。
[64]
前記既存のインターパス吸収器が、約7体積%〜約12体積%のSO 3 のガス強度で、約6〜約10のガスに対する硫酸吸収液体の質量流量比での操作のために構成されている、前記63に記載の方法。
[65]
熱が、少なくとも0.4メガパスカル(4バール)ゲージの圧力で蒸気を生成すべく伝達され、蒸気の量が、前記吸収ゾーンに入る前記SO 3 から生成される硫酸のトン当たり少なくとも0.50トンである、前記2〜64のいずれか1つに記載の方法。
[66]
蒸気が、前記主要な間接式熱交換器において、前記吸収ゾーンに入る前記SO 3 から生成される硫酸のトン当たり、少なくとも0.55、0.60、0.65または0.70トンの量で生成される、前記65に記載の方法。
[67]
前記吸収液体濃度と前記共沸混合物との差が、前記熱回収吸収ゾーン全体にわたって約+1.0重量%以下となるよう、前記吸収液体の前記硫酸濃度を制御する工程をさらに含む、前記2〜66のいずれか1つに記載の方法。
[68]
前記吸収液体が、前記吸収熱を除去するために外部熱交換器を通して循環され、前記吸収ゾーンにおいて生成される正味の硫酸が、前記循環する酸から生成物流として取り出され、前記吸収ゾーンへの三酸化硫黄の前記流れに対する生成物の酸の取り出しの速度および吸収液体の循環の速度が、前記吸収液体の前記硫酸濃度を、前記ゾーン内の任意の箇所において−0.2重量%未満だけまたは+0.8重量%超だけ前記共沸混合物と異ならない値に維持すべく制御される、前記67に記載の方法。
[69]
熱が、前記外部熱交換器において前記吸収液体から伝熱流体へと伝達されることによって、前記伝熱流体を少なくとも約150℃の温度まで加熱する、前記68に記載の方法。
[70]
前記ガス出口における前記酸濃度が、前記共沸混合物より0.2重量%低い濃度と、前記共沸混合物より0.3重量%高い濃度との間であり、前記ガス出口における前記酸濃度が、前記共沸混合物より0.3重量%以下だけ高い、前記2〜69のいずれか1つに記載の方法。
[71]
前記熱回収吸収ゾーンへの前記入口酸濃度が、約99.1重量%〜約99.5重量%であり、前記熱回収ゾーンからの前記出口酸濃度が、約99.3重量%〜約99.7重量%である、前記67〜70のいずれか1つに記載の方法。
[72]
前記第1の吸収ゾーンを出る前記ガス流を、第2の吸収ゾーンにおいて、硫酸を含む第2の吸収液体と接触させる工程であって、前記第2の吸収ゾーンに入る前記ガス流に含まれる残りのSO 3 が、前記第2の吸収液体において硫酸として回収される工程をさらに含む、前記67〜71のいずれか1つに記載の方法。
[73]
前記第1の吸収ゾーンを出る前記酸流の濃度および温度ならびに前記第1の吸収ゾーンに入る前記転化ガス流の温度および露点が、前記第2の吸収ゾーンを出る前記ガス流を、20g/Nm 3 以下の硫酸ミストを含有すべく制御できるようにするようなものである、前記72に記載の方法。
[74]
前記第2の吸収ゾーンを出る前記ガスが、ガス流の方向に対して横方向に、ミストエリミネータ要素表面積の平方メートル当たり約340〜約500Nm 3 /時の速度でミストエリミネータシステムに通される、前記73に記載の方法。
[75]
前記ガス出口における前記吸収液体濃度と前記共沸混合物との差が、約−0.1重量%以上となるよう、前記吸収液体の濃度を制御する工程をさらに含む、前記2〜74のいずれか1つに記載の方法。
[76]
前記吸収液体が、前記吸収熱を除去するために外部熱交換器を通して循環され、前記吸収ゾーンにおいて生成される正味の硫酸が、前記循環する酸から生成物流として取り出され、前記吸収ゾーンへの三酸化硫黄の前記流れに対する生成物の酸の取り出しの速度および吸収液体の循環の速度が、前記吸収液体の前記硫酸濃度を、前記ゾーン内の任意の箇所において約+1重量%超だけ前記共沸混合物と異ならない値に維持すべく制御される、前記75に記載の方法。
[77]
前記ガス出口における前記酸濃度が、前記共沸混合物より0.1重量%低い濃度〜前記共沸混合物より0.2重量%高い濃度であり、前記ガス入口における前記酸濃度が、前記共沸混合物より0.8重量%以下だけ高い、前記75〜76のいずれか1つに記載の方法。
[78]
前記第1の吸収ゾーンを出る前記ガス流を、第2の吸収ゾーンにおいて、硫酸を含む第2の吸収液体と接触させる工程であって、前記第2の吸収ゾーンに入る前記ガス流に含まれる残りのSO 3 が、前記第2の吸収液体において硫酸として回収される工程をさらに含む、前記75〜77のいずれか1つに記載の方法。
[79]
前記第1の吸収ゾーンを出る前記酸流の濃度および温度ならびに前記第1の吸収ゾーンに入る前記転化ガス流の温度および露点が、前記第2の吸収ゾーンを出る前記ガス流を、20g/Nm 3 以下の硫酸ミストを含有すべく制御できるようにするようなものである、前記78に記載の方法。
[80]
前記第2の吸収ゾーンを出る前記ガスが、ガス流の方向に対して横方向に、ミストエリミネータ要素表面積の平方メートル当たり約340〜約500Nm 3 /時の速度でミストエリミネータシステムに通される、前記79に記載の方法。
[81]
硫酸の調製方法であって:
過剰な酸素を含むガス中で硫黄供給源を燃焼させて、二酸化硫黄と酸素とを含む燃焼ガスを含む硫黄酸化物担持ガス流を生成する工程と;
前記燃焼ガスを含む前記硫黄酸化物担持ガス流を、二酸化硫黄を三酸化硫黄に転化するための触媒と接触させることによって、前記硫黄酸化物担持ガス流を、SO 3 を含有する転化ガスに転化する工程と;
前記転化ガスを、熱回収吸収ゾーンにおいて、硫酸を含む吸収液体と接触させることによって、三酸化硫黄を前記転化ガスから前記吸収液体へと移す工程と;
前記吸収液体を、前記吸収ゾーンと主要な間接式熱交換器との間で循環させる工程であって、熱が、主要な伝熱流体に伝達されることによって、前記主要な伝熱流体を少なくとも150℃まで加熱する工程と;
前記主要な熱交換器を出る前記吸収液体流を、前記熱回収吸収ゾーンに再循環される主要な吸収液体流と、補助的な吸収液体流とを提供すべく分ける工程と;
前記補助的な液体流を、ボイラー給水脱気装置の補助的な間接式熱交換器に通す工程であって、熱が、前記脱気装置の補助的な熱交換器において、前記補助的な液体から、脱気蒸気を生成するための水流へと伝達される工程と;
前記脱気蒸気を前記脱気装置に送る工程であって、ボイラー給水が、前記ボイラー給水からの非凝縮物を取り除くために前記脱気蒸気と接触される工程と;
脱気装置排気流を前記脱気装置から除去する工程であって、前記脱気装置排気流が水蒸気と非凝縮性ガスとを含む工程と
を含む方法。
[82]
前記脱気装置排気流に含まれる水蒸気を、ガス流の方向に対して前記吸収ゾーンの上流の前記硫黄酸化物担持ガス中に導入する工程をさらに含む、前記81に記載の方法。
[83]
実質的に全ての前記脱気装置排気流が、ガス流の方向に対して前記吸収ゾーンの上流の前記硫黄酸化物担持流中に導入される、前記82に記載の方法。
[84]
前記脱気装置の補助的な熱交換器において生成される蒸気に、前記脱気装置に導入される別の供給源からの蒸気が追加される、前記81〜83のいずれか1つに記載の方法。
[85]
追加の蒸気が、前記脱気装置に一定の速度で導入される、前記84に記載の方法。
[86]
前記吸収ゾーンに入る前記ガス流中の当量の三酸化硫黄に対する当量の水蒸気の比率を制御すべく制御された速度で、前記排気流を前記硫黄酸化物担持流中に導入する前に、追加の蒸気が前記排気流中に導入される、前記84に記載の方法。
[87]
前記排気流を前記硫黄酸化物担持流中に導入する前に、蒸気の第2の追加の供給が、前記排気流中に導入され、前記第2の追加の供給の速度が、前記吸収ゾーンに入る前記ガス流中の当量の三酸化硫黄に対する当量の水蒸気の比率を制御すべく制御される、前記85に記載の方法。
[88]
前記脱気装置において脱気される水が、蒸気を生成するためのボイラー給水の供給源として前記主要な熱交換器に導入される、前記81〜87のいずれか1つに記載の方法。
[89]
前記脱気装置において脱気される水が、間接式熱交換器を含む脱気された水の予熱器に通され、、熱が、前記補助的な液体から前記脱気された水へと伝達されて加圧されたボイラー給水を前記主要な熱交換器に提供する、前記88に記載の方法。
[90]
前記脱気された水の予熱器が、補助的な液体酸流の方向に対して前記脱気装置の補助的な熱交換器の上流にある、前記89に記載の方法。
[91]
前記脱気された水が、前記脱気された水の予熱器において、少なくとも約80℃、好ましくは少なくとも95℃、より好ましくは少なくとも約105℃の温度まで加熱される、前記89または90に記載の方法。
[92]
前記脱気装置の補助的な熱交換器を出る前記補助的な吸収液体が、間接式熱交換器に通され、熱が、前記補助的な吸収液体からボイラー給水へと伝達される、前記81〜91のいずれか1つに記載の方法。
[93]
前記脱気装置の補助的な熱交換器を出る補助的な液体酸が、間接式熱交換器を含む脱気装置予熱器に通され、熱が、前記補助的な液体から脱気されていない水へと伝達されて、前記脱気されていない水を前記脱気装置に導入する前にそれを予熱する、前記92に記載の方法。
[94]
前記脱気装置に入る脱気されていない水の流量および温度ならびに前記脱気装置の補助的な熱交換器における前記補助的な吸収液体から前記水流への熱伝達の速度の組合せは、前記吸収ゾーンに入る当量の三酸化硫黄に対する前記脱気装置を出る脱気されたボイラー給水の質量流量比が、少なくとも約1.0、好ましくは少なくとも約1.5、より好ましくは少なくとも約2.0、典型的に約2.0〜約3.0であるような組合せである、前記81〜93のいずれか1つに記載の方法。
[95]
前記脱気装置排気流における前記水蒸気含量が、前記硫黄酸化物担持ガス流における全当量の硫黄酸化物ガス含量のモル当たり、少なくとも約0.55モル、好ましくは少なくとも約0.60モル、より好ましくは少なくとも約0.70モル、最も好ましくは少なくとも約0.80モルである、前記81〜93のいずれか1つに記載の方法。
[96]
前記脱気装置に入る脱気されていない水の流量および温度ならびに前記脱気装置の補助的な熱交換器における前記補助的な液体から前記水流への熱伝達の速度の組合せが、前記脱気装置の補助的な熱交換器において、前記硫黄酸化物担持ガス流における全当量の硫黄酸化物ガス含量のモル当たり、少なくとも約0.55モル、好ましくは少なくとも約0.60モル、より好ましくは少なくとも約0.70モル、最も好ましくは少なくとも約0.80モルの速度で蒸気を生成するのに十分である、前記95に記載の方法。
[97]
前記脱気装置排気流が、約2psig以下の圧力で前記脱気装置を出る、前記81〜96のいずれか1つに記載の方法。
[98]
前記脱気装置排気流が、約18水柱インチ以下の圧力で前記脱気装置を出る、前記97に記載の方法。
[99]
硫黄の前記供給源が硫黄元素を含む、前記81〜98のいずれか1つに記載の方法。
[100]
インターパス吸収器を含む接触式硫酸製造施設における硫酸の調製方法であって、前記施設が、少なくとも約150℃の温度で有用な形態でSO 3 の吸収熱を回収するプロセスにしたがって操作されるべく改造されており、前記方法が:
過剰な酸素を含むガス中で硫黄の供給源を燃焼させて、二酸化硫黄と酸素とを含む燃焼ガスを含む硫黄酸化物担持ガス流を生成する工程と;
前記燃焼ガスを含む前記硫黄酸化物担持ガス流を、二酸化硫黄を三酸化硫黄に転化するための触媒と接触させることによって、前記硫黄酸化物担持ガス流を、SO 3 を含有する転化ガスに転化する工程と;
前記転化ガスを、第1の吸収ゾーンにおいて、硫酸を含む第1の吸収液体と接触させることによって、三酸化硫黄を吸収し、および/または硫酸を前記転化ガスから前記第1の吸収液体へと移す工程と;
前記吸収液体を、前記第1の吸収ゾーンと間接式熱交換器との間で循環させる工程であって、三酸化硫黄と水との反応、硫酸の凝縮、および/または前記第1の吸収液体中への三酸化硫黄の吸収によって生成される熱が、伝熱流体へと伝達されることによって、前記伝熱流体を少なくとも150℃まで加熱する工程と;
前記第1の吸収ゾーンを出る前記ガス流を、第2の吸収ゾーンにおいて、硫酸を含む第2の吸収液体と接触させる工程であって、前記第2の吸収ゾーンに入る前記ガス流に含まれる残りのSO 3 が、前記第2の吸収液体において硫酸として回収される工程とを含み、
前記第2の吸収ゾーンが、前記改造の前に前記施設に存在しているインターパス吸収器によって構成され、前記第2の吸収ゾーンにおけるガスに対する前記第2の吸収液体の質量流量比が、約1.0〜約7.0または約14〜約18である方法。
[101]
前記既存のインターパス吸収器が、約7体積%〜約12体積%のSO 3 のガス強度で、約6〜約10のガスに対する硫酸吸収液体の質量流量比での操作のために構成されている、前記100に記載の方法。
[102]
硫黄の前記供給源が硫黄元素を含む、前記100または101に記載の方法。
[103]
硫酸へのSO 3 の吸収熱の高温での回収のためのインターパス吸収器を含む既存の接触式硫酸プラントの改造方法であって:
三酸化硫黄を含む転化器ガスを受け入れるために新たな吸収器を取り付ける工程であって、前記新たな吸収器が、内部でさらなる硫酸を生成するために硫酸を含む第1の吸収液体にSO 3 を高温吸収すべく設計される第1の吸収ゾーンを含む工程と;
前記第1の吸収液体からのSO 3 吸収の熱を別の流体に伝達することによって、前記他の流体を少なくとも約150℃の温度まで加熱すべく設計される高温熱交換器を取り付ける工程と;
前記第1の吸収ゾーンと前記高温熱交換器との間で前記第1の吸収液体を循環させるための手段を取り付ける工程と;
前記高温吸収器を出る前記ガス流を、前記既存のインターパス吸収器の入口に送るための導管を取り付ける工程と;
前記既存のインターパス吸収器を通して第2の吸収液体を循環させるための手段を取り付ける工程であって、前記第2の吸収液体への移動によって前記第1の吸収ゾーンを出る前記ガス流から残りのSO 3 を取り出すことができ、前記第2の吸収液体を循環させるための前記手段が、前記第2の吸収ゾーンにおけるガスに対する前記第2の吸収液体の質量流量比が約1.0〜約7.0または約14〜約18となるよう、大きさが決定され、および/または流れ制御手段に供される工程と
を含む方法。
[104]
前記既存のインターパス吸収器が、約7体積%〜約12体積%のSO 3 のガス強度で、約6〜約10のガスに対する硫酸吸収液体の質量流量比での操作のために構成されている、前記103に記載の方法。
[105]
硫黄の前記供給源が硫黄元素を含む、前記103または104に記載の方法。
[106]
第2の吸収ゾーンを通る前記ガス流の通過を必要とする方法であって、前記熱回収吸収ゾーンに入る前記転化ガスが、前記吸収ゾーン中に入る前に前記ガスにおける全当量の硫黄酸化物含量のモル当たり、少なくとも約0.60モル、少なくとも約0.70モル、少なくとも約0.80モル、少なくとも約0.90モル、または少なくとも約0.95モルの水を含有する、前記1〜105のいずれか1つに記載の方法。
[107]
第2の吸収ゾーンを通る前記ガス流の通過を必要とする方法であって、前記ガスにおける当量の水蒸気含量を、前記吸収ゾーンに入る前に前記ガスにおける当量の硫黄酸化物含量のモル当たり約0.55モル〜約1.00モルまで増加させるのに十分な割合で、ガス流の方向に対して前記熱回収(第1の)吸収ゾーンの上流の前記硫黄酸化物担持ガス中に水蒸気が導入される、前記1〜106のいずれか1つに記載の方法。
[108]
第2の吸収ゾーンを通る前記ガス流の通路を必要とする方法であって、前記ガスにおける当量の水蒸気含量を、前記吸収ゾーンに入る前に前記ガスにおける全当量のSO 3 含量のモル当たり、少なくとも約0.55モル、少なくとも約0.60モル、少なくとも約0.70モル、少なくとも約0.80モル、少なくとも約0.90モル、または少なくとも約0.95モルまで増加させるのに十分な割合で、ガス流の方向に対して前記熱回収吸収ゾーンの上流のSO 3 担持転化ガス中に、水蒸気が導入される、前記1〜107のいずれか1つに記載の方法。
[109]
第2の吸収ゾーンを通る前記ガス流の通過を必要とする方法であって、前記ガスにおける当量の水蒸気含量を、前記吸収ゾーンに入る前に前記ガスにおける当量のSO 3 含量のモル当たり約0.80モル〜約1.00モルまで増加させるのに十分な割合で、ガス流の方向に対して前記熱回収吸収ゾーンの上流の前記硫黄酸化物担持ガス中に水蒸気が導入される、前記1〜108のいずれか1つに記載の方法。
[110]
前記吸収ゾーンに入る前記転化ガスにおける三酸化硫黄のモル当たり、少なくとも約0.25モル、または少なくとも約0.30モルまたは少なくとも約0.35モルの硫酸蒸気含量を提供するのに十分な割合で、ガス流の方向に対して前記熱回収吸収ゾーンの上流の前記硫黄酸化物担持ガス中に水蒸気が導入される、前記1〜109のいずれか1つに記載の方法。
[111]
前記熱回収吸収ゾーンに入る前記ガスの温度が、その露点より少なくとも55℃高く、前記ガス流の露点が、前記熱回収吸収ゾーンへの前記ガス入口において前記ガス流が接触している前記酸の温度より25℃以下だけ高い、前記1〜110のいずれか1つに記載の方法。
[112]
前記酸が、少なくとも約180℃の温度で前記熱回収吸収ゾーンに導入される、前記1〜111のいずれか1つに記載の方法。
[113]
前記熱回収吸収ゾーンに導入される際の前記酸の温度が、約180℃〜約220℃である、前記112に記載の方法。
[114]
前記熱回収吸収ゾーンを出る前記酸の温度が、約200℃〜約240℃である、前記1〜113のいずれか1つに記載の方法。
[115]
前記熱回収吸収ゾーンを出る前記酸の濃度が、約99.2%〜約99.8%である、前記1〜114のいずれか1つに記載の方法。
[116]
前記熱回収吸収ゾーンを出る前記酸の濃度が、約99.2%〜約99.6%である、前記1〜115のいずれか1つに記載の方法。
[117]
前記熱回収吸収ゾーンに入る前記酸の濃度が、約99.0〜約99.6%である、前記1〜116のいずれか1つに記載の方法。
[118]
第2の吸収ゾーンを通る前記ガス流の通過を必要とする方法であって、前記第2吸収ゾーンを出る前記酸の温度が、前記第2の吸収ゾーンに入る前記ガスより約35℃以下だけ低い、前記1〜117のいずれか1つに記載の方法。
[119]
前記第2吸収ゾーンを出る前記酸の温度が、前記第2の吸収ゾーンに入る前記ガスより約30℃以下だけ低い、前記118に記載の方法。
[120]
第2の吸収ゾーンを通る前記ガス流の通過を必要とする方法であって、前記第2吸収ゾーンを出る前記酸の温度が、約100℃〜約200℃である、前記1〜119のいずれか1つに記載の方法。
[121]
第2の吸収ゾーンを通る前記ガス流の通過を必要とする方法であって、前記第2の吸収ゾーンを出る前記酸の濃度が、約99.2〜99.5%である、前記1〜119のいずれか1つに記載の方法。
[122]
第2の吸収ゾーンを通る前記ガス流の通過を必要とする方法であって、前記第2の吸収ゾーンに入る前記酸の濃度が、約98.5〜99.3%である、前記1〜119のいずれか1つに記載の方法。
[123]
前記熱回収吸収ゾーンにおける前記ガス流の線速度が、約1.5〜約2.5m/秒である、前記1〜122のいずれか1つに記載の方法。
[124]
前記熱回収吸収ゾーンにおける前記吸収酸の質量流量が、少なくとも約3,770ポンド/平方フィート/時(18,440kg/m 2 /時)、または約3,770〜約15,000ポンド/平方フィート/時(18,440kg/m 2 /時〜約73,800kg/m 2 /時)である、前記1〜123のいずれか1つに記載の方法。
[125]
前記熱回収吸収ゾーンにおける前記吸収酸液体の質量流量が、少なくとも約5000ポンド/平方フィート/時である、前記124に記載の方法。
[126]
前記ガス流が、前記熱回収吸収ゾーンを通過する際、約95℃〜約115℃まで冷却される、前記1〜125のいずれか1つに記載の方法。
[127]
前記熱回収吸収ゾーンに入る前記SO 3 転化ガス流に含まれる当量のSO 3 の少なくとも約80%が、前記ガス流が前記熱回収吸収ゾーンを出るとき、硫酸に転化されている、前記1〜126のいずれか1つに記載の方法。
[128]
前記熱回収吸収ゾーンを出る前記ガスにおけるSO 3 に対するH 2 SO 4 蒸気のモル比が、約1.5〜約3.0である、前記1〜127のいずれか1つに記載の方法。
[129]
前記熱回収吸収ゾーンの前記ガス出口での前記ガス流における前記SO 3 含量および前記気相H 2 SO 4 含量の合計が、前記熱回収ゾーンに入る前記ガス流における当量のSO 3 含量の約20%以下である、前記1〜128のいずれか1つに記載の方法。
[130]
第2の吸収ゾーンを通る前記ガス流の通過を必要とする方法であって、前記第2の吸収ゾーンに入る前記第2の吸収酸の温度が、約40℃〜約110℃、約65℃〜約100℃または約75℃〜約90℃である、前記1〜129のいずれか1つに記載の方法。
[131]
前記第2吸収ゾーンを出る前記酸の温度が、約190℃〜約210℃である、前記130に記載の方法。
[132]
第2の吸収ゾーンを通る前記ガス流の通過を必要とする方法であって、前記第1の吸収ゾーンに入る前記第1の酸の濃度が、約99.0〜約99.7重量%であり、前記第2の吸収ゾーンを出る前記酸の濃度が、約99.0〜約99.7重量%である、前記1〜131のいずれか1つに記載の方法。
[133]
第2の吸収ゾーンを通る前記ガス流の通過を必要とする方法であって、前記第2の吸収ゾーンに入る前記酸の濃度が、約98.0〜約99.2重量%である、前記1〜132のいずれか1つに記載の方法。
[134]
前記第1の吸収ゾーンに入る前記第1の酸の濃度が、約99.2〜約99.6重量%である、前記132または133に記載の方法。
[135]
前記第2の吸収ゾーンに入る前記酸の濃度が、約98.2〜約99.1重量%である、前記134に記載の方法。
[136]
前記第1の吸収ゾーンに入る前記第1の酸の濃度が、約98.5〜約99.2重量%であり、前記第2の吸収ゾーンに入る前記酸の濃度が、約98.3〜約99.2重量%である、前記130または131に記載の方法。
[137]
前記第1の吸収ゾーンに入る前記酸の濃度が、約98.8〜約99.2重量%である、前記136に記載の方法。
[138]
前記第2の吸収ゾーンに入る前記酸の濃度が、約98.4〜約99.0重量%である、前記137に記載の方法。
[139]
前記転化ガスが、少なくとも11体積%の当量のSO 3 を含有する、前記1〜138のいずれか1つに記載の方法。
[140]
前記硫黄供給源が硫黄元素を含む、前記1〜139のいずれか1つに記載の方法。
[141]
硫酸の調製方法であって:
過剰な酸素を含むガス中で硫黄の供給源を燃焼させて、二酸化硫黄と酸素とを含む燃焼ガスを含む硫黄酸化物担持ガス流を生成する工程と;
前記燃焼ガスを含む前記硫黄酸化物担持ガス流を、二酸化硫黄を三酸化硫黄に転化するための触媒と接触させることによって、前記硫黄酸化物担持ガス流を、SO 3 を含有する転化ガスに転化する工程と;
前記転化ガスを、第1の吸収(熱回収)ゾーンにおいて、硫酸を含む第1の吸収液体と接触させることによって、硫酸を前記転化ガスから前記第1の吸収液体へと移す工程と;
当量の水蒸気含量を、前記第1の吸収ゾーンに入る前記ガスにおける全当量の硫黄酸化物ガス含量のモル当たり少なくとも約0.40モルまで増加させるのに十分な割合で、前記ガス流の方向に対して前記第1の吸収ゾーンの上流の前記硫黄酸化物担持ガス中に水蒸気を導入する工程と;
前記第1の吸収液体を、前記第1の吸収ゾーンと間接式熱交換器との間で循環させる工程であって、三酸化硫黄と水との反応、硫酸の凝縮、および/または前記第1の吸収液体中への三酸化硫黄の吸収によって生成される熱が、伝熱流体に伝達されることによって、前記伝熱流体を少なくとも150℃まで加熱する工程と;
前記第1の吸収ゾーンを出る前記ガス流を、第2の吸収ゾーンにおいて、硫酸を含む第2の吸収液体と接触させる工程であって、前記第2の吸収ゾーンに入る前記ガス流に含まれる残りのSO 3 が、前記第2の吸収液体において硫酸として回収される工程と;
前記気相の局所バルク温度と、前記ガスが接触している前記第2の吸収液相の局所バルク温度との差を、前記第2の吸収ゾーンの前記液体入口および液体出口の両方において約35℃以下に維持すべく、第2の吸収酸を前記第2の吸収ゾーンに送達する速度を制御する工程と;
前記第2の吸収ゾーンを出る前記ガスの組成が、含水量に関して前記共沸組成と等しいかまたはそれを上回り、SO 3 含量に関して前記共沸組成と等しいかまたはそれを下回ることを確実にするのに十分な正味有効給水量を前記第2のゾーンに提供すべく、前記第2の吸収ゾーンに入る前記第2の吸収酸の濃度を制御する工程と
を含む方法。
[142]
前記第2の吸収ゾーンを出る前記ガスの組成が、含水量に関して前記共沸組成を上回り、SO 3 含量に関して前記共沸組成を下回ることを確実にすべく、前記吸収ゾーンに入る前記吸収酸の濃度が制御される、前記141に記載の方法。
[143]
前記第2の吸収ゾーンを出る前記ガスにおける前記当量の硫酸濃度が、前記共沸混合物より少なくとも0.2重量%低い、前記141または142に記載の方法。
[144]
前記気相の局所バルク温度と、前記ガスが接触している前記第2の吸収液相の局所バルク温度との差を、前記第2の吸収ゾーンの前記液体入口および液体出口の両方において約35℃以下に維持すべく、前記第2の吸収ゾーンへの酸の送達の速度を規定および/または調整する工程と;
前記第1の吸収ゾーンを出る前記ガスと接触している前記酸の強度を測定および/または規定する工程と;
SO 3 が前記第1の吸収ゾーンに送達される速度を測定および/または規定する工程と;
第2の吸収酸が前記第2の吸収ゾーンに送達される速度、前記第1の吸収ゾーンを出る前記ガスと接触している前記酸の強度、およびSO 3 が前記第1の吸収ゾーンに送達される速度から、前記第2の吸収ゾーンを出る前記ガスの組成が、含水量に関して前記共沸組成を上回り、SO 3 含量に関して前記共沸組成を下回ることを確実にするのに十分な正味有効給水量を前記第2のゾーンに提供すべく、前記第2の吸収ゾーンの前記入口に送達される前記酸の強度を規定および/または調整する工程と
をさらに含む、前記141〜143のいずれか1つに記載の方法。
[145]
前記第2の吸収ゾーンに入る前記ガスの温度、前記第2の吸収ゾーンに入る前記ガスと接触している前記酸の温度、前記第2の吸収ゾーンを出る前記ガスの温度、および第2の吸収ゾーンを出る前記ガスと接触している前記酸の温度を測定および/または規定する工程を含む、前記144に記載の方法。
[146]
前記第1の吸収ゾーンへのSO 3 の送達の最適な速度および前記第1の吸収ゾーンを出る前記ガスの最適な温度が規定され;
前記第2の吸収ゾーンに入る前記ガスと接触している前記酸の温度、前記第2の吸収ゾーンを出る前記ガスの温度、および前記第2の吸収ゾーンを出る前記ガスと接触している前記酸の温度についての目標範囲が選択され;
前記気相の局所バルク温度と、前記ガスが接触している前記第2の吸収液相の局所バルク温度との差を、前記第2の吸収ゾーンの前記液体入口および液体出口の両方において約35℃以下に維持するのに効果的な速度で、前記第2の吸収ゾーンへの第2の吸収酸の送達が規定され;
前記第2の吸収ゾーンを出る前記ガスの組成が、含水量に関して前記共沸組成を上回り、SO 3 含量に関して前記共沸組成を下回ることを確実にするのに十分な正味有効給水量を前記第2のゾーンに提供すべく、前記第2の吸収ゾーンの前記入口に送達される前記酸の強度が規定される、始動プロトコルを含む、前記144または145に記載の方法。
[147]
前記第1の吸収ゾーンへのSO 3 の速達の最適な速度および前記第1の吸収ゾーンを出る前記ガスの最適な温度を測定および/または規定する工程と;
前記第2の吸収ゾーンに入る前記ガスと接触している前記酸の温度、前記第2の吸収ゾーンを出る前記ガスの温度、および前記第2の吸収ゾーンを出る前記ガスと接触している前記酸の温度を測定する工程と;
前記気相の局所バルク温度と、前記ガスが接触している前記第2の吸収液相の局所バルク温度との差を、前記第2の吸収ゾーンの前記液体入口および液体出口の両方において約35℃以下に維持すべく、前記第2の吸収ゾーンへの酸の送達の速度を調整する工程と;
前記第1の吸収ゾーンを出る前記ガスと接触している前記酸の強度を測定する工程と;
SO 3 が前記第1の吸収ゾーンに送達される速度を測定する工程と;
第2の吸収酸が前記第2の吸収ゾーンに送達される速度、前記第1の吸収ゾーンを出る前記ガスと接触している前記酸の強度、およびSO 3 が前記第1の吸収ゾーンに送達される速度から、前記第2の吸収ゾーンの前記入口に送達される前記酸の強度を調整して、前記第2の吸収ゾーンを出る前記ガスの組成が、含水量に関して前記共沸組成を上回り、SO 3 含量に関して前記共沸組成を下回ることを確実にするのに十分な正味有効給水量を前記第2のゾーンに提供する工程と
を含む、前記141〜146のいずれか1つに記載の方法。
[148]
硫酸の調製方法であって:
酸素含有ガスを乾燥剤と接触させて、乾燥された酸素含有ガスを得る工程と;
硫黄および前記乾燥された酸素含有ガスを燃焼ゾーンに導入する工程であって、前記ゾーンに導入される前記酸素含有ガスの前記酸素含量が、前記ゾーンに導入される前記硫黄と比べて化学量論的に過剰である工程と;
硫黄を前記乾燥されたガスの酸素で燃焼させて、二酸化硫黄と酸素とを含む燃焼ガスを含む硫黄酸化物担持ガス流を生成する工程と;
前記燃焼ガスを含む前記硫黄酸化物担持ガス流を、二酸化硫黄を三酸化硫黄に転化するための触媒と接触させることによって、前記硫黄酸化物担持ガス流を、SO 3 を含有する転化ガスへと変換する工程と;
前記転化ガスを、熱回収吸収ゾーンにおいて、硫酸を含む吸収液体と接触させることによって、硫酸を前記転化ガスから前記吸収液体へと移す工程と;
前記ガスにおける当量の水蒸気含量を、前記吸収ゾーンに前記ガス流が入る前に全当量の硫黄酸化物ガス含量のモル当たり少なくとも約0.55モルまで増加させるのに十分な割合で、硫黄酸化物担持ガス流の方向に対して前記吸収ゾーンの上流の前記硫黄酸化物担持ガス中に水蒸気を導入する工程と;
前記吸収液体を、前記吸収ゾーンと間接式熱交換器との間で循環させる工程であって、前記間接式熱交換器において、三酸化硫黄と水との反応、硫酸の凝縮、および/または前記吸収液体中への三酸化硫黄の吸収によって生成される熱が、伝熱流体に伝達されることによって、前記伝熱流体を少なくとも150℃まで加熱する工程と
を含む方法。

Claims (4)

  1. 硫酸の調製方法であって:
    過剰な酸素を含む乾燥ガス中で硫黄を燃焼させて、二酸化硫黄と、酸素と、SO2のモル当たり0.005モル以下の水蒸気とを含む燃焼ガスを含む硫黄酸化物担持ガス流を生成する工程と;
    前記燃焼ガスを含む前記硫黄酸化物担持ガス流を、二酸化硫黄を三酸化硫黄に転化するための触媒と接触させることによって、前記硫黄酸化物担持ガス流を、SO3のモル当たり0.005モル以下の水蒸気を含有する転化ガスに転化する工程と;
    前記転化ガスを、第1の熱回収吸収ゾーンにおいて、硫酸を含む吸収液体と接触させることによって、硫酸を前記転化ガスから前記吸収液体へと移す工程と;
    前記ガスにおける当量の水蒸気含量を、前記第1の吸収ゾーン中に前記ガス流が入る前に全当量の硫黄酸化物ガス含量のモル当たり少なくとも約0.55モルまで増加させるのに十分な割合で、ガス流の方向に対して前記第1の吸収ゾーンの上流の前記硫黄酸化物担持ガス中に水蒸気を導入する工程と;
    前記吸収液体を、前記第1の吸収ゾーンと間接式熱交換器との間で循環させる工程であって、三酸化硫黄と水との反応、硫酸の凝縮、および/または前記吸収液体中への三酸化硫黄の吸収によって生成される熱が、伝熱流体に伝達されることによって、前記伝熱流体を少なくとも150℃まで加熱する工程と
    を含む方法。
  2. 硫酸の調製方法であって:
    過剰な酸素を含むガス中で硫黄供給源を燃焼させて、二酸化硫黄と酸素とを含む燃焼ガスを含む硫黄酸化物担持ガス流を生成する工程と;
    前記燃焼ガスを含む前記硫黄酸化物担持ガス流を、二酸化硫黄を三酸化硫黄に転化するための触媒と接触させることによって、前記硫黄酸化物担持ガス流を、SO3を含有する転化ガスに転化する工程と;
    前記転化ガスを、熱回収吸収ゾーンにおいて、硫酸を含む吸収液体と接触させることによって、三酸化硫黄を前記転化ガスから前記吸収液体へと移す工程と;
    前記吸収液体を、前記吸収ゾーンと主要な間接式熱交換器との間で循環させる工程であって、熱が、主要な伝熱流体に伝達されることによって、前記主要な伝熱流体を少なくとも150℃まで加熱する工程と;
    前記主要な熱交換器を出る前記吸収液体流を、前記熱回収吸収ゾーンに再循環される主要な吸収液体流と、補助的な吸収液体流とを提供すべく分ける工程と;
    前記補助的な液体流を、ボイラー給水脱気装置の補助的な間接式熱交換器に通す工程であって、熱が、前記脱気装置の補助的な熱交換器において、前記補助的な液体から、脱気蒸気を生成するための水流へと伝達される工程と;
    前記脱気蒸気を前記脱気装置に送る工程であって、ボイラー給水が、前記ボイラー給水からの非凝縮物を取り除くために前記脱気蒸気と接触される工程と;
    脱気装置排気流を前記脱気装置から除去する工程であって、前記脱気装置排気流が水蒸気と非凝縮性ガスとを含む工程と
    を含む方法。
  3. インターパス吸収器を含む接触式硫酸製造施設における硫酸の調製方法であって、前記施設が、少なくとも約150℃の温度で有用な形態でSO3の吸収熱を回収するプロセスにしたがって操作されるべく改造されており、前記方法が:
    過剰な酸素を含むガス中で硫黄の供給源を燃焼させて、二酸化硫黄と酸素とを含む燃焼ガスを含む硫黄酸化物担持ガス流を生成する工程と;
    前記燃焼ガスを含む前記硫黄酸化物担持ガス流を、二酸化硫黄を三酸化硫黄に転化するための触媒と接触させることによって、前記硫黄酸化物担持ガス流を、SO3を含有する転化ガスに転化する工程と;
    前記転化ガスを、第1の吸収ゾーンにおいて、硫酸を含む第1の吸収液体と接触させることによって、三酸化硫黄を吸収し、および/または硫酸を前記転化ガスから前記第1の吸収液体へと移す工程と;
    前記吸収液体を、前記第1の吸収ゾーンと間接式熱交換器との間で循環させる工程であって、三酸化硫黄と水との反応、硫酸の凝縮、および/または前記第1の吸収液体中への三酸化硫黄の吸収によって生成される熱が、伝熱流体へと伝達されることによって、前記伝熱流体を少なくとも150℃まで加熱する工程と;
    前記第1の吸収ゾーンを出る前記ガス流を、第2の吸収ゾーンにおいて、硫酸を含む第2の吸収液体と接触させる工程であって、前記第2の吸収ゾーンに入る前記ガス流に含まれる残りのSO3が、前記第2の吸収液体において硫酸として回収される工程とを含み、
    前記第2の吸収ゾーンが、前記改造の前に前記施設に存在しているインターパス吸収器によって構成され、前記第2の吸収ゾーンにおけるガスに対する前記第2の吸収液体の質量流量比が、約1.0〜約7.0または約14〜約18である方法。
  4. 硫酸へのSO3の吸収熱の高温での回収のためのインターパス吸収器を含む既存の接触式硫酸プラントの改造方法であって:
    三酸化硫黄を含む転化器ガスを受け入れるために新たな吸収器を取り付ける工程であって、前記新たな吸収器が、内部でさらなる硫酸を生成するために硫酸を含む第1の吸収液体にSO3を高温吸収すべく設計される第1の吸収ゾーンを含む工程と;
    前記第1の吸収液体からのSO3吸収の熱を別の流体に伝達することによって、前記他の流体を少なくとも約150℃の温度まで加熱すべく設計される高温熱交換器を取り付ける工程と;
    前記第1の吸収ゾーンと前記高温熱交換器との間で前記第1の吸収液体を循環させるための手段を取り付ける工程と;
    前記高温吸収器を出る前記ガス流を、前記既存のインターパス吸収器の入口に送るための導管を取り付ける工程と;
    前記既存のインターパス吸収器を通して第2の吸収液体を循環させるための手段を取り付ける工程であって、前記第2の吸収液体への移動によって前記第1の吸収ゾーンを出る前記ガス流から残りのSO3を取り出すことができ、前記第2の吸収液体を循環させるための前記手段が、前記第2の吸収ゾーンにおけるガスに対する前記第2の吸収液体の質量流量比が約1.0〜約7.0または約14〜約18となるよう、大きさが決定され、および/または流れ制御手段に供される工程と
    を含む方法。
JP2012550120A 2010-01-20 2011-01-20 硫酸の製造におけるエネルギー回収 Active JP5800833B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US29674110P 2010-01-20 2010-01-20
US61/296,741 2010-01-20
US38288210P 2010-09-14 2010-09-14
US61/382,882 2010-09-14
PCT/US2011/021928 WO2011139390A2 (en) 2010-01-20 2011-01-20 Energy recovery in manufacture of sulfuric acid

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015166120A Division JP6034460B2 (ja) 2010-01-20 2015-08-25 硫酸の調製方法

Publications (3)

Publication Number Publication Date
JP2013517218A JP2013517218A (ja) 2013-05-16
JP2013517218A5 true JP2013517218A5 (ja) 2014-02-27
JP5800833B2 JP5800833B2 (ja) 2015-10-28

Family

ID=44358380

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012550120A Active JP5800833B2 (ja) 2010-01-20 2011-01-20 硫酸の製造におけるエネルギー回収
JP2015166120A Active JP6034460B2 (ja) 2010-01-20 2015-08-25 硫酸の調製方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2015166120A Active JP6034460B2 (ja) 2010-01-20 2015-08-25 硫酸の調製方法

Country Status (20)

Country Link
US (3) US8586001B2 (ja)
EP (3) EP3575264B1 (ja)
JP (2) JP5800833B2 (ja)
KR (1) KR101807893B1 (ja)
CN (4) CN105036088B (ja)
AU (1) AU2011248966B2 (ja)
CA (3) CA3012769C (ja)
ES (1) ES2766348T3 (ja)
JO (2) JOP20200123A1 (ja)
LT (1) LT3575264T (ja)
MA (1) MA34005B1 (ja)
MX (1) MX2012008520A (ja)
NZ (3) NZ626654A (ja)
RS (1) RS63148B1 (ja)
RU (2) RU2570658C2 (ja)
SA (1) SA111320124B1 (ja)
SG (2) SG10201408596YA (ja)
TN (1) TN2012000334A1 (ja)
WO (1) WO2011139390A2 (ja)
ZA (1) ZA201204621B (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JOP20200123A1 (ar) 2010-01-20 2017-06-16 Mecs Inc استرجاع الطاقة في تصنيع حمض السلفريك
JP6124206B2 (ja) * 2012-11-30 2017-05-10 千代田化工建設株式会社 硫酸製造装置向け脱硫方法及び脱硫装置
CN105209381B (zh) 2013-03-15 2018-05-18 Mecs公司 三氧化硫吸收热的回收
EP3060518B1 (en) * 2013-10-24 2017-09-06 Outotec (Finland) Oy Process for operating a sulfuric acid plant
CN103588179A (zh) * 2013-11-13 2014-02-19 俞向东 一种提高硫酸低温余热回收系统产汽率的装置及方法
JP6310319B2 (ja) * 2014-05-12 2018-04-11 パンパシフィック・カッパー株式会社 硫酸工場の操業方法および硫酸工場の操業装置
EA028058B1 (ru) * 2014-09-15 2017-10-31 Акционерное Общество "Научно-Исследовательский Институт По Удобрениям И Инсектофунгицидам Имени Профессора Я.В. Самойлова" Установка для получения серной кислоты
TR201905939T4 (tr) * 2014-12-19 2019-05-21 Outotec Finland Oy Gelişmiş enerji tasarruflu sülfürik asit üretimine yönelik proses ve tesis.
CN104495757B (zh) * 2015-01-06 2016-09-28 东华工程科技股份有限公司 硫酸装置中so3吸收低温位热能回收系统
CN105236360B (zh) * 2015-11-17 2016-08-17 南京海陆化工科技有限公司 一种提高矿或冶炼烟气制硫酸低温热回收的装置及方法
DE102016103976A1 (de) 2016-03-04 2017-09-07 Thyssenkrupp Ag Verfahren und Vorrichtung zur Herstellung von Schwefelsäure
CN107973278A (zh) * 2016-10-25 2018-05-01 中国石油化工股份有限公司 一种连续产生so3气体的方法
DE102017219401A1 (de) * 2017-10-27 2019-05-02 Thyssenkrupp Ag SO3-Absorptionsturm
CN107879317A (zh) * 2017-10-30 2018-04-06 襄阳泽东化工集团有限公司 一种提高硫磺制酸低温余热回收产汽量的系统
CN108483409A (zh) * 2018-04-02 2018-09-04 南京海陆化工科技有限公司 一种含so3气体制酸能量回收装置及方法
WO2021254627A1 (en) * 2020-06-18 2021-12-23 Outotec (Finland) Oy Process and plant for the production of sulfuric acid
CN114348972B (zh) * 2021-12-10 2023-05-05 湖北兴福电子材料股份有限公司 电子级硫酸生产用智能汽化及能量循环利用方法与装置
CN114275743B (zh) * 2021-12-10 2023-04-28 湖北兴福电子材料股份有限公司 一种电子级硫酸用高纯液体三氧化硫生产的方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3475120A (en) * 1967-03-28 1969-10-28 Chemical Construction Corp Production of sulfuric acid
US3536446A (en) * 1967-09-26 1970-10-27 Chemical Construction Corp Production of sulfuric acid
DK145457C (da) * 1980-03-25 1983-04-18 Haldor Topsoe As Fremgangsmaade til fremstilling af svovlsyre,ved hvilken maengden af svovlsyretaage i afgangsgassen styres ved temperaturregulering
DE3232446A1 (de) * 1982-08-12 1984-02-16 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zur herstellung von schwefelsaeure
US4478809A (en) * 1983-01-20 1984-10-23 Monsanto Company Economizer arrangement
US4670242A (en) 1984-11-09 1987-06-02 Monsanto Company Heat recovery from concentrated sulfuric acid
US4576813A (en) * 1983-07-05 1986-03-18 Monsanto Company Heat recovery from concentrated sulfuric acid
US4996038A (en) 1983-07-05 1991-02-26 Monsanto Company Heat recovery from concentrated sulfuric acid
US4654205A (en) * 1986-01-15 1987-03-31 C-I-L Inc. Sulphur trioxide absorption apparatus and process
SU1824843A1 (ru) * 1987-12-04 1996-06-20 Научно-исследовательский институт удобрений и инсектофунгицидов Научно-производственного объединения "Минудобрения" Установка для получения серной кислоты
US4929088A (en) 1988-07-27 1990-05-29 Vortab Corporation Static fluid flow mixing apparatus
SU1641770A1 (ru) * 1989-02-01 1991-04-15 Уфимский Нефтяной Институт Система автоматического управлени процессом получени сернистого газа в производстве серной кислоты
US5130112A (en) * 1990-03-23 1992-07-14 Monsanto Company Method for recovering high grade process energy from a contact sulfuric acid process
US5118490A (en) 1989-06-21 1992-06-02 Monsanto Company Absorption of wet conversion gas
WO1991014651A1 (en) * 1990-03-23 1991-10-03 Monsanto Company Methods for recovering high grade process energy from a contact sulfuric acid process
US5538707A (en) * 1994-03-01 1996-07-23 Monsanto Company Acid concentration control in SO3 absorption
US5593652A (en) * 1995-06-28 1997-01-14 Vulcan Materials Company Method for increasing the production capacity of sulfuric acid plants and processes
WO2001036324A1 (en) * 1999-11-01 2001-05-25 Monsanto Company Method for making sulfur trioxide, sulfuric acid, and oleum from sulfur dioxide
CN1509981A (zh) * 2002-12-26 2004-07-07 孟山都(上海)有限公司 一种用于硫酸装置的热回收塔
DE102005008109A1 (de) 2005-02-21 2006-08-24 Outokumpu Technology Oy Verfahren und Anlage zur Herstellung von Schwefelsäure
RU2422357C2 (ru) * 2005-09-23 2011-06-27 Мекс, Инк. Катализаторы на основе оксида рутения для конверсии диоксида серы в триоксид серы
ATE484485T1 (de) * 2006-11-29 2010-10-15 Haldor Topsoe As Verfahren zur herstellung von schwefelsäure
CN101481095A (zh) * 2009-02-05 2009-07-15 中国石化集团南京设计院 硫酸生产能量回收及利用工艺
JOP20200123A1 (ar) * 2010-01-20 2017-06-16 Mecs Inc استرجاع الطاقة في تصنيع حمض السلفريك
DE102010006541B4 (de) * 2010-02-01 2016-03-17 Outotec Oyj Verfahren und Anlage zum Abkühlen von Säure
CN105209381B (zh) * 2013-03-15 2018-05-18 Mecs公司 三氧化硫吸收热的回收

Similar Documents

Publication Publication Date Title
JP2013517218A5 (ja)
JP6034460B2 (ja) 硫酸の調製方法
EP2969936B1 (en) Recovery of sulfur trioxide heat of absorption
ES2480303T3 (es) Procedimiento y planta para la producción de ácido sulfúrico
US7833507B2 (en) Process for the production of sulphuric acid
US20200277186A1 (en) Thermal stage and reduction absorption sulfur recovery process
US7658906B2 (en) Sulfur recovery plant
JP4202451B2 (ja) 硫酸を濃縮する方法
CN109516442A (zh) 将含硫烟气转化为硫酸的工艺系统和工艺方法
CN111071996A (zh) 一种硫酸的制造方法
CN209396887U (zh) 将含硫烟气转化为硫酸的工艺系统
US20050135992A1 (en) Superox process for increasing processing capacity of sulfur recovery facilities
US11440798B2 (en) Process system and process method for conversion of sulfur-containing flue gas to sulfuric acid