JP2013501934A - 振動式フローメーターのゼロオフセットを決定する方法及び装置 - Google Patents

振動式フローメーターのゼロオフセットを決定する方法及び装置 Download PDF

Info

Publication number
JP2013501934A
JP2013501934A JP2012524686A JP2012524686A JP2013501934A JP 2013501934 A JP2013501934 A JP 2013501934A JP 2012524686 A JP2012524686 A JP 2012524686A JP 2012524686 A JP2012524686 A JP 2012524686A JP 2013501934 A JP2013501934 A JP 2013501934A
Authority
JP
Japan
Prior art keywords
zero offset
offset
flow meter
operating conditions
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012524686A
Other languages
English (en)
Other versions
JP5968221B2 (ja
Inventor
ポール ジェイ. ヘイズ,
ジョエル ワインスタイン,
Original Assignee
マイクロ モーション インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マイクロ モーション インコーポレイテッド filed Critical マイクロ モーション インコーポレイテッド
Publication of JP2013501934A publication Critical patent/JP2013501934A/ja
Application granted granted Critical
Publication of JP5968221B2 publication Critical patent/JP5968221B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8472Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane
    • G01F1/8477Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane with multiple measuring conduits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8436Coriolis or gyroscopic mass flowmeters constructional details signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/022Compensating or correcting for variations in pressure, density or temperature using electrical means
    • G01F15/024Compensating or correcting for variations in pressure, density or temperature using electrical means involving digital counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Measuring Volume Flow (AREA)

Abstract

本発明は、振動式フローメーターを動作させる方法及び装置が提供されている。この方法は、振動式フローメーターからセンサー信号を受信するステップと、振動式フローメーターの現在のゼロオフセットを求めるステップとを有している。現在のゼロオフセットは受信したセンサー信号に基づいて求められる。また、この方法は、1つ以上の現在の運転条件を求めるステップをさらに有している。1つ以上の現在の運転条件をオフセット相関関係の1つ以上の前の運転条件と比較することができる。また、この方法は、オフセット相関関係が現在の運転条件に対応して前に求められたゼロオフセットを有している場合、平均ゼロオフセットを求めるステップを有している。平均ゼロオフセットは、現在のゼロオフセット及び前に求められたゼロオフセットに基づいている。
【選択図】 図7

Description

本発明は、振動式フローメーターに関するものであり、とくに振動式フローメーターのゼロオフセット(zero offset)の変化を決定する方法及び装置に関するものである。
たとえばデンシトメーター及びコリオリのフローメーターの如き振動式センサーが、公知となっており、フローメーター中の導管を流れる材料の質量流量及び他の情報を測定するために用いられている。例示的なコリオリフローメーターは、ジェー イー スミスら(J.E.Smith et al)へ全てが譲渡されている米国特許第4,109,524号、米国特許第4,491,025号及び再発行特許第31,450号に開示されている。これらのフローメーターは、直線構造または曲線構造を備えた1つ以上の導管を有している。コリオリ式質量フローメーターの各導管構造は、単純曲げモード、ねじれモードまたは組み合わせタイプでありうる一組の固有振動モードを有している。好ましいモードで振動するように各導管を振動させることができる。
物質は、フローメーターの流入口側に接続されている配管からフローメーターの中に流れ込み、一つ以上の導管を通り、フローメーターの流出口側から流出する。物質が充填された振動するシステムの固有振動モードは、導管の質量及び導管内を流れる物質の質量の合計により部分的に規定される。
フローメーターに何も流れていないとき、振動力が導管に加えられると、導管に沿ったすべての部位が、同一の位相で振動するか、または僅かな時間だけ遅れて振動する。このゼロ流量で測定される時間遅れを「ゼロオフセット」と呼ぶ。物質がフローメーターを流れ始めると、コリオリ力により、導管に沿った各ポイントが異なる位相を有するようになる。たとえば、フローメーターの流入口端部の位相は中央のドライバーの位置の位相より遅れ、流出口の位相は中央のドライバーの位置の位相よりも進んでいる。導管上のピックオフセンサーは当該導管の運動を表す正弦波信号を発生する。ピックオフセンサーから出力される信号が処理されてピックオフセンサー間の位相差が求められる。2つ以上のピックオフセンサー間の時間遅れは、導管を流れる物質の質量流量に比例する。
ドライバーに接続されているメーター電子機器は、ドライブ信号を出力してドライバーを動作させ、またピックオフセンサーから受け取られる信号から材料の質量流量及びの他の特性を求める。ドライバーは、複数の周知の構成のうちの1つの構成を有しうる。しかしながら、磁石及び対向するドライブコイルは、フローメーター産業において非常に高い評価を受けている。交流が、ドライブコイルに流され、所望のフローチューブの振幅及び振動数で導管を振動させる。また、上述のドライバーの構成と類似したマグネットとコイルとからなる構成のようにピックオフセンサーを形成することも当該技術分野において知られている。しかしながら、ドライバーが運動を引き起こす電流を受け取り、ピックオフセンサーはドライバーによって提供される運動を利用して電圧を誘発することができる。ピックオフセンサーによって測定される時間遅れの大きさは非常に小さく、ナノセカンド単位で測られることが多い。従って、トランスデューサの出力が非常に正確であることが必要となる。
一般的に、コリオリフローメーターを、初期段階で較正し、ゼロオフセットとともに流量較正係数が生成され得る。使用時、ピックオフセンサーによって測定される時間遅れからゼロオフセットを減算し、それと流量較正係数を乗算することにより質量流量を求めることができる。ほとんどの状況では、コリオリフローメーターは、一般的に製造業者によって初期段階で較正され、その後の較正を必要とせずに、正確な測定を実現すると考えられている。それに加えて、従来のアプローチには、設置後、ユーザーがフローメーターのゼロ較正を、流れを止め、弁を閉じることでコリオリフローメーターにあるプロセス条件におけるゼロ流量基準を提供することにより行うことが含まれている。
上述のように、コリオリフローメーターを含む多くの振動式センサーでは、従来のアプローチで初期段階に補正されているゼロオフセットが存在している可能性がある。この初期段階で求められたゼロオフセットが限定された状況では十分に測定結果を修正することができるものの、このゼロオフセットは、主に温度である様々な運転条件の変化により時間の経過とともに変わる可能性があるので、部分的な補正にしかならない恐れがある。しかしながら、圧力、流体密度、センサー取付状態などを含む他の運転条件もまたゼロオフセットに影響を与える恐れがある。さらに、ゼロオフセットはメーターによっては異なる割合で変わる場合もある。このことは、1以上のメーターが直列に接続されて、同一の流体流れを測定する場合に、各メーターが同一の読取値を示す状況下では非常に重要なことである。
従って、振動式センサーのゼロオフセットの変化を求めて補償する方法が必要とされている。本発明により、この問題及び他の問題が克服され、当該技術分野における進歩が達成される。
本発明のある実施形態に従って、ゼロオフセットと1つ以上の運転条件との間で前に作成されたオフセット相関関係を有している振動式フローメーターを動作させるための方法が提供されている。かかる方法は、振動式フローメーターからセンサー信号を受け取るステップと、受け取られたセンサー信号に基づいて振動式フローメーターの現在のゼロオフセットを求めるステップとを有している。また、かかる方法は、1つ以上の現在の運転条件を求めるステップと、その1つ以上の現在の運転条件をオフセット相関関係の1つ以上の前の運転条件と比較するステップとをさらに有している。本発明のある実施形態によれば、オフセット相関関係が現在の運転条件に対応する前に求められたゼロオフセットを有している場合、かかる方法は、現在のゼロオフセット及び前に求められたゼロオフセットに基づいて平均ゼロオフセットを求める。
本発明のある実施形態に従って、振動式フローメータ用のメーター電子機器が提供されている。メーター電子機器は、振動式フローメーターからセンサー信号を受け取るように構成されている処理システムを備えている。また、この処理システムは、受け取ったセンサー信号に基づいて振動式フローメーターの現在のゼロオフセットを求め、1つ以上の現在の運転条件を求めるようにさらに構成されうる。本発明のある実施形態によれば、メーター電子機器は、1つ以上の現在の運転条件をオフセット相関関係の1つ以上の前の運転条件と比較し、オフセット相関関係が1つ以上の現在の運転条件に対応する前に求められたゼロオフセットを有している場合、現在のゼロオフセット及び前に求められたゼロオフセットに基づいて平均ゼロオフセットを求めるようにさらに構成されている。
態様
本発明のある実施形態によれば、ゼロオフセットと1つ以上の運転条件との間で前に作成されたオフセット相関関係を有している振動式フローメーターを動作させる方法は、振動式フローメーターからセンサー信号を受け取るステップと、受け取ったセンサー信号上に基づいて、振動式フローメーターの現在のゼロオフセットを求めるステップと、1つ以上の現在の運転条件を求めるステップと、1つ以上の現在の運転条件をオフセット相関関係の1つ以上の前の運転条件と比較するステップと、 オフセット相関関係が現在の運転条件に対応する前に求められたゼロオフセットを有している場合、現在のゼロオフセット及び前に求められたゼロオフセットに基づいて平均ゼロオフセットを求めるステップとを有している。
好ましくは、かかる方法は、オフセット相関関係が1つ以上の現在の運転条件に対応する前に求められたゼロオフセットを有していない場合、振動式フローメーターの現在のゼロオフセット及び1つ以上の現在の運転条件を格納するステップをさらに有している。
好ましくは、平均ゼロオフセットを求めるステップは、現在のゼロオフセットに第一の重み付け係数を適用して第一の重み付けされたゼロオフセットを求めるステップと、 前に求められたゼロオフセットに第二の重み付け係数を適用して第二の重み付けされたゼロオフセットを求めるステップと、 第一の重み付けされたゼロオフセット及び第二の重み付けされたゼロオフセットに基づいて平均ゼロオフセットを計算するステップとを有している。
好ましくは、第一の重み付け係数及び第二の重み付け係数は時間−重み付け係数である。
好ましくは、かかる方法は、平均ゼロオフセット及び1つ以上の運転条件に基づいて新たなオフセット相関関係を作成するステップをさらに有している。
本発明の他の態様によれば、振動式フローメーター用のメーター電子機器は処理システムを備えており、この処理システムは、振動式フローメーターからセンサー信号を受け取り、受け取ったセンサー信号に基づいて振動式フローメーターの現在のゼロオフセットを求め、1つ以上の現在の運転条件を求め、1つ以上の現在の運転条件をオフセット相関関係の1つ以上の前の運転条件と比較し、 オフセット相関関係が1つ以上の現在の運転条件に対応する前に求められたゼロオフセットを有している場合、現在のゼロオフセット及び前に求められたゼロオフセットに基づいて平均ゼロオフセットを求めるように構成されている。
好ましくは、かかる処理システムは、オフセット相関関係が1つ以上の現在の運転条件に対応する前に求められたゼロオフセットを有していない場合、振動式フローメーターの現在のゼロオフセット及び1つ以上の現在の運転条件を格納するようにさらに構成されている。
好ましくは、平均ゼロオフセットを求めるステップは、現在のゼロオフセットに第一の重み付け係数を適用して第一の重み付けされたゼロオフセットを求めるステップと、 前に求められたゼロオフセットに第二の重み付け係数を適用して第二の重み付けされたゼロオフセットを求めるステップと、 第一の重み付けされたゼロオフセット及び第二の重み付けされたゼロオフセットに基づいて平均ゼロオフセットを計算するステップとを有している。
好ましくは、第一の重み付け係数及び第二の重み付け係数は時間−重み付け係数である。
好ましくは、かかる処理システムは、平均ゼロオフセット及び1つ以上の運転条件に基づいて新たなオフセット相関関係を作成するようにさらに構成されている。
本発明のある実施形態にかかる振動式センサー組立体を示す図である。 本発明のある実施形態にかかる振動式センサー用のメーター電子機器を示す図である。 本発明のある実施形態にかかるフローメーターシステムを示すブロック図である。 本発明のある実施形態にかかる差動オフセット決定ルーチンを示す図である。 本発明のある実施形態にかかる差動オフセット相関関係を示すグラフである。 本発明のある実施形態にかかる差動ゼロ決定ルーチンを示す図である。 本発明の他の実施形態にかかるゼロオフセット決定ルーチンを示す図である。
図1〜図7及び以下の記載には、本発明のベストモードを作成及び利用する方法を当業者に教示するための具体的な実施形態が示されている。本発明の原理を教示するために、従来技術の一部が単純化または省略されている。当業者にとって明らかなように、これらの実施形態の変形例もまた本発明の技術範囲内に含まれる。また、当業者にとって明らかなように、以下の記載の構成要素をさまざまな方法で組み合わせて本発明の複数の変形例を形成することもできる。従って、本発明は、以下の記載の特定の実施形態に限定されるものではなく、特許請求の範囲及びその均等物によってのみ限定されるものである。
図1には、フローメーター10と1つ以上のメーター電子機器20とを有しているコリオリフローメーターの形態をとる振動式センサー組立体5の一例が示されている。
1つ以上のメーター電子機器20は、フローメーター10へ接続され、たとえば密度、質量流量、体積流量、総合質量流量、温度の如き流動物質の特性及び他の情報を測定する。
フローメーター10は、一対のフランジ101、101’と、一対のマニホールド102、102’と、一対の導管103A、103Bとを有している。マニホールド102、102’は、導管103A、103Bの両側の端部に固定されている。本実施形態にかかるフランジ101、101’はマニホールド102、102’へ固定されている。また、本実施形態にかかるマニホールド102、102’はスペーサ106の両側の端部に固定されている。スペーサ106は、導管103A及び103Bの不要な振動を防止するために、本実施形態のマニホールド102とマニホールド102’との間の間隔を維持するようになしてある。フロー導管103A、103Bは、マニホールドから外側に向けてほぼ並列に延出している。流動物質を運ぶ配管システム(図示せず)の中にフローメーター10が挿入されると、流動物質がフランジ101を通ってフローメーター10の中に流入し、流入口マニホールド102を通り、ここで流動物質の全量が導管103A、103Bの中に流され、導管103A、103Bを流れ、流出口マニホールド102’の中へ流れ込み、ここでフランジ101’からフローメーター10の外へと流出する。
フローメーター10はドライバー104を備えている。ドライバー104は、当該ドライバー104が導管103A、103Bをドライブモードで振動させることができる位置で導管103A、103Bへ固定されている。さらに具体的にいえば、ドライバー104は、導管103Aに固定される第一のドライバコンポーネント(図示せず)と、導管103Bに固定される第二のドライバコンポーネント(図示せず)とを有している。ドライバー104は、マグネットが導管103Aに取り付けられかつ反対側のコイルが導管103Bに取り付けられる構成のような複数の周知の構成のうちの1つの構成を有していてもよい。
本実施形態では、ドライブモードは、第一の逆位相曲げモードである。導管103A、103Bは、それぞれ、曲げ軸線W−W及びW’−W’に対して実質的に同一の質量分布、慣性モーメント及び弾性モジュールを有するバランスの取れたシステムを提供するように、選択され、流入口マニホールド102及び流出口マニホールド102’に適切に取り付けられることが好ましい。ドライブモードが第一の逆位相曲げモードである本実施形態では、導管103A及び導管103Bは、それぞれの対応する曲げ軸線W−W及び曲げ軸線W’−W’を中心として、互に逆方向に向けてドライバー104によって振動させられるようになっている。交流の形態を有しているドライブ信号が、たとえば経路110を介して一つ以上の電子機器20によって提供され、コイルを通り抜けて両方の導管103A、103Bの振動を引き起こすようになっている。当業者にとって明らかなように、他のドライブモードが用いられてもよいが、それらもまた本発明の技術範囲に含まれる。
図示されているフローメーター10は、導管103A、103Bに固定されている一対のピックオフ105、105’を有している。さらに具体的にいえば、第一のピックオフコンポーネント(図示せず)が導管103Aの位置に設けられ、第二のピックオフコンポーネント(図示せず)が導管103Bの位置に設けられている。図示されている実施形態では、ピックオフ105、105’は、導管103A、103Bの速度及び位置を表わすピックオフ信号を生じるたとえばピックオフマグネット及びピックオフコイルである電磁検出器であってもよい。たとえば、ピックオフ105、105’は経路111、111’を通じて一つ以上の電子機器へピックオフ信号を送信するようになっていてもよい。当業者にとって明らかなように、導管103A、103Bの運動は、流動物質のなんらかの特性、たとえば導管103A、103Bを流れる物質の質量流量及び密度に比例している。
上述のフローメーター10が、デュアル(2重)フロー導管型のフローメーターで構成されている一方、シングル(単一)導管型のフローメーターで構成することも本発明の技術範囲に含まれることは理解されるべきである。さらに、フロー導管103A、103Bが湾曲しているフロー導管構造で構成されていることが示されているが、本発明が真っ直ぐなフロー導管構造を用いて構成されて実施されてもよい。従って、上記の具体的なフローメーター10の実施形態は、一例に過ぎず、本発明の技術範囲を限定するものではない。
図1に示されている実施形態では、1つ以上の電子機器20は、ピックオフ105、105’からピックオフ信号を受信するようになしてある。経路26は、1つ以上の電子機器20がオペレーターと通信することを可能とする入力手段及び出力手段を提供している。1つ以上の電子機器20は、たとえば位相差、周波数、時間遅延、密度、質量流量、体積流量、総合質量流量、温度、メーター検証の如き流動物質の特性、及び他の情報を測定する。特に、1つ以上のメーター電子機器20は、ピックオフ105、105’及び1つ以上の温度センサー(図示せず)からたとえば1つ以上の信号を受け取り、この情報を用いて流動物質の特性を測定する。
たとえばコリオリフローメーターまたはデンシトメーターの如き振動式センサー組立体が流動物質の特性を測定する技術はよく知られている。従って、記載を簡潔なものとするため、詳細な説明は省略する。
簡潔に上述されているように、コリオリフローメーターの如き振動式センサー組立体に関する1つの問題は、ゼロオフセットの存在である。ゼロオフセットとは、流量がゼロのときのピックオフ105、105’の時間遅れの測定値のことである。ゼロオフセットが、流量及びさまざまな他の流れ測定値の算出の際に考慮に入れられなければ、流れ測定値(flow measurements)は通常は、測定の際の誤差を含むこととなる。ゼロオフセットを補償する典型的な従来のアプローチは、初期の較正プロセス時における初期のゼロオフセット(Δt)を測定することである。初期の較正プロセスは、弁を閉じることと、ゼロ流量基準状態を形成することとを通常含んでいる。このような較正プロセスは、当該技術分野において一般的に知られているので、明細書を簡潔なものとするために、詳細な説明は省略されている。いったん初期のゼロオフセットが求められると、動作中、流れ測定値は、次の式(1)に従って、測定された時間差から初期のゼロオフセットを減算することにより補正される。
Figure 2013501934
この式で、
Figure 2013501934
は質量流量であり、FCFは流量較正係数であり、Δtmeasuredは、測定された時間遅れであり、Δtは、初期のゼロオフセットである。
式(1)は、一例として提供されているだけであり、本発明の技術範囲を限定するものではないことは理解されるべきである。質量流量を計算するための式(1)が提供されているが、いうまでもなく、さまざまな他の流れ測定値が、ゼロオフセットによって影響を受けるので、修正されてもよい。
このアプローチは、運転条件が、初期の較正及びゼロオフセットΔtの決定中に存在して運転条件と実質的に同一である状況において満足な結果を提供することができるものの、多くの場合、使用中の運転条件は、較正中に存在する運転条件とは実質的に異なるものである。
条件が変わる結果として、振動式フローメーターは、ゼロオフセットがズレて(drift)しまう場合もある。換言すれば、ゼロオフセットは、初期に算出されたゼロオフセットΔtから変わってしまう場合もある。ゼロオフセットのズレは、センサーの性能にひどく影響し、不正確な測定をもたらす場合もある。というのは、従来技術では、運転中、測定された時間差を補償するために用いられるゼロオフセットが、ゼロオフセットが変わることを考慮することなく、初期に算出されたゼロオフセットだったからである。従来の他のアプローチでは、手動によりセンサーを再較正することが要求される。通常、再較正には、センサーをゼロ調整するためにセンサーを流れる流れを停止させる必要がある。このことは、システム全体を通常シャットダウンしなければならないから、費用のかかるものとなりうる。また、周囲温度が流体温度と異なっている場合、従来のゼロ較正を行なうために流れを止めると、メーターの温度が急速に変わってしまう場合もある。このことは、ゼロ較正を信頼性の低いものとしてしまう場合もある。
本発明のある実施形態によれば、メーター電子機器20は、ゼロオフセットと1つ以上の運転条件との間の相関関係を作成するように構成されうる。本発明のある実施形態によれば、メーター電子機器20はゼロオフセットのズレを補償するように構成されている。
本発明のある実施形態によれば、メーター電子機器20は、ゼロオフセットと1つ以上の測定可能な運転条件との間の相関関係に基づいてゼロオフセットのズレを補償しうる。本発明の1つの実施形態によれば、ゼロオフセットは絶対零度オフセットである。本発明の他の実施形態によれば、ゼロオフセットは差動ゼロオフセットである。差動ゼロオフセットは、センサーの初期のゼロオフセットを2つ以上のセンサー間の差動誤差と組み合わせたものである。差動ゼロオフセットは、較正されるセンサー及び基準センサーを流れる流量を実質的に等しくするために必要となる場合もある。
換言すれば、上述の式(1)を参照すると、同一の流体流量が、較正されるセンサーと基準センサーとを流れる場合、これら2つのセンサーは、式(1)を各センサーについて用いて2つの質量流量を生成することができる。基準センサーの質量流量が較正されるメーターの質量流量と等しいと仮定すると、較正されるセンサーの差動ゼロオフセットを算出することができる。この方法により、較正されるセンサーについて、基準流量を反映した新たなゼロオフセットが求められる。この新たなゼロオフセットは実質的に差動オフセットである。このことは、式2及び式3に示されている。
Figure 2013501934
Figure 2013501934
この式で、
Figure 2013501934
は基準質量流量であり、Δt0cは較正されるセンサーの初期のゼロオフセットであり、Δtは差動誤差であり、Δtは較正されるセンサーの測定された時間遅れであり、FCFは較正されるセンサーの流量較正係数である。
式(3)について、較正されるセンサーのゼロオフセットと差動誤差とを組み合わせることによりさらに簡単にすることができる。その結果、式(4)に示されている差動ゼロオフセットを定義する式が得られる。
Figure 2013501934
この式で、Δtは差異ゼロオフセットである。
従って、較正されるセンサーの差動ゼロオフセットとは、ゼロ流量を基準とするという意味での絶対的なゼロオフセットのことではない。もっと正確にいえば、このゼロオフセットは、2つのセンサー間の差を考慮に入れているという意味での差動ゼロオフセットである。この差動オフセットが求められ、除去されると、対になったセンサーの示差測定法の性能が著しく向上されることとなる。運転条件が変わる場合の差動オフセットを求めることが必要となる場合もある。流量較正係数または初期のゼロオフセット値の如きある値が一定のままであると仮定することにより、式(4)を複数の方法でさらに簡略化することができることは理解されるべきである。従って、式(4)がどのような形態であるかによって本発明の技術範囲が限定されるべきではない。
いずれの実施形態であっても、本発明は、センサーを流れる流れを停止させることなくゼロオフセットのズレを補償することができる。有利なことに、本発明は、通常の使用中にセンサーを動作させながらゼロオフセットのズレを求めて補償することができる。
図2には、本発明のある実施形態にかかるメーター電子機器20が示されている。メーター電子機器20は、インターフェース201と、処理システム203とを有しうる。処理システム203は格納システム204を有しうる。格納システム204は、図示されているような内部メモリーであってもよいし、またはそれに代えて、外部メモリーであってもよい。メーター電子機器20は、ドライブ信号211を発生し、このドライブ信号211をにドライバー104へ送ることができる。それに加えて、メーター電子機器20は、ピックオフセンサー信号/速度センサー信号の如き、フローメーター10からのセンサー信号210を受信することができる。実施形態によっては、センサー信号210はドライバー104から受け取られる場合もある。メーター電子機器20は、デンシトメーターとして動作することもできるし、または、コリオリフローメーターとして動作することを含む質量流量メーターとして動作することもできる。メーター電子機器20は、他のタイプの振動式センサー組立体として動作してもよいが、どのような実施形態が記載されるかによって本発明の技術範囲が限定されるべきでないことは理解されるべきである。メーター電子機器20は、フロー導管103A、103Bを流れる物質のフロー特性を求めるためにセンサー信号210を処理することができる。実施形態によっては、メーター電子機器20は、たとえば1つ以上のRTDまたは他の温度測定デバイスから温度信号212を受け取るようになっている場合もある。
インターフェース201は、リード線110、111、111を通じて、ドライバー104またはピックオフセンサー105、105’からセンサー信号210を受信することができる。インターフェース201は、いかなるフォーマッティング、増幅、バッファリングなどの如きいかなる必要なまたは所望の信号調節を行なってもよい。あるいは、信号調節のうちの一部または全部を処理システム203で行なうようにすることもできる。それに加えて、インターフェース201により、メーター電子機器20と外部デバイスとの間の通信を可能となる。インターフェース201は、いかなる電子通信、光学通信または無線通信を可能とすることもできる。
1つの実施形態におけるインターフェース201は、センサー信号がアナログセンサー信号であるデジタイザー(図示せず)を有することができる。デジタイザーは、アナログセンサー信号をサンプリングしてデジタル化し、デジタル化されたセンサー信号を生じることができる。また、デジタイザーは、必要とされる信号処理量を減らして処理時間を短縮するようにデジタルセンサー信号が縮小(decimated)されるいかなる必要なデシメーションをも実行することもできる。
処理システム203は、メーター電子機器20のオペレーションを行うことができ、また、フローメーター10からのフロー測定結果を処理することができる。処理システム203は、差動オフセット決定ルーチン213、差動ゼロ決定ルーチン215及びゼロオフセット決定ルーチン216の如き1つ以上の処理ルーチンを実行して、センサーのゼロオフセットのズレが補償される1つ以上の流れ特性を求めるためにフロー測定結果を処理してください。
処理システム203は、汎用コンピュータであってもよいし、マイクロプロセッシングシステムであってもよいし、論理回路であってもよいし、または他のなんらかの汎用のもしくはカスタム化された処理デバイスであってもよい。処理システム203は、複数の処理デバイスの間に分散されるようになっている場合もある。処理システム203は、格納システム204の如きいかなる一体化されたまたは独立した電子格納媒体を有していてもよい。
処理システム203は、ドライブ信号211などを求めるべくセンサー信号210を処理する。ドライブ信号211は、ドライバー104へ送られ、図1に記載のフローチューブ103A、103Bの如き接続されているフローチューブを振動する。
メーター電子機器20は、当該技術において公知となっているさまざま他の構成要素及び機能を有していてもよいことは理解されるべきである。便宜上、これらさらなる特徴は明細書及び図面からは省略されている。従って、記載の特定の実施形態によって本発明が限定されるべきではない。
処理システム203が、例えば質量流量または体積流量の如きさまざまなフロー特性を生成するので、振動式フローメーターのゼロオフセットに起因して、もっと具体的にいえば、振動式フローメーターのゼロオフセットの変動またはズレに起因して、求められた流量には誤差が含まれている恐れがある。ゼロオフセットは通常上述のように初期段階で算出されるものの、ゼロオフセットは、振動式フローメーターの温度の如き1つ以上の運転条件の変化を含む複数の要因に起因してこの初期段階で算出された値からズレてしまう場合もある。温度変化は、たとえば流体温度、周囲温度、またはその両方の変化に起因している。温度変化は、初期のゼロオフセットを求めていときのセンサーの基準温度または較正温度T0からの変化である場合もある。温度変化は、センサー温度の変化、メーター電子機器温度の変化、またはその両方に起因している場合もある。本発明のある実施形態によれば、メーター電子機器20は、以下にさらに記載するような差動オフセット決定ルーチン213を実行することができる。
本発明は、単一の振動式フローメーターについて記載されてきたが、連結された複数の振動式フローメーターを用いる用途も多い。これらのほとんどの用途において、それぞれの別個のフローメーターによって測定される絶対流量については重要ではない。もっと正確にいえば、重要であるのは、さまざまなフローメーターによって測定される流量の差である。このような場合の一般的な2つの具体例としては、燃料効率測定及び漏洩検出測定における用途が挙げられる。図3には燃料効率における用途が示されているが、この図は、複数のフローメーターが順次実行され、少なくとも2つのフローメーター間の測定結果の差が関心の対象である、漏電検知システムの如き他の場合にも同様に適用可能である。
図3は、本発明のある実施形態にかかるフローメーターシステム300を示すブロック図である。フローメーターシステム300は典型的な燃料効率システムとして示されているが、燃料はたんなる1例に過ぎず、このシステム300は他の流体にも同様に適用可能であることは理解されるべきである。従って、燃料の使用により本発明の技術範囲が限定されるべきではない。フローメーターシステム300は、燃料供給源301と、燃料供給導管302と、この燃料供給導管302に配置されている第一の振動式フローメーター10と、燃料流出口304と、燃料返還導管306と、燃料返還導管306に配置される第二の振動式フローメーター305とを備えている。通常、エンジンまたは他の燃料消費デバイスは、第一のフローメーター10と第二のフローメーター305との間に配置されているが、図面の複雑さを減らすため、このデバイスは図面から削除されている。図示されていないが、いうまでもなく、フローメーター10、305は通常1つ以上のメーター電子機器に接続されている。実施形態によっては、第一のフローメーター10及び第二のフローメーター305が同一のメーター電子機器に接続されている場合もある。本発明のある実施形態によれば、第一のフローメーター10及び第二のフローメーター305はコリオリフローメーターでる。しかしながら、これらのフローメーターは、コリオリフローメーターの測定能力を欠く他のタイプの振動式センサーであってもよい。従って、本発明はコリオリフローメーターに限定されるべきではない。
使用時、燃料の如き流体を流体供給導管302を通じて第一のフローメーター10に供給することができる。第一のフローメーター10は、上述のように、流体流量を含むさまざまな流体パラメーターを算出することができる。その後、燃料は、第一のフローメーター10から流出し、燃料消費デバイスを通り、燃料流出口304または第二のフローメーター305のいずれかへと至る。たとえばエンジンが動作して燃料を消費している場合のように燃料が燃料流出口304から取り入れられている場合、第一の振動式フローメーター10から流出する燃料の一部分だけが第二の振動式フローメーター305へ流れていくことになる。従って、第一の振動式フローメーター10と第二の振動式フローメーター305とによって測定される流量は異なることになる。未使用の燃料は、第二の振動式フローメーター305を通り、図示されているような燃料供給源301へと戻ることができる。燃料効率システム300は1つの燃料流出口304と2つの振動式フローメーター10、305だけしか示していないものの、実施形態によっては、複数の燃料流出口があり、従って2を超える数の振動式フローメーターがある場合もあることは理解されるべきである。
本発明のある実施形態によれば、第一のフローメーター10と第二のフローメーター305とによって測定される流量の差は、流体流出口304から流出する燃料、すなわちエンジンによって消費される燃料の流量と実質的に等しい。従って、2つのフローメーター10、305間の測定流量の差は、図3に示されている構成に類似するほとんどの用途において関心の対象となる値である。従って、一方のメーターを基準メーターとしてセットし、流量が同一であると考えられる場合、すなわち流体が燃料流出口304から流出していない場合に、他方のメーターを基準メーターと一致させるように較正することができる。ほとんどの実施形態では、どちらのメーターを基準メーターとしてセットするかは重要なことではない。
燃料流出口304から流出する燃料の流量(流体消費量)は、供給導管302及び返還導管306の流量よりも通常はるかに小さく、センサーのサイズが大きすぎることになる。これらの構成では、圧力降下がほとんどない、すなわちフローメーターのサイズ対して比較的低流量となるようなサイズにフローメーターを形成したいという願いが存在する。そのようなメーターサイズに対してそのような低流量にすると、ピックオフ間の時間遅れも比較的小さくなる。測定される時間遅れがゼロオフセットに非常に近くなると、フローメーターのゼロオフセットがフローメーターの精度に深刻な影響を与えることができるようになる。システム300のゼロオフセットに対する感度が大きくなるので、ゼロオフセットのほんの小さなズレでさえシステム全体に悪い影響を与えることができるようになることは理解されるべきである。しかしながら、測定結果の差が目的とする値であるので、個々のフローメーター10、305のゼロオフセットの絶対値は測定結果を補正するにあたって必要なものではない。もっと正確にいえば、1つのメーターについては、初期段階で較正されたゼロオフセットを用いることができ、次のメーターについては、先に定義されたような差動ゼロオフセットを計算することができる。一例としては、第二のフローメーター305は第一のフローメーター10を基準とすることができる。従って、ゼロオフセットが差動ゼロオフセットである実施形態では、フローメーターのうちの一方が基準メーターとされ、この基準メーターと一致するように他方のフローメーターのゼロオフセットが較正される。従って、差動ゼロオフセットを式(4)を用いて算出することができる。
有利なことには、2つ以上のメーター間の差動ゼロオフセットを補償することは、運転条件に基づいたゼロ差を補償するだけでなく、たとえば設置効果に起因するメーター間のゼロオフセットの絶対差を取り除くこともする。さらに、較正されるフローメーター及び基準フローメーターを流体が実質的に同一の流体流量を有している限り、フローメーターを流れる流量がゼロであるときには差動ゼロオフセットを必ずしも求める必要はない。従って、差動ゼロオフセットは、たとえばエンジンがオフであるときならばいつでも求めることができる。しかしながら、このことは、測定される流量間のいかなる差であっても、それはゼロオフセットの変化に起因するものであり、流量較正係数の変化の如き他の要因に起因するものではないという仮定に基づいている。ほとんどの用途では、エンジンが動作していのか否かを判断するのは比較的簡単である。というのは、燃料消費量が差動ゼロオフセットよりも通常5倍を超える量だけ大きいからである。従って、燃料消費量に起因する、第一のフローメーター10と第二のフローメーター305との測定結果間の差を差動ゼロオフセットと間違える可能性はない。本発明のある実施形態によれば、差動オフセット決定ルーチン213を実行してゼロオフセット相関関係214を求めることができる。以下の記載が、差動ゼロオフセットの相関関係であるゼロオフセット相関関係214について言及しているものの、いうまでもなく、同様のルーチンを実行して絶対ゼロオフセットの相関関係を求めるようにしてもよい。しかしながら、そのような相関関係には、さまざまなゼロオフセット値を求めるために振動式フローメーターを流れる流量をゼロにする必要がある。
図4には、本発明のある実施形態にかかる差動オフセット決定ルーチン213が示されている。本発明のある実施形態によれば、メーター電子機器20は、たとえば差動オフセット決定ルーチン213を実行するように構成されてもよい。差動オフセット決定ルーチン213は、センサーが設置された後、製造業者によって実行されてもよいしまたはユーザーによって実行されてもよい。
実施形態によっては、差動オフセット決定ルーチン213が図3に示されているような複数のフローメーターに対して用いられる場合には、ルーチン213は、流体流量がゼロであるときを含めて2つ以上のフローメーターを流れる流量が実質的に同一であるときに実行されるようになっている場合もある。差動オフセット決定ルーチン213は、2つ以上のフローメーター間の差動ゼロオフセットを較正するために実行されてもよい。従って、差動オフセット決定ルーチン213は、フローメーターを較正して正確な質量流量の絶対値を読み取る必要は必ずしもない。もっと正確にいえば、フローメーターは、2つのフローメーター間の差の読取値(differential reading)が正確であるように較正される場合がある。たとえば、試験器または同様のデバイスにより求められるような第一のフローメーター10を流れる実際の流量が2000kg/時間であり、流出口304から流出する流体の流量が1000kg/時間である場合、第二のフローメーター305と第一のフローメーター10との間の差が1000kg/時間に等しいことが望ましい。しかしながら、ほとんどの実施形態では、第二のフローメーター305が1020kg/時間を示すように較正され、第一のフローメーター10が2020kg/時間の流量を示す場合に条件を満たしていると考えられる。従って、各メーターを流れる流量の絶対値が正確でない場合であっても、それらの差である読取値が正確であるまたは少なくとも許容誤差範囲内にある。上記の値は例示のみを意図したものであって、本発明の技術範囲を限定すべきものではないことは理解されるべきである。
差動オフセット決定ルーチン213は、エンジンの如き流体消費デバイスがオフであるときに実行することができる。他の実施形態によっては、差動オフセット決定ルーチン213は、第一のフローメーター10及び第二のフローメーター305によって測定される流量が同一の測定値であると予想されるとき、たとえば漏電検出システムが漏洩を示していないと判断されたときに実行されるようになっている場合もある。従って、いうまでもなく、差動オフセット決定ルーチン213中、フローメーター10、305を流れる流量が必ずしもゼロ流量である必要はなく、ほとんどの実施形態では、ゼロ流量とはなっていない。
本発明のある実施形態によれば、差動オフセット決定ルーチン213は、振動式フローメーターの初期段階の較正の後に行なわれてもよいし、または、振動式フローメーターの初期段階での較正の一部であってもよい。差動オフセット決定ルーチン213は、振動式フローメーターのゼロオフセットと振動式フローメーターの1つ以上の運転条件との間の相関関係を求めるために用いられてもよい。ゼロオフセットは、絶対ゼロオフセットであってもよいし、または、上述されているような差動ゼロオフセットであってもよい。
差動オフセット決定ルーチン213はステップ401から開始され、このステップで、第一の振動式フローメーター10及び第二の振動式フローメーター305から1つ以上のセンサー信号を受け取ることができる。これらのセンサー信号は、たとえば第一の振動式フローメーター10のピックオフセンサー105、105’の如きピックオフセンサーによって受け取られてもよい。図3のように複数の振動式フローメーターが存在するので、流体がこれらのフローメーターを流れているとき、センサー信号が両方のフローメーターから受信されるようになっていてもよい。
ステップ402では、受信されたセンサー信号は、第一の振動式フローメーター10によって求められるような第一の流量及び第二の振動式フローメーター305によって求められるような第二の流量を求めるように処理されてもよい。たとえば式(1)を用いて、第一の流量及び第二の流量を求めることができる。
ステップ403では、第一の振動式フローメーター10の差動ゼロオフセットを求めることができる。本発明のある実施形態によれば、たとえば式(4)を用いて差動ゼロオフセットを求めることができる。本発明のある実施形態によれば、当該求められるゼロオフセットは、初期段階で求められたゼロオフセットであってもよい。このことは、ゼロオフセット決定ルーチン213が、たとえば振動式フローメーターの初期段階の較正の一部として実行される場合に当てはまりうる。本発明の他の実施形態によれば、当該求められるゼロオフセットは、さらに後で求められるゼロオフセットであってもよい。さらに後で求められるゼロオフセットは、初期段階で求められるゼロオフセットと異なるものであってもよい。このことは、たとえば運転条件が初期段階のゼロオフセットが求められた時の運転条件とは異なる場合にとくに当てはまりうる。実施形態では、ルーチン213はステップ403の後に終了してもよい。他の実施形態によれば、ルーチン213は、ステップ404またはステップ406のいずれかに引き続き進みうる。
ステップ404では、1つ以上の現在の運転条件を求めることができる。1つ以上の現在の運転条件は、ステップ401で受け取られたセンサー信号を処理することにより求められてもよい。それに代えて、1つ以上の運転条件は、外部の温度センサー、粘度計などの如き外部入力から求められてもよい。1つ以上の運転条件は、温度、圧力、流体密度、センサー取付条件、ドライブ利得などのうちの1つ以上でありうる。1つの実施形態によれば、ドライブ利得は閾値と比較することができ、ドライブ利得がこの閾値を超えている場合、ステップ402で求められたゼロオフセットをエラーと考えることができ、格納しない。たとえば、このエラーは混入ガスに起因するものでありうる。運転条件のうちの1つが温度である場合、この温度はたとえばRTDを用いて求められてもよい。たとえば、この温度は、フローメーター温度であってもよいしまたはメーター電子機器温度であってもよい。本発明のある実施形態によれば、この温度は、第一のフローメーター10と第二のフローメーター305との間で実質的に同一であると仮定される。本発明の他の実施形態によれば、第一のフローメーター10と第二のフローメーター305との間の温度差が実質的に一定のままであると仮定される。
ステップ405では、差動ゼロオフセットと1つ以上の運転条件との間のオフセット相関関係214を求めることができる。差動オフセット決定ルーチン213をさまざまな運転条件で複数回繰り返すことにより相関関係を向上させることができるものの、相関関係214は、単一回で求められた差動ゼロオフセットとそれに対応する運転条件とから求められるようになっていてもよいことは理解されるべきである。このことは、たとえば初期段階で算出されたゼロオフセットが初期段階の較正から入手可能となっている場合にとくに当てはまる。しかしながら、いうまでもなく、より多くのゼロオフセットがさまざまなさらなる運転条件で求められれば求められるほど、オフセット相関関係214がより包括的なものとなる。一例ではあるが、温度が、ステップ403で測定された温度とは異なる新たな温度に調節され、他のゼロオフセットが求められてもよい。それに代えて、ゼロオフセット決定ルーチン213は、振動式フローメーターを流れる流量が実質的にゼロであるとき、または第一のフローメーター10を流れる流量及び第二のフローメーター305を流れる流量が実質的に等しいときはいつでも実行されてもよい。オフセット相関関係214にさらなる値を加えるために、新たなゼロオフセットを新たな温度と共に格納することができる。オフセット相関関係214は、メーター電子機器20に将来検索させることを可能とするために格納されてもよい。オフセット相関関係は、たとえばルックアップテーブル、グラフ、式などを含むさまざまなフォーマットで格納されてもよい。先の記載では温度が運転条件であることに限定されているものの、温度以外の他の運転条件が考慮に入れられてもよい。本発明の他の実施形態によれば、オフセット相関関係214は多次元の相関関係であってもよい。たとえば、オフセット相関関係214は温度だけでなく流体密度も考慮に入れてもよい。従って、ゼロオフセットは、温度と流体密度の両方とともに変化し、三次元の相関関係を形成することが可能となる。本発明の他の実施形態によれば、各流体密度について別々のゼロオフセット相関関係を作成することができる。たとえば、2つの流体がシステムを流れることが予想される場合、これらの二つの流体の各々について別個の相関関係が作成されてもよい。異なる密度を有する第三の流体が続いて測定される場合、入手可能な相関関係から補間または補外することによって補正済みゼロオフセットが取得されてもよい。
いったん差動ゼロオフセットと1つ以上の運転条件との間のオフセット相関関係214が求められると、測定される運転条件を相関関係214に記録されている前の運転条件と比較してこの実際の運転条件における対応するゼロオフセットを求めることができる。本発明のある実施形態によれば、この補正済みゼロオフセットは、さまざまなフロー特性をより正確な提供することができる。たとえば、補償済み流量が、差動ゼロオフセットに基づいて求められてもよい。補償済み流量は、温度の如き1つ以上の運転条件の変化に起因するゼロオフセットの変動を考慮に入れうる。上述のように、オフセット相関関係214はさまざまなフォーマットで格納されてもよい。表1には、ルックアップテーブルの一例が示され、それに対応するグラフが図5に示されている。
Figure 2013501934
表1に記載の本発明にかかる実施形態によると、初期段階の較正は0℃で行なわれている。従って、0℃において、第一のフローメーター10と第二のフローメーター305との間に差動ゼロオフセットは存在しない。しかしながら、温度が上昇するに従って、初期段階で算出されたゼロオフセットと新たな運転条件で求められたゼロオフセットとの間の差動ゼロオフセットも増大する。ルックアップテーブル1は、後の検索に備えて、メーター電子機器20の格納システム204に格納されてもよいし、またはなんらかの他の格納システムに格納されてもよい。
図5は、本発明のある実施形態にかかる差動ゼロオフセット相関関係を示すグラフである。従って、温度は測定された運転条件であるが、同様のプロットを作成するために、いかなる数の運転条件が用いられてもよいことは理解されるべきである。図5から理解できるように、差動ゼロオフセット相関関係はほぼ線形である。このことが常に当てはまるとは限らない。どのような相関関係にするかは、対象となるフローメーターや、流体密度、他の要因などに応じて異なりうることは理解されるべきである。さらに、図5に示されている具体的な値は例示のみを目的としたものであり、本発明の技術範囲を限定すべきものではないことは理解されるべきである。
本発明のある実施形態によれば、ルーチン213によって決定されるゼロオフセット相関関係214は、通常運転中に用いられて、差動ゼロオフセットを決定してもよい。特に、ゼロオフセット相関関係214は、1つ以上の測定される運転条件に基づいて、第一のフローメーター10と少なくとも1つの第二のフローメーター305との間の差動ゼロオフセットを求める(決定する)ために用いられてもよい。このような決定は、図6に示されている差動ゼロ決定ルーチン215に示されている。
図6には、本発明のある実施形態にかかる差動ゼロ決定ルーチン215が示されている。差動ゼロ決定ルーチン215は通常動作中に実行されてもよい。差動ゼロ決定ルーチン215は、通常運転中に、たとえばメーター電子機器20により実行されてもよい。差動ゼロ決定ルーチン215は、図3に示されているような振動式フローメーターシステムに対して用いられてもよい。差動ゼロ決定ルーチン215は、振動式フローメーターのゼロオフセットの変化を補償するために用いられてもよい。差動ゼロ決定ルーチン215はステップ601から始動する。このステップでは、センサー信号が振動式フローメーター10の如き振動式フローメーターから受け取られる。センサー信号が受け取られる振動式フローメーターは、たとえばオフセット相関関係214の如き前に求められたオフセット相関関係を有している振動式フローメーターである。ステップ601で受信されたセンサー信号は、通常動作中、たとえば流体が振動式フローメーターを流れている間に受け取られるようになっていてもよい。センサー信号は、時間遅れ、位相差、周波数、温度などである。
センサー信号は、ステップ602で1つ以上の運転条件を求めるために処理されてもよい。1つ以上の現在の運転条件は、温度、流体密度、圧力、ドライブ利得などであってもよい。
ステップ603では、1つ以上の運転条件をオフセット相関関係の以前に求められた運転条件と比較することができる。前に求められた運転条件は現在の運転条件と同一の運転条件であってもよい。本発明の他の実施形態によれば、現在の運転条件は前に求められた2つ以上の運転条件と比較されてもよい。
ステップ604では、たとえばオフセット相関関係に基づいて差動ゼロオフセットを求めることができる。差動ゼロオフセットは、初期段階のゼロオフセットを求めた時の運転条件からの1つ以上の運転条件の変動に起因する初期段階で求められたゼロオフセットからのゼロオフセットの変化を考慮したゼロオフセットである。次いで、この差動ゼロオフセットを、絶対ゼロオフセットを用いるのではなく差動ゼロオフセットを用いて式(1)を解くことにより、補償済み流量を求めるために用いることができる。
多くの場合、正確に測定された運転条件が相関関係値として格納されなくてもよいことは理解されるべきである。しかしながら、適切なゼロオフセットが、オフセット相関関係214の既知の値から補間されてもよいしまたは外挿されてもよい。たとえば、測定された運転条件が20℃の温度であり、格納されているオフセット相関関係214が対応する温度10℃及び30℃において対応するゼロオフセット値を有している場合、適切な差動ゼロオフセット値を2つの入手可能な温度からを補間することができる。有利なことに、オフセット相関関係214及び測定された運転条件を用いて差動ゼロオフセットを求めることが可能である。振動式フローメーターを再ゼロ調整することを必要とすることなく差動ゼロオフセットを求めることができる。流体の流れを止めることを必要とすることなく差動ゼロオフセットを求めることができる。もっと正確にいえば、測定された運転条件をオフセット相関関係214と比較するだけで、差動ゼロオフセットを求めることができる。従って、差動ゼロオフセットは、1つ以上の運転条件の変化に起因するゼロオフセットのズレを考慮したゼロオフセットである。
幾つかの実施形態にて、求められた運転条件が、初期段階の較正中に存在した運転条件と同一の運転条件である場合もあれば、または、その閾値差範囲内に含まれる運動条件である場合もある。従って、実施形態によっては、測定される運転条件が、初期段階の較正運転条件と比較される場合もある。差が閾値差未満である場合、差動ゼロ決定ルーチン215は差動ゼロオフセットを検索せずに、初期段階で較正されたゼロオフセットを用いる場合もある。
本発明の他の実施形態によれば、オフセット相関関係を作成する必要も、前に作成したオフセット相関関係を格納する必要もなく、振動式フローメーターのゼロオフセットの変化を補償することが望ましい。さらに、実施形態によっては、振動式フローメーター10、305のゼロオフセットが初期段階の較正さえた値から著しく変わりうるものの、ゼロオフセットは、燃料消費の期間中には著しく変わりえない。これらの実施形態では、振動式フローメーターのゼロオフセットの変化を補正するために相関関係を作成するのではなく、第一の振動式フローメーター10を」流れる流量と第二の振動式フローメーター305を流れる流量が実質的に等しくなる毎に新たな差動オフセットが求められてもよい。新たに求められた差動オフセットは、次の差動オフセットが求められるまで用いられてもよい。このことは、ステップ403からステップ404ではなくステップ406に進む差動オフセット決定ルーチン213を参照すると分かる。
ステップ406では、さらに後の第一のセンサー信号が第一の振動式フローメーター10から受け取られる。さらに後の第一のセンサー信号は、初期段階での第一のセンサー信号及び第二のセンサー信号の後に受け取られてもよい。たとえば、第一のセンサー信号及び第二のセンサー信号が、第一の振動式フローメーター10を流れる流量と第二の振動式フローメーター305を流れる流量とが実質的に同一であるときに受け取られ、さらに後の第一のセンサー信号が、エンジンが動作して燃料を消費しているときの如き第一のセンサーを流れる流量信号と第二のセンサーを流れる流量信号が同一でないとき受け取られるようになっていてもよい。
ステップ407では、補償済み流量が、さらに後で受け取られた第一のセンサー信号及びステップ403で求められた差動ゼロオフセットに基づいて求められてもよい。いうまでもなく、ステップ403で求められた差動ゼロオフセットは、第一の動式フローメーター10を流れる流量と第二の振動式フローメーター304を流れる流量とが再度実質的に同一となり、新たな差動ゼロオフセットを求めることができるまで用いられるようになっていてもよい。
有利なことには、差動オフセット決定ルーチン213は、運転条件を求め、運転条件をオフセット相関関係の前の運転条件と比較する必要はない。どちらかと言えば、差動ゼロ決定ルーチン216は、運転条件が、差動ゼロオフセットが最後に求められた時の運転条件と実質的に同一であると仮定する。
前述の説明は、ゼロオフセットの変化を求め、補正するさまざまな方法または1つ以上の振動式フローメーターの説明に限定されている。通常、センサーのサイズが大きい燃料効率用途の如き低流量用途では、運転条件の変化に起因するゼロオフセットの変化は、測定における最も大きな潜在的なエラーのうちの1つの主たる原因となっている。
しかしながら、本発明のある実施形態によれば、振動式フローメーターの流量較正係数の変化または差も考慮に入れることができる。流量較正係数は、変化する運転条件に対して通常ゼロオフセットよりも安定しているものの、示差測定法(differential measurement)を最適化するために2つのフローメーター間のいかなるバイアスであても、それを取り除くことが依然として有利である。一般的に、従来技術においては、流量較正係数が、求められると、たとえば広範囲の流量及び流体状態にわたって実質的に一定のままであると仮定される。しかしながら、対象となる値が2つ以上のフローメーターの測定結果間の差であるような場合、流量較正係数の変化または差が小さなものであっても、それは測定結果に悪い影響を及ぼす恐れがある。たとえば、流量較正係数の変化または差が第一のフローメーター10と第二のフローメーター305との間のバイアスとなりうる。一例ではあるが、第一のフローメーター10が100kg/時間の質量流量を示し、第二のフローメーター305が101kg/時間の質量流量を示す。すなわち、2メーター間に1%のバイアスがある。流量較正係数はこのバイアスを補償することができる。流量とは関係なくこの1%のバイアスがそのまま留まるならば、第一のフローメーター10が1000kg/時間の質量終了を示した婆合、第二の質量流量は1010kg/時間の質量流量を示すだろうと仮定される。しかしながら、この1%のバイアスからの変動は、他の運転条件が同一のままであると仮定すると、流量較正係数の変化に起因するものでありうる。
本発明のある実施形態によれば、他の運転条件を同一にしたまま異なる流量で2つの別個のテストを実行することができる。
センサーの流量較正係数及びゼロオフセットの両方の値を求めることができる。このことは、たとえば式(1)を用いて達成することができる。
たとえば、本発明が、複数のフローメーターが直列に繋がれている燃料効率システム300またはそれと同様のシステムで実現される場合、1つのフローメーター、たとえば第二のフローメーター305を基準フローメーターとして選択することができる。第一のフローメーター10を流れる流量と第二のフローメーター305を流れる流量とが実質的に等しくなるようにエンジンをオフにした状態で、第一のフローメーター10と第二のフローメーター305との両方からセンサー信号を受信することができる。本発明のある実施形態によれば、当該技術分野で公知となっているように、第二のフローメーター305(基準フローメーター)から質量流量が生成され得る。この算出された流量を第一のフローメーター10についての式(1)に代入することができる。従って、式(1)によれば、2つの未知数、すなわち第一のフローメーター10の流量較正係数及びゼロオフセット(この場合、差動オフセット)が存在する。上述の実施形態では、流量較正係数が初期段階の較正から変わっていないと仮定されていたので、この値も同様に既知であった。しかしながら、この仮定をしない場合には、1つの式に対して2つの未知数が存在することになる。両方の未知数を求めるために、異なる値に調節されている質量流量を除いて、運転条件は同じままにされている。質量流量が異なった状態で、第二のフローメーター305によって質量流量が生成された状態で、センサー信号がもう一度受信される。この時点では、2つの式に対して二つの未知数が存在している。第一のフローメーター10について、流量較正係数及び差動ゼロオフセットの両方を計算することができる。このような計算が1を超える運転条件でなされると、運転条件のうちの1つ以上と、流量較正係数及び差動ゼロオフセットとの間の相関関係を求めることができる。実施形態によっては、流体流量が閾値を超えるときだけ、流量較正係数を含む相関関係が必要とされる場合もあることは理解されるべきである。本発明のある実施形態によれば、たとえば流体流量が閾値未満であれば、流量較正係数が一定のままであると仮定されてもよい。
上述のさまざまな実施形態によれば、各測定運転条件において単一のゼロオフセットだけが決定されている。本発明のある実施形態によれば、時間の経過により生じうる補償済ゼロオフセットの変化を考慮するために、既に格納されている運転条件において、さらに後で算出されるゼロオフセット値が決定されてもよい。
上述の相関関係214は、1つ以上の較正ルーチン中に通常求められる。本発明の他の実施形態によれば、較正を、自動的に実行することができ、振動式フローメーターの使用年数の経過とともに生じうる変化を考慮するために継続的にオフセット相関関係214を更新することができる。これにより、本発明は、変化する条件に絶えず適合できるようになる。後述のゼロオフセット決定ルーチン216は、図1に示されている単一のフローメーターに用いられてもよいし、または、図3に示されているような複数のフローメーターに用いられてもよい。従って、前述のオフセット相関関係214は主として差動ゼロオフセットに関するものであるが、ゼロオフセット決定ルーチン216は絶対的ゼロオフセットを更新するために用いられてもよい。
図7には、本発明のある実施形態にかかるゼロオフセット決定ルーチン216が示されている。メーター電子機器20は、ゼロオフセット決定ルーチン216を用いて、個々の振動式フローメーターのゼロオフセットを自動的に更新することができる。
ステップ701では、センサー信号が受信される。センサー信号は前述のように受信され得る。センサー信号は、たとえば振動式フローメーター10の如き1つだけの振動式フローメーターから受信されてもよい。他の実施形態では、ゼロオフセット決定ルーチン216が複数の振動式フローメーターに対して実行される場合、センサー信号は一以上の振動式フローメーターから受け取られるようになっていてもよい。
本発明のある実施形態によれば、センサー信号は、前に求められたオフセット相関関係を有している振動式フローメーターから受信される。前に求められたオフセット相関関係は、オフセット相関関係214の如き差動ゼロオフセットに対するものであってもよい。他の実施形態によれば、前に決定されたオフセット相関関係は、たとえば単一の振動式フローメーターのためのような絶対ゼロオフセットに対するものであってもよい。絶対ゼロオフセット相関関係は、流量が実質的にゼロである時に絶対ゼロオフセットを求める必要があること以外、差動オフセット決定ルーチン213と類似の方法で求められてもよい。しかしながら、上述のように、温度の如き運転条件を求めることができ、相関関係を作成することができる。
ステップ702では、現在のゼロオフセットを求めることができる。現在のゼロオフセットは、たとえばステップ701で受け取られたセンサー信号を用いて求められてもよい。現在のゼロオフセットは、絶対ゼロオフセットであってもよいしまたは差動ゼロオフセットであってもよい。
ステップ703では、1つ以上の現在の運転条件を求めることができる。
ステップ704では、1つ以上の現在の運転条件を、たとえばオフセット相関関係214の如きゼロオフセットと運転条件との間の前に求められたオフセット相関関係の1つ以上の前の運転条件と比較することができる。
ステップ705では、ゼロオフセット決定ルーチン216は、現在の運転条件において、前に求められたゼロオフセットが存在する否かを判断する。本発明のある実施形態によれば、オフセット相関関係が1つ以上の求められた運転条件に対するゼロオフセットを有していない場合、ルーチン216はステップ706へ進む。ステップ706では、ステップ702で求められた現在のゼロオフセットを、それに対応する求められた運転条件と共に、ゼロオフセット相関関係214の新たな値として格納することができる。本発明の他の実施形態によれば、オフセット相関関係が1つ以上の求められた運転条件に対する前に求められたゼロオフセットを有している場合、ゼロオフセット決定ルーチン216はステップ707へ進むことができる。前に求められたゼロオフセットは、たとえば製造業者によりプログラムされうる「最良のゲスト(best guest)」ゼロオフセットであってもよい。
ステップ707では、平均ゼロオフセットを求めることができる。本発明のある実施形態によれば、現在のゼロオフセット及び前に求められたゼロオフセットに、重み付け係数を割り当てることができる。また、重み付けゼロオフセットは、現在のゼロオフセットと前に求められたゼロオフセットとの加重平均であってもよい。現在のゼロオフセット及び前に求められたゼロオフセットに割り当てられた重み付け係数は、たとえば、時間に基づくものであってもよい。本発明のある実施形態によれば、新たに求められたゼロオフセットはずっと前に求められたゼロオフセットよりも大きな重み付けが与えられる。従って、現在のゼロオフセットは前に求められたゼロオフセットよりもより大きな重み付けが与えられる可能性がある。たとえば、平均ゼロオフセットを求めるとき、現在のゼロオフセットは前に求められたゼロオフセットの2倍の重み付けが与えられてもよい。同様に、現在のゼロオフセットにどのような重み付けが与えられるは、現在のゼロオフセットと前に求められたゼロオフセットとの間の相対的な経過時間に基づいて異なる。たとえば差動ゼロ決定ルーチン215中の如き通常運転中に補償済みゼロオフセットを求めるために、重み付け係数を用いることができる。
重み付けされたゼロオフセットは、たとえばオフセット相関関係214とともに格納されてもよい。従って、差動ゼロ決定ルーチン215中、オフセット相関関係214と共に格納されているゼロオフセット値は重み付けされたゼロオフセット値であってもよい。
ゼロオフセットを更新するために加重平均を用いることにより、本発明は、変化する条件に連続的に適応できるたけでなく、測定された運転条件以外の要因に起因しうる単一のゼロオフセットの極端な変化により生じる重大なエラーを削減することもできる。
本発明のある実施形態によれば、メーター電子機器20は、1つ以上の測定された運転条件をオフセット相関関係214と比較するとき、ゼロオフセットの更新された値を用いることができる。本発明のある実施形態によれば、差動オフセット決定ルーチン213またはゼロオフセット決定ルーチン216の如きゼロオフセット決定ルーチンが実行される毎に、オフセット相関関係214をデータベースに格納することができる。個々のオフセット相関関係が連続して作成されると、データベースが大きくなっていく。
補償済みゼロオフセットは、たとえばメーター電子機器20により自動的に求められてもよいことは理解されるべきである。これにより、ユーザー/オペレーターが、前に作成された相関関係に基づいて補償済みゼロオフセットを手動で入力する必要がなくなる。
上述のように本発明は、コリオリフローメーターの如き振動式フローメーターのゼロオフセットに生じうる変化を求め、補償するさまざまな方法を実現する。さらに、本発明は、時間の経過とともに生じうる流量較正係数の変化を補償する方法、またはもっと簡単にいえば示差測定法の性能を最大化するように2つ以上のフローメーター間の流量較正係数の一定の差を除去する方法を実現する。上述のさまざまな実施形態は、フローメーター、とくにコリオリフローメーターに関するものであるが、本発明は、コリオリフローメーターに限定されるべきものではないことは理解されるべきであり、本明細書に記載の方法は、コリオリフローメーターの測定機能の一部を欠いている他のタイプのフローメーター、または他の振動式センサーに用いられてもよい。
上述の実施形態の詳細な記載は、本発明の技術範囲内に含まれるものとして本発明者が考えているすべての実施形態を完全に網羅するものではない。さらに正確にいえば、当業者にとって明らかなように、上述の実施形態のうちの一部の構成部材をさまざまに組み合わせてまたは除去してさらなる実施形態を作成してもよいし、また、このようなさらなる実施形態も本発明の技術範囲内及び教示範囲内に含まれる。また、当業者にとって明らかなように、本発明の技術及び教示の範囲に含まれるさらなる実施形態を作成するために、上述の実施形態を全体的にまたは部分的に組み合わせてもよい。
以上のように、本発明の特定の実施形態または実施形態が例示の目的で記載されているが、当業者にとって明らかなように、本発明の技術範囲内において、さまざまな変さらが可能である。本明細書に記載の教示は、上述されかつ対応する図面に例示されている実施形態だけでなく、他の振動式センサーにも適用することができる。従って、本発明の技術範囲は添付の請求項によって決められるものである。

Claims (10)

  1. ゼロオフセットと1つ以上の運転条件との間で前に作成されたオフセット相関関係を有する振動式フローメーターを動作させる方法であって、
    前記振動式フローメーターからセンサー信号を受信するステップと、
    受信した前記センサー信号に基づいて前記振動式フローメーターの現在のゼロオフセットを決定するステップと、
    1つ以上の現在の運転条件を求めるステップと、
    前記1つ以上の現在の運転条件を前記オフセット相関関係の1つ以上の前の運転条件と比較するステップと、
    前記オフセット相関関係が前記現在の運転条件に対応して前に決定されたゼロオフセットを有している場合、前記現在のゼロオフセット及び前記前に求められたゼロオフセットに基づいて平均ゼロオフセットを求めるステップと
    を有している、方法。
  2. 前記オフセット相関関係が前記1つ以上の現在の運転条件に対応して前に求められたゼロオフセットを有していない場合、前記振動式フローメーターの前記現在のゼロオフセット及び前記1つ以上の現在の運転条件を格納するステップをさらに有している、請求項1に記載の方法。
  3. 前記平均ゼロオフセットを求めるステップが、
    前記現在のゼロオフセットに第一の重み付け係数を適用して第一の重み付けされたゼロオフセット求めるステップと、
    前記前に求められたゼロオフセットに第二の重み付け係数を適用して第二の重み付けされたゼロオフセットを求めるステップと、
    前記第一の重み付けされたゼロオフセット及び前記第二の重み付けされたゼロオフセットに基づいて前記平均ゼロオフセットを計算するステップを有している、請求項1に記載の方法。
  4. 前記第一の第一の重み付け係数及び前記第二の重み付け係数が時間−重み付け係数である、請求項3に記載の方法。
  5. 前記平均ゼロオフセット及び1つ以上の運転条件に基づいて新たなオフセット相関関係を作成するステップをさらに有している、請求項1に記載の方法。
  6. 処理システム(203)を備えている振動式フローメーター(10)用のメーター電子機器(20)であって、
    前記処理システム(203)が、
    前記第一の振動式フローメーター(10)からセンサー信号(210)を受信し、
    受信した前記センサー信号(210)に基づいて前記振動式フローメーター(10)の現在のゼロオフセットを求め、
    1つ以上の現在の運転条件を求め、
    前記1つ以上の現在の運転条件を前記オフセット相関関係の1つ以上の前の運転条件と比較し、
    前記オフセット相関関係が前記1つ以上の現在の運転条件に対応して前に求められたゼロオフセットを有している場合、前記現在のゼロオフセット及び前記前に求められたゼロオフセットに基づいて平均ゼロオフセットを求めるように構成されてなる、メーター電子機器(20)。
  7. 前記処理システム(203)は、前記オフセット相関関係が前記1つ以上の現在の運転条件に対応して前に求められたゼロオフセットを有していない場合、前記振動式フローメーター(10)の前記現在のゼロオフセット及び前記1つ以上の現在の運転条件を格納するようにさらに構成されてなる、請求項6に記載のメーター電子機器(20)。
  8. 前記平均ゼロオフセットを求めるステップが、
    前記現在のゼロオフセットに第一の重み付け係数を適用して第一の重み付けされたゼロオフセットを求めるステップと、
    前記前に求められたゼロオフセットに第二の重み付け係数を適用して第二の重み付けされたゼロオフセットを求めるステップと、
    前記第一の重み付けされたゼロオフセット及び前記第二の重み付けされたゼロオフセットに基づいて前記平均ゼロオフセットを計算するステップとを有している、請求項6に記載のメーター電子機器(20)。
  9. 前記第一の重み付け係数及び前記第二の重み付け係数が時間−重み付け係数である、請求項8に記載のメーター電子機器(20)。
  10. 前記処理システム(203)が、前記平均ゼロオフセット及び前記1つ以上の運転条件に基づいて新たなオフセット相関関係を作成するようにさらに構成されてなる、請求項6に記載のメーター電子機器(20)。
JP2012524686A 2009-08-12 2009-08-12 振動式フローメーターのゼロオフセットを決定する方法及び装置 Active JP5968221B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2009/053544 WO2011019345A1 (en) 2009-08-12 2009-08-12 Method and apparatus for determining a zero offset in a vibrating flow meter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014248006A Division JP2015072284A (ja) 2014-12-08 2014-12-08 振動式フローメーターのゼロオフセットを決定する方法及び装置

Publications (2)

Publication Number Publication Date
JP2013501934A true JP2013501934A (ja) 2013-01-17
JP5968221B2 JP5968221B2 (ja) 2016-08-10

Family

ID=41396107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012524686A Active JP5968221B2 (ja) 2009-08-12 2009-08-12 振動式フローメーターのゼロオフセットを決定する方法及び装置

Country Status (13)

Country Link
US (1) US8720281B2 (ja)
EP (1) EP2464950B1 (ja)
JP (1) JP5968221B2 (ja)
KR (1) KR101533569B1 (ja)
CN (1) CN102713533B (ja)
AR (1) AR077826A1 (ja)
AU (1) AU2009351106B2 (ja)
BR (1) BR112012002920B1 (ja)
CA (1) CA2770135C (ja)
MX (1) MX2012001687A (ja)
RU (1) RU2502963C2 (ja)
SG (1) SG178100A1 (ja)
WO (1) WO2011019345A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018508025A (ja) * 2015-03-13 2018-03-22 マイクロ モーション インコーポレイテッド 振動式流量計における信号の温度補償

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102713533B (zh) * 2009-08-12 2016-12-28 微动公司 用于确定振动流量计中的零点偏移的方法和装置
SG177731A1 (en) * 2009-08-12 2012-02-28 Micro Motion Inc Method and apparatus for determining and compensating for a change in a differential zero offset of a vibrating flow meter
US20120324985A1 (en) * 2011-06-23 2012-12-27 General Electric Company Fluid leak detection system
WO2013002759A1 (en) * 2011-06-27 2013-01-03 Micro Motion, Inc. Vibratory flow meter and zero check method
CN103814276B (zh) * 2011-07-07 2017-06-09 微动公司 确定多仪表流体流动系统的差示流动特性的方法和装置
US20130174649A1 (en) * 2012-01-10 2013-07-11 General Electric Company Fluid leak detection system
EP2629066A1 (en) * 2012-02-18 2013-08-21 ABB Technology AG Coriolis mass flow meter and signal processing method for a Coriolis mass flow meter
WO2013137866A1 (en) * 2012-03-13 2013-09-19 Micro Motion, Inc. Indirect mass flow sensor
BR112017000093B1 (pt) * 2014-07-14 2020-11-17 Micro Motion, Inc. métodos para operar um sistema configurado para consumir um fluido tendo, pelo menos, dois medidores de fluxo, para operar um sistema multicombustível, eletrônica de medidor, e, método para operar um medidor de fluxo
CN106662478B (zh) * 2014-09-04 2020-01-31 高准公司 差示流量计工具
MX360511B (es) * 2014-10-21 2018-11-07 Micro Motion Inc Aparato para aplicar un algoritmo de variable cero en un medidor de flujo vibratorio y metodo relacionado.
JP6660963B2 (ja) 2015-04-10 2020-03-11 マイクロ モーション インコーポレイテッド 振動要素の2以上の位置間の時空間的関係を測定するエミッタセンサアセンブリ及び方法
DE102015107366B3 (de) * 2015-05-11 2016-01-21 Krohne Messtechnik Gmbh Verfahren zum Betreiben eines Durchflussmessgeräts und diesbezügliches Durchflussmessgerät
CN107131905B (zh) * 2016-02-26 2021-07-27 高准公司 检测两个或更多计量组件
CN116295792A (zh) 2016-02-26 2023-06-23 高准公司 用于两个或更多仪表配件的仪表电子器件
WO2017146717A1 (en) * 2016-02-26 2017-08-31 Micro Motion, Inc. Determining a corrected measured flow rate
CN107131947B (zh) * 2016-02-26 2020-09-18 高准公司 确定振动传感器零点
WO2018058511A1 (en) * 2016-09-30 2018-04-05 General Electric Company Sensor drift handling in virtual flow metering
JP6732119B2 (ja) 2016-10-04 2020-07-29 マイクロ モーション インコーポレイテッド 流量計の較正方法及び該方法に関連する装置
WO2018110539A1 (ja) * 2016-12-16 2018-06-21 ヤマハ株式会社 信号処理装置、および信号処理方法
WO2018174841A1 (en) * 2017-03-20 2018-09-27 Micro Motion, Inc. Determining a zero offset of a vibratory meter at a process condition
US11199436B2 (en) 2017-05-11 2021-12-14 Abb Schweiz Ag Method and a system for configuring an electromagnetic flowmeter
WO2021255034A1 (de) 2020-06-18 2021-12-23 Endress+Hauser Flowtec Ag VIBRONISCHES MEßSYSTEM
DE102020131649A1 (de) 2020-09-03 2022-03-03 Endress + Hauser Flowtec Ag Vibronisches Meßsystem
DE102020127382A1 (de) 2020-10-16 2022-04-21 Endress+Hauser Flowtec Ag Verfahren zum Überprüfen eines vibronischen Meßsystems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195822A (ja) * 2000-10-24 2002-07-10 Robert Bosch Gmbh 角度測定器のオフセットドリフトの補償方法
JP2003519371A (ja) * 2000-01-05 2003-06-17 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト センサ信号の補正値テーブルを作成する方法とセンサモジュール
JP2005502057A (ja) * 2001-08-29 2005-01-20 マイクロ・モーション・インコーポレーテッド 振動形状制御を使用するセンサ装置、方法及びコンピュータ・プログラム製品
JP2005134401A (ja) * 2003-10-31 2005-05-26 Abb Patent Gmbh 測定装置のゼロ点修正のための方法
JP2007163203A (ja) * 2005-12-12 2007-06-28 Tatsuno Corp コリオリ質量流量計

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1840667A1 (ru) * 1977-09-26 2008-09-20 Государственное унитарное предприятие "Научно-производственный центр автоматики и приборостроения им.акад. Н.А.Пилюгина Способ определения смещения нуля акселерометра
US6311136B1 (en) * 1997-11-26 2001-10-30 Invensys Systems, Inc. Digital flowmeter
JP2003528306A (ja) * 2000-03-23 2003-09-24 インベンシス システムズ インコーポレイテッド ディジタル流量計における二相流に対する修正
US6997032B2 (en) * 2003-04-08 2006-02-14 Invensys Systems, Inc. Flowmeter zeroing techniques
DE10335665B4 (de) * 2003-08-04 2005-10-27 Siemens Ag Massendurchflussmessgerät
GB2451284B (en) * 2007-07-26 2012-10-17 Abb Ltd Flowmeter
US8639464B2 (en) 2008-01-18 2014-01-28 Dresser, Inc. Flow meter diagnostic processing
CN102713533B (zh) * 2009-08-12 2016-12-28 微动公司 用于确定振动流量计中的零点偏移的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003519371A (ja) * 2000-01-05 2003-06-17 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト センサ信号の補正値テーブルを作成する方法とセンサモジュール
JP2002195822A (ja) * 2000-10-24 2002-07-10 Robert Bosch Gmbh 角度測定器のオフセットドリフトの補償方法
JP2005502057A (ja) * 2001-08-29 2005-01-20 マイクロ・モーション・インコーポレーテッド 振動形状制御を使用するセンサ装置、方法及びコンピュータ・プログラム製品
JP2005134401A (ja) * 2003-10-31 2005-05-26 Abb Patent Gmbh 測定装置のゼロ点修正のための方法
JP2007163203A (ja) * 2005-12-12 2007-06-28 Tatsuno Corp コリオリ質量流量計

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018508025A (ja) * 2015-03-13 2018-03-22 マイクロ モーション インコーポレイテッド 振動式流量計における信号の温度補償

Also Published As

Publication number Publication date
CN102713533A (zh) 2012-10-03
CA2770135A1 (en) 2011-02-17
KR101533569B1 (ko) 2015-07-03
AU2009351106B2 (en) 2013-05-09
AU2009351106A1 (en) 2012-03-01
CN102713533B (zh) 2016-12-28
KR20120047290A (ko) 2012-05-11
WO2011019345A1 (en) 2011-02-17
BR112012002920A2 (pt) 2017-12-12
EP2464950A1 (en) 2012-06-20
RU2012108877A (ru) 2013-09-20
BR112012002920B1 (pt) 2021-03-30
RU2502963C2 (ru) 2013-12-27
AR077826A1 (es) 2011-09-28
EP2464950B1 (en) 2019-12-11
US8720281B2 (en) 2014-05-13
MX2012001687A (es) 2012-03-07
SG178100A1 (en) 2012-03-29
US20120125124A1 (en) 2012-05-24
CA2770135C (en) 2016-06-07
JP5968221B2 (ja) 2016-08-10

Similar Documents

Publication Publication Date Title
JP5968221B2 (ja) 振動式フローメーターのゼロオフセットを決定する方法及び装置
JP5613766B2 (ja) 振動式フローメーターの差動ゼロオフセットの変化を決定し補償する方法及び装置
JP6580121B2 (ja) 振動型流量計内の差分ゼロオフセットを決定するための装置及び関連する方法
AU2009347133B2 (en) Method and apparatus for determining a flow rate error in a vibrating flow meter
KR102042009B1 (ko) 진동 유량계에서 가변 제로 알고리즘을 적용하기 위한 장치 및 관련된 방법
JP2010505114A (ja) 流量計における幾何学的熱補償のための計器電子装置及び方法
JP2015072284A (ja) 振動式フローメーターのゼロオフセットを決定する方法及び装置
JP2019070662A (ja) 振動型流量計内の差分ゼロオフセットを決定するための装置及び関連する方法
JP2023513689A (ja) 振動流量計における温度流量係数を適用するための装置および関連する方法
JP5952928B2 (ja) 流量計における幾何学的熱補償のための計器電子装置及び方法
JP5728052B2 (ja) 流量計における幾何学的熱補償のための計器電子装置及び方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160705

R150 Certificate of patent or registration of utility model

Ref document number: 5968221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250