JP2013256847A - Core generating device and core generating method - Google Patents

Core generating device and core generating method Download PDF

Info

Publication number
JP2013256847A
JP2013256847A JP2012134955A JP2012134955A JP2013256847A JP 2013256847 A JP2013256847 A JP 2013256847A JP 2012134955 A JP2012134955 A JP 2012134955A JP 2012134955 A JP2012134955 A JP 2012134955A JP 2013256847 A JP2013256847 A JP 2013256847A
Authority
JP
Japan
Prior art keywords
core
excavated soil
mixture
collection container
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012134955A
Other languages
Japanese (ja)
Other versions
JP6056209B2 (en
Inventor
Kazuya Watanabe
和哉 渡辺
Kenichi Ando
賢一 安藤
Chiaki Nagai
千明 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2012134955A priority Critical patent/JP6056209B2/en
Publication of JP2013256847A publication Critical patent/JP2013256847A/en
Application granted granted Critical
Publication of JP6056209B2 publication Critical patent/JP6056209B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently and simply acquire a core with good economical efficiency.SOLUTION: A core generating device 100 includes a mixing device 40 for mixing water 4 with excavated soil 3 occurring with progress of boring, a separation device 60 for reducing flow rate of mixture 5 of the excavated soil 3 and the water 4, and settling the excavated soil 3 of the mixture 5, and a cylindrical body 70 coupled to the lower part of the separation device 60 for accumulating the settled excavated soil 3 therein.

Description

本発明は、コア生成装置およびコア生成方法に関するものであり、具体的には、良好な経済性の下、効率的かつ簡便にコアを取得する技術に関する。   The present invention relates to a core generation apparatus and a core generation method, and specifically relates to a technique for acquiring a core efficiently and easily with good economic efficiency.

構造物の構築や学術的調査などの様々な目的で、地盤における地層の構成や性状を確かめるべくコアサンプリングが行われている。一方、コアサンプリングの対象地盤が軟弱な場合、コア採取自体が困難であり、また、採取したコアをボーリング孔内に落下させる、いわゆるコアロスが生じることも多い。   For various purposes such as construction of structures and academic surveys, core sampling is performed to confirm the composition and properties of the formation in the ground. On the other hand, when the target ground for core sampling is soft, it is difficult to collect the core itself, and so-called core loss is often caused in which the collected core is dropped into the borehole.

そこで、こうした問題に対応したコアサンプリングの技術として、例えば、外管と内管との間に配置された吸引管により土砂を吸引しつつ、外管と外管に固定した吸引管を回転させて掘進し、内管内に収容した試料の下端を閉塞する吸収式ボーリングによるサンプリング装置(特許文献1参照)などが提案されている。   Therefore, as a core sampling technique to cope with such a problem, for example, the suction pipe fixed between the outer pipe and the outer pipe is rotated while sucking earth and sand with the suction pipe disposed between the outer pipe and the inner pipe. A sampling device (see Patent Document 1) using absorption boring that digs up and closes the lower end of the sample accommodated in the inner pipe has been proposed.

また、堆積土や軟質岩などを含む様々な地盤について、単一のシステムで高速且つ高採取率でコアを採取し、酸素汚染のない良質なコアを採取することを目的として、不活性ガスと清水とを混合した懸濁気泡水を掘削機のロッド内に圧送し、コアを大気から隔離した状態で採取する技術(特許文献2参照)なども提案されている。   In addition, for various grounds including sedimentary soils and soft rocks, in order to collect cores at high speed and high sampling rate with a single system and to collect good quality cores without oxygen contamination, inert gas and A technique (see Patent Document 2), in which suspended bubble water mixed with fresh water is pumped into a rod of an excavator and the core is isolated from the atmosphere, has been proposed.

また、砂・礫地盤などの粒状地盤を乱さずに高品質の凍結地盤試料をサンプリングすることを目的として、ボーリング孔内に設置する冷却管に低温流体を流通させることにより周囲の地盤を凍結し、該凍結地盤から凍土をサンプリングする技術(特許文献3参照)なども提案されている。   In addition, in order to sample high-quality frozen ground samples without disturbing granular ground such as sand and gravel ground, the surrounding ground is frozen by circulating a low-temperature fluid through a cooling pipe installed in the borehole. A technique for sampling frozen soil from the frozen ground (see Patent Document 3) has also been proposed.

特開2004−45308号公報JP 2004-45308 A 特開2002−295169号公報JP 2002-295169 A 特開平9−3867号公報Japanese Patent Laid-Open No. 9-3867

しかし、いずれの従来手法でコアサンプリングを行うにしても、専用機材の導入と、ボーリング中における数メートル毎のコア採取作業が必要であり、少なからぬコストと手間、時間を要する。また、コア採取の度に、コアサンプリング用の機材を、地表とコア採取地点との間で往復させる工程が必要であり、ボーリング深度が深くなれば、時間と手間が非常にかかることになる。他方、様々な措置を講じつつコアサンプリングを行っても、一旦コアロスが生じれば、該当箇所における地層の構成や性状について、データの補完をすることは難しい状態となる。   However, even if core sampling is performed by any of the conventional methods, it is necessary to introduce dedicated equipment and to collect cores every few meters during boring, which requires considerable cost, labor, and time. In addition, every time a core is collected, a process of reciprocating the core sampling equipment between the ground surface and the core collection point is required. If the boring depth is deep, it takes time and labor. On the other hand, even if core sampling is performed while taking various measures, once core loss occurs, it is difficult to supplement the data on the structure and properties of the formation at the relevant location.

そこで本発明は、良好な経済性の下、効率的かつ簡便にコアを取得する技術の提供を目的とする。   Accordingly, an object of the present invention is to provide a technique for acquiring a core efficiently and easily with good economic efficiency.

上記課題を解決する本発明のコア生成装置は、ボーリングの進行に伴って発生する掘削土を水と混合する混合装置と、前記掘削土と水との混合物の流速を低下させて、前記混合物のうち掘削土を沈降させる分離装置と、前記分離装置の下部と連結し、前記沈降した掘削土を堆積させる筒状体と、を備えることを特徴とする。   The core generating apparatus of the present invention that solves the above-described problem is a mixing device that mixes excavated soil generated with the progress of boring with water, and reduces the flow rate of the mixture of the excavated soil and water, Of these, a separating device for sinking the excavated soil and a cylindrical body connected to a lower portion of the separator and depositing the settled excavated soil are provided.

このような技術によれば、ボーリング装置で生じた掘削土と水との混合装置や、混合物の流速低下のための配管など、簡易で低コストの装置を導入することで効率的なコア生成を自動的に行う事が出来る。   According to such technology, efficient core generation is achieved by introducing simple and low-cost devices such as drilling soil and water mixing devices generated by boring devices and piping for reducing the flow rate of the mixture. It can be done automatically.

また、ボーリングを連続的に進めつつ、その掘削土を地表の筒状体中に積層してコアを自動生成することが可能であり、従来のごとく、コア採取のためにボーリングを数メートル毎に一時停止させ、コアサンプリング用の機材を、地表とコア採取地点との間で往復させる工程は必要なくなる。したがって、ボーリング深度の深浅に関わらず、コアを効率的かつ手間無く取得することができる。   In addition, it is possible to automatically generate the core by laminating the excavated soil in the surface cylindrical body while continuously boring, and as before, the core is collected every few meters to collect the core. The process of temporarily stopping and reciprocating the core sampling equipment between the ground surface and the core sampling point is not necessary. Therefore, the core can be acquired efficiently and without any trouble regardless of the depth of the boring.

更に、本発明におけるコアは地表に設置された筒状体中に自動生成されるものであり、従来のように、コアサンプリングで得られたコアをボーリング孔内から地表まで保持、運搬する作業は不要であり、ボーリング孔内でのコアサンプリング自体を行わないためにコアロスの恐れが無い。一方、コアサンプリングを伴うボーリングに本発明を適用することで、例えば、コア採取が難しい軟弱地層に対してコアサンプリングを実行し、その結果、コアロスが生じたとしても、このコアサンプリングとは別に本発明の技術により自動生成されているコアを代替のコアとして補完することが出来る。従って、コアロスが生じても、該当箇所の地層の構成や性状の実際を把握することが可能となる。   Furthermore, the core in the present invention is automatically generated in a cylindrical body installed on the ground surface, and the work of holding and transporting the core obtained by core sampling from the borehole to the ground surface as in the prior art is performed. It is not necessary and there is no fear of core loss because core sampling itself is not performed in the borehole. On the other hand, by applying the present invention to boring with core sampling, for example, core sampling is performed on a soft ground layer where it is difficult to collect cores. The core automatically generated by the technology of the invention can be supplemented as an alternative core. Therefore, even if a core loss occurs, it is possible to grasp the actual structure and properties of the stratum in the corresponding location.

また、ボーリング工事で発生する掘削土は、従来であれば産業廃棄物として処分するしかなかったが、本発明のコア生成装置にて用いることで、対象地盤における地層の構成や性状を示すコアとして有効活用されることになる。   In addition, the excavated soil generated in the boring work can only be disposed of as industrial waste in the past, but it can be used in the core generation device of the present invention as a core indicating the structure and properties of the formation in the target ground. It will be used effectively.

従って本発明によれば、良好な経済性の下、効率的かつ簡便にコアを取得することができる。   Therefore, according to the present invention, the core can be obtained efficiently and easily with good economic efficiency.

なお、上述のコア生成装置において、前記分離装置は、前記混合物を前記混合装置から前記筒状体に導く管路からなり、前記筒状体との接続箇所で管径が拡大した構造で、前記混合物の流速を低下させるものである、としてもよい。このような技術によれば、簡単な構造の装置によって、連続的に、混合物からの掘削土の分離を行うことが可能となる。   In the above core generation device, the separation device has a structure in which the mixture is made of a conduit that guides the mixture from the mixing device to the cylindrical body, and the diameter of the pipe is enlarged at a connection portion with the cylindrical body, The flow rate of the mixture may be decreased. According to such a technique, it becomes possible to continuously separate the excavated soil from the mixture by an apparatus having a simple structure.

また、上述のコア生成装置において、前記混合装置は、当該混合装置における内空の壁面に沿って側方に水を噴出させて当該混合装置内に渦流を発生させ、前記掘削土と水の混合を行うものである、としてもよい。このような技術によれば、混合装置の内空の壁面に沿って噴出した水が、前記の内空にて周回して渦流を発生させ、この内空中に投入される掘削土を渦流に巻き込むことになる。渦流を構成する水と渦流に巻き込まれた掘削土は、渦流の回転によって互いによく混合されることになる。   Further, in the above core generating device, the mixing device causes water to be ejected laterally along the inner wall surface of the mixing device to generate a vortex in the mixing device, and the mixing of the excavated soil and water It is good also as what is performed. According to such a technique, the water ejected along the inner wall surface of the mixing device circulates in the inner space to generate a vortex, and the excavated soil thrown into the inner space is entrained in the vortex. It will be. The water constituting the vortex and the excavated soil entrained in the vortex are well mixed with each other by the rotation of the vortex.

また、上述のコア生成装置が、前記混合装置と前記分離装置との間を結ぶ、屈曲を繰り返す管路である洗浄装置を備えるとしてもよい。このような技術によれば、当該洗浄装置に流入した前記混合物の流れを繰り返し屈曲させ、この混合物が含む掘削土の土塊を解きほぐして小径化することが出来る。また、前記混合物の掘削土に付着した掘削用泥水の成分を掘削土から分離させる効果も期待できる。こうした効果は、上述の分離装置にて、混合物から掘削土が効率良く分離されることにつながり、また、筒状体中に沈降、積層する掘削土に、ボーリング削孔用の泥水成分が含まれることを適宜抑制することができる。このことは、筒状体中にて生成されるコアが、地盤における各地層の実際の性状等をよく反映したものとなることにつながる。   Moreover, the above-mentioned core production | generation apparatus is good also as providing the washing | cleaning apparatus which is a pipe line which repeats the bending which connects between the said mixing apparatus and the said separation apparatus. According to such a technique, the flow of the mixture that has flowed into the cleaning device can be bent repeatedly, and the lump of excavated soil contained in the mixture can be unwound and reduced in diameter. Moreover, the effect which isolate | separates from the excavation soil the component of the mud for excavation adhering to the excavation soil of the said mixture can also be expected. Such an effect leads to efficient separation of the excavated soil from the mixture by the above-described separation device, and the excavated soil that settles and stacks in the cylindrical body contains a mud component for boring holes. This can be appropriately suppressed. This leads to the core generated in the cylindrical body well reflecting the actual properties of the various layers in the ground.

また、上述のコア生成装置において、前記筒状体は、全部または一部が透明であるとしてもよい。このような技術によれば、筒状体中に生成されるコアを、その生成中ないし生成完了後に容易に視認することが出来る。なお、上述のコア生成装置において、前記筒状体は樹脂製の袋体であるとしてもよい。このような技術によれば、ボーリングの進行に伴って連続的にコアを生成する際、積層した掘削土にて内空が適宜満たされた筒状体すなわち袋体を、新たな袋体に迅速に交換して、ボーリングの進行と齟齬を来すことなく、円滑にコア生成を継続することが可能である。樹脂製の袋体であれば取り扱いも簡単で、また導入コストも低廉であり、コア生成にかかる手間やコストを更に低減出来る。   Moreover, in the above-described core generation apparatus, all or a part of the cylindrical body may be transparent. According to such a technique, the core produced | generated in a cylindrical body can be easily visually recognized during the production | generation or after the completion of production | generation. In the above core generating apparatus, the cylindrical body may be a resin bag. According to such a technique, when the core is continuously generated with the progress of the boring, the cylindrical body, that is, the bag body in which the inner space is appropriately filled with the stacked excavated soil, is quickly turned into a new bag body. It is possible to continue the core generation smoothly without causing boring and drowning. If it is a resin-made bag body, handling will be easy and introduction cost will also be low, and the effort and cost concerning core production | generation can further be reduced.

また、本発明のコア生成方法は、ボーリングの進行に伴って発生する掘削土を水と混合する工程と、立設された所定の筒状体に対し、前記掘削土と水との混合物を所定の管路を介して流入させる際、前記混合物の流速を低下させて、前記混合物のうち掘削土を前記筒状体内に沈降させ、ボーリングの各進行時点における掘削土を前記筒状体内に積層させる工程と、を含むことを特徴とする。   The core generating method of the present invention includes a step of mixing excavated soil generated with the progress of boring with water, and a predetermined mixture of the excavated soil and water with respect to a predetermined cylindrical body. When flowing through the pipe line, the flow rate of the mixture is reduced, the excavated soil of the mixture is settled in the cylindrical body, and the excavated soil at each progress point of boring is stacked in the cylindrical body And a process.

本発明によれば、良好な経済性の下、効率的かつ簡便にコアを取得することが出来る。   According to the present invention, a core can be obtained efficiently and easily with good economic efficiency.

本実施形態におけるコア生成装置の適用例を示す図である。It is a figure which shows the example of application of the core production | generation apparatus in this embodiment. 本実施形態における混合装置の構成例を示す図である。It is a figure which shows the structural example of the mixing apparatus in this embodiment. 本実施形態における分離装置の概要を示す図である。It is a figure which shows the outline | summary of the separation apparatus in this embodiment. 本実施形態におけるコア収集容器(筒状体)の構成例1を示す図である。It is a figure which shows the structural example 1 of the core collection container (cylindrical body) in this embodiment. 本実施形態におけるコア収集容器(筒状体)の構成例2を示す図である。It is a figure which shows the structural example 2 of the core collection container (cylindrical body) in this embodiment. 本実施形態におけるコア生成方法の実際手順例を示す図である。It is a figure which shows the example of an actual procedure of the core production | generation method in this embodiment.

以下に本発明の実施形態について図面を用いて詳細に説明する。図1は、本実施形態におけるコア生成装置100の適用例を示す図である。本実施形態のコア生成装置100は、ボーリングマシン20で生じる掘削土3を活用し、これをボーリングの進行と共に所定の筒状体内に順次積層させることで簡易にコアを生成するものである。図1の例では、主として、混合装置40、洗浄装置50、分離装置60、およびコア収集容器70(筒状体)にてコア生成装置100を構成した形態を示している。以下、ボーリングマシン20も含め、各装置類について説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a diagram illustrating an application example of the core generation device 100 in the present embodiment. The core generating apparatus 100 of the present embodiment uses the excavated soil 3 generated by the boring machine 20 and generates a core easily by sequentially laminating the excavated soil 3 in a predetermined cylindrical body as the boring progresses. In the example of FIG. 1, the form which comprised the core production | generation apparatus 100 mainly with the mixing apparatus 40, the washing | cleaning apparatus 50, the separation apparatus 60, and the core collection container 70 (cylindrical body) is shown. Hereinafter, each device including the boring machine 20 will be described.

ボーリングマシン20は、構造物の構築に先立つ地盤調査等で用いられる地盤掘削装置であり、例えば、先端にドリルビットを装備した削孔ロッドを把持し回動させる機構と、ベントナイトを含む削孔用泥水2を削孔ロッドに圧送し、削孔動作後の掘削土混じり泥水1を地表に回収する泥水循環機構と、回収した掘削土混じり泥水1をろ過して削孔用泥水2を回収するマッドスクリーン30や、水やベントナイト液を貯留する各種タンク等を備える。   The boring machine 20 is a ground excavating device used in ground surveys and the like prior to construction of a structure, for example, a mechanism for gripping and rotating a drilling rod equipped with a drill bit at the tip, and for drilling including bentonite. A mud circulation mechanism that pumps the mud 2 into the drilling rod and collects the excavated soil mixed mud 1 after the drilling operation, and a mud that collects the excavated soil mixed mud 1 and collects the drilled mud 2 A screen 30 and various tanks for storing water and bentonite liquid are provided.

このボーリングマシン20におけるボーリング削孔で発生する掘削土混じり泥水1は、削孔ロッド先端のドリルビットにより削り取られた地盤の掘削屑すなわち掘削土3が、削孔用泥水2のベントナイトに絡み取られた状態となっている。掘削土混じり泥水1はマッドスクリーン30に供給され、掘削土3と削孔用泥水2との固液分離が図られる。この固液分離すなわち一次分離後の掘削土3は、混合装置40に供給される。他方、固液分離後の削孔用泥水2は、泥水タンク21に貯留され、ポンプ22を介してボーリングマシン20に再度供給されることになる。   In the drilling soil mixed mud water 1 generated in the boring hole in the boring machine 20, ground excavation scraped by the drill bit at the tip of the drilling rod, that is, the drilling soil 3 is entangled with the bentonite of the drilling mud 2. It is in the state. The excavated soil mixed mud 1 is supplied to the mud screen 30, and solid-liquid separation between the excavated soil 3 and the drilling mud 2 is achieved. The excavated soil 3 after the solid-liquid separation, that is, the primary separation is supplied to the mixing device 40. On the other hand, the drilling mud 2 after solid-liquid separation is stored in the mud tank 21 and supplied again to the boring machine 20 via the pump 22.

上述のマッドスクリーン30より掘削土3の供給を受ける混合装置40は、掘削土3を清水4と混合する装置である。より具体的には、図1および図2に示すように、掘削土3と清水4を収容して混合動作を行うための内空44、内空44の壁面45に沿って側方に清水4を噴出させる噴出管42を備える装置となる。噴出管42から噴出した清水4は、壁面45に沿って内空44を周回する噴流となり、渦流43を発生させる。混合装置40における内空44に投入される掘削土3は、渦流43に巻き込まれ、当該渦流43を構成する清水4と十分に混合されることになる。混合装置40では、こうして掘削土3と清水4とが混合され混合物5が生成される。なお、清水4は、清水タンク41に貯留されており、適宜なポンプ等で混合装置40に供給されるものとする。   The mixing device 40 that receives the supply of the excavated soil 3 from the mud screen 30 is a device that mixes the excavated soil 3 with the fresh water 4. More specifically, as shown in FIG. 1 and FIG. 2, the fresh water 4 is accommodated laterally along the inner space 44 for accommodating the excavated soil 3 and the fresh water 4 and performing the mixing operation, and the wall surface 45 of the inner sky 44. It becomes an apparatus provided with the ejection pipe | tube 42 which ejects. The fresh water 4 ejected from the ejection pipe 42 becomes a jet that circulates around the inner sky 44 along the wall surface 45 and generates a vortex 43. The excavated soil 3 put into the inner space 44 in the mixing device 40 is caught in the vortex 43 and sufficiently mixed with the fresh water 4 constituting the vortex 43. In the mixing device 40, the excavated soil 3 and the fresh water 4 are mixed in this way to generate the mixture 5. The fresh water 4 is stored in a fresh water tank 41 and is supplied to the mixing device 40 by an appropriate pump or the like.

混合物5に含まれる掘削土3は、上述したとおりマッドスクリーン30で固液分離がなされたものであるが、固液分離出来なかった、一部の削孔用泥水2(以下、泥水成分とする)が付着したままとなっている。そこで本実施形態においては、この掘削土3が含まれた上述の混合物5を混合装置40から洗浄装置50に供給し、泥水成分を除去すべく洗浄動作を行う。洗浄装置50は、混合装置40と分離装置60との間を結び、屈曲を繰り返す管路(以後、屈曲管路51)から構成されている。   As described above, the excavated soil 3 included in the mixture 5 has been subjected to solid-liquid separation by the mud screen 30, but some of the drilling mud 2 (hereinafter referred to as a muddy water component) that could not be solid-liquid separated. ) Remains attached. Therefore, in the present embodiment, the above-described mixture 5 containing the excavated soil 3 is supplied from the mixing device 40 to the cleaning device 50, and a cleaning operation is performed to remove muddy water components. The cleaning device 50 is composed of a pipe line (hereinafter, a bent pipe line 51) that connects the mixing apparatus 40 and the separation apparatus 60 and repeats bending.

なお、混合装置40、洗浄装置50、および分離装置60は、地表からの配置高さが高い順に、混合装置40、洗浄装置50、分離装置60の順で配置されており、それぞれの装置における混合物5等の液面について水頭差が生じるよう考慮されている。従って、混合装置40における混合物5は、水頭差を利用して洗浄装置50に流れ込み、また、洗浄装置50で洗浄後の混合物5は、水頭差を利用して分離装置60に流れ込む。勿論、こうした水頭差に依存せず、装置間にポンプ等の圧送装置を配置し、混合物5の搬送を図ってもよい。   The mixing device 40, the cleaning device 50, and the separation device 60 are arranged in the order of the arrangement height from the ground surface in the order of the mixing device 40, the cleaning device 50, and the separation device 60, and the mixture in each device. It is considered that a water head difference is generated for a liquid level of 5 etc. Therefore, the mixture 5 in the mixing device 40 flows into the cleaning device 50 using the water head difference, and the mixture 5 washed by the cleaning device 50 flows into the separation device 60 using the water head difference. Of course, without depending on such a water head difference, a pumping device such as a pump may be arranged between the devices to transport the mixture 5.

洗浄装置50をなす屈曲管路51は、流入した混合物5の流れを管路内壁に衝突させながら繰り返し屈曲させることで、混合物5を激しく混ぜ返し、この混合物5が含む掘削土3の土塊を解きほぐして小径化することが出来る。また、混合物5の掘削土3に付着した泥水成分を適宜分離させる(二次分離)。この二次分離後に得られる混合物5は、それまでの掘削土3の状態より小径化および泥水成分の分離が進んだ掘削土7を含むものとなる。こうした混合物5において、上述の掘削土7と泥水成分とは分離しながらも混合された状態で存在している。   The bent pipe 51 constituting the cleaning device 50 is bent repeatedly while colliding the flow of the mixture 5 that has flowed into the inner wall of the pipe, so that the mixture 5 is vigorously mixed back and the mass of the excavated soil 3 included in the mixture 5 is unraveled. The diameter can be reduced. Moreover, the muddy water component adhering to the excavated soil 3 of the mixture 5 is appropriately separated (secondary separation). The mixture 5 obtained after the secondary separation includes the excavated soil 7 in which the diameter of the excavated soil 3 is reduced and the mud component is separated from the state of the excavated soil 3 so far. In such a mixture 5, the excavated soil 7 and the muddy water component are present in a mixed state while being separated.

このような工程を経ることで、以後の分離装置60での処理において、掘削土7のみを効率良く沈降させることが可能となり、ひいては、コア収集容器70に生成されるコアが、地盤における各地層の実際の性状等をよく反映したものとなることにつながる。   Through such a process, it becomes possible to efficiently sink only the excavated soil 7 in the subsequent processing by the separation device 60. As a result, the core generated in the core collection container 70 becomes the various layers in the ground. It will lead to a good reflection of the actual properties of the.

なお、混合物5の含む掘削土3に対する、泥水成分の付着が問題ない程に低レベルである場合、洗浄装置50の配置を省略しても良い。また、図1の洗浄装置50の例では、屈曲管路51が繰り返し屈曲する形態となっているものを示しているが、屈曲の形態については混合物5の性状や流量、流速等に応じて、上述の洗浄動作が効率的に行われる適宜なものを採用すればよい。   In addition, when the muddy water component adheres to the excavated soil 3 included in the mixture 5 at such a low level that there is no problem, the arrangement of the cleaning device 50 may be omitted. In addition, in the example of the cleaning device 50 in FIG. 1, the bent pipe 51 is shown to be repeatedly bent, but the bent shape depends on the properties, flow rate, flow rate, etc. of the mixture 5. An appropriate one that can efficiently perform the above-described cleaning operation may be employed.

分離装置60は、混合物5を洗浄装置50(洗浄装置50を省略した場合は混合装置40)からコア収集容器70に導く管路からなり、図3に例示するように、コア収集容器70との接続箇所62で管径が拡大した構造を備えており、混合物5を流入させる流入管路61と、接続箇所62の下流側にあって、流入管路61よりも管径が大きい流出管路65とからなる。また、分離装置60とコア収集容器70とは一体に接続されており、流出管路65の底面の一部は、コア収集容器70の上部開口71と連続している。   The separation device 60 includes a conduit that guides the mixture 5 from the cleaning device 50 (mixing device 40 when the cleaning device 50 is omitted) to the core collection container 70. As illustrated in FIG. The connecting portion 62 has a structure in which the pipe diameter is enlarged, and an inflow conduit 61 into which the mixture 5 flows, and an outflow conduit 65 that is downstream of the connecting portion 62 and has a larger pipe diameter than the inflow conduit 61. It consists of. Further, the separation device 60 and the core collection container 70 are integrally connected, and a part of the bottom surface of the outflow pipe 65 is continuous with the upper opening 71 of the core collection container 70.

上述の流入管路61を流れていた混合物5は、接続箇所62において、それまでの管径63より大きな管径64の流出管路65に流れ込むことになる。管路の管径がそれまでのものより大きく拡大した場合、該当箇所を進む混合物5の流速は低下する。流速が低下した混合物5では、それまで、分離しながらも一緒に流れていた掘削土7と泥水成分8(図3)のうち、泥水成分8より粒子径と比重の大きい掘削土7は下方に沈降し、流出管路65の底面から、上部開口71を介してコア収集容器70内に沈降していくことになる。一方、流速が低下した混合物5のうち、泥水成分8はそのまま流れに乗って流出管路65を移動し、最終的には沈殿槽80に向け流下する。なお、図3においては、この沈殿槽80は一部のみ記載している。   The mixture 5 that has flowed through the inflow pipe 61 described above flows into the outflow pipe 65 having a pipe diameter 64 larger than the pipe diameter 63 at the connection point 62. When the pipe diameter of the pipe line is larger than that of the previous pipe, the flow rate of the mixture 5 traveling through the corresponding part is reduced. In the mixture 5 with a reduced flow velocity, the excavated soil 7 and the mud component 8 (FIG. 3) that have been separated but flowed together until then are lower in the excavated soil 7 having a particle diameter and specific gravity larger than the mud component 8. It sinks and settles into the core collection container 70 through the upper opening 71 from the bottom surface of the outflow pipe 65. On the other hand, in the mixture 5 whose flow velocity is reduced, the muddy water component 8 is directly carried on the flow, moves through the outflow pipe 65, and finally flows down toward the settling tank 80. In FIG. 3, only a part of the sedimentation tank 80 is shown.

泥水成分8は、沈殿槽80に流入した後、所定期間静置されることで、ベントナイト分9と清水4とに分離する(図1参照)。沈殿槽80の上澄みとなった清水4は、ポンプ82を介して清水タンク41に回収される。   The muddy water component 8 flows into the settling tank 80, and then is allowed to stand for a predetermined period of time, thereby separating it into bentonite 9 and fresh water 4 (see FIG. 1). The fresh water 4 that becomes the supernatant of the settling tank 80 is collected in the fresh water tank 41 via the pump 82.

他方、コア収集容器70内に沈降した掘削土7は、コア収集容器70の底面から順次堆積する。コア収集容器70にて堆積する掘削土7は、ボーリングマシン20でのボーリング対象の地層毎に変化するため、コア収集容器70での掘削土7の堆積が繰り返されることで、異なる性状の掘削土7が順次積み重なって成層した地層状のコア15が形成される。   On the other hand, the excavated soil 7 settled in the core collection container 70 is sequentially deposited from the bottom surface of the core collection container 70. Since the excavated soil 7 accumulated in the core collection container 70 changes for each formation to be drilled by the boring machine 20, the excavated soil 7 in the core collection container 70 is repeatedly deposited, so that the excavated soil having different properties is obtained. The strata-shaped core 15 is formed by sequentially stacking 7 layers.

続いてコア収集容器70の具体的な構造例を図4に示す。上述した通り、コア収集容器70は、分離装置60から沈降してくる掘削土7を堆積させ、コア15を生成する容器である。一方、ボーリングマシン20から排出される掘削土量はボーリング長に対応したものであり、一体のみのコア収集容器70でボーリング中の全深度にわたる地層コアを生成することは難しい場合が多い。したがって、このような状況に対応すべく、複数本のコア収集容器70を用意しておき、その総延長がボーリング全長に対応出来るよう予め備えておくと好適である。   Next, a specific structural example of the core collection container 70 is shown in FIG. As described above, the core collection container 70 is a container for generating the core 15 by depositing the excavated soil 7 settling from the separation device 60. On the other hand, the amount of excavated soil discharged from the boring machine 20 corresponds to the boring length, and it is often difficult to generate a formation core over the entire depth during boring with the core collecting container 70 of only one body. Therefore, in order to cope with such a situation, it is preferable to prepare a plurality of core collection containers 70 and prepare in advance so that the total extension thereof can correspond to the total length of the boring.

こうした構成の例としては、図4に示すように、現時点で使用するコア収集容器70Aが内空76にセットされた容器保持器75と、コア収集容器70Aの使用以降に必要となる予備のコア収集容器70Bらが複数納められた収納器77とを配置してなる構造があげられる。なお、容器保持器75にセットされたコア収集容器70Aが、分離装置60との連結を解除されて内空76から取り出される際、このコア収集容器70Aと一部が緩やかに連結した、予備のコア収集容器70Bが、コア収集容器70Aの取り出し動作に連動して収容器77から引き出され、容器保持器75の内空76にセットされるものとする。勿論、内空76にセットされた予備のコア収集容器70Bは、コア収集容器70Aと同様に分離装置60と連結される。   As an example of such a configuration, as shown in FIG. 4, a container holder 75 in which the core collection container 70A used at the present time is set in the inner space 76, and a spare core required after the use of the core collection container 70A are used. A structure in which a container 77 in which a plurality of collection containers 70B are stored is arranged. In addition, when the core collection container 70A set in the container holder 75 is released from the inner space 76 after being disconnected from the separation device 60, a part of the core collection container 70A is loosely connected. Assume that the core collection container 70B is pulled out of the container 77 in conjunction with the operation of taking out the core collection container 70A and set in the inner space 76 of the container holder 75. Of course, the spare core collection container 70B set in the inner space 76 is connected to the separation device 60 in the same manner as the core collection container 70A.

ここで、容器保持器75にセットされたコア収集容器70Aの上端(開口している)は、分離装置60の底面(開口している)と連結具66をもって水密かつ脱着自在に連結されている。連結具66としては、コア収集容器70Aの上端外周のねじ山と、分離装置60の底面外周のねじ山とに水密に螺合する雌ねじが内壁に設けてある円管を採用できる。或いは、連結具66としては、コア収集容器70Aの上端外周面と、分離装置60の底面外周面とを跨って両者に水密に接合する接合面を内壁に備え、前記の接合面でコア収集容器70Aの上端外周面と分離装置60の底面外周面とを拘束する拘束具なども採用できる。   Here, the upper end (opening) of the core collection container 70 </ b> A set in the container holder 75 is connected to the bottom surface (opening) of the separation device 60 and the connector 66 in a watertight and detachable manner. . As the connector 66, a circular pipe having an inner wall provided with a female screw that is watertightly engaged with a screw thread on the outer periphery of the upper end of the core collection container 70 </ b> A and a screw thread on the outer periphery of the bottom surface of the separation device 60 can be used. Alternatively, as the coupling tool 66, the inner wall includes a joining surface that is watertightly joined to both of the upper end outer circumferential surface of the core collection container 70A and the bottom outer circumferential surface of the separation device 60, and the core collection container at the joint surface. A restraining tool or the like that restrains the outer peripheral surface of the upper end of 70A and the outer peripheral surface of the bottom surface of the separation device 60 can also be employed.

容器保持器75にセットされているコア収集容器70Aにおいて、所定高さまでコア15が生成された場合、例えば、担当者は連結具66での連結をゆるめてコア収集容器70Aを分離装置60から取り外し、容器保持器75から引き出して所定のコア収納箱等に載置する。一方、コア収集容器70Aが容器保持器75から引き出されることに伴い、容器保持器75の内空76には、コア15が未生成の新たなコア収集容器70Bがセットされる。そこで上述の担当者は、このコア収集容器70Bに対し、連結具66をもって分離装置60を連結し、次なるコア15の生成に備える。   In the core collection container 70A set in the container holder 75, when the core 15 is generated up to a predetermined height, for example, the person in charge loosens the connection at the connector 66 and removes the core collection container 70A from the separation device 60. Then, it is pulled out from the container holder 75 and placed in a predetermined core storage box or the like. On the other hand, as the core collection container 70A is pulled out from the container holder 75, a new core collection container 70B in which the core 15 is not generated is set in the inner space 76 of the container holder 75. Therefore, the person in charge described above connects the separation device 60 to the core collection container 70 </ b> B with the connector 66 to prepare for the next generation of the core 15.

なお、コア収集容器70は、全部または一部が透明な部材で構成されたものとすれば、これを扱う担当者は、コア収集容器70中に生成されるコアを、その生成中ないし生成完了後に容易に視認することが出来る。図4、5で示す例では、コア収集容器70の一部に、透視窓72が設けられている。この透視窓72は透明な樹脂材で構成されるものである。   In addition, if the core collection container 70 is made up of a part or all of a transparent member, a person in charge of the core collection container 70 generates or completes the generation of the core generated in the core collection container 70. It can be easily seen later. 4 and 5, a see-through window 72 is provided in a part of the core collection container 70. The see-through window 72 is made of a transparent resin material.

また、コア収集容器70としては、樹脂製の袋体を採用してもよい。ボーリングの進行に伴って連続的にコア15を生成する際、コア15にて適宜満たされた袋体すなわちコア収集容器70を、新たな袋体に迅速に交換して、ボーリングの進行と齟齬を来すことなく、円滑にコア生成を継続することが可能である。樹脂製の袋体であれば取り扱いも簡単で、また導入コストも低廉であり、コア生成にかかる手間やコストを更に低減出来る。   Further, as the core collection container 70, a resin bag may be adopted. When the core 15 is continuously generated along with the progress of the boring, the bag body appropriately filled with the core 15, that is, the core collection container 70 is quickly replaced with a new bag body, and the progress and dredging of the boring are performed. It is possible to continue the core generation smoothly without coming. If it is a resin-made bag body, handling will be easy and introduction cost will also be low, and the effort and cost concerning core production | generation can further be reduced.

コア収集容器70の他の構造例としては図5に示すものも採用できる。この場合、それぞれが洗浄装置50と配管で繋がった複数本のコア収集容器70を並列に用意しておき、ボーリングマシン20でのボーリング進行に伴って配管経路を切り替えることで、使用するコア収集容器70も順次切り替えていき、ボーリング全長に対応出来るよう備えたものとなる。   As another example of the structure of the core collection container 70, the structure shown in FIG. In this case, a plurality of core collection containers 70 each connected to the cleaning device 50 by piping are prepared in parallel, and the core collection container to be used is switched by switching the piping path as the boring machine 20 proceeds with the boring. 70 will also be switched in sequence, so that it can accommodate the full length of the boring.

図5の例では、現時点で使用するコア収集容器70Cと、コア収集容器70Cの使用以降に必要となる予備のコア収集容器70Dとが、それぞれ立設されている。また、コア収集容器70Cは配管67をもって流路スイッチ69に接続し、コア収集容器70Dは配管68をもって流路スイッチ69に接続している。流路スイッチ69は、洗浄装置50から流れてくる混合物5の流下先を切り替えるもので、担当者の操作により、混合物5の流下先を配管66ないし配管67のいずれかに切り替えることができる。図5では、コア収集容器70C、コア収集容器70Dの2本のみが並列した例を示しているが、3本以上が並列する形態を採用しても良い。   In the example of FIG. 5, a core collection container 70C used at the present time and a spare core collection container 70D required after the use of the core collection container 70C are erected. The core collection container 70C is connected to the flow switch 69 through a pipe 67, and the core collection container 70D is connected to the flow switch 69 through a pipe 68. The flow path switch 69 switches the flow destination of the mixture 5 flowing from the cleaning device 50, and the flow destination of the mixture 5 can be switched to one of the pipe 66 or the pipe 67 by the operation of the person in charge. FIG. 5 shows an example in which only two of the core collection container 70C and the core collection container 70D are arranged in parallel, but a form in which three or more of them are arranged in parallel may be adopted.

なお、コア収集容器70Cおよびコア収集容器70Dの各上端(開口している)は、分離装置60の底面(開口している)と連結具66をもって水密かつ脱着自在に連結されている。連結具66の構成は既に上述したものと同様である。混合物5が流下中の分離装置60と連結しているコア収集容器70Cにおいて、所定高さまでコア15が生成された場合、例えば、担当者は流路スイッチ69を操作して、混合物5を流下させる分離装置60を、コア収集容器70Dと連結しているものに切り替える。すると、それまでコア収集容器70Cでコア生成がなされていたが、コア収集容器70Dにてコア生成がなされることになる。他方、上述の担当者は、連結具66での連結をゆるめてコア収集容器70Cを分離装置60から取り外し、所定のコア収納箱等に載置する。また、取り外したコア収集容器70Cに代わり、別のコア収集容器70を分離装置60に連結し、新たなコア生成に備えることとなる。   In addition, each upper end (opening) of the core collection container 70C and the core collection container 70D is connected to the bottom surface (opening) of the separation device 60 and the coupling tool 66 in a watertight and detachable manner. The structure of the connector 66 is the same as that already described above. When the core 15 is generated up to a predetermined height in the core collection container 70 </ b> C connected to the separation device 60 in which the mixture 5 is flowing down, for example, the person in charge operates the flow path switch 69 to flow down the mixture 5. The separation device 60 is switched to the one connected to the core collection container 70D. Then, the core generation has been performed in the core collection container 70C until then, but the core generation is performed in the core collection container 70D. On the other hand, the person in charge described above loosens the connection at the connector 66, removes the core collection container 70C from the separation device 60, and places it in a predetermined core storage box or the like. Further, instead of the removed core collection container 70C, another core collection container 70 is connected to the separation device 60 to prepare for the generation of a new core.

なお、ある時点における、ボーリングマシン20でのボーリング深度の測定値を、同時点でコア収集容器70にて堆積中のコア15の該当箇所、或いはコア収集容器70の該当箇所に記入する動作を繰り返すと、コア15の層厚と実際の地盤の層厚の対応が確認できることとなる。こうした動作は、ボーリングマシン20の制御装置と接続されたコンピュータが制御し実行するとしてもよい。この場合、コンピュータは、ボーリング深度の測定値をボーリングマシン20の制御装置と通信して取得し、コア収集容器70ないしコア15の随意位置に印字や塗装、媒体貼付といった各種マーキングが可能な機構に対し、ボーリング深度の測定値をマーキングする指示を送る。この指示を受けた機構は、指示に含まれるマーキング位置の情報に応じて、コア収集容器70の底部から所定距離上方の位置に、例えば印字装置を移動させ、測定値の印字動作を実行する。なお、こうした、ボーリングマシン20でのボーリング深度(例:1メートルごと)を、同時点でコア収集容器70にて堆積中のコア15の該当箇所、或いはコア収集容器70の該当箇所に記入する動作を、作業担当者が実行するとしてもよい。   In addition, the operation | movement which fills the measured value of the boring depth in the boring machine 20 in a certain time into the corresponding location of the core 15 currently deposited in the core collection container 70 or the corresponding location of the core collection container 70 at the same time is repeated. Then, the correspondence between the layer thickness of the core 15 and the actual layer thickness of the ground can be confirmed. Such an operation may be controlled and executed by a computer connected to the control device of the boring machine 20. In this case, the computer acquires a measurement value of the boring depth by communicating with the control device of the boring machine 20, and has a mechanism capable of performing various markings such as printing, painting, and medium pasting at arbitrary positions of the core collection container 70 or the core 15. An instruction to mark the measurement value of the boring depth is sent. The mechanism that has received this instruction moves the printing device, for example, to a position above a predetermined distance from the bottom of the core collection container 70 in accordance with the information on the marking position included in the instruction, and executes the measurement value printing operation. The operation of entering the boring depth (for example, every 1 meter) in the boring machine 20 in the corresponding part of the core 15 being deposited in the core collecting container 70 or the corresponding part of the core collecting container 70 at the same time. May be executed by a worker.

コア収集容器70に生成したコア15は、このように実際のボーリング深度との対応付けを行うことで、より精度を向上させることもできる。また、ボーリング孔での各種の検層データと組み合わせることで、層厚や性状等がコア15にて既に判明している地層での重複検層の回避や、互いのデータ補完なども可能である。   The core 15 generated in the core collection container 70 can be further improved in accuracy by associating with the actual boring depth in this way. In addition, by combining with various logging data in the borehole, it is possible to avoid duplicate logging in the formation whose layer thickness and properties are already known in the core 15, and to complement each other's data. .

他方、コア収集容器70内に沈降した掘削土7は、コア収集容器70の底面から順次堆積する。コア収集容器70にて堆積する掘削土7は、ボーリングマシン20でのボーリング対象の地層毎に変化するため、コア収集容器70での掘削土7の堆積が繰り返されることで、異なる性状の掘削土7が順次積み重なって成層した地層状のコア15が形成される。   On the other hand, the excavated soil 7 settled in the core collection container 70 is sequentially deposited from the bottom surface of the core collection container 70. Since the excavated soil 7 accumulated in the core collection container 70 changes for each formation to be drilled by the boring machine 20, the excavated soil 7 in the core collection container 70 is repeatedly deposited, so that the excavated soil having different properties is obtained. The strata-shaped core 15 is formed by sequentially stacking 7 layers.

なお、上述のコア15を構成する各層の層厚が、対応する地層(ボーリングマシン20でのボーリング対象の地層)の層厚に単純に比例しない場合も十分に考えられる。例えば、同じ層厚ではあるが強度が大きく異なる地層(例:固く締まった砂質土層と非常に軟弱な粘性土層)のそれぞれで削孔を実行した場合、得られる掘削土7の性状は大きく異なるため、コア収集容器70に堆積した場合の層厚は異なることが考えられる。また、1つの地層での削孔により得た削孔土7であったとしても、その洗浄等に使用した水量が時間的に変化したならば、時間的に削孔土7の性状も変化し、コア収集容器70において時間毎に異なる層を形成することが考えられる。   In addition, the case where the layer thickness of each layer constituting the core 15 described above is not simply proportional to the layer thickness of the corresponding formation (the formation target for the boring machine 20) is sufficiently conceivable. For example, when drilling is performed in each of the strata having the same layer thickness but significantly different strength (eg, a tight sandy soil layer and a very soft viscous soil layer), the properties of the excavated soil 7 obtained are It is conceivable that the layer thickness when deposited on the core collection container 70 is different because it is greatly different. Moreover, even if it is the drilling soil 7 obtained by drilling in one formation, if the amount of water used for the cleaning changes with time, the properties of the drilling soil 7 also change with time. It is conceivable that different layers are formed in the core collection container 70 every time.

続いてコア収集容器70の具体的な構造例を図4に示す。上述した通り、コア収集容器70は、分離装置60から沈降してくる掘削土7を堆積させ、コア15を生成する容器である。一方、ボーリングマシン20から排出される掘削土量はボーリング長に対応したものであり、一体のみのコア収集容器70でボーリング中の全深度にわたる地層コアを生成することは難しい場合が多い。したがって、このような状況に対応すべく、複数本のコア収集容器70を用意しておき、その総延長がボーリング全長に対応出来るよう予め備えておくと好適である。   Next, a specific structural example of the core collection container 70 is shown in FIG. As described above, the core collection container 70 is a container for generating the core 15 by depositing the excavated soil 7 settling from the separation device 60. On the other hand, the amount of excavated soil discharged from the boring machine 20 corresponds to the boring length, and it is often difficult to generate a formation core over the entire depth during boring with the core collecting container 70 of only one body. Therefore, in order to cope with such a situation, it is preferable to prepare a plurality of core collection containers 70 and prepare in advance so that the total extension thereof can correspond to the total length of the boring.

次に、本実施形態のコア生成方法の手順について説明する。図6は本実施形態におけるコア生成方法の実際手順例を示す図である。ここで、上述のコア生成装置100のうち、分離装置60およびコア収集容器70は、いずれも清水4で予め満たされているものとする。また、ボーリングマシン20でのボーリングで発生する掘削土混じり泥水1は、マッドスクリーン30に供給され、掘削土3と削孔用泥水2との固液分離が図られるものとする。   Next, the procedure of the core generation method of this embodiment will be described. FIG. 6 is a diagram illustrating an actual procedure example of the core generation method according to the present embodiment. Here, it is assumed that the separation device 60 and the core collection container 70 of the core generation device 100 described above are pre-filled with fresh water 4. Further, the excavated soil mixed mud 1 generated by the boring in the boring machine 20 is supplied to the mud screen 30 and the solid-liquid separation between the excavated soil 3 and the drilling mud 2 is achieved.

この場合、マッドスクリーン30での固液分離で得られた掘削土3を、ベルトコンベア等の適宜な搬送装置で混合装置40に供給する(s100)。マッドスクリーン30より掘削土3の供給を受けた混合装置40は、内空44に掘削土3を投入すると共に、噴出管42より壁面45に沿って清水4を噴出させ、掘削土3と清水4とを混合し混合物5を生成する(s101)。こうした掘削土3と清水4との混合は、既に述べた渦流43により効率良く実行される。   In this case, the excavated soil 3 obtained by solid-liquid separation on the mud screen 30 is supplied to the mixing device 40 by an appropriate conveying device such as a belt conveyor (s100). The mixing device 40 that has received the supply of the excavated soil 3 from the mud screen 30 puts the excavated soil 3 into the inner space 44, and ejects fresh water 4 along the wall surface 45 from the ejection pipe 42. Are mixed to form a mixture 5 (s101). The mixing of the excavated soil 3 and the fresh water 4 is efficiently performed by the vortex 43 described above.

続いて、混合装置40で生成した混合物5を洗浄装置50の屈曲管路51に供給し、洗浄動作を行う(s102)。屈曲管路51に流入した混合物5の流れが、管路内壁に衝突しながら繰り返し屈曲することで、混合物5の掘削土3に付着した泥水成分8の分離が図られる。この二次分離後に得られる混合物5は、それまでの掘削土3の状態より泥水成分8の分離が進んだ掘削土7を含むことになる。   Then, the mixture 5 produced | generated with the mixing apparatus 40 is supplied to the bending pipe line 51 of the washing | cleaning apparatus 50, and washing | cleaning operation | movement is performed (s102). The flow of the mixture 5 flowing into the bent pipe 51 is repeatedly bent while colliding with the inner wall of the pipe, whereby the muddy water component 8 attached to the excavated soil 3 of the mixture 5 is separated. The mixture 5 obtained after the secondary separation includes the excavated soil 7 in which the separation of the mud component 8 has progressed from the state of the excavated soil 3 so far.

また、洗浄装置50で上述の洗浄動作を受けた混合物5を、分離装置60に供給する。分離装置60では、流入管路61にて、洗浄装置50から混合物5の供給を受け入れる。この流入管路61を流れていた混合物5は、接続箇所62において、それまでの管径63より大きな管径64の流出管路65に流れ込むことで、その流速が低下する。流速が大きく低下した混合物5では、それまで、分離しながらも一緒に流れていた掘削土7と泥水成分8のうち、泥水成分8より粒子径と比重の大きい掘削土7が下方に沈降する。   Further, the mixture 5 subjected to the above-described cleaning operation by the cleaning device 50 is supplied to the separation device 60. In the separation device 60, the supply of the mixture 5 is received from the cleaning device 50 through the inflow conduit 61. The mixture 5 flowing through the inflow pipe 61 flows into the outflow pipe 65 having a pipe diameter 64 larger than the pipe diameter 63 so far at the connection location 62, so that the flow velocity thereof decreases. In the mixture 5 in which the flow velocity is greatly reduced, among the excavated soil 7 and the mud component 8 that have flowed together while being separated, the excavated soil 7 having a particle diameter and specific gravity larger than that of the mud component 8 sinks downward.

この掘削土7は、流出管路65の底面からコア収集容器70の上部開口71を介し、コア収集容器70内へ沈降していくことになる(s103)。コア収集容器70において、上部開口71から下方に沈降した掘削土7は、コア収集容器70の底面から順次堆積する。コア収集容器70にて堆積する掘削土7は、ボーリングマシン20でのボーリング対象の地層毎に変化するため、コア収集容器70での掘削土7の堆積が繰り返されることで、異なる性状の掘削土7が順次積み重なって成層した地層状のコア15が形成される。   The excavated soil 7 settles into the core collection container 70 from the bottom surface of the outflow pipe 65 through the upper opening 71 of the core collection container 70 (s103). In the core collection container 70, the excavated soil 7 that sinks downward from the upper opening 71 is sequentially deposited from the bottom surface of the core collection container 70. Since the excavated soil 7 accumulated in the core collection container 70 changes for each formation to be drilled by the boring machine 20, the excavated soil 7 in the core collection container 70 is repeatedly deposited, so that the excavated soil having different properties is obtained. The strata-shaped core 15 is formed by sequentially stacking 7 layers.

他方、流速が大きく低下した混合物5のうち、泥水成分8はそのまま流れに乗って流出管路65を移動し、最終的には沈殿槽80に向け流下する。泥水成分8は、沈殿槽80に流入した後、所定期間静置されることで、ベントナイト分9と清水4とに分離する。沈殿槽80の上澄みとなった清水4は、ポンプ82を介して清水タンク41に回収される。   On the other hand, in the mixture 5 whose flow velocity is greatly reduced, the muddy water component 8 rides on the flow as it is, moves through the outflow pipe 65, and finally flows down toward the settling tank 80. The muddy water component 8 flows into the settling tank 80 and is then allowed to stand for a predetermined period of time, whereby it is separated into bentonite 9 and fresh water 4. The fresh water 4 that becomes the supernatant of the settling tank 80 is collected in the fresh water tank 41 via the pump 82.

上述の各ステップを経た後、コア収集容器70においてコア15が所定高さまで生成されているか否か、および、ボーリングマシン20でのボーリングが終了したか確認する(s104)。この確認の結果、ボーリングマシン20でのボーリングが終了していた場合(s105:N)、コア収集容器70を回収し(s106)、処理を終了する。   After the above steps, it is confirmed whether or not the core 15 has been generated to a predetermined height in the core collection container 70 and whether or not the boring in the boring machine 20 has been completed (s104). As a result of this confirmation, when the boring in the boring machine 20 has been completed (s105: N), the core collection container 70 is collected (s106), and the process is terminated.

一方、ボーリングマシン20でのボーリングが進行中(s105:Y)であって、コア15が未だ所定高さまで生成されていない場合(s107:NG)、そのまま現在使用中のコア収集容器70を利用し、コア生成を継続すると判断し、上述のステップs100〜s104を繰り返し実行する。   On the other hand, when the boring in the boring machine 20 is in progress (s105: Y) and the core 15 has not yet been generated to a predetermined height (s107: NG), the core collection container 70 currently in use is used as it is. The core generation is determined to be continued, and the above steps s100 to s104 are repeatedly executed.

他方、ボーリングマシン20でのボーリングが進行中(s105:Y)であって、コア15が所定高さまで生成されている場合(s107:OK)、コア収集容器70の交換が必要であると判定し、担当者は、コア15で満たされたコア収集容器70に代わり、新たなコア収集容器70に交換し(s108)、コア生成を継続する(s100〜s104)。コア収集容器70の交換や回収については既に上述した手順と同様となる。こうして、ボーリングマシン20でのボーリング進行に伴ってコア収集容器70を順次交換し、ボーリング全長に対応したコア生成を行うこととなる。こうしたコア収集容器70の交換作業は、コア収集容器70が、ビニール等の樹脂製の袋体であれば取り扱いも簡便であり、作業効率が高まる。   On the other hand, when the boring in the boring machine 20 is in progress (s105: Y) and the core 15 is generated to a predetermined height (s107: OK), it is determined that the core collection container 70 needs to be replaced. The person in charge replaces the core collection container 70 filled with the core 15 with a new core collection container 70 (s108), and continues the core generation (s100 to s104). The replacement and recovery of the core collection container 70 is the same as the procedure described above. In this way, the core collection container 70 is sequentially replaced with the progress of the boring in the boring machine 20, and the core corresponding to the entire length of the boring is generated. Such a replacement operation of the core collection container 70 is easy to handle if the core collection container 70 is a bag made of resin such as vinyl, and the work efficiency is increased.

以上、本実施形態によれば、良好な経済性の下、効率的かつ簡便にコアを取得することが出来る。また、本発明の実施の形態について、その実施の形態に基づき具体的に説明したが、これに限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。   As described above, according to the present embodiment, the core can be obtained efficiently and easily with good economic efficiency. Further, although the embodiment of the present invention has been specifically described based on the embodiment, the present invention is not limited to this, and various modifications can be made without departing from the scope of the invention.

1 泥水
2 削孔用泥水
3 掘削土
4 清水
5 混合物
7 掘削土
8 泥水成分
9 ベントナイト分
20 ボーリングマシン
21 泥水タンク
22 ポンプ
30 マッドスクリーン
40 混合装置
41 清水タンク
42 噴出管
43 渦流
44 内空
45 壁面
50 洗浄装置
51 屈曲管路
60 分離装置
61 流入管路
62 接続箇所
63、64 管径
65 流出管路
66 連結具
67 68 配管
69 流路スイッチ
70 コア収集容器(筒状体)
70A、70B、70C、70D コア収集容器
71 上部開口
72 透視窓
75 容器保持器
76 内空
77 収容器
80 沈殿槽
82 ポンプ
100 コア生成装置
DESCRIPTION OF SYMBOLS 1 Mud 2 Drilling mud 3 Drilling soil 4 Fresh water 5 Mixture 7 Drilling soil 8 Mud component 9 Bentonite component 20 Boring machine 21 Mud tank 22 Pump 30 Mud screen 40 Mixing device 41 Fresh water tank 42 Jet pipe 43 Eddy current 44 Inner air 45 Wall surface 50 Cleaning Device 51 Bent Pipe Line 60 Separating Device 61 Inflow Pipe Line 62 Connection Portion 63, 64 Pipe Diameter 65 Outlet Pipe Line 66 Connector 67 68 Pipe 69 Flow Switch 70 Core Collection Container (Cylindrical Body)
70A, 70B, 70C, 70D Core collection container 71 Upper opening 72 Transparent window 75 Container holder 76 Inner space 77 Container 80 Settling tank 82 Pump 100 Core generator

Claims (7)

ボーリングの進行に伴って発生する掘削土を水と混合する混合装置と、
前記掘削土と水との混合物の流速を低下させて、前記混合物のうち掘削土を沈降させる分離装置と、前記分離装置の下部と連結し、前記沈降した掘削土を堆積させる筒状体と、
を備えることを特徴とするコア生成装置。
A mixing device for mixing excavated soil generated with the progress of boring with water;
A separator for lowering a flow rate of the mixture of the excavated soil and water, and sinking the excavated soil out of the mixture; a cylindrical body connected to a lower portion of the separator and depositing the settled excavated soil;
A core generation device comprising:
請求項1において、
前記分離装置は、前記混合物を前記混合装置から前記筒状体に導く管路からなり、前記筒状体との接続箇所で管径が拡大した構造で、前記混合物の流速を低下させるものであることを特徴とするコア生成装置。
In claim 1,
The separation device includes a pipe line that guides the mixture from the mixing device to the cylindrical body, and has a structure in which a pipe diameter is enlarged at a connection portion with the cylindrical body, and reduces the flow rate of the mixture. A core generator characterized by that.
請求項1または2において、
前記混合装置は、当該混合装置における内空の壁面に沿って側方に水を噴出させて当該混合装置内に渦流を発生させ、前記掘削土と水の混合を行うものであることを特徴とするコア生成装置。
In claim 1 or 2,
The mixing device is characterized in that water is jetted laterally along an inner wall surface of the mixing device to generate a vortex flow in the mixing device, thereby mixing the excavated soil and water. A core generator.
請求項1〜3のいずれかにおいて、
前記混合装置と前記分離装置との間を結ぶ、屈曲を繰り返す管路である洗浄装置を備えることを特徴とするコア生成装置。
In any one of Claims 1-3,
A core generating apparatus comprising a cleaning device that is a pipe line that repeatedly bends and connects between the mixing device and the separation device.
請求項1〜4のいずれかにおいて、
前記筒状体は、全部または一部が透明であることを特徴とするコア生成装置。
In any one of Claims 1-4,
The core generator is characterized in that all or part of the cylindrical body is transparent.
請求項5において、
前記筒状体は樹脂製の袋体であることを特徴とするコア生成装置。
In claim 5,
The said cylindrical body is a resin-made bag body, The core production | generation apparatus characterized by the above-mentioned.
ボーリングの進行に伴って発生する掘削土を水と混合する工程と、
立設された所定の筒状体に対し、前記掘削土と水との混合物を所定の管路を介して流入させる際、前記混合物の流速を低下させて、前記混合物のうち掘削土を前記筒状体内に沈降させ、ボーリングの各進行時点における掘削土を前記筒状体内に積層させる工程と、
を含むことを特徴とするコア生成方法。
Mixing the excavated soil generated with the progress of boring with water;
When the mixture of the excavated soil and water flows into the predetermined cylindrical body standing through the predetermined pipeline, the flow rate of the mixture is reduced, and the excavated soil of the mixture is removed from the cylinder. Settling in the cylindrical body, and laminating excavated soil at each progress point of the boring in the cylindrical body,
A core generation method comprising:
JP2012134955A 2012-06-14 2012-06-14 Core generation apparatus and core generation method Expired - Fee Related JP6056209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012134955A JP6056209B2 (en) 2012-06-14 2012-06-14 Core generation apparatus and core generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012134955A JP6056209B2 (en) 2012-06-14 2012-06-14 Core generation apparatus and core generation method

Publications (2)

Publication Number Publication Date
JP2013256847A true JP2013256847A (en) 2013-12-26
JP6056209B2 JP6056209B2 (en) 2017-01-11

Family

ID=49953491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012134955A Expired - Fee Related JP6056209B2 (en) 2012-06-14 2012-06-14 Core generation apparatus and core generation method

Country Status (1)

Country Link
JP (1) JP6056209B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658599A (en) * 1979-10-17 1981-05-21 Agency Of Ind Science & Technol Treatment of muddy water discharged from construction work or the like
JPH0854334A (en) * 1994-08-11 1996-02-27 Daiwa House Ind Co Ltd Simple method for mechanical analysis of soil by sedimentation
JPH1088130A (en) * 1996-09-09 1998-04-07 Shimizu Corp Production of muddy water
JP2002188082A (en) * 2000-12-19 2002-07-05 Fudo Constr Co Ltd Muddy water and method for producing the same
JP2004045308A (en) * 2002-07-15 2004-02-12 Kansai Electric Power Co Inc:The Sampling construction method by suction type boring, and its apparatus
JP2004150264A (en) * 2002-10-07 2004-05-27 Motoharu Tsukada Excavating fluid generator, excavating fluid generating method and excavating system
JP2004313903A (en) * 2003-04-15 2004-11-11 Hitachi Constr Mach Co Ltd Method and system for treatment of soil contaminated with oil
JP2005238207A (en) * 2004-02-27 2005-09-08 Astec:Kk Engineering method for cleaning contaminated soil
JP2006070619A (en) * 2004-09-03 2006-03-16 Chuo Kaihatsu Kk Core sampling boring system and core sampling boring method
JP2008008066A (en) * 2006-06-30 2008-01-17 Chuo Kaihatsu Kk Sampling and working method of sterile and oxygen-free core and system therefor
JP2010029809A (en) * 2008-07-30 2010-02-12 Okumura Corp Polluted soil purifying method
JP2010242410A (en) * 2009-04-07 2010-10-28 Fudo Tetra Corp Apparatus and method for regenerating removed sludge
JP2011032826A (en) * 2009-08-05 2011-02-17 Ryudoka Shori Koho Sogo Kanri:Kk Method of manufacturing fluidized soil

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658599A (en) * 1979-10-17 1981-05-21 Agency Of Ind Science & Technol Treatment of muddy water discharged from construction work or the like
JPH0854334A (en) * 1994-08-11 1996-02-27 Daiwa House Ind Co Ltd Simple method for mechanical analysis of soil by sedimentation
JPH1088130A (en) * 1996-09-09 1998-04-07 Shimizu Corp Production of muddy water
JP2002188082A (en) * 2000-12-19 2002-07-05 Fudo Constr Co Ltd Muddy water and method for producing the same
JP2004045308A (en) * 2002-07-15 2004-02-12 Kansai Electric Power Co Inc:The Sampling construction method by suction type boring, and its apparatus
JP2004150264A (en) * 2002-10-07 2004-05-27 Motoharu Tsukada Excavating fluid generator, excavating fluid generating method and excavating system
JP2004313903A (en) * 2003-04-15 2004-11-11 Hitachi Constr Mach Co Ltd Method and system for treatment of soil contaminated with oil
JP2005238207A (en) * 2004-02-27 2005-09-08 Astec:Kk Engineering method for cleaning contaminated soil
JP2006070619A (en) * 2004-09-03 2006-03-16 Chuo Kaihatsu Kk Core sampling boring system and core sampling boring method
JP2008008066A (en) * 2006-06-30 2008-01-17 Chuo Kaihatsu Kk Sampling and working method of sterile and oxygen-free core and system therefor
JP2010029809A (en) * 2008-07-30 2010-02-12 Okumura Corp Polluted soil purifying method
JP2010242410A (en) * 2009-04-07 2010-10-28 Fudo Tetra Corp Apparatus and method for regenerating removed sludge
JP2011032826A (en) * 2009-08-05 2011-02-17 Ryudoka Shori Koho Sogo Kanri:Kk Method of manufacturing fluidized soil

Also Published As

Publication number Publication date
JP6056209B2 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
RU2013145618A (en) CLEANING DEVICE AND METHOD FOR CLEANING DRILLING MILL WHILE DRILLING WITH SELECTION OF ROCK SAMPLES
CN104533324B (en) Oil drilling equipment and its solid controlling environment protection circulation of drilling fluid processing system
NO20120277A1 (en) Procedures for combined cleaning and plugging in a well, as well as flushing tools for flushing in a well
CN107478458A (en) Three-D sequential vector sediment trap
US9416903B2 (en) Method and device for removal of a hydrate plug
JP2003193787A (en) Method and system for collecting gas hydrate by boring
JP2014512469A (en) Apparatus and method for taking out solid matter in water bottom
NO336038B1 (en) Procedure for establishing a new well path from an existing well
CN106223887A (en) A kind of portable sampling equipment used for geological prospecting
CN109854193B (en) Mud circulation system and method for submarine drilling machine
JP6056209B2 (en) Core generation apparatus and core generation method
AU2013204746B2 (en) Sample Removal Unit
JP5268070B2 (en) Slime property management method and automatic slime processing equipment
JP2003193788A (en) Method and system for collecting gas hydrate by boring
CN101963045A (en) Slag salvaging drill of slurry roller bit and slag salvaging basket
CN216518012U (en) Underground slurry-water balance pipe-jacking tunneling device slurry-water system
US270488A (en) Drilling apparatus
KR101824195B1 (en) Mud storage tanks
JPH0560663A (en) Method for sampling underwater deposited earth and sand
CN107588983B (en) Continuous sampling system of drilling engineering earth&#39;s surface sand sample
CN110295910B (en) Method and device for mining argillaceous powder sand mould ore deposit
JP5371671B2 (en) Excavation apparatus and excavation method
WO2012014178A2 (en) Drilling fluid recovery when drilling under an obstacle or water body
JP2016108867A (en) Gas-hydrate recovery method, and recovery system thereof
CN116537721B (en) Slurry circulation construction process in underground directional drilling and laying construction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161121

R150 Certificate of patent or registration of utility model

Ref document number: 6056209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees