JP2013256753A - High pressure injection method and soil improvement method - Google Patents

High pressure injection method and soil improvement method Download PDF

Info

Publication number
JP2013256753A
JP2013256753A JP2012131511A JP2012131511A JP2013256753A JP 2013256753 A JP2013256753 A JP 2013256753A JP 2012131511 A JP2012131511 A JP 2012131511A JP 2012131511 A JP2012131511 A JP 2012131511A JP 2013256753 A JP2013256753 A JP 2013256753A
Authority
JP
Japan
Prior art keywords
ground
temperature
injection
water
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012131511A
Other languages
Japanese (ja)
Other versions
JP6124326B2 (en
Inventor
Noriko Kikuhara
紀子 菊原
Takahiro Kumagai
隆宏 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2012131511A priority Critical patent/JP6124326B2/en
Publication of JP2013256753A publication Critical patent/JP2013256753A/en
Application granted granted Critical
Publication of JP6124326B2 publication Critical patent/JP6124326B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high pressure injection method with which a ground can be efficiently cut to enlarge a cutting range and mud can be softened uniformly by mixing cut mud and water uniformly, and a soil improvement method employing the high pressure injection method.SOLUTION: When cutting a ground by injecting high pressure water J into the ground G, according to a high pressure injection method, the high pressure water is injected at a temperature higher than a mud temperature within the ground by 20°C or more and lower than a water boiling temperature.

Description

本発明は、地盤内で高圧水を噴射する高圧噴射方法およびこの高圧噴射方法を用いた地盤改良工法に関する。   The present invention relates to a high-pressure injection method for injecting high-pressure water in the ground and a ground improvement method using this high-pressure injection method.

コラムジェットグラウド工法等の高圧噴射攪拌工法では、高圧水により地盤を切削した後、固化材を噴射して地盤内に改良体を造成することで地盤改良を行っている。   In the high-pressure jet stirring method such as the column jet grout method, the ground is improved by cutting the ground with high-pressure water and then injecting a solidified material to create an improved body in the ground.

たとえば、特許文献1は、地盤中に挿入した噴射管の先端部に設けた高圧液噴射ノズルから高圧水を噴射して対象地盤を緩めて泥土化し、次いでこの緩んだ地盤中に固化材スラリーなどが添加された自硬性材料を圧入することにより、その弛緩泥土を押し上げて排除するとともに前記自硬性材料による置換を行い地盤改良体を造成する地盤改良工法を開示する。   For example, in Patent Document 1, high pressure water is injected from a high pressure liquid injection nozzle provided at the tip of an injection pipe inserted into the ground to loosen the target ground to form mud, and then solidified material slurry or the like in the loose ground A ground improvement method is disclosed in which a self-hardening material to which is added is pressed into the mud to remove the loose mud and is replaced with the self-hardening material to create a ground improvement body.

また、特許文献2は、安定処理土が凍結しないよう高温のセメントスラリーを使用する寒冷地における土質安定化処理方法を提案する。特許文献3は、熱湯を用いた高圧噴射による深度方向へのボーリングを行ったり、熱湯で湯割りしたセメントスラリーを使用する軟弱地質改良工法を提案する。   Patent Document 2 proposes a soil stabilization method in a cold region that uses high-temperature cement slurry so that the stabilized soil does not freeze. Patent Document 3 proposes a soft geological improvement method using bored in the depth direction by high-pressure injection using hot water or using cement slurry divided into hot water.

特公平7−111052号公報Japanese Examined Patent Publication No. 7-111052 特開2010−180691号公報JP 2010-180691 A 特開昭58−168717号公報JP 58-168717 A

従来工法によれば、一度の高圧噴射で切削できる地盤の範囲に限界があり、効率良い切削方法が求められていた。また、切削後の切削範囲における粘土と水の混合が均一でないことがあり、その後に造成される改良体の品質向上が課題の一つであった。   According to the conventional construction method, there is a limit to the range of ground that can be cut by one high-pressure injection, and an efficient cutting method has been demanded. Moreover, the mixing of the clay and water in the cutting range after cutting may not be uniform, and the improvement of the quality of the improved body produced after that was one of the problems.

本発明は、上述のような従来技術の問題に鑑み、地盤を効率良く切削し切削範囲を大きくできるとともに、切削泥土と水とを均一に混合して均質に軟泥化できる高圧噴射方法およびこの高圧噴射方法を用いた地盤改良工法を提供することを目的とする。   In view of the above-described problems of the conventional technology, the present invention can efficiently cut the ground to increase the cutting range, and can uniformly cut soft mud by uniformly mixing the cutting mud and water and the high pressure. It aims at providing the ground improvement construction method using the injection method.

上記目的を達成するために、本実施形態による高圧噴射方法は、高圧水を地盤内に噴射して地盤を切削する高圧噴射方法であって、前記高圧水を前記地盤内の泥温よりも20℃以上の温度で水沸騰温度未満として噴射することを特徴とする。   In order to achieve the above object, the high-pressure injection method according to the present embodiment is a high-pressure injection method in which high-pressure water is injected into the ground to cut the ground, and the high-pressure water is discharged from the mud temperature in the ground. It is characterized by spraying at a temperature of ℃ or higher and lower than the water boiling temperature.

この高圧噴射方法によれば、地盤内の泥温よりも20℃以上高温の高温高圧水を用いることで、噴流の減衰性が小さくなり、噴流の到達性が向上するので、地盤を効率良く切削し切削範囲を大きくすることができる。また、高温水の温度は、水沸騰温度未満であり、沸騰するような高温でないので、温度管理がしやすい。また、切削泥土と水とが均一に混合されやすいため、未混合土塊を残すことなく均質に軟泥化することができる。その結果、作業効率および地盤内に造成される改良体の品質を向上できる。   According to this high-pressure injection method, by using high-temperature high-pressure water that is 20 ° C. or more higher than the mud temperature in the ground, the jet flow attenuation is reduced and the jet reachability is improved, so the ground is efficiently cut. The cutting range can be increased. Moreover, the temperature of the high-temperature water is lower than the water boiling temperature and is not high enough to boil, so that temperature management is easy. Moreover, since the cutting mud and water are easily mixed uniformly, the mud can be uniformly softened without leaving an unmixed soil mass. As a result, the work efficiency and the quality of the improved body created in the ground can be improved.

上記高圧噴射方法前記高圧水を噴射させる噴射ノズルの近傍に温度センサを配置し、前記温度センサの測定結果に基づいて前記高圧水の温度を所定温度になるように管理することが好ましい。これにより、高温水の温度を確実に制御し管理することができる。   Preferably, a temperature sensor is disposed in the vicinity of the injection nozzle that injects the high-pressure water, and the temperature of the high-pressure water is controlled to be a predetermined temperature based on the measurement result of the temperature sensor. Thereby, the temperature of high temperature water can be reliably controlled and managed.

また、前記高圧水が内部を通るロッドと、前記ロッドの長手方向に順に配置されるとともに前記高圧水を水平方向に噴射させる第1、第2および第3の噴射ノズルと、を有する噴射装置を用いて前記噴射を行うことが好ましい。   An injection apparatus comprising: a rod through which the high-pressure water passes; and first, second, and third injection nozzles that are sequentially arranged in the longitudinal direction of the rod and that inject the high-pressure water in a horizontal direction. It is preferable to perform the said injection using.

上記三点噴射型の噴射ノズルを用いる場合、前記中央に配置された前記第2の噴射ノズルのノズル径が、その両端に配置された前記第1および第3の噴射ノズルの径よりも小さいことが好ましい。これにより、噴流の到達性をいっそう向上できる。   When the three-point injection type injection nozzle is used, the nozzle diameter of the second injection nozzle arranged at the center is smaller than the diameters of the first and third injection nozzles arranged at both ends thereof. Is preferred. Thereby, the reachability of a jet can be improved further.

本実施形態による地盤改良工法は、上述の高圧噴射方法を用いて、改良対象地盤内において前記高圧水を噴射することで地盤切削を行い、軟泥化域を形成し、前記軟泥化域に改良体を造成することを特徴とする。   The ground improvement method according to the present embodiment uses the above-described high-pressure spraying method to perform ground cutting by injecting the high-pressure water in the ground to be improved, thereby forming a soft mud zone, and an improved body in the soft mud zone. It is characterized by creating.

この地盤改良工法によれば、地盤内の泥温よりも20℃以上高温の高温高圧水を用いることで、噴流の減衰性が小さくなり、噴流の到達性が向上するので、地盤を効率良く切削し切削範囲を大きくすることができる。また、高温水の温度は、水沸騰温度未満で、沸騰するような高温でないので、温度管理もしやすい。また、切削泥土と水とが均一に混合されやすいため、未混合土塊を残すことなく均質に軟泥化することができる。その結果、作業効率および改良対象地盤内に造成される改良体の品質を向上できる。   According to this ground improvement method, by using high-temperature high-pressure water that is 20 ° C or more higher than the mud temperature in the ground, the jet attenuation is reduced and the jet reachability is improved, so the ground can be cut efficiently. The cutting range can be increased. Moreover, since the temperature of high-temperature water is less than the water boiling temperature and is not high enough to boil, temperature management is easy. Moreover, since the cutting mud and water are easily mixed uniformly, the mud can be uniformly softened without leaving an unmixed soil mass. As a result, it is possible to improve the work efficiency and the quality of the improved body created in the improvement target ground.

本明細書において地盤内の泥温とは、切削対象地盤を構成する土(土粒子や間隙水および空気で構成される)の温度を意味する。   In this specification, the mud temperature in the ground means the temperature of the soil (consisting of soil particles, pore water, and air) constituting the ground to be cut.

本発明によれば、地盤を効率良く切削し切削範囲を大きくできるとともに、切削泥土と水とを均一に混合して均質に軟泥化できる高圧噴射方法およびこの高圧噴射方法を用いた地盤改良工法を提供することができる。   According to the present invention, there is provided a high-pressure injection method capable of efficiently cutting the ground and increasing the cutting range, and uniformly mixing the cutting mud and water and uniformly softening mud, and a ground improvement method using this high-pressure injection method. Can be provided.

第1実施形態による高圧噴射方法を用いた地盤改良工法の主要工程(a)(b)(c)を説明するための概略図である。It is the schematic for demonstrating the main process (a) (b) (c) of the ground improvement construction method using the high-pressure-injection method by 1st Embodiment. 図1において高圧噴射方法を実行するための高圧噴射システムを示すブロック図である。It is a block diagram which shows the high pressure injection system for performing the high pressure injection method in FIG. 図1の高圧噴射を行うロッドの噴射ノズル近傍に取り付けた温度センサ位置を示す要部断面図である。It is principal part sectional drawing which shows the temperature sensor position attached to the injection nozzle vicinity of the rod which performs the high pressure injection of FIG. 本実施形態の変形例によるロッドと噴射ノズルを示す正面図(a)および側面図(b)である。It is the front view (a) and side view (b) which show the rod and injection nozzle by the modification of this embodiment. 第2実施形態による高圧噴射方法を用いた地盤改良工法の主要工程を説明するための概略図である。It is the schematic for demonstrating the main processes of the ground improvement construction method using the high pressure injection method by 2nd Embodiment. 実験例1を行った実験水槽の概略図である。It is the schematic of the experimental water tank which performed Experimental example 1. FIG. 実験例1における噴射口からの距離と計測した流速との関係を示すグラフである。It is a graph which shows the relationship between the distance from the jet nozzle in Experimental example 1, and the measured flow velocity. 実験例2における水温と計測したベーンせん断強度との関係を示すグラフである。It is a graph which shows the relationship between the water temperature in Experimental example 2, and the measured vane shear strength.

以下、本発明を実施するための形態について図面を用いて説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

〈第1実施形態〉
図1は第1実施形態による高圧噴射方法を用いた地盤改良工法の主要工程(a)(b)(c)を説明するための概略図である。図2は図1において高圧噴射方法を実行するための高圧噴射システムを示すブロック図である。図3は図1の高圧噴射を行うロッドの噴射ノズル近傍に取り付けた温度センサ位置を示す要部断面図である。
<First Embodiment>
FIG. 1 is a schematic diagram for explaining main steps (a), (b), and (c) of a ground improvement method using the high-pressure injection method according to the first embodiment. FIG. 2 is a block diagram showing a high-pressure injection system for executing the high-pressure injection method in FIG. FIG. 3 is a cross-sectional view of the main part showing the position of the temperature sensor attached to the vicinity of the injection nozzle of the rod that performs high-pressure injection in FIG.

本実施形態の地盤改良工法は、高温高圧水を用いて改良対象の地盤を切削し地盤内に充填材を充填して改良体を造成するものである。このための高圧噴射システム20について図2,図3を参照して説明する。   The ground improvement method of the present embodiment is to create an improved body by cutting the ground to be improved using high-temperature and high-pressure water and filling the ground with a filler. A high-pressure injection system 20 for this purpose will be described with reference to FIGS.

図2のように、高圧噴射システム20は、高圧水を噴射ノズルへと送る高圧ポンプ21と、高圧ポンプ21への高温水の給水が可能なタンク22と、タンク22へ外部から給水する給水管23と、タンク22内に設置されタンク22の水を所定温度に加熱するヒータ部24と、ヒータ部24へ通電する電源部25と、噴射ノズル近傍の温度を測定する温度センサ27と、温度センサ27の測定結果に基づいて電源部25のヒータ部24への通電量を制御することでタンク22内の水温を設定温度に維持する制御部26と、を備える。   As shown in FIG. 2, the high-pressure injection system 20 includes a high-pressure pump 21 that sends high-pressure water to the injection nozzle, a tank 22 that can supply high-temperature water to the high-pressure pump 21, and a water supply pipe that supplies water to the tank 22 from the outside. 23, a heater unit 24 installed in the tank 22 for heating the water in the tank 22 to a predetermined temperature, a power supply unit 25 for energizing the heater unit 24, a temperature sensor 27 for measuring the temperature in the vicinity of the injection nozzle, and a temperature sensor And a control unit 26 that maintains the water temperature in the tank 22 at a set temperature by controlling the energization amount to the heater unit 24 of the power supply unit 25 based on the measurement result of 27.

図3のように、管からなる高圧水噴射用のロッド12に噴射ノズル13aが設けられている。温度センサ27は、噴射ノズル13aの上部近傍でロッド12の内面に取り付けられている。温度センサ27からのリード線28がロッド12の内面から外部へ延び、図2の制御部26に接続されている。温度センサ27は、たとえば熱電対型温度センサを用いることができる。温度センサ27の取り付け位置はロッド12の外面であってもよい。   As shown in FIG. 3, an injection nozzle 13a is provided on a high pressure water injection rod 12 made of a pipe. The temperature sensor 27 is attached to the inner surface of the rod 12 in the vicinity of the upper portion of the injection nozzle 13a. A lead wire 28 from the temperature sensor 27 extends from the inner surface of the rod 12 to the outside and is connected to the control unit 26 in FIG. As the temperature sensor 27, for example, a thermocouple type temperature sensor can be used. The mounting position of the temperature sensor 27 may be the outer surface of the rod 12.

本実施形態による地盤改良工法について図1(a)〜(c)を参照して説明する。   The ground improvement method according to the present embodiment will be described with reference to FIGS.

まず、ボーリング用ツールスを用いて地表面Sから削孔し、図1(a)のように地盤G内に穴A’を形成する。   First, a hole is drilled from the ground surface S using a boring tool, and a hole A ′ is formed in the ground G as shown in FIG.

次に、図1(a)のようにツールス10を、バックホウBHに取り付けた状態で、地表面Sから穴A’内に貫入させる。   Next, as shown in FIG. 1A, the tool 10 is inserted into the hole A 'from the ground surface S in a state of being attached to the backhoe BH.

ツールス10はロッド12を有し、ロッド12は、先端側のモニタ13に、側面に高圧水を噴射するために設けられた噴射ノズル13aと、充填材を地盤内に送り込んで充填するために先端側に設けられた充填口13bと、を有し、二重管構造になっている。   The tool 10 has a rod 12, and the rod 12 has an injection nozzle 13a provided for injecting high-pressure water on the side of the monitor 13 on the tip side, and a tip for feeding the filler into the ground and filling it. And a filling port 13b provided on the side, and has a double tube structure.

次に、図2の高圧噴射システム20を作動させ、タンク22からの高温水が高圧ポンプ21によりロッド12へ送られ、図1(b)のようにモニタ13の噴射ノズル13aから高温高圧水Jを水平方向に噴射させる。このとき、高圧水の温度は、地盤内の泥温よりも20℃以上の温度で水沸騰温度未満に設定され、この設定温度を維持するように図2の制御部26がヒータ部24への通電量を制御する。   Next, the high-pressure injection system 20 of FIG. 2 is operated, and high-temperature water from the tank 22 is sent to the rod 12 by the high-pressure pump 21, and the high-temperature high-pressure water J is supplied from the injection nozzle 13 a of the monitor 13 as shown in FIG. Is sprayed horizontally. At this time, the temperature of the high-pressure water is set to be lower than the water boiling temperature by 20 ° C. or more than the mud temperature in the ground, and the control unit 26 in FIG. Control the energization amount.

図1(b)のように、高温高圧水Jを噴射させながらツールス10を回転方向dに回転させることで、地盤Gを所定の半径で切削する。そして、ツールス10を上方cに引き上げながらモニタ13の先端の充填口13bから充填材を送り出す。このように、ツールス10を回転させかつ一定速度で引き上げながら噴射ノズル13aから高温高圧水Jを噴射することで、地盤Gを所定の半径及び引き上げ高さで切削して弛緩空間とし、その弛緩空間内が泥土化するとともに、充填口13bから充填材を送り出し圧入することで下側から弛緩空間内に充填材を充填する。この充填材の圧入のとき、図1(b)のように、モニタ13の先端の充填口13bは、充填された充填材の中にあることが好ましい。なお、充填材はセメント等の固化材をたとえば弛緩空間から押し出された泥土に添加したスラリーであってよい。   As shown in FIG. 1B, the ground G is cut with a predetermined radius by rotating the tool 10 in the rotation direction d while injecting the high-temperature and high-pressure water J. Then, the filler is sent out from the filling port 13b at the tip of the monitor 13 while the tool 10 is pulled upward c. In this way, the ground G is cut at a predetermined radius and a lifting height to form a relaxation space by rotating the tool 10 and ejecting the high-temperature and high-pressure water J from the ejection nozzle 13a while pulling up at a constant speed. While the inside is mud, the filler is filled into the relaxation space from below by sending out the filler from the filling port 13b and press-fitting it. When the filler is press-fitted, as shown in FIG. 1B, the filling port 13b at the tip of the monitor 13 is preferably in the filled filler. The filler may be a slurry obtained by adding a solidifying material such as cement to, for example, mud extruded from the relaxation space.

上述の切削及び充填工程の途中で、図1(b)のように、地盤G内の改良対象部分の下側部分B1から充填材が圧入により充填され、上側部分B2へと順次充填されていく。このとき、下側部分B1への充填材の充填にともなって上側部分B2の泥土は、上方bへと押し上げられ、ついには地表面Sへと押し出されて排除される。   In the middle of the above-described cutting and filling process, as shown in FIG. 1B, the filler is filled by press-fitting from the lower portion B1 of the improvement target portion in the ground G and is sequentially filled into the upper portion B2. . At this time, the mud in the upper part B2 is pushed up to the upper b as the lower part B1 is filled with the filler, and finally pushed out to the ground surface S and removed.

図1(c)のように、ツールス10を所定長さだけ引き上げ、弛緩空間内に充填材を充填させると、充填が完了し、ツールス10を引き上げる。これにより、改良体Bを地盤G内に造成することができる。このようにして、地盤内に充填材を圧入することで改良地盤を造成できる。   As shown in FIG. 1C, when the tools 10 are pulled up by a predetermined length and filled with a filler in the relaxation space, the filling is completed and the tools 10 are pulled up. Thereby, the improved body B can be created in the ground G. Thus, the improved ground can be created by press-fitting the filler into the ground.

上述のように、この地盤改良工法では、ツールス10のモニタ13にある噴射ノズル13aから高温高圧水を噴射させて地盤内を切削し泥土化するとともに、モニタ13の先端の充填口13bから充填材を送り出して切削泥土の下端から充填材を充填し、充填材の上にある切削泥土を外部に排出するので、切削泥土と充填材とが混合することなく切削泥土を充填材に置換することができる。   As described above, in this ground improvement method, high-temperature and high-pressure water is sprayed from the spray nozzle 13 a in the monitor 13 of the tool 10 to cut the ground to make mud, and the filler is filled from the filling port 13 b at the tip of the monitor 13. The filling mud is filled from the lower end of the cutting mud and the cutting mud on the filling material is discharged to the outside, so the cutting mud can be replaced with the filling material without mixing the cutting mud and the filling material. it can.

また、地盤内の泥温よりも20℃以上の高圧水を噴射して地盤を切削することで、噴射ノズル13aからの噴流の減衰性が小さくなり、切削範囲が大きくなり、切削径が広がる効果を有する。このため、改良体Bの径が大きくなり、地盤G内に大きな改良体Bを造成することができる。   In addition, by jetting high-pressure water of 20 ° C. or higher than the mud temperature in the ground to cut the ground, the effect of reducing the attenuation of the jet flow from the jet nozzle 13a is reduced, the cutting range is increased, and the cutting diameter is increased. Have For this reason, the diameter of the improved body B becomes large, and the large improved body B can be created in the ground G.

また、高温水が切削された粘土等とよく混合するので、切削泥土が軟泥化しやすく、外部に排出された切削泥土を充填材として戻すために固化材と混合するとき、固化材と切削泥土とを均一に混合しやすくなって均一な充填材を得ることができ、また、高温水による切削泥土は比重が軽く、充填材と確実に分離しやすいため、高品質の改良体を造成できる。   Also, because the high temperature water mixes well with the cut clay, etc., the mud is easy to soften, and when mixed with the solidified material to return the cut mud discharged outside as a filler, the solidified material and the cut mud Can be uniformly mixed, and a uniform filler can be obtained. Further, since the cutting mud with high-temperature water has a low specific gravity and is easily separated from the filler, it is possible to produce a high-quality improved body.

以上のように、噴射ノズル13aから噴流する高圧水の温度が高くなると、噴流の減衰性が小さくなる理由として、一般に水は、温度が高くなると、粘性が低くなることから、ロッド12内等の管内摩擦抵抗が小さくなる結果、噴射流量が増加し、噴流の流速の減衰も通常よりも小さくなるため、噴流の到達性が向上することが挙げられる。   As described above, when the temperature of the high-pressure water jetted from the jet nozzle 13a increases, the reason why the attenuation of the jet is reduced is that water generally becomes less viscous as the temperature increases. As a result of the reduced frictional resistance in the pipe, the injection flow rate increases, and the attenuation of the flow velocity of the jet flow becomes smaller than usual, so that the reachability of the jet flow is improved.

また、高温水により切削泥土が軟泥化しやすくなる理由として、一般に水は、温度が高くなると、体積が増加し粘性が低くなるといった現象が現れる。このため、地盤の切削のために高温水を用いると、土の骨格構造の間隙を満たしている間隙水の温度が上昇するため、間隙水の膨張により土の骨格構造が緩む効果と、水の粘性が低下する効果とにより、粘土粒子と水粒子の吸着力が低下する。粘土と水の混ざりやすさが向上する結果、未混合土塊が減少し、切削域内の粘土が均一に軟化することが挙げられる。   Moreover, as a reason why cutting mud is easily softened by high-temperature water, a phenomenon that water generally increases in volume and viscosity decreases as the temperature increases. For this reason, when high-temperature water is used for ground cutting, the temperature of pore water that fills the gap in the soil skeleton structure rises. Due to the effect of decreasing the viscosity, the adsorbing power of clay particles and water particles decreases. As a result of improving the ease of mixing clay and water, the unmixed soil mass is reduced, and the clay in the cutting zone is uniformly softened.

以上のように、地盤内の泥温+20℃以上の高温水を水平方向へ高圧噴射することにより地盤を切削し軟化させることで、改良体の径を大きくできるとともに、均質な改良体を造成することができる。この地盤切削に用いる高温水は、熱蒸気によって地盤の割裂が生じるような沸騰水ではないから、温度管理がしやすく、高温水装置も大型化しない。   As described above, the diameter of the improved body can be increased and the homogeneous improved body can be created by cutting and softening the ground by high-pressure jetting of mud temperature in the ground + 20 ° C or higher in the horizontal direction. be able to. The high-temperature water used for ground cutting is not boiling water in which the ground splits due to thermal steam, so that temperature management is easy and the high-temperature water device does not increase in size.

次に、本実施形態の変形例として、ロッドに設ける噴射ノズルを三点噴射型とした構成例について図4を参照して説明する。図4は、変形例のロッドと噴射ノズルを示す正面図(a)および側面図(b)である。   Next, as a modification of the present embodiment, a configuration example in which the injection nozzle provided on the rod is a three-point injection type will be described with reference to FIG. FIG. 4: is the front view (a) and side view (b) which show the rod and injection nozzle of a modification.

図4(a)(b)のように、ロッド9の長手方向に噴射ノズル1,2,3が並んで配置されている。ロッド9の一端には、高圧ポンプ21(図2)が接続される。噴射ノズル1,2,3の図4(a)のように正面から見たときの形状は円形状である。   As shown in FIGS. 4A and 4B, the injection nozzles 1, 2 and 3 are arranged side by side in the longitudinal direction of the rod 9. A high pressure pump 21 (FIG. 2) is connected to one end of the rod 9. The shape of the injection nozzles 1, 2, 3 when viewed from the front as shown in FIG.

ロッド9が鉛直方向にセットされると、噴射ノズル1,2,3は鉛直方向に並び、高圧ポンプにより高圧液体が噴流J1,J2,J3となって各噴射ノズル1〜3から水平方向に噴射する。噴射ノズル1,2,3は、ロッド9の外面上互いに独立して形成されている。このため、噴射ノズル1,2,3から噴射する噴流J1,J2,J3は独立している。   When the rod 9 is set in the vertical direction, the injection nozzles 1, 2 and 3 are arranged in the vertical direction, and the high pressure liquid is jetted from the injection nozzles 1 to 3 as jets J1, J2 and J3 by the high pressure pump. To do. The injection nozzles 1, 2, 3 are formed independently of each other on the outer surface of the rod 9. For this reason, the jets J1, J2, J3 jetted from the jet nozzles 1, 2, 3 are independent.

噴射ノズル1,2,3は、ロッド9の長手方向に一列に並んでおり、中央に配置された噴射ノズル2の径がその上下両端に配置された噴射ノズル1,3の径よりも小さくなっている。   The injection nozzles 1, 2 and 3 are arranged in a line in the longitudinal direction of the rod 9, and the diameter of the injection nozzle 2 arranged at the center is smaller than the diameter of the injection nozzles 1 and 3 arranged at both upper and lower ends thereof. ing.

また、噴射ノズル1の径と噴射ノズル3の径とは等しく、噴射ノズル1,3の各通水断面積A0と、中央に配置された噴射ノズル2の通水断面積Aiとのノズル通水断面積比(A0/Ai)は、1.4〜2程度であることが好ましい。 Moreover, equal the diameter of the injection nozzle 1 and the diameter of the injection nozzle 3, the nozzle of the each cross-sectional flow area A 0 of the injection nozzle 1 and 3, the cross-sectional flow area A i of the injection nozzle 2 arranged in the center The water flow cross-sectional area ratio (A 0 / A i ) is preferably about 1.4 to 2.

また、図4(a)のように、噴射ノズル1の中心位置と噴射ノズル2の中心位置との間隔L、および、噴射ノズル2の中心位置と噴射ノズル3の中心位置との間隔Lは、最大で15mmであることが好ましい。   4A, the interval L between the center position of the injection nozzle 1 and the center position of the injection nozzle 2 and the interval L between the center position of the injection nozzle 2 and the center position of the injection nozzle 3 are A maximum of 15 mm is preferred.

図4(a)(b)の噴射ノズルの構成によれば、高圧ポンプから鉛直方向にセットされたロッド9へ高圧水が供給されると図4(b)のように噴射ノズル1,2,3から噴流J1,J2,J3が水平方向に噴射するが、1点噴射型に比べて、鉛直方向に噴射ノズルを3点配置し、このうち中央の噴射ノズル2のみを両端部の噴射ノズル1,3と比較し小さい径とすることで、両端部の噴射ノズル1,3による噴流J1,J3の存在が主流線の噴流J2のぶれや蛇行を抑える効果を発揮し、その結果、噴流J1〜J3の到達効率が向上し大きくなる。したがって、図1(c)の改良体Bの径がより大きくなり、地盤G内により大きな改良体Bを造成することができる。   4 (a) and 4 (b), when high-pressure water is supplied from the high-pressure pump to the rod 9 set in the vertical direction, as shown in FIG. 4 (b), the injection nozzles 1, 2, 3, jets J1, J2, J3 are ejected in the horizontal direction. Compared to the one-point injection type, three injection nozzles are arranged in the vertical direction, of which only the central injection nozzle 2 is the injection nozzle 1 at both ends. , 3, the presence of the jets J1, J3 by the jet nozzles 1, 3 at both ends exerts the effect of suppressing the shaking and meandering of the main stream jet J2, and as a result, the jets J1- The arrival efficiency of J3 improves and increases. Accordingly, the diameter of the improved body B in FIG. 1 (c) becomes larger, and a larger improved body B can be created in the ground G.

また、中央の噴射ノズル2のみを両端部の噴射ノズル1,3と比較し小さい径とする3点噴射型において噴射ノズル1,2および2,3の各間隔Lが15mm以下であると、到達効率が高く、噴射液体をより遠くまで到達させることができる。   In addition, in a three-point injection type in which only the central injection nozzle 2 is smaller in diameter than the injection nozzles 1 and 3 at both ends, the distance L between the injection nozzles 1, 2 and 2 and 3 is 15 mm or less. The efficiency is high, and the jet liquid can reach farther.

〈第2実施形態〉
図5は第2実施形態による高圧噴射方法を用いた地盤改良工法の主要工程を説明するための概略図である。
Second Embodiment
FIG. 5 is a schematic view for explaining main steps of the ground improvement method using the high-pressure injection method according to the second embodiment.

本実施形態の地盤改良工法は、基本的にコラムジェットグラウド工法によるもので、高温高圧水および圧縮空気を用いて改良対象の地盤を切削し地盤内に固化材スラリーを注入して改良体を造成するものである。   The ground improvement method of this embodiment is basically based on the column jet grout method. The ground to be improved is cut using high-temperature, high-pressure water and compressed air, and a solidified material slurry is injected into the ground to create an improved body. To do.

図5のように、図1(a)と同様にして、ボーリング用ツールスを用いて地表面Sから削孔し、地盤G内に穴A’を形成してから、三重管30を穴A’内に貫入させる。   As shown in FIG. 5, in the same manner as in FIG. 1A, drilling is performed from the ground surface S using a boring tool to form a hole A ′ in the ground G, and then the triple tube 30 is formed in the hole A ′. It penetrates inside.

三重管30は、固化材スラリーと高圧水と圧縮空気とが通るように三重構造となっており、先端のモニタ31に、固化材スラリー用のノズル31aと、高圧水用の噴射ノズル31bと、圧縮空気用の噴射ノズル31cと、を有する。三重管30の先端の噴射ノズル31bから高温高圧水を水平方向に噴射するとともに、噴射ノズル31cから圧縮空気を水平方向に噴射することで、地盤内を切削することができる。高温高圧水は、図2の高圧噴射システム20を用いて三重管30へ供給することができる。   The triple pipe 30 has a triple structure so that the solidified material slurry, the high pressure water, and the compressed air pass through. The solid monitor slurry nozzle 31a, the high pressure water injection nozzle 31b, And a jet nozzle 31c for compressed air. The ground can be cut by injecting high-temperature high-pressure water in the horizontal direction from the injection nozzle 31b at the tip of the triple tube 30 and injecting compressed air in the horizontal direction from the injection nozzle 31c. High-temperature high-pressure water can be supplied to the triple pipe 30 using the high-pressure injection system 20 of FIG.

図5のように、地盤内の泥温よりも20℃以上高い温度の高圧水および圧縮空気を噴射させながら三重管30を回転方向dに回転させるとともに上方cに引き上げることで地盤Gを所定の半径で切削し、穴A’の上部と地表面Sとの間に設けた排出管32から真空ポンプ(図示省略)により穴A’を通してスライムを排出することで切削空間Fを形成する。この切削空間F内にモニタ31のノズル31aからセメント等の固化材の添加されたスラリー(固化材スラリー)を注入する。   As shown in FIG. 5, the ground tube G is moved to a predetermined direction by rotating the triple pipe 30 in the rotation direction d while jetting high-pressure water and compressed air having a temperature 20 ° C. higher than the mud temperature in the ground and pulling it upward c. The cutting space F is formed by cutting with a radius and discharging slime through the hole A ′ by a vacuum pump (not shown) from the discharge pipe 32 provided between the upper part of the hole A ′ and the ground surface S. Into this cutting space F, a slurry (solidifying material slurry) to which a solidifying material such as cement is added is injected from the nozzle 31a of the monitor 31.

上述のようにして、三重管30を所定の高さまで引き上げて切削空間Fに固化材スラリーを充填し、地盤G内に改良体を造成する。噴射ノズル31bからの噴流の減衰性が小さくなり、切削範囲が大きく、切削空間Fの径が大きくなるので、改良体Bの径が大きくなり、地盤G内に大きな改良体を造成することができる。   As described above, the triple pipe 30 is pulled up to a predetermined height, the cutting space F is filled with the solidified material slurry, and an improved body is created in the ground G. Since the attenuation of the jet flow from the injection nozzle 31b is reduced, the cutting range is increased, and the diameter of the cutting space F is increased, the diameter of the improved body B is increased, and a large improved body can be created in the ground G. .

また、高温水と切削された粘土等とがよく混合されて軟泥化しやすいため、スライムとして排出するとき、排出管32から排出しやすくなって、作業の効率化を図ることができるとともに、スライムの一部が切削空間Fに残存したとしても、固化材スラリーとよく混合するので、改良体の品質向上を図ることができる。   Moreover, since high temperature water and the cut clay etc. are mixed well and it is easy to soften, when discharging | emitting as slime, it becomes easy to discharge | emit from the discharge pipe 32, and while it can aim at the work efficiency, Even if a part of the material remains in the cutting space F, it is well mixed with the solidified slurry, so that the quality of the improved body can be improved.

(実験例)
次に、本発明を実験例により具体的に説明する。実験例1は高圧噴流実験であり、図6に示す実験水槽(水温:12℃)に水温の異なる高圧水を水平方向に噴射し、噴射後の噴流の流速を横軸方向の所定位置で電磁流速計(アレック電子製、ACM-200)により計測した。高圧水の噴射にはグラウトポンプ(最大出力:3.5MPa)を用いた。高圧水の水温は常温(12℃、水槽内水温と同等)および高温(50℃)の2ケースである。高温のケースは地盤内の泥温を20℃とすると、(泥温+30℃)である。
(Experimental example)
Next, the present invention will be specifically described with reference to experimental examples. Experimental Example 1 is a high-pressure jet experiment, in which high-pressure water having different water temperatures is injected horizontally into the experimental water tank (water temperature: 12 ° C.) shown in FIG. 6, and the jet flow velocity after injection is electromagnetic at a predetermined position in the horizontal axis direction. Measured with a current meter (ACM-200, manufactured by Alec Electronics). A grout pump (maximum output: 3.5 MPa) was used for high-pressure water injection. There are two cases of high-temperature water: normal temperature (12 ° C, equivalent to water temperature in aquarium) and high temperature (50 ° C). The high temperature case is (mud temperature + 30 ° C) when the mud temperature in the ground is 20 ° C.

図7に実験例1における噴射口からの距離と計測した流速との関係を示す。図7の結果から、高温(50℃)のケースでの噴流の流速は、噴射口からの距離に関わらず、常温(12℃)のケースと比較して大きく、距離減衰も小さく、噴流の到達性が高いことが分かった。   FIG. 7 shows the relationship between the distance from the injection port and the measured flow velocity in Experimental Example 1. From the results shown in FIG. 7, the jet flow velocity in the high temperature (50 ° C) case is larger than that in the normal temperature (12 ° C) case, regardless of the distance from the injection port, and the distance attenuation is small. It turns out that the nature is high.

また、水温による水と粘土との混合の程度を実験例2により確認した。実験例2では、含水比126%の粘土(泥温20℃)に加水し含水比200%に調泥するため、各水温の水を加えて1分間250rpmで攪拌した後の粘土についてベーンせん断強度を計測した。水温は、9,21,30,43,58℃の5ケースとした。なお、ベーンせん断強度は、地盤工学会基準(JGS 1411-2003)「原位置ベーンせん断試験方法」に基づいて行った。   The degree of mixing of water and clay according to the water temperature was confirmed by Experimental Example 2. In Experimental Example 2, in order to add water with a water content of 126% (mud temperature 20 ° C) and adjust the water content to 200%, the vane shear strength of the clay after adding water at each water temperature and stirring for 1 minute at 250 rpm Was measured. The water temperature was 5, 21, 30, 43, and 58 ° C in 5 cases. The vane shear strength was determined based on the “In-situ Vane Shear Test Method” of the Japan Geotechnical Society Standard (JGS 1411-2003).

図8に実験例2における水温と計測したベーンせん断強度との関係を示す。図8から、高温になるほど均一に混合する結果、地盤強度の低下が確認された。すなわち、粘土(加水・攪拌後)のせん断強度は、(泥温+約20℃)で約15%、(泥温+約40℃)で約25%低下したのに対し、(泥温+10℃)ではせん断強度の変化はほとんど見られなかった。(泥温+20℃以上)でせん断強度の低下が見られたことから、地盤内の泥温からの温度差は+20℃以上が適切であることがわかった。   FIG. 8 shows the relationship between the water temperature and the measured vane shear strength in Experimental Example 2. From FIG. 8, as a result of uniform mixing as the temperature increased, a decrease in ground strength was confirmed. That is, the shear strength of clay (after water addition and stirring) decreased by about 15% at (mud temperature + about 20 ° C) and about 25% at (mud temperature + about 40 ° C), whereas (mud temperature + 10 ° C) ) Showed almost no change in shear strength. Since a decrease in shear strength was observed at (mud temperature + 20 ° C or higher), it was found that + 20 ° C or higher was appropriate for the temperature difference from the mud temperature in the ground.

以上のように本発明を実施するための形態について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。例えば、本発明の高圧噴射法を図1,図5のような地盤改良工法に適用したが、本発明は、これに限定されず、高圧水で地盤内を切削する他の工法に適用可能であることはもちろんである。   As described above, the modes for carrying out the present invention have been described. However, the present invention is not limited to these, and various modifications can be made within the scope of the technical idea of the present invention. For example, the high-pressure injection method of the present invention is applied to the ground improvement method as shown in FIGS. 1 and 5, but the present invention is not limited to this, and can be applied to other methods of cutting the ground with high-pressure water. Of course there is.

12 ロッド
13a 噴射ノズル
13b 充填口
20 高圧噴射システム
21 高圧ポンプ
27 温度センサ
1,2,3 噴射ノズル
9 ロッド
30 三重管
31b 噴射ノズル
B 改良体
F 切削空間
G 地盤
12 Rod 13a Injection nozzle 13b Filling port 20 High pressure injection system 21 High pressure pump 27 Temperature sensor 1, 2, 3 Injection nozzle 9 Rod 30 Triple pipe 31b Injection nozzle B Improved body F Cutting space G Ground

Claims (5)

高圧水を地盤内に噴射して地盤を切削する高圧噴射方法であって、
前記高圧水を前記地盤内の泥温よりも20℃以上の温度で水沸騰温度未満として噴射することを特徴とする高圧噴射方法。
A high-pressure injection method in which high-pressure water is injected into the ground to cut the ground,
A high-pressure injection method characterized by injecting the high-pressure water at a temperature of 20 ° C. or more below the mud temperature in the ground and below the water boiling temperature.
前記高圧水を噴射させる噴射ノズルの近傍に温度センサを配置し、前記温度センサの測定結果に基づいて前記高圧水の温度を所定温度になるように管理することを特徴とする請求項1に記載の高圧噴射方法。   The temperature sensor is arrange | positioned in the vicinity of the injection nozzle which injects the said high pressure water, The temperature of the said high pressure water is managed so that it may become predetermined temperature based on the measurement result of the said temperature sensor. High pressure injection method. 前記高圧水が内部を通るロッドと、前記ロッドの長手方向に順に配置されるとともに前記高圧水を水平方向に噴射させる第1、第2および第3の噴射ノズルと、を有する噴射装置を用いて前記噴射を行うことを特徴とする請求項1または2に記載の高圧噴射方法。   Using an injection device having a rod through which the high-pressure water passes and first, second, and third injection nozzles that are arranged in the longitudinal direction of the rod and inject the high-pressure water in the horizontal direction. The high-pressure injection method according to claim 1 or 2, wherein the injection is performed. 前記中央に配置された前記第2の噴射ノズルのノズル径が、その両端に配置された前記第1および第3の噴射ノズルの径よりも小さいことを特徴とする請求項3に記載の高圧噴射方法。   4. The high-pressure injection according to claim 3, wherein a nozzle diameter of the second injection nozzle arranged at the center is smaller than a diameter of the first and third injection nozzles arranged at both ends thereof. Method. 請求項1乃至4のいずれか1項に記載の高圧噴射方法を用いて、改良対象地盤内において前記高圧水を噴射することで地盤切削を行い、軟泥化域を形成し、前記軟泥化域に改良体を造成することを特徴とする地盤改良工法。   Using the high-pressure spraying method according to any one of claims 1 to 4, performing ground cutting by spraying the high-pressure water in the ground to be improved, forming a soft mud area, A ground improvement method characterized by creating an improved body.
JP2012131511A 2012-06-11 2012-06-11 High pressure injection method and ground improvement method Active JP6124326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012131511A JP6124326B2 (en) 2012-06-11 2012-06-11 High pressure injection method and ground improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012131511A JP6124326B2 (en) 2012-06-11 2012-06-11 High pressure injection method and ground improvement method

Publications (2)

Publication Number Publication Date
JP2013256753A true JP2013256753A (en) 2013-12-26
JP6124326B2 JP6124326B2 (en) 2017-05-10

Family

ID=49953406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012131511A Active JP6124326B2 (en) 2012-06-11 2012-06-11 High pressure injection method and ground improvement method

Country Status (1)

Country Link
JP (1) JP6124326B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104452592A (en) * 2014-10-21 2015-03-25 广东惠利普路桥信息工程有限公司 Wireless-based intelligent mud jacking system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05112925A (en) * 1991-09-13 1993-05-07 Shohei Senda Improving or strengthening construction for ground
JPH0630654A (en) * 1992-07-16 1994-02-08 Mitsui Constr Co Ltd Production of water nonrepellent soil conditioning material
JPH06257136A (en) * 1993-03-08 1994-09-13 Takeshi Mitani Method and device for improving soft ground
JP2004269832A (en) * 2003-03-06 2004-09-30 Akihiro Kiyono Soil microbe proliferating agent, method for improving soil properties such as soil remediation, ground hardening improvement etc. using the same, and improved ground
JP2005161148A (en) * 2003-12-01 2005-06-23 Kajima Corp Work and apparatus for cleaning contaminated soil
JP2008058060A (en) * 2006-08-30 2008-03-13 Chem Grouting Co Ltd Contaminant concentration measuring technique
JP2008238095A (en) * 2007-03-28 2008-10-09 Kajima Corp Construction method for cleaning contaminated soil
JP2011185016A (en) * 2010-03-11 2011-09-22 Penta Ocean Construction Co Ltd Ground improvement method and control system for the ground improvement

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05112925A (en) * 1991-09-13 1993-05-07 Shohei Senda Improving or strengthening construction for ground
JPH0630654A (en) * 1992-07-16 1994-02-08 Mitsui Constr Co Ltd Production of water nonrepellent soil conditioning material
JPH06257136A (en) * 1993-03-08 1994-09-13 Takeshi Mitani Method and device for improving soft ground
JP2004269832A (en) * 2003-03-06 2004-09-30 Akihiro Kiyono Soil microbe proliferating agent, method for improving soil properties such as soil remediation, ground hardening improvement etc. using the same, and improved ground
JP2005161148A (en) * 2003-12-01 2005-06-23 Kajima Corp Work and apparatus for cleaning contaminated soil
JP2008058060A (en) * 2006-08-30 2008-03-13 Chem Grouting Co Ltd Contaminant concentration measuring technique
JP2008238095A (en) * 2007-03-28 2008-10-09 Kajima Corp Construction method for cleaning contaminated soil
JP2011185016A (en) * 2010-03-11 2011-09-22 Penta Ocean Construction Co Ltd Ground improvement method and control system for the ground improvement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104452592A (en) * 2014-10-21 2015-03-25 广东惠利普路桥信息工程有限公司 Wireless-based intelligent mud jacking system

Also Published As

Publication number Publication date
JP6124326B2 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
JP2019070318A (en) Liquefaction countermeasure method for ground
KR101660386B1 (en) grouting materials and grouting system
JP2004346734A (en) Device for injecting quick setting agent using high-speed jet fluid
JP6124326B2 (en) High pressure injection method and ground improvement method
WO2016051858A1 (en) Ground improving method
JP5717148B2 (en) Underground consolidated body construction method
JP2016196805A (en) Soil improvement method using curve drilling type chemical grouting method
JP2008081942A (en) Construction method for water passage portion of underground wall
JP2007255064A (en) Jet mixing construction method
JP5558280B2 (en) High-pressure jet stirring method
JP5875849B2 (en) Injection stirring ground improvement method
JP5972040B2 (en) Ground improvement method using high-pressure injection method injection device and high-pressure injection method
CN203034461U (en) Spraying nozzle sleeve and vibratory high-pressure spraying and grouting spraying nozzle
JP6203101B2 (en) Ground improvement method by high-pressure jet stirring method and special head used in this ground improvement method
JP6672016B2 (en) Ground improvement method under the existing structure
JP7398281B2 (en) High pressure injection stirring method and injection equipment
JP2014167227A (en) Ground improvement method by high pressure injection-agitation method
JP2018104912A (en) Ground improvement body and ground improvement method
JPH0649974B2 (en) Ground injection method
JP2004257210A (en) Jet mixing method
JP6005455B2 (en) Method for constructing improved soil mixed with fiber and construction tube used therefor
JP2012219569A (en) Method and device for creating ground hardening layer
CN102995641B (en) Spray head sleeve and vibroflotation high-pressure injection grouting spray head
JP2004150073A (en) High-pressure jet mixing method
JPH0654007B2 (en) High-pressure uniform injection method of quadruple pipe for injection of ground hardening material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170330

R150 Certificate of patent or registration of utility model

Ref document number: 6124326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250