WO2016051858A1 - Ground improving method - Google Patents

Ground improving method Download PDF

Info

Publication number
WO2016051858A1
WO2016051858A1 PCT/JP2015/065176 JP2015065176W WO2016051858A1 WO 2016051858 A1 WO2016051858 A1 WO 2016051858A1 JP 2015065176 W JP2015065176 W JP 2015065176W WO 2016051858 A1 WO2016051858 A1 WO 2016051858A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting fluid
ground
jet
cutting
injection device
Prior art date
Application number
PCT/JP2015/065176
Other languages
French (fr)
Japanese (ja)
Inventor
Ataru HANEDA (羽田 中)
Original Assignee
有限会社大翔化学研究所
ソニック ファウンデーション ピーティーイー エルティーディー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社大翔化学研究所, ソニック ファウンデーション ピーティーイー エルティーディー filed Critical 有限会社大翔化学研究所
Priority to AU2015326129A priority Critical patent/AU2015326129B2/en
Priority to US15/516,185 priority patent/US20180112368A1/en
Priority to SG11201702724XA priority patent/SG11201702724XA/en
Priority to CA2963217A priority patent/CA2963217C/en
Priority to EP15846895.9A priority patent/EP3202982B1/en
Publication of WO2016051858A1 publication Critical patent/WO2016051858A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/34Concrete or concrete-like piles cast in position ; Apparatus for making same
    • E02D5/46Concrete or concrete-like piles cast in position ; Apparatus for making same making in situ by forcing bonding agents into gravel fillings or the soil
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/66Mould-pipes or other moulds
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2250/00Production methods
    • E02D2250/003Injection of material

Definitions

  • the present invention cuts a ground fluid to be improved by injecting a cutting fluid, supplies a solidified material, mixes and stirs the ground, the fluid and the solidified material, and forms an underground consolidated body. This is related to the ground improvement method.
  • FIG. 8 An example of the conventional technique (for example, refer patent document 1) of the ground improvement construction method which concerns is demonstrated with reference to FIG.
  • a rod-shaped injection device 11 is inserted into a borehole HD drilled in the ground G to be improved.
  • injection device 11 In order to inject the jet (J: cutting fluid jet) of cutting fluid (for example, high-pressure water) into underground G, injection device 11 is provided with injection nozzle N which injects cutting fluid jet J on the side. .
  • a plurality of injection nozzles N are provided at positions symmetrical with respect to the central axis CL of the injection device 11 (for example, two in FIG. 8), and the vertical positions of the plurality of injection nozzles N (FIG. 8). The position in the vertical direction in FIG. 11 is the same.
  • the ejection device 11 has a cutting fluid channel (cutting fluid pipe: not shown) provided therein, and the cutting fluid is ejected from a supply device (not shown) provided on the ground. Is supplied to the internal cutting fluid flow path, and becomes a cutting fluid jet J from the injection nozzle N and is jetted radially outward (in the horizontal direction).
  • the ejection device 11 is gradually pulled up to the ground side (upward in FIG. 8) while ejecting the cutting fluid jet J into the ground, for example, rotating in the arrow R direction.
  • the ground G is cut by the cutting fluid jet J, and the expanded cutting hole HC having the inner wall surface W is formed while the in-situ soil and the cutting fluid are mixed.
  • the solidifying material for example, cement
  • the solidifying material is discharged from a discharge port (not shown) provided in the vicinity of the lower end portion of the injection device 11 through the solidification material flow path (not shown) in the injection device 11.
  • the ground solid body is formed by mixing with the cut in-situ soil.
  • the in-situ soil (ground, rock, rock, etc.) existing in a plurality of cutting fluid jets J extending in parallel with a predetermined interval (1/2 of the pitch P) is the jet J
  • the in-situ soil cut by is mixed with the cutting fluid and discharged as a slime to the ground side.
  • the jet J is not injected into the region between the plurality of cutting fluid jets J (region of the interval P / 2), the region between the plurality of jets J jetted in parallel is shown in FIG.
  • the soil block M having a large representative dimension the largest dimension among the longitudinal dimension, the lateral dimension, and the height dimension
  • the large soil mass M becomes a gap S (annular space) between the inner wall surface of the boring hole HD and the injection device 11. It is difficult to pass through, and the gap S (annular space) is blocked, and the slime is prevented from being discharged to the ground side.
  • the present invention has been proposed in view of the above-described problems of the prior art, and an object of the present invention is to provide a ground improvement method capable of preventing a lump having a large representative dimension from remaining.
  • cutting fluid for example, high-pressure water or high-pressure air: including the case of injecting solidified material
  • the solidified material is supplied.
  • a plurality of nozzles (N1, N2) are positioned in the injection device (1, 10) at intervals in the vertical direction, and when the cutting fluid is injected, cutting is performed obliquely downward from the upper nozzle (N1).
  • the cutting fluid is jetted (cutting fluid jet J1), and the cutting fluid is jetted obliquely upward from the lower nozzle (N2) (cutting fluid jet J2).
  • the partition forming material is jetted as a cutting fluid from above the jetting device (10) (jets J1, J2), and the solidified material is jetted from below the jetting device (10) (jets J3, J4). Is preferred.
  • the plurality of nozzles (N1, N2) are positioned at intervals in the vertical direction, and the cutting fluid is ejected obliquely downward from the upper nozzle (N1) ( By jetting the cutting fluid obliquely upward from the lower nozzle (N2) (jet J1), the plane at any position (see FIGS. 2 and 9: includes the central axis CL of the injection device 1).
  • the streamline has a shape in which a plurality of parallel straight lines (J1, J2) extending in an oblique direction intersect. Therefore, even if there is a region (clot G) that is not cut by the cutting fluid jet (J) at a certain moment, the clot (G) is then cut by any of the cutting fluid jets (jet J1, jet J2). Is done.
  • the configuration is such that the angle of the nozzles (N1, N2) ( ⁇ : jet angle of the jets J1, J2) is adjusted, it is efficient in accordance with the type of soil of the construction ground (G). It is possible to cut with a cutting diameter (D). Further, in the present invention, if the vertical interval (V) between the nozzles (N1, N2) is adjustable, the pitch (P) between the streamlines of the jet (J) of the cutting fluid can be adjusted. Accordingly, it is possible to adjust the size of the maximum mass (M) that can remain without being cut by the cutting fluid jet (J) in accordance with the situation of the construction site.
  • a partition forming material is jetted as a cutting fluid (jet J1, J2) from above (nozzle) of the jetting device (10), and a solidified material is jetted from below (nozzle) of the jetting device (10) ( If the jets J3 and J4), the partition forming material layer (separation layer LD) in which the partition forming material and the cut in-situ soil are mixed is formed above, and the partition forming material, the cut in-situ soil and the solidified material are formed.
  • a layer (LC) of the solidified material mixed with is formed below.
  • the solidification material is jetted from (below the nozzle) of the jetting device (10) (jets J3, J4), even if the in-situ soil has a high viscosity (for example, clay), it is separated from the in-situ soil (clay).
  • the mixture of forming materials is well mixed with the solidifying material.
  • FIGS. 8 and 11 the vertical positions of the pair of nozzles N (the vertical positions in FIGS. 8 and 11) are the same, and also include a cutting fluid (for example, high-pressure water: solidified material).
  • a cutting fluid for example, high-pressure water: solidified material.
  • the jet cutting fluid jet J
  • the vertical positions (the vertical positions in FIG. 1) of the nozzles N1 and N2 are different, and the cutting fluid is inclined in the horizontal direction. Jet J is being jetted.
  • a rod-like injection device 1 for injecting a jet J (cutting fluid jet) of a cutting fluid for example, high-pressure water
  • a jet J cutting fluid jet
  • a cutting fluid for example, high-pressure water
  • Nozzles N1 and N2 are provided on the side surface of the ejection device 1, and cutting fluid jets J1 and J2 are ejected from the nozzles N1 and N2.
  • the jets J1 and J2 may be collectively referred to as a jet J.
  • the nozzles N1 and N2 are arranged at an interval V in the vertical direction (up and down direction in FIG. 1).
  • symbol CL indicates the central axis of the injection device 1.
  • the cutting fluid jet J1 is ejected from the upper nozzle N1 obliquely downward in the horizontal direction, and the ejection direction of the cutting fluid jet J1 is inclined downward by an angle ⁇ with respect to the horizontal direction HO.
  • the horizontal direction HO is a direction extending perpendicular to the central axis CL of the injection device 1.
  • the cutting fluid jet J2 is jetted from the lower nozzle N2 toward the upper side in the horizontal direction, and the jetting direction of the cutting fluid jet J2 is inclined upward by an angle ⁇ with respect to the horizontal direction HO. ing.
  • symbol D denotes a cutting diameter of a region (cutting hole HC) cut by the jets J ⁇ b> 1 and J ⁇ b> 2, and a cutting radius of the cutting hole HC (a distance from the central axis CL of the injection device 1 to the inner wall of the cutting hole HC). Is D / 2.
  • a well-known device can be applied to the injection device 1, and a cutting fluid is introduced into the injection device 1 from a supply device (not shown) provided on the ground, and a cutting fluid channel (not shown) in the injection device 1 is shown.
  • the cutting fluid jets J1 and J2 are ejected radially outward (under the ground) from the nozzles N1 and N2.
  • the ejection device 1 rotates as indicated by an arrow R while ejecting cutting fluid jets J1 and J2 to cut the ground G, and is pulled up toward the ground surface (upward: see arrow U in FIG. 1). .
  • the pull-up amount of the injection device 1 (the amount of movement that moves in the direction of the arrow U while the injection device 1 makes one revolution) is represented by the symbol P.
  • the ground G is cut by the cutting fluid jets J1 and J2, and the cutting hole HC is formed.
  • the solidified material for example, cement milk
  • a discharge port (not shown) provided in the vicinity of the lower end portion of the injection device 1 through the solidification material flow path (not shown) in the injection device 1.
  • the solidified material is mixed with the in-situ soil from which the solidified material has been cut and a cutting fluid (for example, high-pressure water), filled into the cutting hole HC, and then solidified by solidifying (not shown). Is created.
  • the slime generated during ground cutting is discharged to the ground through a gap S (annular space) between the injection device 1 and the inner wall surface of the boring hole HD as indicated by an arrow AD.
  • the nozzles N1 and N2 are positioned at an interval V in the vertical direction, the cutting fluid jet J1 is ejected obliquely downward from the upper nozzle N1, and the cutting is performed obliquely upward from the lower nozzle N2.
  • the fluid jet J2 In order to inject the fluid jet J2, all streamlines of the cutting fluid jets J1 and J2 when the injection device 11 is rotated a plurality of times and pulled up in a certain cross section (arbitrary identical cross section) are expressed in FIG. As shown. That is, according to the first embodiment, in FIG. 2, the flow lines of the cutting fluid jet J1 and the cutting fluid jet J2 are on the right side of the injection device 1 in FIG.
  • a certain cross section means, for example, in FIG. 1 and FIG. 2, including the central axis CL (see FIG. 1) of the injection device 1 in the radial direction and the vertical direction (vertical direction in FIG. ) Extending over 360 ° with respect to the central axis CL of the injection device 1.
  • a plurality of cutting fluid jets J ⁇ b> 1 and J ⁇ b> 1 that are ejected from the upper left to the lower right in the plane on the right side of the ejection device 1, or a plurality of jets ejected from the lower left to the upper right.
  • the interval P (pitch) between J2 and J2 is the amount of movement (pull-up amount) that moves upward while the injection device 1 makes one revolution, and is, for example, 2.5 cm in the illustrated embodiment.
  • the vertical interval between the streamline of the lowermost cutting fluid jet J1 and the streamline of the cutting fluid jet J2 is equal to the distance V between the nozzles N1 and N2.
  • in-situ soil existing in the streamlines of a plurality of cutting fluid jets J1, J2 extending in parallel at a predetermined interval (pitch P) is the cutting fluid. It is cut by a jet.
  • the region ⁇ between the streamlines of the cutting fluid jets J1 and J2 is illustrated with only one hatching.
  • the main factors that determine the cutting diameter D of the cutting hole HC are the injection pressure of the cutting fluid jet J and the injection flow rate of the cutting fluid jet J.
  • the number of cuttings and the rotational speed of the injection device 1 are also determined by the cutting diameter D. Affects.
  • the cutting diameter D is 4 m or more in clay ground, and 5 m or more in sand ground.
  • adjusting the angle ⁇ (injection angle of the jets J1 and J2) at the nozzles N1 and N2 adjusts the injection pressure of the cutting fluid jet J, so that the cutting diameter D can be determined.
  • the injection pressure of the cutting fluid jet J is equal to or higher than the uniaxial compressive strength of the soil in the construction ground G, for example, 300 bar or higher.
  • the rotation speed of the injection device 1 is 5 rpm, and the number of times of cutting is 1 to 2 times. That is, the injection device 1 is raised (steps up) every time the injection device 1 makes half to one rotation.
  • the cutting diameter D can be determined by adjusting the angle ⁇ (the jet angle of the jets J1 and J2) at the nozzles N1 and N2. Therefore, in the illustrated embodiment, it is preferable that the angle ⁇ (the jet angle of the jets J1 and J2) at the nozzles N1 and N2 can be adjusted.
  • 3 and 4 show a mechanism for adjusting the angle ⁇ (the jet angle of the jets J1 and J2) at the nozzles N1 and N2.
  • FIG. 3 shows a state in which the nozzle N1 is attached to the central axis CL of the injection device 1, and the injection device 1 includes a cutting fluid channel 1A, and the cutting fluid channel 1A contains a cutting fluid. Shed.
  • the cutting fluid is supplied from a supply device (not shown) on the ground, is pressurized by a pressurization device (not shown), flows in the direction of arrow AB in FIG. 3, and is ejected from nozzles N1 and N2 in the direction of arrow AC.
  • reference numeral 1 ⁇ / b> B is a notch for securing a movable range by adjusting the injection angle of the nozzle N ⁇ b> 1 provided in the injection device 1.
  • the injection angle adjustment mechanism shown in FIG. 3 is a mechanism for adjusting the injection angle of the nozzle N1, and is provided with an injection angle adjustment address plate 2 and an adjustment insertion plate 3.
  • the injection angle adjusting plate 2 is a plate-like body extending in the vertical direction, and is attached to the injection device 1 (only the casing of the tubular injection device 1 is shown in FIG. 3).
  • An insertion portion 2A is provided on the injection device 1 side (left side in FIG. 3) of the injection angle adjusting plate 2, and the insertion portion 2A is configured such that the adjustment insertion plate 3 can be inserted. .
  • the insertion portion 2A forms an inner space of the injection angle adjusting cover plate 2, and the bottom surface portion 2B of the insertion portion 2A is the outer surface (outer wall surface) of the casing of the injection device 1.
  • the height direction radial direction: left and right direction in FIG. 4 dimension of the space formed by the insertion portion 2A gradually decreases from the entrance (the lower end portion of the injection angle adjusting plate 2) toward the upper side in FIG. .
  • An angle (insertion angle) formed by the bottom surface portion 2B of the insertion portion 2A (the outer surface of the casing of the injection device 1) and the upper surface portion 2C of the insertion portion 2A is indicated by reference numeral ⁇ 1.
  • the injection angle adjusting support plate 2 is pivotally supported near the upper end of the injection angle adjusting plate 2D with respect to the support shaft 2D on the injection device 1 side, and is always indicated by an arrow F by a biasing device (spring or the like) not shown. It is biased in the direction, that is, the direction in which the injection angle adjusting plate 2 is pressed against the injection device 1.
  • the nozzle N ⁇ b> 1 is fixed to the injection angle adjusting coating plate 2 and rotates integrally with the coating plate 2. Therefore, the injection angle adjusting plate 2 is rotated clockwise from the initial position (the state in which the injection angle adjusting plate 2 is pressed against the outer wall surface of the injection device 1: the position shown in FIG. 3) against the urging force F.
  • the nozzle N1 rotates, the nozzle N1 rotates around the support shaft 2D and rotates in the direction in which the injection angle ⁇ decreases.
  • the adjustment insertion plate 3 is a triangular prism as a whole, and includes a bottom surface portion 3A that comes into contact with the outer wall surface of the injection device 1, and an upper surface portion 3B that gradually increases in thickness from the tip portion toward the rear (from the top to the bottom in FIG. And have.
  • the angle of the distal end portion of the adjustment insertion plate 3 is indicated by the symbol ⁇ 2.
  • the insertion angle ⁇ 1 of the insertion portion 2A of the injection angle adjusting plate 2 and the tip end angle ⁇ 2 of the adjustment insertion plate 3 satisfy an angle ⁇ 1 ⁇ angle ⁇ 2. Therefore, when the leveling insertion plate 3 is inserted, the injection angle adjusting plate 2 and the nozzle N1 are rotated clockwise.
  • the adjustment insertion plate 3 is freely insertable (movable in the direction of the arrow AE) into the insertion portion 2A of the injection angle adjustment target plate 2, and the adjustment insertion plate 3 is inserted into the insertion portion 2A of the injection angle adjustment target plate 2.
  • the injection angle ⁇ of the nozzle N1 when the injection angle adjusting plate 2 and the nozzle N1 are rotated clockwise with respect to the support shaft 2D against the urging force F is set. Can be adjusted.
  • the adjustment insertion plate 3 is inserted in the direction to be pushed into the insertion portion 2A, the injection angle adjustment target plate 2 and the nozzle N1 rotate clockwise, and the injection angle ⁇ decreases.
  • the adjustment insertion plate 3 is moved in a direction to remove it from the insertion portion 2A, the urging force F causes the injection angle adjustment target plate 2 and the nozzle N1 to rotate counterclockwise, increasing the injection angle ⁇ . .
  • the adjustment of the injection angle ⁇ in the nozzle N1 has been described, but the injection angle ⁇ can be adjusted for the nozzle N2 by the same mechanism.
  • FIG. 4 shows an injection angle adjusting mechanism different from FIG.
  • the vicinity of the center in the injection direction of the nozzle N ⁇ b> 1 is fixed to the output shaft 4 ⁇ / b> A of the known stepping motor 4.
  • the output shaft 4A of the stepping motor 4 is attached to an injection device (not shown).
  • arrow AC in FIG. 4 has shown the injection direction of the fluid jet J1 for cutting.
  • the nozzle N1 can be rotated by an arbitrary center angle, so that the injection angle ⁇ of the nozzle N1 can be adjusted.
  • the mechanism for adjusting the injection angle ⁇ according to FIG. 4 can also be applied to the nozzle N2.
  • the maximum size of the mass M that can be peeled off from the construction ground G without being cut by the cutting fluid jet J is a dimension of a pitch (pitch for stepping up the injection device) indicated by a symbol P in FIG. Affected by.
  • the pitch P is a different parameter if the vertical interval V between the nozzles N1 and N2 varies. In other words, the pitch P can be adjusted by adjusting the vertical interval V between the nozzles N1 and N2.
  • 5 and 6 illustrate a mechanism for adjusting the vertical distance V between the nozzles N1 and N2.
  • FIG. 5 is an explanatory view of the vicinity of the attachment portion of the nozzles N1 and N2 of the injection device 1 as viewed from the side.
  • the injection device 1 is divided into two at a predetermined position (vertical direction predetermined position) between the nozzles N1 and N2.
  • a spacer 5 having a thickness dimension T is interposed between the divided injection devices 101 and 102.
  • the internal structure of the spacer 5 is the same as that of the ejection devices 101 and 102, and the fluid path in the ejection devices 101 and 102 is connected to the fluid path in the spacer 5 and connection means (not shown) such as a swivel joint. ).
  • the injection devices 101 and 102 and the spacer 5 have a function of injecting or discharging a cutting fluid (and a solidified material) as an injection device.
  • a well-known technique for example, adhesion
  • the vertical interval V between the nozzles N1 and N2 can be adjusted.
  • the vertical interval V between the nozzles N1 and N2 when the spacer 5 is not interposed between the injection devices 101 and 102 is the minimum interval (vertical interval) between the nozzles N1 and N2, the injection device 101, When the spacer 5 is interposed between the nozzles 102, the vertical interval between the nozzles N1 and N2 is “V + T”.
  • a plurality of types of spacers 5 having different thickness dimensions T are prepared, and the range of the vertical interval between the nozzles N1 and N2 can be adjusted as appropriate.
  • FIG. 6 An example of a mechanism for adjusting the vertical spacing V different from FIG. 5 is shown in FIG.
  • the vertical interval V is adjusted using a known rack and pinion gear mechanism.
  • the pinion gear 7 has a rotating shaft 7 ⁇ / b> A attached to an injection device (not shown) and meshes with the rack 6.
  • the rack 6 is fixed to the nozzle N1 and extends parallel to the central axis of the injection device 1 (see FIG. 1).
  • the rack 6 is moved up and down by rotating the pinion gear 7 forward or backward, the nozzle N1 moves up and down. Thereby, the vertical interval between the nozzles N1 and N2 can be adjusted.
  • an arrow AC indicates the direction of the cutting fluid jet J1.
  • only the nozzle N ⁇ b> 1 is configured to move up and down, but only the nozzle N ⁇ b> 2 may be fixed to the rack 6 and configured to move up and down.
  • the nozzles N1 and N2 are fixed to different racks, and when the pinion gear 7 rotates, the nozzles N1 and N2 move in the reverse direction in the vertical direction, and the vertical interval V between the nozzles N1 and N2 can be adjusted. Is possible.
  • the nozzles N1 and N2 of the injection device 1 are positioned at an interval in the vertical direction, and the cutting fluid jet J1 is injected obliquely downward from the upper nozzle N1, and the lower part
  • the streamlines of the cutting fluid jet J1 and the cutting fluid jet J2 are in a region on the right side of the injection device 1 in FIG. If there are, there are a plurality of parallel straight lines extending from the upper left to the lower right and a plurality of parallel straight lines extending from the lower left to the upper right. Therefore, as shown in FIG. 10, the region that is not cut by the cutting fluid jet does not extend in parallel with the streamline of the cutting fluid jet, and the streamline of the other cutting fluid jet is always the cutting fluid jet. Intersects with areas that are not.
  • the maximum soil mass M that can remain without being cut by the cutting fluid jet is more representative than the soil mass M having a large representative dimension shown in FIGS.
  • the size is reduced, and it easily passes through the annular space (see FIGS. 1 and 11) between the injection device 1 and the inner wall surface of the boring hole HD, and does not hinder the discharge of slime to the ground side.
  • the angle ⁇ injection angle of the cutting fluid jets J1 and J2
  • the angle ⁇ injection angle of the cutting fluid jets J1 and J2
  • the jet streamline pitch P shown in FIG. 2 can be adjusted. Therefore, it is possible to adjust the size of the largest soil mass M that can remain without being cut by the jet in accordance with the situation at the construction site.
  • the jets J1 and J2 ejected from the nozzle N1 above the ejection device 10 are jetted obliquely downward from the nozzle N1 in the horizontal direction, as described in the first embodiment of FIGS.
  • the jet J2 is jetted from the nozzle N2 obliquely upward in the horizontal direction.
  • the jets J ⁇ b> 1 and J ⁇ b> 2 are jets of a partition forming material in the radially inner (center) portion of the cross section, and a jet of high-pressure air surrounds the periphery thereof.
  • the second embodiment can be implemented without ejecting high-pressure air.
  • the partition forming material is, for example, a solution containing 5% by weight of a thickener (eg, guar gum which is a natural water-soluble polymer material) and 5% by weight of sodium silicate (water glass).
  • a thickener eg, guar gum which is a natural water-soluble polymer material
  • sodium silicate water glass
  • the jets J3 and J4 ejected from the lower nozzles N3 and N4 are solidified material jets.
  • the solidifying material is further mixed with the mixture obtained by cutting and mixing the partition forming material and the in-situ soil. Since the solidified material is injected by the jets J3 and J4 injected from the injection device 10 that is pulled up while rotating, for example, even if the original soil is clay, the mixture of the original soil (clay) and the partition forming material is the solidified material. And mix well.
  • the mixture of the in-situ soil (clay) and the partition forming material passes as a slime through the annular space S between the injection device 10 and the inner wall surface of the borehole HD as indicated by an arrow AD, to the ground side. Discharged.
  • the mixture of in-situ soil (clay) and partition forming material does not include a solidifying material, it does not need to be treated as industrial waste, and there is little risk of deteriorating the working environment.
  • the partition I is injected by jets J1 and J2 and the ground G is cut to fill the space IJ (original soil, partition forming material) cut by the jets J1 and J2.
  • a separation layer LD is formed in a region above the (space), and the separation layer LD is a solidified material injected from the nozzles N3 and N4 into the annular space S between the injection device 10 and the inner wall surface of the boring hole HD. Acts as a partition to prevent inflow.
  • the region below the space IJ has a solid compound (solidified material and water and
  • the layer LC of the solidified material having a low ratio W / C is formed.
  • the lower jets J3 and J4 collide with the cutting wall W (the inner wall surface of the cutting hole whose diameter has been expanded by cutting with the jets J1 and J2)
  • the lower jets J3 and J4 roll up upward as indicated by an arrow AN.
  • the solidification material may mix in separation layer LD (mixture of the partition formation material which comprises, and the cut soil). If the solidifying material is mixed into the separation layer LD, the solidifying material may be discharged to the ground as a slime.
  • the lower jets J3 and J4 need to be rolled down as indicated by an arrow AG.
  • the lower jets J3 and J4 are directed downward by an angle ⁇ with respect to the horizontal direction HO.
  • the tilt angle ⁇ is 15 °
  • the jet pressure of the jets J3 and J4 is 200 bar
  • the tilt angle ⁇ is 30 °. This is preferable, and the solidification material is prevented from being mixed into the separation layer LD.
  • the vertical dimension of the solidified material layer LC increases (thickens), and the separation layer LD (partition forming material layer) always solidifies.
  • the separation layer LD partition forming material layer
  • the separation layer LD partition forming material layer
  • the solidified material is injected by the jets J3 and J4 injected from the nozzles N3 and N4 below the injection device 10 and the injection device 10 rises while rotating, even if the viscosity of the in-situ soil is high (for example, clay ), The mixture of in situ soil (clay) and partitioning material is well mixed with the solidification material.
  • the illustrated embodiment is merely an example, and is not a description to limit the technical scope of the present invention.
  • two nozzles are provided, but it is possible to provide three or more nozzles as long as they are arranged in a point object with respect to the central axis CL of the injection device.
  • the solidified material is discharged from a discharge port provided below the injection device and discharged into the mixture of the cut in-situ soil and the cutting fluid. Similarly, or together with the cutting fluid jet J, the solidified material may be ejected radially outward.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

The purpose of the present invention is to provide a ground improving method that can prevent soil clumps with large representative dimensions from remaining. To this end, in the ground improving method of the present invention, injecting apparatuses (1, 10) inject cutting fluid (e.g., high-pressure water or high-pressure air, sometimes including a solidification material) to perform cutting, supply the solidification material, and mix and stir the cut ground (G), fluid, and solidification material to produce an underground consolidated body. The injecting apparatuses (1, 10) include a plurality of nozzles (N1, N2) positioned in the vertical direction with spaces therebetween. When injecting the cutting fluid, the injecting apparatuses inject the cutting fluid obliquely downward (J1) from an upper nozzle (N1), and inject the cutting fluid obliquely upward (J2) from a lower nozzle (N2).

Description

地盤改良工法Ground improvement method
本発明は、改良すべき地盤に切削用流体を噴射して切削すると共に、固化材を供給して、切削された地盤と流体と固化材を混合、撹拌して、地中固結体を造成する地盤改良工法に関する。 The present invention cuts a ground fluid to be improved by injecting a cutting fluid, supplies a solidified material, mixes and stirs the ground, the fluid and the solidified material, and forms an underground consolidated body. This is related to the ground improvement method.
係る地盤改良工法の従来技術(例えば、特許文献1参照)の一例について、図8を参照して説明する。
図8において、改良すべき地盤Gに削孔されたボーリング孔HDに、ロッド状の噴射装置11が挿入されている。噴射装置11は、地中Gに切削用流体(例えば高圧水)の噴流(J:切削用流体ジェット)を噴射するため、側面に切削用流体ジェットJを噴射する噴射ノズルNが設けられている。噴射ノズルNは、噴射装置11の中心軸CLに対して相互に点対称の位置に複数個設けられており(例えば、図8では2個)、複数の噴射ノズルNの垂直方向位置(図8、図11の上下方向の位置)は同一である。
図示されてはいないが、噴射装置11は内部に切削用流体流路(切削用流体用管:図示せず)を設けており、地上に設けた図示しない供給装置から切削用流体が噴射装置11内の切削用流体流路に供給され、噴射ノズルNより、切削用流体ジェットJとなって半径方向外方に(水平方向に)噴射される。
An example of the conventional technique (for example, refer patent document 1) of the ground improvement construction method which concerns is demonstrated with reference to FIG.
In FIG. 8, a rod-shaped injection device 11 is inserted into a borehole HD drilled in the ground G to be improved. In order to inject the jet (J: cutting fluid jet) of cutting fluid (for example, high-pressure water) into underground G, injection device 11 is provided with injection nozzle N which injects cutting fluid jet J on the side. . A plurality of injection nozzles N are provided at positions symmetrical with respect to the central axis CL of the injection device 11 (for example, two in FIG. 8), and the vertical positions of the plurality of injection nozzles N (FIG. 8). The position in the vertical direction in FIG. 11 is the same.
Although not shown, the ejection device 11 has a cutting fluid channel (cutting fluid pipe: not shown) provided therein, and the cutting fluid is ejected from a supply device (not shown) provided on the ground. Is supplied to the internal cutting fluid flow path, and becomes a cutting fluid jet J from the injection nozzle N and is jetted radially outward (in the horizontal direction).
図8において、噴射装置11は、切削用流体ジェットJを地中に噴射しつつ、例えば矢印R方向に回転しつつ、地上側(図8では上方)へ徐々に引き上げられる。これにより、切削用流体ジェットJにより地盤Gが切削されて、原位置土と切削用流体が混合されつつ、内壁面Wを有する拡径された切削孔HCが形成される。
同時に、固化材(例えばセメント)を、噴射装置11の中の固化材流路(図示せず)を介して、噴射装置11の下端部付近に設けた図示しない吐出口から吐出することにより、前記拡径された切削孔HC中に吐出させることで、切削された原位置土と混合されて、地中固結体(図示せず)が造成される。ここで、切削用流体ジェットJと同様に、或いは、切削用流体ジェットJと共に、固化材を半径方向外方に噴射させる場合も存在する。
切削用流体ジェットJにより地盤Gを切削する際に、切削された原位置土と切削用流体の混合物であるスライムが発生する。このスライムは矢印ADで示すように、噴射装置11とボーリング孔HDの内壁面との間の隙間S(円環状空間)を通って地上に排出される。
In FIG. 8, the ejection device 11 is gradually pulled up to the ground side (upward in FIG. 8) while ejecting the cutting fluid jet J into the ground, for example, rotating in the arrow R direction. As a result, the ground G is cut by the cutting fluid jet J, and the expanded cutting hole HC having the inner wall surface W is formed while the in-situ soil and the cutting fluid are mixed.
At the same time, the solidifying material (for example, cement) is discharged from a discharge port (not shown) provided in the vicinity of the lower end portion of the injection device 11 through the solidification material flow path (not shown) in the injection device 11. By discharging into the expanded hole HC, the ground solid body (not shown) is formed by mixing with the cut in-situ soil. Here, as with the cutting fluid jet J, or together with the cutting fluid jet J, there is a case where the solidified material is jetted radially outward.
When the ground G is cut by the cutting fluid jet J, slime that is a mixture of the cut in-situ soil and the cutting fluid is generated. As shown by an arrow AD, this slime is discharged to the ground through a gap S (annular space) between the injection device 11 and the inner wall surface of the boring hole HD.
図9では、切削用流体ジェットJにより切削された地盤Gにおいて、同一断面において噴射装置11を複数回回転して引き上げた際の切削用流体ジェットJの全ての流線を表現している。図9で示すように、切削用流体ジェットJの全ての流線は、所定間隔P/2(Pは噴射装置11が一回転する間に引き上げられる引上量:ピッチ)を隔てて平行に延在する複数の直線Lとして表現される。図9では2個のノズルNから切削用流体ジェットJ噴射されるので、切削用流体ジェットJの流線の間隔は、ピッチPの1/2となる。
そして、図9において、所定間隔(ピッチPの1/2)を隔てて平行に延在する複数の切削用流体ジェットJに存在する原位置土(地盤、岩盤、岩石等)は、当該ジェットJにより切削され、切削された原位置土は切削流体と混合して、スライムとして地上側に排出される。
In FIG. 9, in the ground G cut by the cutting fluid jet J, all streamlines of the cutting fluid jet J when the injection device 11 is rotated a plurality of times and pulled up in the same cross section are represented. As shown in FIG. 9, all streamlines of the cutting fluid jet J extend in parallel with a predetermined interval P / 2 (P is a pulling amount that is pulled up while the injection device 11 makes one revolution: pitch). It is expressed as a plurality of existing straight lines L. In FIG. 9, since the cutting fluid jet J is ejected from the two nozzles N, the interval between the streamlines of the cutting fluid jet J is ½ of the pitch P.
In FIG. 9, the in-situ soil (ground, rock, rock, etc.) existing in a plurality of cutting fluid jets J extending in parallel with a predetermined interval (1/2 of the pitch P) is the jet J The in-situ soil cut by is mixed with the cutting fluid and discharged as a slime to the ground side.
しかし、当該複数の切削流体ジェットJの間の領域(間隔P/2の領域)には当該ジェットJは噴射されないので、平行に噴出される複数のジェットJの間の領域において、図10に示す様に、代表寸法(縦方向寸法、横方向寸法、高さ方向寸法の中で最も大きな寸法)が大きい土塊Mが切削されずに残存する可能性がある。
そして、当該大きな土塊Mが切削されずに残存してしまうと、図11で示す様に、当該大きな土塊Mはボーリング孔HDの内壁面と噴射装置11との間の隙間S(円環状空間)を通過するのが困難であり、当該隙間S(円環状空間)を閉塞して、地上側へスライムが排出されるのを妨げてしまう。
そのため、上述した地盤改良工法では、代表寸法が大きな土塊Mが切削されずに残存するのを防止する技術が望まれている。しかし、その様な技術(代表寸法が大きな土塊Mが切削されずに残存してしまうことを防止する技術)は、現時点では未だ提案されていない。
However, since the jet J is not injected into the region between the plurality of cutting fluid jets J (region of the interval P / 2), the region between the plurality of jets J jetted in parallel is shown in FIG. In the same manner, there is a possibility that the soil block M having a large representative dimension (the largest dimension among the longitudinal dimension, the lateral dimension, and the height dimension) remains without being cut.
When the large soil mass M remains without being cut, as shown in FIG. 11, the large soil mass M becomes a gap S (annular space) between the inner wall surface of the boring hole HD and the injection device 11. It is difficult to pass through, and the gap S (annular space) is blocked, and the slime is prevented from being discharged to the ground side.
Therefore, in the ground improvement method described above, there is a demand for a technique for preventing the clot M having a large representative size from remaining without being cut. However, such a technique (a technique for preventing the clot M having a large representative size from remaining without being cut) has not been proposed yet.
特開平7-76821号公報JP-A-7-76821
本発明は上述した従来技術の問題点に鑑みて提案されたものであり、代表寸法が大きな土塊が残存することを防止することが出来る地盤改良工法の提供を目的としている。 The present invention has been proposed in view of the above-described problems of the prior art, and an object of the present invention is to provide a ground improvement method capable of preventing a lump having a large representative dimension from remaining.
本発明の地盤改良工法は、噴射装置(1、10)から切削用流体(例えば、高圧水や高圧エア:固化材を噴射する場合を含む)を噴射して切削すると共に、固化材を供給して、切削された地盤(G)と流体と固化材を混合、撹拌して、地中固結体を造成する地盤改良工法において、
噴射装置(1、10)には複数のノズル(N1、N2)が垂直方向に間隔をあけて位置しており、切削用流体を噴射する際に、上方のノズル(N1)から斜め下方に切削用流体を噴射し(切削用流体ジェットJ1)、下方のノズル(N2)から斜め上方に切削用流体を噴射する(切削用流体ジェットJ2)ことを特徴としている。
In the ground improvement method of the present invention, cutting fluid (for example, high-pressure water or high-pressure air: including the case of injecting solidified material) is injected from the injection device (1, 10) to perform cutting, and the solidified material is supplied. In the ground improvement method for mixing the ground (G) that has been cut, the fluid, and the solidifying material, stirring, and creating a ground solid body,
A plurality of nozzles (N1, N2) are positioned in the injection device (1, 10) at intervals in the vertical direction, and when the cutting fluid is injected, cutting is performed obliquely downward from the upper nozzle (N1). The cutting fluid is jetted (cutting fluid jet J1), and the cutting fluid is jetted obliquely upward from the lower nozzle (N2) (cutting fluid jet J2).
本発明において、ノズル(N1、N2)の角度(θ:ジェットJ1、J2の噴射角度)を調節する工程を有するのが好ましい。
また本発明において、ノズル(N1、N2)間の垂直方向間隔Vを調節する工程を有するのが好ましい。
In this invention, it is preferable to have the process of adjusting the angle ((theta): jet angle of jet J1, J2) of a nozzle (N1, N2).
Moreover, in this invention, it is preferable to have the process of adjusting the vertical space | interval V between nozzles (N1, N2).
さらに本発明において、噴射装置(10)の上方から切削用流体として仕切形成材を噴射し(ジェットJ1、J2)、噴射装置(10)の下方から固化材を噴射する(ジェットJ3、J4)のが好ましい。 Further, in the present invention, the partition forming material is jetted as a cutting fluid from above the jetting device (10) (jets J1, J2), and the solidified material is jetted from below the jetting device (10) (jets J3, J4). Is preferred.
上述の構成を具備する本発明によれば、複数のノズル(N1、N2)が垂直方向に間隔をあけて位置しており、上方のノズル(N1)から斜め下方に切削用流体を噴射し(ジェットJ1)、下方のノズル(N2)から斜め上方に切削用流体を噴射する(ジェットJ2)ことにより、任意の位置における平面(図2、図9参照:噴射装置1の中心軸CLを包含して半径方向及び垂直方向に延在する平面:噴射装置1の中心軸CLに対して360°の全ての方向について存在する)において一定時間に噴射される切削用流体(ジェットJ1、ジェットJ2)の流線は、斜め方向に延在する平行な複数本の直線(J1、J2)が交差した形状となる。
そのため、ある瞬間において切削用流体ジェット(J)で切削されない領域(土塊G)が存在したとしても、当該土塊(G)は、その後、何れかの切削流体ジェット(ジェットJ1、ジェットJ2)により切断される。換言すれば、ある瞬間において大きな土塊(G)が切削流体ジェット(ジェットJ1、ジェットJ2)で切削されずに残存しても、その後に当該土塊(G)は切削流体ジェット(ジェットJ1、ジェットJ2)の何れかの流線に
より必ず切断される。
According to the present invention having the above-described configuration, the plurality of nozzles (N1, N2) are positioned at intervals in the vertical direction, and the cutting fluid is ejected obliquely downward from the upper nozzle (N1) ( By jetting the cutting fluid obliquely upward from the lower nozzle (N2) (jet J1), the plane at any position (see FIGS. 2 and 9: includes the central axis CL of the injection device 1). Of the cutting fluid (jet J1, jet J2) ejected in a certain time in a plane extending in the radial direction and the vertical direction (existing in all directions of 360 ° with respect to the central axis CL of the injection device 1) The streamline has a shape in which a plurality of parallel straight lines (J1, J2) extending in an oblique direction intersect.
Therefore, even if there is a region (clot G) that is not cut by the cutting fluid jet (J) at a certain moment, the clot (G) is then cut by any of the cutting fluid jets (jet J1, jet J2). Is done. In other words, even if a large clot (G) remains without being cut by the cutting fluid jet (jet J1, jet J2) at a certain moment, the clot (G) is subsequently cut by the cutting fluid jet (jet J1, jet J2). ) Is always cut by one of the streamlines.
そのため、本発明によれば、切削用流体の噴流(ジェットJ)で切削されない領域(土塊G)が長距離に亘って存在してしまうことが防止され、代表寸法が大きい土塊(G)が切削用流体の噴流(ジェットJ)の流線と平行に延在して残存してしまうことが防止され、切削用流体噴流(J)で切削されない領域(土塊M)が大きくなり過ぎてしまう(代表寸法が大きくなり過ぎる)ことがなくなる。
そして、切削されずに残存し得る最大の土塊(M)のサイズは小さくなり、噴射装置(1)とボーリング孔(HD)の内壁面との隙間S(円環状空間)を容易に通過する。したがって、残存し得る最大のサイズの土塊(M)がスライムの地上側への排出を妨げてしまうことはない。
Therefore, according to the present invention, it is possible to prevent a region (clot G) that is not cut by a jet of cutting fluid (jet J) from existing over a long distance, and a clot (G) having a large representative dimension is cut. It is prevented from extending and remaining parallel to the streamline of the working fluid jet (jet J), and the region not cut by the cutting fluid jet (J) (clump M) becomes too large (representative). (The dimension becomes too large).
And the size of the largest earth block (M) which can remain | survive without cutting becomes small, and passes easily the clearance gap S (annular space) between an injection apparatus (1) and the inner wall face of a boring hole (HD). Therefore, the maximum size of the mass (M) that can remain does not prevent the slime from being discharged to the ground side.
本発明において、ノズル(N1、N2)の角度(θ:ジェットJ1、J2の噴射角度)を調節する様に構成すれば、施工地盤(G)の土壌の種類等に対応して、効率的な切削径(D)にて切削することが可能である。
また本発明において、ノズル(N1、N2)間の垂直方向間隔(V)を調節可能に構成すれば、切削用流体の噴流(J)の流線間のピッチ(P)を調節することが可能になり、施工現場の状況に対応して、切削用流体の噴流(J)で切削されずに残存し得る最大の土塊(M)のサイズを調節することが可能となる。
In the present invention, if the configuration is such that the angle of the nozzles (N1, N2) (θ: jet angle of the jets J1, J2) is adjusted, it is efficient in accordance with the type of soil of the construction ground (G). It is possible to cut with a cutting diameter (D).
Further, in the present invention, if the vertical interval (V) between the nozzles (N1, N2) is adjustable, the pitch (P) between the streamlines of the jet (J) of the cutting fluid can be adjusted. Accordingly, it is possible to adjust the size of the maximum mass (M) that can remain without being cut by the cutting fluid jet (J) in accordance with the situation of the construction site.
本発明において、噴射装置(10)の上方(のノズル)から切削用流体として仕切形成材を噴射し(ジェットJ1、J2)、噴射装置(10)の下方(のノズル)から固化材を噴射(ジェットJ3、J4)すれば、仕切形成材と切削された原位置土が混合した仕切形成材の層(分離層LD)が上方に構成され、仕切形成材と切削された原位置土と固化材とが混合された固化材の層(LC)が下方に形成される。
そのため、仕切形成材で構成された分離層(LD)における仕切形成材と土壌との混合物のみ、スライム(仕切形成材と切削された土壌との混合物)として地上側に排出され、固化材の層(LC)における富配合の固化材は、地上側には殆ど排出されない。そして固化材が地上側に排出されないため、固化材の浪費が抑制されると共に、産業廃棄物として専門の処理施設で処理するべきスライムの発生量が減少する。
また、噴射装置(10)の下方(のノズル)から固化材が噴射される(ジェットJ3、J4)ので、原位置土の粘性が高くても(例えば粘土)、原位置土(粘土)と仕切形成材の混合物は固化材と良好に混合される。
In the present invention, a partition forming material is jetted as a cutting fluid (jet J1, J2) from above (nozzle) of the jetting device (10), and a solidified material is jetted from below (nozzle) of the jetting device (10) ( If the jets J3 and J4), the partition forming material layer (separation layer LD) in which the partition forming material and the cut in-situ soil are mixed is formed above, and the partition forming material, the cut in-situ soil and the solidified material are formed. A layer (LC) of the solidified material mixed with is formed below.
Therefore, only the mixture of the partition forming material and the soil in the separation layer (LD) composed of the partition forming material is discharged to the ground side as a slime (mixture of the partition forming material and the cut soil), and the solidified material layer The rich blended material in (LC) is hardly discharged to the ground side. And since a solidification material is not discharged | emitted on the ground side, waste of a solidification material is suppressed and the generation amount of the slime which should be processed in a special treatment facility as industrial waste decreases.
Further, since the solidification material is jetted from (below the nozzle) of the jetting device (10) (jets J3, J4), even if the in-situ soil has a high viscosity (for example, clay), it is separated from the in-situ soil (clay). The mixture of forming materials is well mixed with the solidifying material.
本発明の第1実施形態を示す説明図である。It is explanatory drawing which shows 1st Embodiment of this invention. 第1実施形態により地盤が切削される状態を示す説明図である。It is explanatory drawing which shows the state by which the ground is cut by 1st Embodiment. 第1実施形態においてノズルの噴射角度を調節する機構の一例を示す説明図である。It is explanatory drawing which shows an example of the mechanism which adjusts the injection angle of a nozzle in 1st Embodiment. 第1実施形態においてノズルの噴射角度を調節する機構の図3とは別の例を示す説明図である。It is explanatory drawing which shows the example different from FIG. 3 of the mechanism which adjusts the injection angle of a nozzle in 1st Embodiment. 第1実施形態においてノズルの間隔を調節する機構の一例を示す説明図である。It is explanatory drawing which shows an example of the mechanism which adjusts the space | interval of a nozzle in 1st Embodiment. 第1実施形態においてノズルの間隔を調節する機構の図5とは別の例を示す説明図である。It is explanatory drawing which shows the example different from FIG. 5 of the mechanism which adjusts the space | interval of a nozzle in 1st Embodiment. 本発明の第2実施形態を示す説明図である。It is explanatory drawing which shows 2nd Embodiment of this invention. 従来の地盤改良工法を示す説明図である。It is explanatory drawing which shows the conventional ground improvement construction method. 従来の地盤改良工法により地盤が切削される状態を示す説明図である。It is explanatory drawing which shows the state by which the ground is cut by the conventional ground improvement construction method. 従来の地盤改良工法による切削土塊の一例を示す説明図である。It is explanatory drawing which shows an example of the cutting soil block by the conventional ground improvement construction method. 従来の地盤改良工法における問題点を示す説明図である。It is explanatory drawing which shows the problem in the conventional ground improvement construction method.
以下、図1~図7を参照して、本発明の実施形態を説明する。
最初に図1~図6を参照して、本発明の第1実施形態を説明する。
図8、図11で示す従来技術では、一対のノズルNの垂直方向位置(図8、図11では上下方向位置)は同一であり、また、切削用流体(例えば高圧水:固化材を包含する場合もある)の噴流(切削用流体ジェットJ)は、水平方向を噴射される。
それに対して、図1~図6で示す実施形態では、ノズルN1、N2の垂直方向位置(図1の上下方向位置)は異なっており、また、水平方向に対して斜めの方向に切削用流体ジェットJを噴射している。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
First, a first embodiment of the present invention will be described with reference to FIGS.
In the prior art shown in FIGS. 8 and 11, the vertical positions of the pair of nozzles N (the vertical positions in FIGS. 8 and 11) are the same, and also include a cutting fluid (for example, high-pressure water: solidified material). In some cases, the jet (cutting fluid jet J) is ejected in the horizontal direction.
On the other hand, in the embodiment shown in FIGS. 1 to 6, the vertical positions (the vertical positions in FIG. 1) of the nozzles N1 and N2 are different, and the cutting fluid is inclined in the horizontal direction. Jet J is being jetted.
図1において、改良すべき地盤Gに削孔されたボーリング孔HDには、切削用流体(例えば高圧水)の噴流J(切削用流体ジェット)を噴射するロッド状の噴射装置1が挿入されている。
噴射装置1の側面にはノズルN1及びN2が設けられており、ノズルN1及びN2から切削用流体ジェットJ1、J2が噴射する。なお、本明細書において、ジェットJ1、J2をジェットJと総称する場合がある。
ノズルN1及びN2は、垂直方向(図1の上下方向)に間隔Vを隔てて配置されている。図1において、符号CLは噴射装置1の中心軸を示している。
In FIG. 1, a rod-like injection device 1 for injecting a jet J (cutting fluid jet) of a cutting fluid (for example, high-pressure water) is inserted into a borehole HD drilled in the ground G to be improved. Yes.
Nozzles N1 and N2 are provided on the side surface of the ejection device 1, and cutting fluid jets J1 and J2 are ejected from the nozzles N1 and N2. In this specification, the jets J1 and J2 may be collectively referred to as a jet J.
The nozzles N1 and N2 are arranged at an interval V in the vertical direction (up and down direction in FIG. 1). In FIG. 1, symbol CL indicates the central axis of the injection device 1.
上方のノズルN1からは、水平方向斜め下側に向かって切削用流体ジェットJ1を噴射しており、切削用流体ジェットJ1の噴射方向は、水平方向HOに対して角度θだけ下方に傾斜している。なお、水平方向HOは、噴射装置1の中心軸CLに対し垂直に延在する方向である。
一方、下方のノズルN2からは、水平方向上側に向かって切削用流体体ジェットJ2を噴射しており、切削用流体ジェットJ2の噴射方向は、水平方向HOに対して角度θだけ上方に傾斜している。
図1において符号DはジェットJ1、J2により切削された領域(切削孔HC)の切削径であり、切削孔HCの切削半径(噴射装置1の中心軸CLと切削孔HCの内壁までの距離)はD/2である。
The cutting fluid jet J1 is ejected from the upper nozzle N1 obliquely downward in the horizontal direction, and the ejection direction of the cutting fluid jet J1 is inclined downward by an angle θ with respect to the horizontal direction HO. Yes. The horizontal direction HO is a direction extending perpendicular to the central axis CL of the injection device 1.
On the other hand, the cutting fluid jet J2 is jetted from the lower nozzle N2 toward the upper side in the horizontal direction, and the jetting direction of the cutting fluid jet J2 is inclined upward by an angle θ with respect to the horizontal direction HO. ing.
In FIG. 1, symbol D denotes a cutting diameter of a region (cutting hole HC) cut by the jets J <b> 1 and J <b> 2, and a cutting radius of the cutting hole HC (a distance from the central axis CL of the injection device 1 to the inner wall of the cutting hole HC). Is D / 2.
噴射装置1は公知のものを適用することが可能であり、地上に設けた図示しない供給装置から切削用流体が噴射装置1に導入され、噴射装置1の中の切削用流体流路(図示せず)を流過して、ノズルN1及びN2から、切削用流体ジェットJ1及びJ2が半径方向外方に(地中に)噴射される。
噴射装置1は、切削用流体ジェットJ1及びJ2を噴射して地盤Gを切削しつつ、矢印Rで示す様に回転し、且つ、地表に向かって(図1では上方:矢印U参照)引き上げられる。
なお噴射装置1の引上げ量(噴射装置1が1回転する間に矢印U方向へ移動する移動量)は、符号Pで表現されている。
A well-known device can be applied to the injection device 1, and a cutting fluid is introduced into the injection device 1 from a supply device (not shown) provided on the ground, and a cutting fluid channel (not shown) in the injection device 1 is shown. The cutting fluid jets J1 and J2 are ejected radially outward (under the ground) from the nozzles N1 and N2.
The ejection device 1 rotates as indicated by an arrow R while ejecting cutting fluid jets J1 and J2 to cut the ground G, and is pulled up toward the ground surface (upward: see arrow U in FIG. 1). .
The pull-up amount of the injection device 1 (the amount of movement that moves in the direction of the arrow U while the injection device 1 makes one revolution) is represented by the symbol P.
切削用流体ジェットJ1、J2により、地盤Gが切削されて、切削孔HCが形成される。地盤Gの切削と同時に、固化材(例えばセメントミルク)を、噴射装置1の中の固化材流路(図示せず)を介して噴射装置1の下端部付近に設けた図示しない吐出口から吐出することにより、固化材が切削された原位置土と切削用流体(例えば高圧水)と混合されて切削孔HC中に充填され、その後に固化することにより地中固結体(図示せず)が造成される。
図1において、地盤切削の際に発生したスライムは、矢印ADで示すように、噴射装置1とボーリング孔HDの内壁面との間の隙間S(環状空間)を通って地上に排出される。
The ground G is cut by the cutting fluid jets J1 and J2, and the cutting hole HC is formed. Simultaneously with the cutting of the ground G, the solidified material (for example, cement milk) is discharged from a discharge port (not shown) provided in the vicinity of the lower end portion of the injection device 1 through the solidification material flow path (not shown) in the injection device 1. As a result, the solidified material is mixed with the in-situ soil from which the solidified material has been cut and a cutting fluid (for example, high-pressure water), filled into the cutting hole HC, and then solidified by solidifying (not shown). Is created.
In FIG. 1, the slime generated during ground cutting is discharged to the ground through a gap S (annular space) between the injection device 1 and the inner wall surface of the boring hole HD as indicated by an arrow AD.
上述の様に、ノズルN1、N2が垂直方向に間隔Vをあけて位置しており、上方のノズル
N1から斜め下方に切削用流体ジェットJ1を噴射し、下方のノズルN2から斜め上方に切削用流体ジェットJ2を噴射するため、或る断面(任意の同一断面)において噴射装置11を複数回回転して引き上げた際の切削用流体ジェットJ1、J2の全ての流線を表現すると、図2で示す様になる。
すなわち、第1実施形態によれば、図2において、切削用流体ジェットJ1及び切削用流体ジェットJ2の流線は、或る断面(任意の同一断面)において、図2で噴射装置1より右側の平面では、切削用流体ジェットJ1による左上から右下に延在する平行な複数の直線(ジェットJ1と同一の直線)と、切削用流体ジェットJ2による左下から右上に延在する平行な複数の直線(ジェットJ2と同一の直線)とが交差した形状となる。
ここで、或る断面(任意の同一断面)とは、例えば図1、図2において、噴射装置1の中心軸CL(図1参照)を包含して半径方向及び垂直方向(図2では上下方向)に延在する平面であり、噴射装置1の中心軸CLに対して360°全周に亘って存在する。
As described above, the nozzles N1 and N2 are positioned at an interval V in the vertical direction, the cutting fluid jet J1 is ejected obliquely downward from the upper nozzle N1, and the cutting is performed obliquely upward from the lower nozzle N2. In order to inject the fluid jet J2, all streamlines of the cutting fluid jets J1 and J2 when the injection device 11 is rotated a plurality of times and pulled up in a certain cross section (arbitrary identical cross section) are expressed in FIG. As shown.
That is, according to the first embodiment, in FIG. 2, the flow lines of the cutting fluid jet J1 and the cutting fluid jet J2 are on the right side of the injection device 1 in FIG. In the plane, a plurality of parallel straight lines extending from the upper left to the lower right by the cutting fluid jet J1 (the same straight line as the jet J1) and a plurality of parallel straight lines extending from the lower left to the upper right by the cutting fluid jet J2. (The same straight line as the jet J2) intersects.
Here, a certain cross section (arbitrary identical cross section) means, for example, in FIG. 1 and FIG. 2, including the central axis CL (see FIG. 1) of the injection device 1 in the radial direction and the vertical direction (vertical direction in FIG. ) Extending over 360 ° with respect to the central axis CL of the injection device 1.
図2において、例えば噴射装置1より右側の平面で、左上から右下に噴射される複数の切削用流体ジェットJ1、J1の間隔P(ピッチ)、或いは、左下から右上に噴射される複数のジェットJ2、J2の間隔P(ピッチ)は、噴射装置1が1回転する間に上方へ移動する移動量(引き上げ量)であり、図示の実施形態では例えば2.5cmである。
なお、図2において一番下方の切削用流体ジェットJ1の流線と、切削用流体ジェットJ2の流線の上下方向間隔は、ノズルN1及びN2間の距離Vに等しい。
In FIG. 2, for example, a plurality of cutting fluid jets J <b> 1 and J <b> 1 that are ejected from the upper left to the lower right in the plane on the right side of the ejection device 1, or a plurality of jets ejected from the lower left to the upper right. The interval P (pitch) between J2 and J2 is the amount of movement (pull-up amount) that moves upward while the injection device 1 makes one revolution, and is, for example, 2.5 cm in the illustrated embodiment.
In FIG. 2, the vertical interval between the streamline of the lowermost cutting fluid jet J1 and the streamline of the cutting fluid jet J2 is equal to the distance V between the nozzles N1 and N2.
図2において、所定間隔(ピッチP)を隔てて平行に延在する複数の切削用流体ジェットJ1、J2の流線に存在する原位置土(地盤、岩盤、岩石等)は、当該切削用流体ジェットにより切削される。
切削用流体ジェットJ1、J2の流線上に存在しない領域、すなわち、切削用流体ジェットJ1、J2の流線間の領域αに存在する原位置土は、切削用流体ジェットJ1、J2では切削されない。なお、図2では、切削用流体ジェットJ1、J2の流線間の領域αについては、1つだけハッチングを付して例示している。
In FIG. 2, in-situ soil (ground, rock, rock, etc.) existing in the streamlines of a plurality of cutting fluid jets J1, J2 extending in parallel at a predetermined interval (pitch P) is the cutting fluid. It is cut by a jet.
The in-situ soil existing in the region that does not exist on the streamlines of the cutting fluid jets J1 and J2, that is, the region α between the streamlines of the cutting fluid jets J1 and J2, is not cut by the cutting fluid jets J1 and J2. In FIG. 2, the region α between the streamlines of the cutting fluid jets J1 and J2 is illustrated with only one hatching.
領域αに存在する原位置土は切削用流体ジェットJ1、J2では切削されないため、領域αに存在する土塊Mが切削されない状態で残存する恐れが存在する。
しかし、図2における断面(任意の同一断面)では、当該断面における複数の切削用流体ジェットJ1、J2の流線ならば、切削用流体ジェットJ1及びJ2で切削されずに残存する最大の土塊は、図2における菱形の領域αに存在する土塊Mである。そして、図2の領域αに存在する土塊Mは、図10、図11で示す代表寸法の大きな土塊に比較して、その代表寸法が小さい。
そして、図2の領域αに存在する土塊Mは代表寸法が小さいため、スライムと共に、噴射装置1とボーリング孔HDの内壁面との環状空間S(図1参照)内を容易に通過することができる。換言すれば、図2の領域αに存在する代表寸法が小さい土塊Mが、スライムの地上側への排出を妨げてしまうことはない。
Since the in-situ soil existing in the region α is not cut by the cutting fluid jets J1 and J2, there is a possibility that the soil mass M existing in the region α may remain uncut.
However, in the cross section in FIG. 2 (arbitrary identical cross section), if the flow lines of the plurality of cutting fluid jets J1 and J2 in the cross section are, the maximum mass remaining without being cut by the cutting fluid jets J1 and J2 is 2 is a block M present in the diamond-shaped region α in FIG. 2 has a smaller representative dimension than that of the large chunk of representative dimensions shown in FIGS. 10 and 11.
2 has a small representative size, it can easily pass through the annular space S (see FIG. 1) between the injection device 1 and the inner wall surface of the boring hole HD together with the slime. it can. In other words, the clot M having a small representative size in the region α in FIG. 2 does not hinder the discharge of the slime to the ground side.
ここで、切削孔HCの切削径Dを決定する主たる要因は、切削用流体ジェットJの噴射圧、切削用流体ジェットJの噴射流量であり、切削回数、噴射装置1の回転速度も切削径Dに影響する。
発明者の研究では、粘土地盤では切削径Dは4m以上であり、砂地盤では5m以上である。
図1において、ノズルN1、N2における角度θ(ジェットJ1、J2の噴射角度)を調節すれば前記切削用流体ジェットJの噴射圧を調節することになり、切削径Dを決定することが出来る。
Here, the main factors that determine the cutting diameter D of the cutting hole HC are the injection pressure of the cutting fluid jet J and the injection flow rate of the cutting fluid jet J. The number of cuttings and the rotational speed of the injection device 1 are also determined by the cutting diameter D. Affects.
According to the inventor's research, the cutting diameter D is 4 m or more in clay ground, and 5 m or more in sand ground.
In FIG. 1, adjusting the angle θ (injection angle of the jets J1 and J2) at the nozzles N1 and N2 adjusts the injection pressure of the cutting fluid jet J, so that the cutting diameter D can be determined.
上述したパラメータをさらに例示すると、切削用流体ジェットJの噴射圧は施工地盤Gに
おける土壌の一軸圧縮強度以上、例えば300bar以上である。
さらに、切削用流体ジェットJの噴射流量Qは
Q=300(リットル/min.)×ノズル本数 という式で示される。
これに加えて例示すると、噴射装置1の回転速度は5rpm、切削回数は1~2回である。すなわち、噴射装置1が半回転~1回転する毎に、噴射装置1を上昇する(ステップアップする)。
To further illustrate the above-described parameters, the injection pressure of the cutting fluid jet J is equal to or higher than the uniaxial compressive strength of the soil in the construction ground G, for example, 300 bar or higher.
Further, the injection flow rate Q of the cutting fluid jet J is expressed by the following equation: Q = 300 (liter / min.) × number of nozzles.
In addition to this, the rotation speed of the injection device 1 is 5 rpm, and the number of times of cutting is 1 to 2 times. That is, the injection device 1 is raised (steps up) every time the injection device 1 makes half to one rotation.
図示の実施形態において、上述した通り、切削径Dは、ノズルN1、N2における角度θ(ジェットJ1、J2の噴射角度)を調節することにより定めることが出来る。
従って、図示の実施形態において、ノズルN1、N2における角度θ(ジェットJ1、J2の噴射角度)を調節できることが好ましい。
図3、図4は、ノズルN1、N2における角度θ(ジェットJ1、J2の噴射角度)を調節するための機構を示している。
In the illustrated embodiment, as described above, the cutting diameter D can be determined by adjusting the angle θ (the jet angle of the jets J1 and J2) at the nozzles N1 and N2.
Therefore, in the illustrated embodiment, it is preferable that the angle θ (the jet angle of the jets J1 and J2) at the nozzles N1 and N2 can be adjusted.
3 and 4 show a mechanism for adjusting the angle θ (the jet angle of the jets J1 and J2) at the nozzles N1 and N2.
最初に、図3の機構について説明する。
図3は、噴射装置1の中心軸CLに対しノズルN1が取り付けられた状態を示しており、噴射装置1は切削用流体流路1Aを備え、切削用流体流路1Aには切削用流体が流過する。切削用流体は地上の図示しない供給装置から供給され、加圧装置(図示せず)により加圧されて図3の矢印AB方向に流れて、ノズルN1及びN2から矢印ACの方向に噴射される。
図3において、符号1Bは、噴射装置1に設けられたノズルN1の噴射角度調整による可動域確保のための切欠き部である。
First, the mechanism of FIG. 3 will be described.
FIG. 3 shows a state in which the nozzle N1 is attached to the central axis CL of the injection device 1, and the injection device 1 includes a cutting fluid channel 1A, and the cutting fluid channel 1A contains a cutting fluid. Shed. The cutting fluid is supplied from a supply device (not shown) on the ground, is pressurized by a pressurization device (not shown), flows in the direction of arrow AB in FIG. 3, and is ejected from nozzles N1 and N2 in the direction of arrow AC. .
In FIG. 3, reference numeral 1 </ b> B is a notch for securing a movable range by adjusting the injection angle of the nozzle N <b> 1 provided in the injection device 1.
図3で示す噴射角度調整機構はノズルN1の噴射角度を調整するための機構であり、噴射角度調整用あて板2と調整用挿入板3が設けられている。
噴射角度調整用あて板2は上下方向に延在する板状体であり、噴射装置1(図3では管状の噴射装置1のケーシングのみが示されている)に取り付けられている。そして噴射角度調整用あて板2の噴射装置1側(図3では左側)には挿入部2Aが設けられており、挿入部2Aは調整用挿入板3が挿入自在となる様に構成されている。挿入部2Aは噴射角度調整用あて板2の内側空間を形成しており、挿入部2Aの底面部2Bは噴射装置1のケーシングの外表面(外壁面)である。
挿入部2Aが形成する空間の高さ方向(半径方向:図4では左右方向)寸法は、その入り口(噴射角度調整用あて板2の下端部)から図4の上方に向かうに連れて漸減する。そして挿入部2Aの底面部2B(噴射装置1のケーシングの外表面)と、挿入部2Aの上面部2Cが為す角度(挿入角度)は符号φ1で示されている。
The injection angle adjustment mechanism shown in FIG. 3 is a mechanism for adjusting the injection angle of the nozzle N1, and is provided with an injection angle adjustment address plate 2 and an adjustment insertion plate 3.
The injection angle adjusting plate 2 is a plate-like body extending in the vertical direction, and is attached to the injection device 1 (only the casing of the tubular injection device 1 is shown in FIG. 3). An insertion portion 2A is provided on the injection device 1 side (left side in FIG. 3) of the injection angle adjusting plate 2, and the insertion portion 2A is configured such that the adjustment insertion plate 3 can be inserted. . The insertion portion 2A forms an inner space of the injection angle adjusting cover plate 2, and the bottom surface portion 2B of the insertion portion 2A is the outer surface (outer wall surface) of the casing of the injection device 1.
The height direction (radial direction: left and right direction in FIG. 4) dimension of the space formed by the insertion portion 2A gradually decreases from the entrance (the lower end portion of the injection angle adjusting plate 2) toward the upper side in FIG. . An angle (insertion angle) formed by the bottom surface portion 2B of the insertion portion 2A (the outer surface of the casing of the injection device 1) and the upper surface portion 2C of the insertion portion 2A is indicated by reference numeral φ1.
噴射角度調整用あて板2は、その上端部付近で噴射装置1側の支持軸2Dに対して回動可能に軸支されていると共に、図示しない付勢装置(スプリング等)により、常時矢印F方向、すなわち、噴射角度調整用あて板2を噴射装置1に押し付ける方向に付勢されている。
ノズルN1は、前記噴射角度調整用あて板2に固定され、当該あて板2と一体的に回動する。そのため、噴射角度調整用あて板2が初期位置(噴射角度調整用あて板2が噴射装置1の外壁面に押し付けられた状態:図3の位置)から、前記付勢力Fに抗して時計回りに回動すると、ノズルN1は支持軸2D周りに回動し、噴射角度θが減少する方向に回動する。
The injection angle adjusting support plate 2 is pivotally supported near the upper end of the injection angle adjusting plate 2D with respect to the support shaft 2D on the injection device 1 side, and is always indicated by an arrow F by a biasing device (spring or the like) not shown. It is biased in the direction, that is, the direction in which the injection angle adjusting plate 2 is pressed against the injection device 1.
The nozzle N <b> 1 is fixed to the injection angle adjusting coating plate 2 and rotates integrally with the coating plate 2. Therefore, the injection angle adjusting plate 2 is rotated clockwise from the initial position (the state in which the injection angle adjusting plate 2 is pressed against the outer wall surface of the injection device 1: the position shown in FIG. 3) against the urging force F. When the nozzle N1 rotates, the nozzle N1 rotates around the support shaft 2D and rotates in the direction in which the injection angle θ decreases.
調整用挿入板3は全体が三角柱体であり、噴射装置1の外壁面に接触する底面部3Aと、先端部から後方(図3では上方から下方)に向かって厚さが漸増する上面部3Bとを有している。調整用挿入板3の先端部の角度は符号φ2で示されている。ここで、噴射角度調整用あて板2の挿入部2Aの挿入角度φ1と調整用挿入板3の先端部角度φ2は  角度
φ1<角度φ2  となっている。そのため、整用挿入板3を挿入すると、噴射角度調整用あて板2及びノズルN1は時計方向に回動する。
調整用挿入板3は噴射角度調整用あて板2の挿入部2Aに挿入自在(矢印AE方向に移動自在)となっており、調整用挿入板3を噴射角度調整用あて板2の挿入部2Aに挿入する挿入量を調整することで、噴射角度調整用あて板2及びノズルN1が付勢力Fに抗して支持軸2Dに対して時計回りに回動する際のノズルN1の噴射角度θを調整することが出来る。
The adjustment insertion plate 3 is a triangular prism as a whole, and includes a bottom surface portion 3A that comes into contact with the outer wall surface of the injection device 1, and an upper surface portion 3B that gradually increases in thickness from the tip portion toward the rear (from the top to the bottom in FIG. And have. The angle of the distal end portion of the adjustment insertion plate 3 is indicated by the symbol φ2. Here, the insertion angle φ1 of the insertion portion 2A of the injection angle adjusting plate 2 and the tip end angle φ2 of the adjustment insertion plate 3 satisfy an angle φ1 <angle φ2. Therefore, when the leveling insertion plate 3 is inserted, the injection angle adjusting plate 2 and the nozzle N1 are rotated clockwise.
The adjustment insertion plate 3 is freely insertable (movable in the direction of the arrow AE) into the insertion portion 2A of the injection angle adjustment target plate 2, and the adjustment insertion plate 3 is inserted into the insertion portion 2A of the injection angle adjustment target plate 2. By adjusting the insertion amount to be inserted into the nozzle N1, the injection angle θ of the nozzle N1 when the injection angle adjusting plate 2 and the nozzle N1 are rotated clockwise with respect to the support shaft 2D against the urging force F is set. Can be adjusted.
すなわち、調整用挿入板3を挿入部2Aに押し込む方向に挿入すれば、噴射角度調整用あて板2及びノズルN1は時計方向に回動して、噴射角度θは減少する。一方、調整用挿入板3を挿入部2Aから外す方向に移動すれば、付勢力Fにより、噴射角度調整用あて板2及びノズルN1は反時計方向に回動して、噴射角度θが増加する。
上述した内容では、ノズルN1における噴射角度θの調節について説明したが、ノズルN2についても同様の機構により、噴射角度θが調節出来る。
That is, if the adjustment insertion plate 3 is inserted in the direction to be pushed into the insertion portion 2A, the injection angle adjustment target plate 2 and the nozzle N1 rotate clockwise, and the injection angle θ decreases. On the other hand, if the adjustment insertion plate 3 is moved in a direction to remove it from the insertion portion 2A, the urging force F causes the injection angle adjustment target plate 2 and the nozzle N1 to rotate counterclockwise, increasing the injection angle θ. .
In the above description, the adjustment of the injection angle θ in the nozzle N1 has been described, but the injection angle θ can be adjusted for the nozzle N2 by the same mechanism.
図4は図3とは別の噴射角度調整機構を示している。
図4では、ノズルN1の噴射方向の中心付近を、公知のステッピングモータ4の出力軸4Aに固定している。そして、当該ステッピングモータ4の出力軸4Aは、噴射装置(図示せず)に取り付けられている。なお、図4における矢印ACは、切削用流体ジェットJ1の噴射方向を示している。
図4において、ステッピングモータ4を適切な角度だけ正回転または逆回転させることにより、ノズルN1を任意の中心角度だけ回動し、以って、ノズルN1の噴射角度θを調整することが出来る。
図4による噴射角度θの調節機構は、ノズルN2についても適用できる。
FIG. 4 shows an injection angle adjusting mechanism different from FIG.
In FIG. 4, the vicinity of the center in the injection direction of the nozzle N <b> 1 is fixed to the output shaft 4 </ b> A of the known stepping motor 4. The output shaft 4A of the stepping motor 4 is attached to an injection device (not shown). In addition, arrow AC in FIG. 4 has shown the injection direction of the fluid jet J1 for cutting.
In FIG. 4, by rotating the stepping motor 4 forward or backward by an appropriate angle, the nozzle N1 can be rotated by an arbitrary center angle, so that the injection angle θ of the nozzle N1 can be adjusted.
The mechanism for adjusting the injection angle θ according to FIG. 4 can also be applied to the nozzle N2.
図示の実施形態において、切削用流体ジェットJで切削されずに施工地盤Gから剥離し得る最大の土塊Mのサイズは、図2において符号Pで示すピッチ(噴射装置をステップアップするピッチ)の寸法により影響を受ける。
ピッチPはノズルN1、N2間の垂直方向間隔Vが変動すれば異なるパラメータであり、換言すれば、ノズルN1、N2間の垂直方向間隔Vを調節すればピッチPを調節することが出来る。
図5、図6はノズルN1、N2間の垂直方向間隔Vを調節するための機構を例示している。
In the illustrated embodiment, the maximum size of the mass M that can be peeled off from the construction ground G without being cut by the cutting fluid jet J is a dimension of a pitch (pitch for stepping up the injection device) indicated by a symbol P in FIG. Affected by.
The pitch P is a different parameter if the vertical interval V between the nozzles N1 and N2 varies. In other words, the pitch P can be adjusted by adjusting the vertical interval V between the nozzles N1 and N2.
5 and 6 illustrate a mechanism for adjusting the vertical distance V between the nozzles N1 and N2.
先ず、図5の機構について説明する。
図5は、噴射装置1のノズルN1及びN2の取付け部付近を側面から見た説明図であり、噴射装置1をノズルN1、N2間における所定位置(垂直方向所定位置)で2分割し、2分割された噴射装置101、102の間に厚さ寸法Tのスペーサ5を介装している。
ここで、スペーサ5の内部構造は噴射装置101及び102と同様な構造となっており、噴射装置101、102内の流体経路はスペーサ5内の流体経路と図示しない接続手段(例えば、スイベルジョイント等)により、接続されている。そのため、噴射装置101、102及びスペーサ5は、噴射装置として切削用流体(及び固化材)を噴射或いは吐出する機能を備えている。
なお、噴射装置101、102とスペーサ5の結合については、公知技術により(例えば、接着、締結手段等)により行われる。
First, the mechanism of FIG. 5 will be described.
FIG. 5 is an explanatory view of the vicinity of the attachment portion of the nozzles N1 and N2 of the injection device 1 as viewed from the side. The injection device 1 is divided into two at a predetermined position (vertical direction predetermined position) between the nozzles N1 and N2. A spacer 5 having a thickness dimension T is interposed between the divided injection devices 101 and 102.
Here, the internal structure of the spacer 5 is the same as that of the ejection devices 101 and 102, and the fluid path in the ejection devices 101 and 102 is connected to the fluid path in the spacer 5 and connection means (not shown) such as a swivel joint. ). Therefore, the injection devices 101 and 102 and the spacer 5 have a function of injecting or discharging a cutting fluid (and a solidified material) as an injection device.
In addition, about the coupling | bonding of the injection apparatuses 101 and 102 and the spacer 5, it is performed by a well-known technique (for example, adhesion | attachment, a fastening means, etc.).
スペーサ5を噴射装置101及び102間に介装することにより、ノズルN1、N2間の垂直方向間隔Vを調節することが出来る。
例えば、噴射装置101、102間にスペーサ5を介装しない時のノズルN1、N2間の垂直方向間隔Vを、ノズルN1、N2間の最小間隔(垂直方向間隔)とすれば、噴射装置
101、102間にスペーサ5を介装した時のノズルN1、N2間の垂直方向間隔は「V+T」となる。
さらに、厚さ寸法Tが異なるスペーサ5を複数種類用意して、ノズルN1、N2間の垂直方向間隔の範囲を、適宜調節することが出来る。
By interposing the spacer 5 between the injection devices 101 and 102, the vertical interval V between the nozzles N1 and N2 can be adjusted.
For example, if the vertical interval V between the nozzles N1 and N2 when the spacer 5 is not interposed between the injection devices 101 and 102 is the minimum interval (vertical interval) between the nozzles N1 and N2, the injection device 101, When the spacer 5 is interposed between the nozzles 102, the vertical interval between the nozzles N1 and N2 is “V + T”.
Furthermore, a plurality of types of spacers 5 having different thickness dimensions T are prepared, and the range of the vertical interval between the nozzles N1 and N2 can be adjusted as appropriate.
図5とは異なる垂直方向間隔Vを調節するための機構の例が、図6に示されている。図6では、公知のラック及びピニオンギヤ機構を用いて垂直方向間隔Vを調節している。
図6において、ピニオンギヤ7は、その回転軸7Aが噴射装置(図示せず)に取り付けられており、ラック6と噛合している。そしてラック6はノズルN1に固定されており、噴射装置1(図1参照)の中心軸と平行に延在している。ピニオンギヤ7を正回転又は逆回転してラック6を上下動すると、ノズルN1が上下動する。これにより、ノズルN1、N2間の垂直方向間隔を調整することが出来る。
An example of a mechanism for adjusting the vertical spacing V different from FIG. 5 is shown in FIG. In FIG. 6, the vertical interval V is adjusted using a known rack and pinion gear mechanism.
In FIG. 6, the pinion gear 7 has a rotating shaft 7 </ b> A attached to an injection device (not shown) and meshes with the rack 6. The rack 6 is fixed to the nozzle N1 and extends parallel to the central axis of the injection device 1 (see FIG. 1). When the rack 6 is moved up and down by rotating the pinion gear 7 forward or backward, the nozzle N1 moves up and down. Thereby, the vertical interval between the nozzles N1 and N2 can be adjusted.
図6において、矢印ACは、切削用流体ジェットJ1の方向を示す。
また、図6ではノズルN1のみが上下動する様に構成されているが、ノズルN2のみをラック6に固定して上下動するように構成することも可能である。さらに、ノズルN1、N2がそれぞれ別のラックに固定され、ピニオンギヤ7が回転するとノズルN1、N2が上下方向について逆方向に移動して、ノズルN1、N2間の垂直方向間隔Vを調節することも可能である。
In FIG. 6, an arrow AC indicates the direction of the cutting fluid jet J1.
In FIG. 6, only the nozzle N <b> 1 is configured to move up and down, but only the nozzle N <b> 2 may be fixed to the rack 6 and configured to move up and down. Further, the nozzles N1 and N2 are fixed to different racks, and when the pinion gear 7 rotates, the nozzles N1 and N2 move in the reverse direction in the vertical direction, and the vertical interval V between the nozzles N1 and N2 can be adjusted. Is possible.
図示の第1実施形態によれば、噴射装置1のノズルN1、N2が垂直方向に間隔をあけて位置しており、上方のノズルN1から斜め下方に切削用流体ジェットJ1を噴射し、下方のノズルN2から斜め上方に切削用流体ジェットJ2を噴射することにより、切削用流体ジェットJ1、切削用流体ジェットJ2の流線は、任意の位置平面において、図2における噴射装置1より右側の領域であれば、左上から右下に延在する平行な複数の直線と、左下から右上に延在する平行な複数の直線となる。
そのため、図10で示すように、切削用流体ジェットで切削されない領域が切削用流体ジェットの流線と平行に延在することは無く、必ず、他方の切削用流体ジェットの流線が、当該切削されない領域と交差する。
According to the illustrated first embodiment, the nozzles N1 and N2 of the injection device 1 are positioned at an interval in the vertical direction, and the cutting fluid jet J1 is injected obliquely downward from the upper nozzle N1, and the lower part By injecting the cutting fluid jet J2 obliquely upward from the nozzle N2, the streamlines of the cutting fluid jet J1 and the cutting fluid jet J2 are in a region on the right side of the injection device 1 in FIG. If there are, there are a plurality of parallel straight lines extending from the upper left to the lower right and a plurality of parallel straight lines extending from the lower left to the upper right.
Therefore, as shown in FIG. 10, the region that is not cut by the cutting fluid jet does not extend in parallel with the streamline of the cutting fluid jet, and the streamline of the other cutting fluid jet is always the cutting fluid jet. Intersects with areas that are not.
すなわち、ある瞬間において切削用流体ジェットで切削されない領域が存在したとしても、当該領域はその後、切削用流体ジェットJ1、J2の何れかと必ず交差して切断される。そのため、切削用流体ジェットで切削されない領域の代表寸法が大きくなってしまうことは防止される。
その結果、図示の第1実施形態によれば、切削用流体ジェットで切削されずに残存し得る最大の土塊Mは、図10、図11で示す代表寸法の大きな土塊Mに比較して、代表寸法が小さくなり、噴射装置1とボーリング孔HDの内壁面との環状空間(図1、図11参照)内を容易に通過し、スライムの地上側への排出を妨げてしまうことはない。
That is, even if there is a region that is not cut by the cutting fluid jet at a certain moment, the region is always cut and intersected with one of the cutting fluid jets J1 and J2. For this reason, it is possible to prevent the representative dimension of the region not cut by the cutting fluid jet from becoming large.
As a result, according to the illustrated first embodiment, the maximum soil mass M that can remain without being cut by the cutting fluid jet is more representative than the soil mass M having a large representative dimension shown in FIGS. The size is reduced, and it easily passes through the annular space (see FIGS. 1 and 11) between the injection device 1 and the inner wall surface of the boring hole HD, and does not hinder the discharge of slime to the ground side.
また、図示の実施形態では、ノズルN1、N2における角度θ(切削用流体ジェットJ1、J2の噴射角度)を調節することが出来るので、施工地盤Gの土壌の種類等に対応して、効率的な切削径Dに調節することが出来る。
さらに、図示の実施形態ではノズルN1、N2間の垂直方向間隔Vを調節することが出来るので、図2で示すジェット流線のピッチPを調節することが出来る。そのため、施工現場の状況に対応して、ジェットで切削されずに残存し得る最大の土塊Mのサイズを調節することが可能である。
Further, in the illustrated embodiment, the angle θ (injection angle of the cutting fluid jets J1 and J2) at the nozzles N1 and N2 can be adjusted, so that it is efficient in accordance with the type of soil of the construction ground G and the like. It can be adjusted to a proper cutting diameter D.
Further, in the illustrated embodiment, since the vertical interval V between the nozzles N1 and N2 can be adjusted, the jet streamline pitch P shown in FIG. 2 can be adjusted. Therefore, it is possible to adjust the size of the largest soil mass M that can remain without being cut by the jet in accordance with the situation at the construction site.
次に図7を参照して、本発明の第2実施形態について説明する。
図7において、噴射装置10上方のノズルN1から噴射されるジェットJ1、J2は、図1~図6の第1実施形態で説明したのと同様に、ジェットJ1はノズルN1から水平方向
斜め下側に向かって噴射されており、ジェットJ2はノズルN2から水平方向斜め上側に向かって噴射されている。
図7では明確には図示されていないが、ジェットJ1、J2は、その断面の半径方向内方(中央)部分は仕切形成材の噴流であり、その周囲を高圧空気の噴流が包囲している。ただし、高圧空気を噴出しなくても、第2実施形態は実施可能である。
仕切形成材は、例えば、増粘剤(例えば、天然水溶性高分子材料であるグアガム)5重量%と、ケイ酸ナトリウムソーダ(水ガラス)5重量%を包含する溶液である。そして仕切形成材を土壌中に噴射して原位置土と混合することにより、分離層LDを構成する。
Next, a second embodiment of the present invention will be described with reference to FIG.
In FIG. 7, the jets J1 and J2 ejected from the nozzle N1 above the ejection device 10 are jetted obliquely downward from the nozzle N1 in the horizontal direction, as described in the first embodiment of FIGS. The jet J2 is jetted from the nozzle N2 obliquely upward in the horizontal direction.
Although not clearly shown in FIG. 7, the jets J <b> 1 and J <b> 2 are jets of a partition forming material in the radially inner (center) portion of the cross section, and a jet of high-pressure air surrounds the periphery thereof. . However, the second embodiment can be implemented without ejecting high-pressure air.
The partition forming material is, for example, a solution containing 5% by weight of a thickener (eg, guar gum which is a natural water-soluble polymer material) and 5% by weight of sodium silicate (water glass). And the separation layer LD is comprised by spraying a partition formation material in soil and mixing with in-situ soil.
一方、下方のノズルN3、N4から噴射されるジェットJ3、J4は、固化材噴流である。
ジェットJ3、J4により、仕切形成材と原位置土壌とが切削混合した混合物に対して、さらに固化材が混合される。
回転しつつ引き上げられる噴射装置10から噴射されるジェットJ3、J4により固化材を噴射するため、例えば原位置土が粘土であっても、原位置土(粘土)と仕切形成材の混合物は固化材と良好に混合される。
ここで、原位置土(粘土)と仕切形成材の混合物は、スライムとして、矢印ADで示すように噴射装置10とボーリング孔HDの内壁面との間の環状空間Sを通って、地上側に排出される。しかし、原位置土(粘土)と仕切形成材の混合物は固化材を包含していないので、産業廃棄物として処理する必要はなく、作業環境を悪化させる恐れも少ない。
On the other hand, the jets J3 and J4 ejected from the lower nozzles N3 and N4 are solidified material jets.
By the jets J3 and J4, the solidifying material is further mixed with the mixture obtained by cutting and mixing the partition forming material and the in-situ soil.
Since the solidified material is injected by the jets J3 and J4 injected from the injection device 10 that is pulled up while rotating, for example, even if the original soil is clay, the mixture of the original soil (clay) and the partition forming material is the solidified material. And mix well.
Here, the mixture of the in-situ soil (clay) and the partition forming material passes as a slime through the annular space S between the injection device 10 and the inner wall surface of the borehole HD as indicated by an arrow AD, to the ground side. Discharged. However, since the mixture of in-situ soil (clay) and partition forming material does not include a solidifying material, it does not need to be treated as industrial waste, and there is little risk of deteriorating the working environment.
図7で示す様に、ジェットJ1、J2により仕切形成材を噴射して地盤Gを切削することにより、ジェットJ1、J2で切削された空間IJ(原位置土、仕切形成材で充填されている空間)の上方の領域には分離層LDが形成され、分離層LDは、噴射装置10とボーリング孔HDの内壁面との間の環状空間Sに、ノズルN3、N4から噴射される固化材と流入しないための仕切として作用する。
そして、ジェットJ1、J2で切削された空間IJの下方の領域にジェットJ3、J4により固化材を噴射することにより、空間IJの下方の領域には、富配合の固化材(固化材と水との比率W/Cが低い配合である固化材)の層LCが形成される。
As shown in FIG. 7, the partition I is injected by jets J1 and J2 and the ground G is cut to fill the space IJ (original soil, partition forming material) cut by the jets J1 and J2. A separation layer LD is formed in a region above the (space), and the separation layer LD is a solidified material injected from the nozzles N3 and N4 into the annular space S between the injection device 10 and the inner wall surface of the boring hole HD. Acts as a partition to prevent inflow.
Then, by injecting the solidified material with the jets J3 and J4 into the region below the space IJ cut by the jets J1 and J2, the region below the space IJ has a solid compound (solidified material and water and The layer LC of the solidified material having a low ratio W / C is formed.
ここで、下方のジェットJ3、J4が、切削壁W(ジェットJ1、J2による切削により拡径された切削孔の内壁面)に衝突した際に、矢印ANで示すように上方に巻き上がってしまうと、固化材が分離層LD(を構成する仕切形成材と切削された土壌との混合物)に混入してしまう恐れがある。そして固化材が分離層LDに混入してしまうと、固化材がスライムとして地上に排出されてしまう恐れがある。
固化材が地上側に排出されないようにするために、下方のジェットJ3、J4が切削壁Wに衝突した際には、下方のジェットJ3、J4が矢印AGで示すように下方に巻き下がる必要がある。そのため、図7で示すように、下方のジェットJ3、J4は、水平方向HOに対して角度βだけ下方に向いている。
発明者の実験では、下方のジェットJ3、J4の噴射圧が100barの場合には前記傾斜角度βは15°、ジェットJ3、J4の噴射圧が200barの場合には傾斜角度βは30°であるのが好適であり、固化材が分離層LDに混入してしまうことが防止された。
Here, when the lower jets J3 and J4 collide with the cutting wall W (the inner wall surface of the cutting hole whose diameter has been expanded by cutting with the jets J1 and J2), the lower jets J3 and J4 roll up upward as indicated by an arrow AN. And there exists a possibility that the solidification material may mix in separation layer LD (mixture of the partition formation material which comprises, and the cut soil). If the solidifying material is mixed into the separation layer LD, the solidifying material may be discharged to the ground as a slime.
In order to prevent the solidified material from being discharged to the ground side, when the lower jets J3 and J4 collide with the cutting wall W, the lower jets J3 and J4 need to be rolled down as indicated by an arrow AG. is there. Therefore, as shown in FIG. 7, the lower jets J3 and J4 are directed downward by an angle β with respect to the horizontal direction HO.
In the inventor's experiment, when the jet pressure of the lower jets J3 and J4 is 100 bar, the tilt angle β is 15 °, and when the jet pressure of the jets J3 and J4 is 200 bar, the tilt angle β is 30 °. This is preferable, and the solidification material is prevented from being mixed into the separation layer LD.
図7の第2実施形態によれば、噴射装置10を引き上げるに連れて、固化材の層LCの垂直方向寸法が大きくなり(厚くなり)、分離層LD(仕切形成材の層)は常に固化材の層LCの上方に移動する。
仕切形成材で構成された分離層LDが存在するため、仕切形成材と土壌との混合物はスライム(仕切形成材と切削された土壌との混合物)として地上側に排出されるが、固化材の層LCにおける富配合の固化材は地上側には殆ど排出されない。そして固化材が地上側に排出されないため、固化材の浪費が抑制されると共に、産業廃棄物として専門の処理施設
で処理するべきスライムの発生量が減少する。
また、噴射装置10の下方のノズルN3、N4から噴射されるジェットJ3、J4により固化材が噴射され、噴射装置10は回転しつつ上昇するので、原位置土の粘性が高くても(例えば粘土)、原位置土(粘土)と仕切形成材の混合物は固化材と良好に混合される。
According to the second embodiment of FIG. 7, as the injection device 10 is pulled up, the vertical dimension of the solidified material layer LC increases (thickens), and the separation layer LD (partition forming material layer) always solidifies. Move over the layer of material LC.
Since there is a separation layer LD composed of partition forming material, the mixture of partition forming material and soil is discharged to the ground side as slime (mixture of partition forming material and cut soil). The solidified material of rich blend in the layer LC is hardly discharged to the ground side. And since a solidification material is not discharged | emitted on the ground side, waste of a solidification material is suppressed and the generation amount of the slime which should be processed in a special treatment facility as industrial waste decreases.
Further, since the solidified material is injected by the jets J3 and J4 injected from the nozzles N3 and N4 below the injection device 10 and the injection device 10 rises while rotating, even if the viscosity of the in-situ soil is high (for example, clay ), The mixture of in situ soil (clay) and partitioning material is well mixed with the solidification material.
図7の第2実施形態におけるその他の構成及び作用効果については、図1~図6の第1実施形態と同様である。 Other configurations and operational effects in the second embodiment of FIG. 7 are the same as those of the first embodiment of FIGS.
図示の実施形態はあくまでも例示であり、本発明の技術的範囲を限定する趣旨の記述ではないことを付記する。
例えば、図示の実施形態では、ノズルは2つ設けられているが、噴射装置の中心軸CLに対して点対象に配置されるのであれば、3つ以上のノズルを設けることが可能である。
また、図示の実施形態では、固化材は噴射装置の下方に設けた吐出口から吐出されて、切削された原位置土と切削流体との混合物中に吐出されるが、切削用流体ジェットJと同様に、或いは、切削用流体ジェットJと共に、固化材を半径方向外方に噴射させても良い。
It should be noted that the illustrated embodiment is merely an example, and is not a description to limit the technical scope of the present invention.
For example, in the illustrated embodiment, two nozzles are provided, but it is possible to provide three or more nozzles as long as they are arranged in a point object with respect to the central axis CL of the injection device.
In the illustrated embodiment, the solidified material is discharged from a discharge port provided below the injection device and discharged into the mixture of the cut in-situ soil and the cutting fluid. Similarly, or together with the cutting fluid jet J, the solidified material may be ejected radially outward.
1、10、11・・・噴射装置
HC・・・切削孔
HD・・・ボーリング孔
IJ・・・切削された空間
J、J1、J2・・・切削用流体ジェット
LC・・・固化材の層
LD・・・仕切形成材の層(分離層)
N、N1、N2、N3、N4・・・ノズル(噴射ノズル)
S・・・環状空間
W・・・切削壁(切削孔の内壁面)
DESCRIPTION OF SYMBOLS 1, 10, 11 ... Injection device HC ... Cutting hole HD ... Boring hole IJ ... Cut space J, J1, J2 ... Cutting fluid jet LC ... Solidified material layer LD: Layer of partition forming material (separation layer)
N, N1, N2, N3, N4 ... Nozzle (spray nozzle)
S: Annular space W: Cutting wall (inner wall surface of cutting hole)

Claims (3)

  1. 噴射装置から切削用流体を噴射して切削すると共に、固化材を供給して、切削された地盤と流体と固化材を混合、撹拌して、地中固結体を造成する地盤改良工法において、
    噴射装置には複数のノズルが垂直方向に間隔をあけて位置しており、切削用流体を噴射する際に、上方のノズルから斜め下方に切削用流体噴流を噴射し、下方のノズルから斜め上方に切削用流体噴流を噴射することを特徴とする地盤改良工法。
    In the ground improvement method of creating a ground consolidated body by injecting cutting fluid from an injection device and cutting, supplying solidified material, mixing and stirring the ground and fluid and solidified material,
    A plurality of nozzles are positioned in the injection device at intervals in the vertical direction. When the cutting fluid is injected, the cutting fluid jet is injected obliquely downward from the upper nozzle, and obliquely upward from the lower nozzle. A ground improvement method characterized by injecting a cutting fluid jet.
  2. ノズルの角度を調節する工程を有する請求項1の地盤改良工法。 The ground improvement construction method of Claim 1 which has the process of adjusting the angle of a nozzle.
  3. ノズル間の垂直方向間隔を調節する工程を有する請求項1、2の何れかの地盤改良工法。 The ground improvement construction method according to claim 1, further comprising a step of adjusting a vertical interval between the nozzles.
PCT/JP2015/065176 2014-10-03 2015-05-27 Ground improving method WO2016051858A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2015326129A AU2015326129B2 (en) 2014-10-03 2015-05-27 Ground improving method
US15/516,185 US20180112368A1 (en) 2014-10-03 2015-05-27 Method for improving ground
SG11201702724XA SG11201702724XA (en) 2014-10-03 2015-05-27 Ground improving method
CA2963217A CA2963217C (en) 2014-10-03 2015-05-27 Method for improving ground
EP15846895.9A EP3202982B1 (en) 2014-10-03 2015-05-27 Ground improving method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014204546A JP2016075040A (en) 2014-10-03 2014-10-03 Ground improvement method
JP2014-204546 2014-10-03

Publications (1)

Publication Number Publication Date
WO2016051858A1 true WO2016051858A1 (en) 2016-04-07

Family

ID=55629914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065176 WO2016051858A1 (en) 2014-10-03 2015-05-27 Ground improving method

Country Status (7)

Country Link
US (1) US20180112368A1 (en)
EP (1) EP3202982B1 (en)
JP (1) JP2016075040A (en)
AU (1) AU2015326129B2 (en)
CA (1) CA2963217C (en)
SG (1) SG11201702724XA (en)
WO (1) WO2016051858A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020076276A (en) * 2018-11-09 2020-05-21 株式会社不動テトラ Solidified pile forming method
CN111074878B (en) * 2019-12-11 2021-08-13 江苏科技大学 Silt long type mud flat foundation reinforcing device and construction method thereof
KR102437016B1 (en) * 2020-11-12 2022-08-26 덴버코리아이엔씨(주) Ground improvement system by high pressure jet grouting
CN114247331B (en) * 2022-01-19 2024-02-09 中煤科工集团西安研究院有限公司 Top plate horizontal well tail end double-material mixing device, system and solidification method during filling

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204875A (en) * 1997-01-28 1998-08-04 Chem Grouting Co Ltd Method and device for controlling finish diameter of underground consolidation body
JP2001115442A (en) * 1999-10-14 2001-04-24 Chem Grouting Co Ltd Ground improvement method
JP2013036213A (en) * 2011-08-07 2013-02-21 Hiroko Matsumoto Ground division improvement method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079087B2 (en) * 1989-01-10 1995-02-01 株式会社エヌ、アイ、ティ Ground hardening agent injection injection device
JP2673872B2 (en) * 1993-09-07 1997-11-05 鹿島建設株式会社 Ground improvement method
JPH07109726A (en) * 1993-10-14 1995-04-25 Chem Grouting Co Ltd Adjustment method of solidified material diameter in molding of cylindrical solidified material by use of telescopic pipe and device thereof
JP3694849B2 (en) * 1998-07-28 2005-09-14 東洋建設株式会社 High-pressure jet stirring method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204875A (en) * 1997-01-28 1998-08-04 Chem Grouting Co Ltd Method and device for controlling finish diameter of underground consolidation body
JP2001115442A (en) * 1999-10-14 2001-04-24 Chem Grouting Co Ltd Ground improvement method
JP2013036213A (en) * 2011-08-07 2013-02-21 Hiroko Matsumoto Ground division improvement method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3202982A4 *

Also Published As

Publication number Publication date
CA2963217A1 (en) 2016-04-07
AU2015326129B2 (en) 2019-12-05
JP2016075040A (en) 2016-05-12
CA2963217C (en) 2022-09-27
EP3202982A4 (en) 2018-05-30
EP3202982A1 (en) 2017-08-09
AU2015326129A1 (en) 2017-04-27
SG11201702724XA (en) 2017-06-29
US20180112368A1 (en) 2018-04-26
EP3202982B1 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
WO2016051858A1 (en) Ground improving method
JP2004346734A (en) Device for injecting quick setting agent using high-speed jet fluid
JP3220925U (en) Auger device for liquefaction prevention ground improvement construction
JP5717148B2 (en) Underground consolidated body construction method
JP3048044B2 (en) Ground improvement method and its equipment
JP2007255064A (en) Jet mixing construction method
JP2006283438A (en) Columnar pile preparing device and columnar pile preparing method
JP5875849B2 (en) Injection stirring ground improvement method
JP2008081942A (en) Construction method for water passage portion of underground wall
US20120114427A1 (en) Soil Mixing System
JP2000290991A (en) Soil improvement method
JP2008069549A (en) Equipment and construction method for creating underground consolidation body
JP5250729B2 (en) Underground consolidated body construction method and underground solid body creation device for creating a solid body using the method
JP5573235B2 (en) Jet agitator and ground improvement method
JP6408948B2 (en) Construction method of impermeable wall
JP6307049B2 (en) Ground hardening layer construction method and its equipment
JP6677499B2 (en) High pressure jet agitation method and ground improvement equipment used for this method
JP6203101B2 (en) Ground improvement method by high-pressure jet stirring method and special head used in this ground improvement method
JP4897059B2 (en) Construction method of solidified pile by double streamline jet.
JP3735363B1 (en) Hardened layer forming method and apparatus
JP6261412B2 (en) Construction method of multi-layer impermeable structure
JP2004019221A (en) Jet agitating device using cross jet stream
JP3682194B2 (en) Curing material mixing method and curing material mixing device
JP3537191B2 (en) Multi-axis drilling rig
JP6230861B2 (en) Ground improvement method by high-pressure jet stirring method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846895

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2963217

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15516185

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015846895

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015846895

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015326129

Country of ref document: AU

Date of ref document: 20150527

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201702724X

Country of ref document: SG