JP2013253794A - Particulate matter detection system - Google Patents

Particulate matter detection system Download PDF

Info

Publication number
JP2013253794A
JP2013253794A JP2012127841A JP2012127841A JP2013253794A JP 2013253794 A JP2013253794 A JP 2013253794A JP 2012127841 A JP2012127841 A JP 2012127841A JP 2012127841 A JP2012127841 A JP 2012127841A JP 2013253794 A JP2013253794 A JP 2013253794A
Authority
JP
Japan
Prior art keywords
heater
particulate matter
value
deterioration level
energization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012127841A
Other languages
Japanese (ja)
Other versions
JP5737228B2 (en
Inventor
Koichi Sumita
浩一 住田
Tomohiro Ueno
友博 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012127841A priority Critical patent/JP5737228B2/en
Priority to DE102013105741.1A priority patent/DE102013105741B4/en
Publication of JP2013253794A publication Critical patent/JP2013253794A/en
Application granted granted Critical
Publication of JP5737228B2 publication Critical patent/JP5737228B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1466Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0606Investigating concentration of particle suspensions by collecting particles on a support
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/05Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a particulate sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/20Sensor having heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1494Control of sensor heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a particulate matter detection system capable of accurately detecting degradation or performance deterioration of a PM sensor.SOLUTION: A particulate matter detection system comprises: a sensor element (40) which is installed in an exhaust passage (6b) of an internal combustion engine (2), has insulator adhesion sections (44) with a pair of electrodes formed thereon and outputs, when the pair of electrodes are electrically conducted with more than predetermined amount of particulate matters adhered to the adhesion sections, a value according to the amount of particulate matters adhered to the adhesion sections; a detection section (46) which detects the value output by the sensor element; a heater (43) which removes the particulate matters adhered to the adhesion sections by heating the same; heater energization control sections (45 and 49) which perform conduction control of the heater; and a degradation level estimation calculation section (49) which performs estimation calculation with respect to a degradation level of the heater on the basis of the detection value of the detection section when the heater is energized.

Description

本発明は、内燃機関の排気中の粒子状物質を検出する粒子状物質検出システムに関する。   The present invention relates to a particulate matter detection system for detecting particulate matter in exhaust gas from an internal combustion engine.

今日、内燃機関に対して優れた排気浄化性能が求められている。特にディーゼルエンジンにおいては、エンジンから排出される黒煙などのいわゆる排気微粒子(粒子状物質、PM:Particulate Matter)の除去が重要である。PMを除去するために排気管の途中にディーゼルパティキュレートフィルタ(DPF:Diesel Particulate Filter)が装備されることが多い。   Today, there is a demand for excellent exhaust purification performance for internal combustion engines. In particular, in a diesel engine, it is important to remove so-called exhaust particulates (particulate matter, PM) such as black smoke discharged from the engine. In order to remove PM, a diesel particulate filter (DPF: Diesel Particulate Filter) is often provided in the middle of the exhaust pipe.

排気中のPM量を検出する手段としてPMセンサがある。例えばDPF下流にPMセンサを配置した場合、PMセンサの検出値を用いてDPFが故障しているか否かを判定できる。今後さらに自動車の後処理故障検出が厳しくなることが予想されており、PMセンサを装備してDPFの故障検出を行う必要がある。そのためにはPMセンサ自体が正常であることが必要であり、PMセンサの故障検出(PMセンサの合理性判断)も重要となる。   There is a PM sensor as means for detecting the amount of PM in the exhaust. For example, when a PM sensor is arranged downstream of the DPF, it can be determined whether or not the DPF is out of order using the detection value of the PM sensor. In the future, it is expected that vehicle post-processing failure detection will become more severe, and it is necessary to equip a PM sensor to detect failure of the DPF. For this purpose, the PM sensor itself must be normal, and PM sensor failure detection (determination of PM sensor rationality) is also important.

電極式のPMセンサは、一対の電極が形成された絶縁体の付着部を有する。そのPMセンサは、排気通路に設けられ、一対の電極間に電圧が印加されて使用される。排気に含まれるPMは、PMセンサの付着部に付着する。PMは、主に、煤(すなわち、カーボン粒子)から構成されており導電性を有するので、付着部にPMが一定以上付着すると電極間に電流が流れる(通電する)。その電流の値は、PMの付着量に応じた値、つまり、排気に含まれるPM量に応じた値となるので、その電流値(電流値に相当する電極間の抵抗値)を読み取ることでPM量を検出することができる。   An electrode-type PM sensor has an insulator attachment portion on which a pair of electrodes are formed. The PM sensor is provided in the exhaust passage, and is used with a voltage applied between a pair of electrodes. PM contained in the exhaust gas adheres to the adhesion portion of the PM sensor. Since PM is mainly composed of soot (that is, carbon particles) and has conductivity, a current flows between the electrodes when the PM adheres to the adhering portion more than a certain amount. The value of the current is a value according to the amount of PM adhering, that is, a value according to the amount of PM contained in the exhaust gas. Therefore, by reading the current value (resistance value between the electrodes corresponding to the current value) The amount of PM can be detected.

PMセンサの付着部に、多くのPMが堆積すると、PM量の検出の妨げとなるので、PMセンサに多くのPMが堆積(付着)したと見なされたら、PMセンサに含まれるヒータによって付着部(あるいは電極)を加熱して、堆積したPMを燃焼除去してPMセンサを再生している(特許文献1参照)。   If a large amount of PM accumulates on the adhesion part of the PM sensor, detection of the PM amount is hindered. Therefore, if it is considered that a large amount of PM has accumulated (adhered) on the PM sensor, the adhesion part is attached by a heater included in the PM sensor. The PM sensor is regenerated by heating (or the electrode) and burning and removing the deposited PM (see Patent Document 1).

特開昭59−196453号公報JP 59-196453 A

従来技術の構成で、ヒータの断線による故障は、ヒータに通電しても付着物が全く除去できない(通電状態が変化しない)ことから容易に判定できる。しかし、ヒータの劣化あるいは性能低下については、ヒータに通電できているため、判定を容易に行うことができない。   With the configuration of the prior art, the failure due to the disconnection of the heater can be easily determined because the attached matter cannot be removed at all even if the heater is energized (the energization state does not change). However, since the heater can be energized with respect to the deterioration or performance degradation of the heater, it cannot be easily determined.

上記問題点を背景として、本発明の課題は、PMセンサの劣化あるいは性能低下を精度良く検出できる粒子状物質検出システムを提供することにある。   Against the background of the above problems, an object of the present invention is to provide a particulate matter detection system capable of accurately detecting deterioration or performance degradation of a PM sensor.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を解決するための粒子状物質検出システムは、内燃機関(2)の排気通路(6b)に設けられ、一対の電極が形成された絶縁体の付着部(44)を有し、排気中の粒子状物質が付着部に一定以上付着したときに一対の電極間が導通して、その導通時に付着部に付着した粒子状物質の量に応じた値を出力するセンサ素子(40)と、センサ素子が出力した値を検出する検出部(46)と、付着部に付着した粒子状物質を加熱して除去するヒータ(43)と、ヒータへの通電制御を行うヒータ通電制御部(45,49)と、ヒータへ通電を行ったときの、検出部の検出値に基づいて、ヒータの劣化レベルを推定演算する劣化レベル推定演算部(49)と、を備えることを特徴とする。   A particulate matter detection system for solving the above problems is provided in an exhaust passage (6b) of an internal combustion engine (2) and has an insulator attachment portion (44) in which a pair of electrodes are formed. A sensor element (40) for outputting a value corresponding to the amount of particulate matter adhering to the adhering portion when the particulate matter adheres to the adhering portion when the particulate matter adheres to the adhering portion; A detection unit (46) that detects a value output from the sensor element, a heater (43) that heats and removes particulate matter adhering to the adhering unit, and a heater energization control unit (45, 45) that controls energization of the heater 49) and a deterioration level estimation calculation unit (49) for estimating and calculating the deterioration level of the heater based on the detection value of the detection unit when the heater is energized.

上記構成によって、ヒータの断線による故障の他に、ヒータの劣化あるいは性能低下についても、検出・判定を行うことができる。また、この検出・判定のために、新たな回路あるいは装置を追加する必要はなく、システムのコストが上昇しないという利点もある。   With the above-described configuration, it is possible to detect / determine heater deterioration or performance degradation in addition to failure due to heater disconnection. Further, it is not necessary to add a new circuit or device for the detection / determination, and there is an advantage that the cost of the system does not increase.

また、本発明の粒子状物質検出システムにおけるヒータ通電制御部は、ヒータの劣化レベルに応じて、ヒータへの通電状態を補正するように構成できる。   Further, the heater energization control unit in the particulate matter detection system of the present invention can be configured to correct the energization state of the heater according to the deterioration level of the heater.

上記構成によって、ヒータが劣化あるいは性能低下していても、PMセンサの再生を行うことができる。   With the above configuration, the PM sensor can be regenerated even if the heater is deteriorated or the performance is degraded.

粒子状物質検出システムを適用した内燃機関の排気浄化システムの構成例を示す図。The figure which shows the structural example of the exhaust gas purification system of the internal combustion engine to which a particulate matter detection system is applied. PMセンサ(粒子状物質検出システム)の構造の例を示す図。The figure which shows the example of the structure of PM sensor (particulate matter detection system). 図2のPMセンサの構造の詳細を示す図。The figure which shows the detail of the structure of PM sensor of FIG. PMセンサの出力の例を示すイミングチャート。The imming chart which shows the example of the output of PM sensor. ヒータ劣化推定処理を説明するフロー図。The flowchart explaining a heater deterioration estimation process. ヒータ劣化レベルと初期上昇量および閾値との関係を説明する図。The figure explaining the relationship between a heater deterioration level, an initial raise amount, and a threshold value. ヒータ劣化レベルとヒータ印加電圧との関係を示す図。The figure which shows the relationship between a heater deterioration level and a heater applied voltage. ヒータ劣化レベルとヒータ印加デューティとの関係を示す図。The figure which shows the relationship between a heater deterioration level and a heater application duty.

以下、本発明の実施形態を、図面を参照しつつ説明する。まず図1に、本発明の粒子状物質検出システム、およびこれを適用した内燃機関の排気浄化システム1の構成を示す。排気浄化システム1は、自動車のディーゼルエンジン(以下、「エンジン」と略称)2の排気を浄化するもので、エンジン2の排気管6(6a、6bの総称,本発明の排気通路)に、上流側の排気管(6a)と下流側の排気管(6b)との間にDPF3が配置されている。また、DPF3の下流側に、排気管6b中のPM量を検出する、本発明の粒子状物質検出システムであるPMセンサ4が配置されている。   Embodiments of the present invention will be described below with reference to the drawings. First, FIG. 1 shows the configuration of a particulate matter detection system of the present invention and an exhaust purification system 1 of an internal combustion engine to which the particulate matter detection system is applied. The exhaust purification system 1 purifies the exhaust of a diesel engine (hereinafter abbreviated as “engine”) 2 of an automobile, and is disposed upstream of the exhaust pipe 6 of the engine 2 (generic name of 6a and 6b, the exhaust passage of the present invention). The DPF 3 is disposed between the side exhaust pipe (6a) and the downstream side exhaust pipe (6b). Further, a PM sensor 4 that is a particulate matter detection system of the present invention that detects the amount of PM in the exhaust pipe 6b is disposed downstream of the DPF 3.

DPF3は、例えば、ウォールフロータイプと呼ばれるセラミックのフィルターが用いられ、このフィルターのハニカム構造を入口側と出口側を交互に目詰めした形をしており、エンジン2からの排気がDPF3を通過するときに、DPF3の壁面あるいは内部に開いた微細な穴に捕集されて、車外に排出される排気が浄化される。通常は、フィルター表面に触媒を担持して、装置内の煤の燃焼・除去を促進させている(いわゆる、酸化触媒付DPF)。   For example, a ceramic filter called a wall flow type is used for the DPF 3, and the honeycomb structure of this filter is formed by alternately clogging the inlet side and the outlet side, and the exhaust from the engine 2 passes through the DPF 3. Sometimes, the exhaust that is collected in the fine holes opened in the wall surface or inside of the DPF 3 is purified. Usually, a catalyst is supported on the filter surface to promote combustion and removal of soot in the apparatus (so-called DPF with an oxidation catalyst).

DPF3に堆積したPMの堆積量が十分大きくなったときに、堆積したPMを燃焼することによって除去し、DPF3を再生する。PMの堆積量は、例えば、DPF3の前後差圧とPM堆積量との相関関係を予め求めておいてメモリ(図示せず)にデータテーブルとして記憶しておき、差圧センサを配置して、その検出値とデータテーブルとから推定する。   When the amount of PM deposited on the DPF 3 becomes sufficiently large, the deposited PM is removed by burning, and the DPF 3 is regenerated. The PM accumulation amount is obtained, for example, by calculating the correlation between the differential pressure across the DPF 3 and the PM accumulation amount in advance and storing it in a memory (not shown) as a data table, and arranging the differential pressure sensor, It estimates from the detected value and a data table.

PMセンサ4はDPF3より下流の排気中のPM量を検出する。PMセンサ4がDPF3の下流に装備されていることにより、PMセンサ4によってDPF3に捕集されずに通過したPM量を検出できる。これによりDPF3の故障の有無を検出できる。   The PM sensor 4 detects the amount of PM in the exhaust downstream from the DPF 3. Since the PM sensor 4 is installed downstream of the DPF 3, it is possible to detect the amount of PM that has passed without being collected by the DPF 3 by the PM sensor 4. Thereby, the presence or absence of a failure of the DPF 3 can be detected.

エンジン2に設けられた燃料噴射弁(図示せず)の開弁時期および閉弁時間の制御、DPF3の再生・故障判定等の処理は、電子制御装置5(ECU:Electronic Control Unit)によって行う。ECU5は通常のコンピュータと同様の構造を有するもので、各種演算を行うCPUや各種情報の記憶を行うメモリおよび周辺回路(図示せず)を備えている。   Processing such as control of valve opening timing and valve closing time of a fuel injection valve (not shown) provided in the engine 2 and regeneration / failure determination of the DPF 3 is performed by an electronic control unit 5 (ECU: Electronic Control Unit). The ECU 5 has a structure similar to that of an ordinary computer, and includes a CPU that performs various calculations, a memory that stores various information, and a peripheral circuit (not shown).

図2に、PMセンサ4のセンサ素子40の構成例を示す。センサ素子40は、板状の絶縁体からなる基板44(本発明の付着部)と、基板44の上に形成された、1対の検出電極(以下、「電極」と略称)42と、ヒータ43を含む。そしてセンサ素子40全体が、例えば金属製のカバー41で覆われている。カバー41には1つまたは複数の孔部41aが形成されていて、排気管中のPMは、孔部41aからカバー41の内側に流入する。そしてPMは、自身が持つ粘着性によって電極42あるいは基板44に付着、堆積していく。PMは導電性を有するので、センサ素子40上に堆積したPMによって一対の電極42間が接続されると、電極42間が導通状態となる。   FIG. 2 shows a configuration example of the sensor element 40 of the PM sensor 4. The sensor element 40 includes a substrate 44 (attachment portion of the present invention) made of a plate-like insulator, a pair of detection electrodes (hereinafter abbreviated as “electrodes”) 42 formed on the substrate 44, a heater 43. The entire sensor element 40 is covered with a metal cover 41, for example. One or a plurality of holes 41a are formed in the cover 41, and PM in the exhaust pipe flows into the cover 41 from the holes 41a. PM adheres and accumulates on the electrode 42 or the substrate 44 due to its own adhesiveness. Since PM has conductivity, when the pair of electrodes 42 is connected by the PM deposited on the sensor element 40, the electrodes 42 are brought into conduction.

電極42間には図示しない電源から電圧が印加されており、センサ素子40上に堆積したPMによって電極42間が導通状態となると、電極42間に電流が流れる。PMセンサ4は、例えばその電流値などの測定値(他には、回路上のある部分の電圧値、さらには電圧値、電流値から算出されるインピーダンス値(抵抗値や容量値)などでもよい)を、センサ出力として出力する。   A voltage is applied between the electrodes 42 from a power source (not shown), and when PM is deposited on the sensor element 40 and the electrodes 42 become conductive, a current flows between the electrodes 42. The PM sensor 4 may be, for example, a measured value such as a current value (in addition, a voltage value of a certain part on the circuit, and further an impedance value (resistance value or capacitance value) calculated from the voltage value or current value). ) As a sensor output.

上述のとおり、センサ素子40の表面のPM堆積量が徐々に増加しても、電極42間が電気的に接続されるまでは、PMセンサ4の出力値はゼロにとどまり、電極42間が電気的に接続されると、その状態に応じて、PMセンサ4の出力値がゼロから上昇する。この出力値に基づいて、電極42間に多くのPMが堆積(付着)したと判定されたら、ヒータ43によってセンサ素子40を加熱して、堆積したPMを燃焼・除去してセンサ素子40を再生する。   As described above, even if the PM deposition amount on the surface of the sensor element 40 gradually increases, the output value of the PM sensor 4 remains zero until the electrodes 42 are electrically connected, and the electrodes 42 are electrically connected. When connected, the output value of the PM sensor 4 rises from zero according to the state. If it is determined that a large amount of PM is deposited (attached) between the electrodes 42 based on this output value, the sensor element 40 is heated by the heater 43, and the deposited PM is burned and removed to regenerate the sensor element 40. To do.

図3に、図2のPMセンサ4のより詳細な構成例を示す。PMセンサ4は、上述のセンサ素子40、電極42、ヒータ43に加えて、ヒータ通電部45(本発明のヒータ通電制御部)、電圧検出部46(本発明の検出部)、制御部49(本発明のヒータ通電制御部,劣化レベル推定演算部)を備える。   FIG. 3 shows a more detailed configuration example of the PM sensor 4 of FIG. In addition to the sensor element 40, the electrode 42, and the heater 43, the PM sensor 4 includes a heater energization unit 45 (heater energization control unit of the present invention), a voltage detection unit 46 (detection unit of the present invention), and a control unit 49 ( The heater energization control unit and the deterioration level estimation calculation unit of the present invention are provided.

ヒータ通電部45は、制御部49からのヒータ制御指令に基づいて、ヒータ43への通電状態を調節することによって、センサ素子40の温度を調節する。電圧検出部46は電極42間の電圧を検出し、制御部49に出力する。   The heater energization unit 45 adjusts the temperature of the sensor element 40 by adjusting the energization state of the heater 43 based on the heater control command from the control unit 49. The voltage detector 46 detects the voltage between the electrodes 42 and outputs it to the controller 49.

制御部49は、通常のコンピュータと同様の構造を有するもので、各種演算を行うCPU(図示せず)や各種情報の記憶を行うメモリ49a、および周辺回路を備えている。ヒータ通電部45へのヒータ制御指令の出力、センサ素子40に付着したPM量の情報の外部(例えば、ECU5)への出力など、PMセンサ4における全ての制御を司る。   The control unit 49 has the same structure as a normal computer, and includes a CPU (not shown) that performs various calculations, a memory 49a that stores various types of information, and peripheral circuits. It controls all controls in the PM sensor 4 such as an output of a heater control command to the heater energization unit 45 and an output of information on the PM amount attached to the sensor element 40 to the outside (for example, the ECU 5).

なお、ヒータ通電部45によるヒータ43への通電方法は、以下のうちのいずれを用いてもよい。
・ヒータ43に、予め定められた電圧値を所定時間(図4のTに相当)印加する。
・ヒータ43へ通電する電圧をPWM信号のデューティ比によって制御する構成のときには、予め定められたデューティ比(例えば、50%)の電圧を所定時間(図4のTに相当)印加する。
このとき、ヒータ43は、加熱されて予め定められた温度Thに達する。
Note that the heater energization unit 45 may energize the heater 43 using any of the following methods.
A predetermined voltage value is applied to the heater 43 for a predetermined time (corresponding to T in FIG. 4).
When the voltage to be supplied to the heater 43 is controlled by the duty ratio of the PWM signal, a voltage having a predetermined duty ratio (for example, 50%) is applied for a predetermined time (corresponding to T in FIG. 4).
At this time, the heater 43 is heated and reaches a predetermined temperature Th.

また、ヒータ通電電圧、通電時間、デューティ比は、素子再生時の電極42間の出力電圧によらず一定値とする。これにより、PMの燃焼・除去の状態(すなわち、電圧検出部46の検出値)に応じてヒータ通電電圧あるいはデューティ比を可変とする構成よりも、ヒータ通電部45および制御部49における素子再生制御を簡略化できる。これが、本発明の、ヒータ通電制御部は、ヒータへ通電中のときは、センサ素子の出力値に関係なく、ヒータへの通電状態を一定に保つ構成に相当する。   The heater energization voltage, energization time, and duty ratio are constant values regardless of the output voltage between the electrodes 42 during element regeneration. Thereby, the element regeneration control in the heater energization unit 45 and the control unit 49 is made more than the configuration in which the heater energization voltage or the duty ratio is made variable in accordance with the PM combustion / removal state (that is, the detection value of the voltage detection unit 46). Can be simplified. This corresponds to a configuration in which the heater energization control unit of the present invention keeps the energization state of the heater constant regardless of the output value of the sensor element when the heater is energized.

図4を用いて、PMセンサ4の再生時の、センサ素子40のPM付着量(上段部)、電極42間の出力電圧(中段部)、ヒータ43の通電状態(下段部)について説明する。センサ素子40の表面のPM堆積量が閾値Bを超えると、制御部49では、センサ素子40を再生する必要があると判断し、ヒータ通電部45へヒータ制御指令を出力する。そして、ヒータ通電部45は、ヒータ43を非通電状態から通電状態に遷移させる(図4の時刻T1の状態に相当)。   With reference to FIG. 4, the PM adhesion amount (upper part) of the sensor element 40, the output voltage between the electrodes 42 (middle part), and the energized state of the heater 43 (lower part) at the time of regeneration of the PM sensor 4 will be described. When the PM deposition amount on the surface of the sensor element 40 exceeds the threshold value B, the control unit 49 determines that the sensor element 40 needs to be regenerated and outputs a heater control command to the heater energization unit 45. Then, the heater energization unit 45 causes the heater 43 to transition from the non-energized state to the energized state (corresponding to the state at time T1 in FIG. 4).

時刻T1で、ヒータ43を通電状態とすると、電極42間の出力電圧(すなわち、電圧検出部46の検出値:センサ出力ともいう)は、ヒータ43の通電前の状態の電圧値V0から増加し、時刻T2で、最大値Vmaxとなる。これは、センサ素子40に付着したPMの主な構成要素である煤(すなわち、カーボン粒子)の特性によるものである。煤は、熱を加えると抵抗値が低下する特性を有しており、Vmaxは、ヒータ43の劣化状態によって変化する。この後、PMが燃焼するにつれて、電極42間の出力電圧は徐々に低下していく。そして、所定時間経過後(図4の時刻T3の状態に相当)、ヒータ43を通電状態から非通電状態に遷移させる。この時点で、PMが燃焼・除去され、電極42間の出力電圧は減少してゼロ(あるいは、ゼロに近い値)になる。   When the heater 43 is energized at time T1, the output voltage between the electrodes 42 (that is, the detected value of the voltage detection unit 46: also referred to as sensor output) increases from the voltage value V0 of the state before the heater 43 is energized. At time T2, the maximum value Vmax is reached. This is due to the characteristics of soot (that is, carbon particles) which is the main component of PM attached to the sensor element 40. The soot has a characteristic that the resistance value decreases when heat is applied, and Vmax varies depending on the deterioration state of the heater 43. Thereafter, as PM burns, the output voltage between the electrodes 42 gradually decreases. And after predetermined time progress (equivalent to the state of the time T3 of FIG. 4), the heater 43 is changed from an energized state to a non-energized state. At this point, PM is combusted and removed, and the output voltage between the electrodes 42 decreases to zero (or a value close to zero).

センサ素子40の再生時のPMの付着量Bは、毎回ほぼ同じ値であり、センサ素子40の再生に要する時間(すなわち、PMの除去時間)は、PMの付着量Bとヒータ43への印加電圧値により事前に計測あるいは推定可能であるため、計測あるいは推定した時間に、ヒータ43の性能あるいはPMの付着量Bのばらつきを考慮した時間を加えたものをPMの除去時間(すなわち、T)とすれば、PMの付着状態を監視せず、所定電圧あるいは所定デューティ比でヒータ43に通電するだけの簡易な制御で、確実にPMを除去することができる。   The PM adhesion amount B at the time of regeneration of the sensor element 40 is almost the same value each time, and the time required for regeneration of the sensor element 40 (that is, the PM removal time) is applied to the PM adhesion amount B and the heater 43. Since the voltage value can be measured or estimated in advance, the PM removal time (that is, T) is obtained by adding the time taken into consideration of the performance of the heater 43 or the variation in the PM adhesion amount B to the measured or estimated time. As a result, the PM can be reliably removed by simple control in which the heater 43 is energized at a predetermined voltage or a predetermined duty ratio without monitoring the adhesion state of the PM.

ヒータ43が劣化すると、上述のヒータ通電電圧あるいはデューティ比によって、ヒータ43に通電・加熱を行っても、上述の温度Thに達せず、PMを完全に燃焼・除去することができなくなる。   When the heater 43 deteriorates, even if the heater 43 is energized / heated by the heater energization voltage or duty ratio, the temperature Th does not reach the temperature Th and PM cannot be completely combusted / removed.

ヒータ43の温度を測定して劣化を判定する方法もあるが、基板44に温度センサを新たに取り付ける必要があり、基板44の大型化およびコスト上昇は避けられない。また、排気管6bの、PMセンサ4の近傍に排気温センサが取り付けられているときには、排気温センサの出力値を基にヒータの温度を推定することもできるが、排気の流れや量によって排気温が変動するので、推定処理が複雑になるという問題がある。   Although there is a method of determining deterioration by measuring the temperature of the heater 43, it is necessary to newly attach a temperature sensor to the substrate 44, and an increase in the size and cost of the substrate 44 is inevitable. When an exhaust temperature sensor is attached to the exhaust pipe 6b near the PM sensor 4, the heater temperature can be estimated based on the output value of the exhaust temperature sensor. Since the temperature fluctuates, there is a problem that the estimation process becomes complicated.

ヒータ43が劣化して温度がThにまで上昇しないと、付着したPMの抵抗値も十分小さくならず、図4のVmaxも、ヒータ43の正常時よりも小さくなる。そこで、本発明では、図4のVmaxとV0との差である、初期上昇量Aに着目し、この初期上昇量Aに基づいて、ヒータ43の劣化を推定する。   If the heater 43 is deteriorated and the temperature does not rise to Th, the resistance value of the adhered PM is not sufficiently reduced, and Vmax in FIG. Therefore, in the present invention, attention is paid to the initial increase amount A, which is the difference between Vmax and V0 in FIG. 4, and the deterioration of the heater 43 is estimated based on the initial increase amount A.

具体的には、制御部49において、ヒータ43への通電前の、電圧検出部46の検出値から、センサ素子40に付着したPMの量(B)を推定する。次に、その量からヒータ43へ通電したときに発生するVmaxを推定する。PMの量(B)とVmaxとの関係を、予めメモリ49aに記憶しておいてもよい。そして、推定したVmax(理想値ともいう)と、ヒータ43へ通電したときに電圧検出部46が検出したVmax(実測値ともいう)とに基づいて、ヒータ43の劣化レベルを推定演算する。   Specifically, the control unit 49 estimates the amount (B) of PM attached to the sensor element 40 from the detection value of the voltage detection unit 46 before energization of the heater 43. Next, Vmax generated when the heater 43 is energized is estimated from the amount. The relationship between the amount of PM (B) and Vmax may be stored in the memory 49a in advance. Then, the deterioration level of the heater 43 is estimated based on the estimated Vmax (also referred to as an ideal value) and the Vmax (also referred to as an actual measurement value) detected by the voltage detection unit 46 when the heater 43 is energized.

上述の構成が、本発明の、劣化レベル推定演算部は、ヒータへの通電前の、検出部の検出値から、付着部に付着した粒子状物質の量を推定し、その量からヒータへ通電したときのセンサ素子の出力の最大値を推定し、推定したPMセンサの出力値の最大値と、ヒータへ通電したときの検出部の検出値の最大値との差に基づいて、ヒータの劣化レベルを推定演算する構成に相当する。   With the above-described configuration, the deterioration level estimation calculation unit of the present invention estimates the amount of particulate matter adhering to the adhesion part from the detection value of the detection part before energizing the heater, and energizes the heater from that amount. The maximum value of the output of the sensor element is estimated, and the deterioration of the heater is determined based on the difference between the estimated maximum value of the PM sensor output and the maximum value of the detection value of the detection unit when the heater is energized. This corresponds to a configuration for estimating the level.

図5を用いて、ヒータ劣化推定処理について説明する。なお、本処理は、制御部49において、予め定められたタイミングで繰り返し実行される。まず、電極42間の出力電圧が所定値(例えば、図4のV0)を上回ったか否か、すなわち、センサ素子40の再生が必要か否かを判定する。該出力電圧が所定値を上回ったとき(S11:Yes)、制御部49から温度調節部45に指令を送り、ヒータ43を通電状態とする(S12)。   The heater deterioration estimation process will be described with reference to FIG. This process is repeatedly executed by the control unit 49 at a predetermined timing. First, it is determined whether or not the output voltage between the electrodes 42 exceeds a predetermined value (for example, V0 in FIG. 4), that is, whether or not the sensor element 40 needs to be regenerated. When the output voltage exceeds a predetermined value (S11: Yes), a command is sent from the control unit 49 to the temperature adjusting unit 45, and the heater 43 is energized (S12).

次に、以下のように、初期上昇量Aを計算する(S13)。初期上昇量A=Vmax(電極42間の出力電圧の最大値:実測値)−V0。   Next, the initial increase amount A is calculated as follows (S13). Initial increase amount A = Vmax (maximum value of output voltage between electrodes 42: actually measured value) −V0.

次に、計算した初期上昇量Aに基づいて、ヒータ劣化レベルを推定演算する(S14)。すなわち、上述のVmaxの理想値からV0を差し引いたものを、初期上昇量Aの閾値A0とする。そして、閾値A0と初期上昇量Aとの差に基づいて、ヒータ劣化レベルを推定演算する。   Next, the heater deterioration level is estimated and calculated based on the calculated initial increase amount A (S14). That is, the value obtained by subtracting V0 from the ideal value of Vmax described above is set as the threshold A0 for the initial increase amount A. Based on the difference between the threshold value A0 and the initial increase amount A, the heater deterioration level is estimated and calculated.

図6に、ヒータ劣化レベルと、初期上昇量Aおよび閾値A0との関係を示す。この関係は、メモリ49aに予め記憶されている。図6の例では、閾値A0と初期上昇量Aとの差が大きいほど、すなわち、初期上昇量Aが小さいほど、ヒータ劣化レベルが高くなっている。また、ヒータ劣化レベルに対して、L1(補正判定閾値という)、L2(故障判定閾値という)の2つの閾値を設定している。そして、ヒータ劣化レベルと、これら閾値との比較に基づいて、ヒータの劣化を判断する。これら2つの閾値の範囲L1〜L2が、本発明の劣化レベル範囲に相当する。   FIG. 6 shows the relationship between the heater deterioration level, the initial increase amount A, and the threshold value A0. This relationship is stored in advance in the memory 49a. In the example of FIG. 6, the heater deterioration level increases as the difference between the threshold A0 and the initial increase amount A increases, that is, as the initial increase amount A decreases. Further, two threshold values L1 (referred to as a correction determination threshold value) and L2 (referred to as a failure determination threshold value) are set for the heater deterioration level. Then, based on the comparison between the heater deterioration level and these threshold values, the heater deterioration is determined. These two threshold ranges L1 to L2 correspond to the deterioration level range of the present invention.

図5に戻り、以下のように、ヒータ劣化レベルに応じた処理を実行する。まず、ヒータ劣化レベルがL1を下回るとき(S15:Yes)、ヒータ43は正常と判断して、ヒータ通電時の補正を行わない(S16)。これは、ヒータ通電制御部は、劣化レベルが、予め定められた補正判定閾値を下回るとき、ヒータへの通電状態を補正しない構成に相当する。上述のように、補正判定閾値は、例えば、劣化レベル範囲の下限値(L1)とすることができる。   Returning to FIG. 5, processing according to the heater deterioration level is executed as follows. First, when the heater deterioration level is lower than L1 (S15: Yes), it is determined that the heater 43 is normal, and correction at the time of heater energization is not performed (S16). This corresponds to a configuration in which the heater energization control unit does not correct the energization state of the heater when the deterioration level falls below a predetermined correction determination threshold. As described above, the correction determination threshold value can be, for example, the lower limit value (L1) of the deterioration level range.

一方、ヒータ劣化レベルがL1以上(S15:No)、かつL2以下のとき(S17:Yes)、以下のいずれかの方法により、ヒータ43通電状態の補正を行う(S18)。これが、本発明の、ヒータ通電制御部は、ヒータの劣化レベルが、予め定められた劣化レベル範囲に含まれるとき、該劣化レベルに応じて、ヒータへの通電状態を補正する構成に相当する。   On the other hand, when the heater deterioration level is L1 or more (S15: No) and L2 or less (S17: Yes), the heater 43 energization state is corrected by any of the following methods (S18). This corresponds to a configuration in which the heater energization control unit of the present invention corrects the energization state of the heater according to the deterioration level when the heater deterioration level is included in a predetermined deterioration level range.

・図7のように、ヒータ劣化レベルが大きいほど、ヒータ43への通電時間を長くするように補正する。このとき、印加電圧は変更しない。印加電圧を高くすれば、ヒータ43の温度も上昇するが、ヒータ43およびヒータ通電部45の耐圧を高くする必要があり、部品コストが増大する。一方、前述の構成とすれば、従来の回路構成で実現できるので、部品コストは上昇しない。 As shown in FIG. 7, the larger the heater deterioration level, the longer the energization time for the heater 43 is corrected. At this time, the applied voltage is not changed. If the applied voltage is increased, the temperature of the heater 43 also rises, but it is necessary to increase the withstand voltage of the heater 43 and the heater energization unit 45, and the component cost increases. On the other hand, the above-described configuration can be realized with a conventional circuit configuration, so that the component cost does not increase.

・図8のように、ヒータ劣化レベルが大きいほど、ヒータ43に印加するPWM信号のデューティ比を大きくするように補正する。例えば、ヒータ劣化レベルがL1のときは、デューティ比を50%→75%とし、ヒータ劣化レベルがL2のときは、デューティ比を50%→90%とする。つまり、通電時間を変えずに、ヒータ43への印加電圧を大きくする。通常、ヒータ通電部45は、デューティ比を100%としても問題なく動作するように構成されているので、回路部品の耐圧を超える等の問題は発生しない。 As shown in FIG. 8, correction is performed so that the duty ratio of the PWM signal applied to the heater 43 increases as the heater deterioration level increases. For example, when the heater deterioration level is L1, the duty ratio is 50% → 75%, and when the heater deterioration level is L2, the duty ratio is 50% → 90%. That is, the voltage applied to the heater 43 is increased without changing the energization time. Normally, the heater energization unit 45 is configured to operate without any problem even when the duty ratio is set to 100%, so that problems such as exceeding the withstand voltage of circuit components do not occur.

ヒータ劣化レベルと、通電時間あるいはデューティ比との関係は、例えば、マップデータあるいは数式としてメモリ49aに予め記憶されている。そして、マップデータを参照して、ヒータ劣化レベルに対応する通電時間あるいはデューティ比を選択し、制御部49からヒータ通電部45に、ヒータ制御指令として出力する。   The relationship between the heater deterioration level and the energization time or the duty ratio is stored in advance in the memory 49a as map data or a mathematical expression, for example. Then, referring to the map data, an energization time or a duty ratio corresponding to the heater deterioration level is selected, and is output from the control unit 49 to the heater energization unit 45 as a heater control command.

また、一方、ヒータ劣化レベルがL2を上回るとき(S19:Yes)、ヒータ43が故障していると判断し、例えば、ECU5にヒータ43が故障している旨の情報を出力する等の処理を実行する(S20)。また、ヒータ43への通電を行わないようにしてもよい。これは、ヒータ通電制御部は、ヒータの劣化レベルが、予め定められた故障判定閾値を上回るとき、ヒータへの通電を行わない構成に相当する。上述のように、故障判定閾値は、例えば、劣化レベル範囲の上限値(L2)とすることができる。   On the other hand, when the heater deterioration level exceeds L2 (S19: Yes), it is determined that the heater 43 has failed, and for example, processing such as outputting information indicating that the heater 43 has failed to the ECU 5 is performed. Execute (S20). Further, the heater 43 may not be energized. This corresponds to a configuration in which the heater energization control unit does not energize the heater when the deterioration level of the heater exceeds a predetermined failure determination threshold. As described above, the failure determination threshold value can be, for example, the upper limit value (L2) of the deterioration level range.

図6〜図8のように、L1とL2との間に、新たな閾値(L11、L12:閾値の数は任意)を設定し、要補正領域を細分化して補正を行うようにしてもよい。これにより、よりきめの細かい補正を行うことができる。   As shown in FIGS. 6 to 8, a new threshold value (L11, L12: the number of threshold values is arbitrary) may be set between L1 and L2, and the correction area may be subdivided to perform correction. . Thereby, finer correction can be performed.

以上、本発明の実施の形態を説明したが、これらはあくまで例示にすぎず、本発明はこれらに限定されるものではなく、特許請求の範囲の趣旨を逸脱しない限りにおいて、当業者の知識に基づく種々の変更が可能である。   Although the embodiments of the present invention have been described above, these are merely examples, and the present invention is not limited to these embodiments, and the knowledge of those skilled in the art can be used without departing from the spirit of the claims. Various modifications based on this are possible.

1 排気浄化システム
2 ディーゼルエンジン(エンジン、内燃機関)
3 ディーゼルパティキュレートフィルタ(DPF)
4 PMセンサ(粒子状物質検出システム)
5 ECU
6(6a、6b) 排気管(排気通路)
40 センサ素子
42 検出電極(電極)
43 ヒータ
44 基板(付着部)
45 ヒータ通電部(ヒータ通電制御部)
46 電圧検出部(検出部)
49 制御部(ヒータ通電制御部,劣化レベル推定演算部)
1 Exhaust purification system 2 Diesel engine (engine, internal combustion engine)
3 Diesel particulate filter (DPF)
4 PM sensor (particulate matter detection system)
5 ECU
6 (6a, 6b) Exhaust pipe (exhaust passage)
40 Sensor element 42 Detection electrode (electrode)
43 Heater 44 Substrate (attachment)
45 Heater energization section (heater energization control section)
46 Voltage detector (detector)
49 Control unit (heater energization control unit, deterioration level estimation calculation unit)

Claims (7)

内燃機関(2)の排気通路(6b)に設けられ、一対の電極が形成された絶縁体の付着部(44)を有し、排気中の粒子状物質が前記付着部に一定以上付着したときに前記一対の電極間が導通して、その導通時に前記付着部に付着した粒子状物質の量に応じた値を出力するセンサ素子(40)と、
前記センサ素子が出力した値を検出する検出部(46)と、
前記付着部に付着した粒子状物質を加熱して除去するヒータ(43)と、
前記ヒータへの通電制御を行うヒータ通電制御部(45,49)と、
前記ヒータへ通電を行ったときの、前記検出部の検出値に基づいて、前記ヒータの劣化レベルを推定演算する劣化レベル推定演算部(49)と、
を備えることを特徴とする粒子状物質検出システム。
When there is an insulator attachment portion (44) provided in the exhaust passage (6b) of the internal combustion engine (2) and formed with a pair of electrodes, and particulate matter in the exhaust adheres to the attachment portion more than a certain amount A sensor element (40) that conducts between the pair of electrodes and outputs a value corresponding to the amount of particulate matter adhering to the adhering portion at the time of conduction;
A detection unit (46) for detecting a value output by the sensor element;
A heater (43) for heating and removing particulate matter adhering to the adhering portion;
A heater energization control unit (45, 49) for controlling energization of the heater;
A deterioration level estimation calculation unit (49) that estimates and calculates the deterioration level of the heater based on the detection value of the detection unit when the heater is energized;
A particulate matter detection system comprising:
前記劣化レベル推定演算部は、
前記ヒータへの通電前の、前記検出部の検出値から、前記付着部に付着した粒子状物質の量を推定し、その量から前記ヒータへ通電したときの前記センサ素子の出力の最大値を推定し、
前記推定した前記PMセンサの出力値の最大値と、前記ヒータへ通電したときの前記検出部の検出値の最大値との差に基づいて、前記ヒータの劣化レベルを推定演算する請求項1に記載の粒子状物質検出システム。
The deterioration level estimation calculation unit includes:
The amount of particulate matter adhering to the adhering portion is estimated from the detection value of the detecting portion before energization of the heater, and the maximum value of the output of the sensor element when energizing the heater is determined from the amount. Estimate
2. The deterioration level of the heater is estimated and calculated based on a difference between the estimated maximum value of the PM sensor output value and the maximum value of the detection value of the detection unit when the heater is energized. The particulate matter detection system described.
前記ヒータ通電制御部は、前記ヒータの劣化レベルに応じて、前記ヒータへの通電状態を補正する請求項1または請求項2に記載の粒子状物質検出システム。   The particulate matter detection system according to claim 1, wherein the heater energization control unit corrects the energization state of the heater according to a deterioration level of the heater. 前記ヒータ通電制御部は、前記ヒータの劣化レベルが、予め定められた劣化レベル範囲に含まれるとき、該劣化レベルに応じて、前記ヒータへの通電状態を補正する請求項3に記載の粒子状物質検出システム。   4. The particulate form according to claim 3, wherein when the deterioration level of the heater is included in a predetermined deterioration level range, the heater energization control unit corrects the energization state of the heater according to the deterioration level. Substance detection system. 前記ヒータ通電制御部は、前記劣化レベルが大きいほど該ヒータへの通電時間を長くするように補正する請求項4に記載の粒子状物質検出システム。   The particulate matter detection system according to claim 4, wherein the heater energization control unit corrects the energization time to the heater to be longer as the deterioration level is larger. 前記ヒータ通電制御部は、前記ヒータへ通電する電圧をPWM信号のデューティ比によって制御し、
前記劣化レベルが大きいほど、前記デューティ比を大きくするように補正する請求項4に記載の粒子状物質検出システム。
The heater energization control unit controls the voltage energized to the heater by the duty ratio of the PWM signal,
The particulate matter detection system according to claim 4, wherein the duty ratio is corrected so as to increase as the deterioration level increases.
前記ヒータ通電制御部は、前記ヒータへ通電中のときは、前記センサ素子の出力値に関係なく、前記ヒータへの通電状態を一定に保つ請求項1ないし請求項6のいずれか1項に記載の粒子状物質検出システム。   The said heater energization control part keeps the energization state to the said heater constant irrespective of the output value of the said sensor element, when energizing the said heater. Particulate matter detection system.
JP2012127841A 2012-06-05 2012-06-05 Particulate matter detection system Expired - Fee Related JP5737228B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012127841A JP5737228B2 (en) 2012-06-05 2012-06-05 Particulate matter detection system
DE102013105741.1A DE102013105741B4 (en) 2012-06-05 2013-06-04 Particle detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012127841A JP5737228B2 (en) 2012-06-05 2012-06-05 Particulate matter detection system

Publications (2)

Publication Number Publication Date
JP2013253794A true JP2013253794A (en) 2013-12-19
JP5737228B2 JP5737228B2 (en) 2015-06-17

Family

ID=49579635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012127841A Expired - Fee Related JP5737228B2 (en) 2012-06-05 2012-06-05 Particulate matter detection system

Country Status (2)

Country Link
JP (1) JP5737228B2 (en)
DE (1) DE102013105741B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017069232A1 (en) * 2015-10-21 2017-04-27 株式会社デンソー Particulate matter detection device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6426072B2 (en) 2014-10-02 2018-11-21 株式会社Soken Filter failure detection device, particulate matter detection device
DE102014220398A1 (en) 2014-10-08 2016-04-14 Robert Bosch Gmbh Method for checking the function of a sensor for the detection of particles
CN114562356B (en) * 2021-02-24 2023-03-24 长城汽车股份有限公司 Detection method of vehicle particulate matter sensor, diagnostic instrument and vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726937A (en) * 1993-07-08 1995-01-27 Nippondenso Co Ltd Exhaust emission control device for diesel engine
JP2000038918A (en) * 1998-07-22 2000-02-08 Toyota Autom Loom Works Ltd Exhaust emission control device for diesel engine
JP2012037373A (en) * 2010-08-06 2012-02-23 Denso Corp Sensor controller

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59196453A (en) 1983-04-21 1984-11-07 Nippon Denso Co Ltd Particulate detecting element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726937A (en) * 1993-07-08 1995-01-27 Nippondenso Co Ltd Exhaust emission control device for diesel engine
JP2000038918A (en) * 1998-07-22 2000-02-08 Toyota Autom Loom Works Ltd Exhaust emission control device for diesel engine
JP2012037373A (en) * 2010-08-06 2012-02-23 Denso Corp Sensor controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017069232A1 (en) * 2015-10-21 2017-04-27 株式会社デンソー Particulate matter detection device
JP2017078372A (en) * 2015-10-21 2017-04-27 株式会社デンソー Particulate matter detection device
US10648381B2 (en) 2015-10-21 2020-05-12 Denso Corporation Particulate matter detecting device

Also Published As

Publication number Publication date
JP5737228B2 (en) 2015-06-17
DE102013105741B4 (en) 2017-07-13
DE102013105741A1 (en) 2013-12-05

Similar Documents

Publication Publication Date Title
JP5115873B2 (en) Particulate filter failure detection device
JP3846309B2 (en) Exhaust purification device
JP5582459B2 (en) Particulate matter detection device and particulate filter failure detection device
KR101701536B1 (en) Method and device for monitoring a component arranged in an exhaust gas region of an internal combustion engine
JP6070659B2 (en) Particulate filter abnormality diagnosis device
JP5387591B2 (en) Detection device
JP4506539B2 (en) Exhaust gas purification device for internal combustion engine
JP6197377B2 (en) Exhaust purification device
WO2013175572A1 (en) Exhaust emission purification device for internal combustion engine
JP2007315275A (en) Exhaust gas purifying filter failure diagnosis device and method
JP2009144512A (en) Regeneration control device of exhaust emission control filter for internal combustion engine
JP6172466B2 (en) Filter failure detection device and particulate matter detection device
JP6201822B2 (en) Internal combustion engine exhaust purification system and internal combustion engine exhaust purification system filter failure determination method
JP5561262B2 (en) Detection system
JP5737228B2 (en) Particulate matter detection system
JP2012077716A (en) Device and method for detecting malfunction of pm sensor
JP2013253544A (en) Filter failure detection device
JP2012083121A (en) Particulate substance detection sensor
JP2015218605A (en) Internal combustion engine exhaust emission control device
JP2015001165A (en) Internal combustion engine control device
JP6066329B2 (en) Particulate matter detector
JP5464151B2 (en) Engine exhaust purification system
JP2011220233A (en) Failure determination method for particulate filter and its device
JP5614295B2 (en) Engine exhaust purification system
JP2017083288A (en) Filter failure detection device and particulate matter detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150406

R151 Written notification of patent or utility model registration

Ref document number: 5737228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees