JP2015218605A - Internal combustion engine exhaust emission control device - Google Patents

Internal combustion engine exhaust emission control device Download PDF

Info

Publication number
JP2015218605A
JP2015218605A JP2014100953A JP2014100953A JP2015218605A JP 2015218605 A JP2015218605 A JP 2015218605A JP 2014100953 A JP2014100953 A JP 2014100953A JP 2014100953 A JP2014100953 A JP 2014100953A JP 2015218605 A JP2015218605 A JP 2015218605A
Authority
JP
Japan
Prior art keywords
exhaust
filter
internal combustion
combustion engine
oxidation catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014100953A
Other languages
Japanese (ja)
Inventor
亮平 山本
Ryohei Yamamoto
亮平 山本
俊博 森
Toshihiro Mori
俊博 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2014100953A priority Critical patent/JP2015218605A/en
Publication of JP2015218605A publication Critical patent/JP2015218605A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an internal combustion engine exhaust emission control device including a filter and an oxidation catalyst, capable of accurately grasping the situation of PM deposition on an exhaust-inlet-side end surface of the oxidation catalyst.SOLUTION: An exhaust emission control device including a filter provided in an exhaust passage of an internal combustion engine and collecting particulate matters in exhaust gas, and an oxidation catalyst provided in the exhaust passage of the internal combustion engine and located upstream of the filter, comprises: a first calculation unit calculating a PM discharge amount that is an integrated amount of the particulate matters contained in the exhaust gas discharged from the internal combustion engine and flowing into the filter on the basis of an engine rotation speed, an engine load, and an intake air quantity; a second calculation unit calculating a PM deposition amount that is a deposition amount of the particulate matters collected by the filter on the basis of an exhaust pressure difference between an upstream side and a downstream side of the filter and a flow volume and a temperature of the exhaust gas flowing into the filter; and a third calculation unit calculating an end surface clogging rate that is a clogging rate on an exhaust inlet-side end surface of the oxidation catalyst on the basis of the PM discharge amount calculated by the first calculation unit and the PM deposition amount calculated by the second calculation unit.

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

内燃機関において排気中の粒子状物質(以下、「PM」と称する)が外部に放出されるのを抑制すべく、排気通路にフィルタが設けられる。このフィルタには、内燃機関の運転とともに排気中のPMが捕集され次第に堆積していくため、その目詰まりを防止するためにフィルタ再生処理が行われる。例えば、ディーゼルエンジンにおけるフィルタ再生処理では、一般には排気の空燃比が継続的にリーン側の空燃比であることから、排気中に未燃燃料を供給し排気通路に設けられた酸化触媒等で排気温度を上昇させ、以て、捕集PMの酸化除去が行われる。このようなフィルタ再生処理を適切に実行するためには、フィルタにおけるPM堆積量を把握する必要があり、例えば、特許文献1に示す技術が採用できる。   In the internal combustion engine, a filter is provided in the exhaust passage in order to prevent particulate matter (hereinafter referred to as “PM”) in the exhaust from being discharged to the outside. Since the PM in the exhaust gas is collected and gradually accumulated in the filter with the operation of the internal combustion engine, a filter regeneration process is performed to prevent clogging. For example, in filter regeneration processing in a diesel engine, since the air-fuel ratio of exhaust gas is generally the lean air-fuel ratio, unburnt fuel is supplied into the exhaust gas and exhausted with an oxidation catalyst or the like provided in the exhaust passage. The temperature is raised, so that the collected PM is removed by oxidation. In order to appropriately execute such filter regeneration processing, it is necessary to grasp the PM accumulation amount in the filter. For example, the technique disclosed in Patent Document 1 can be employed.

また、内燃機関の排気通路には、フィルタ以外にも、排気中のNOx等を浄化するための排気浄化触媒が配置されている。当該排気浄化触媒においてもPMが堆積していく可能性があり、PMの堆積により本来の排気浄化能が発揮困難な状態となり得る。特に、フィルタの上流側に配置される排気浄化触媒では、PMの堆積が生じやすい。そこで、特許文献2に開示の技術によれば、内燃機関の機関回転速度、その機関負荷及び吸入空気量に基づいて算出される該内燃機関からのPM排出量に、更に、排気温度を考慮することで、排気浄化触媒におけるPMによる目詰まり状態の把握が行われている。   In addition to the filter, an exhaust gas purification catalyst for purifying NOx and the like in the exhaust gas is disposed in the exhaust passage of the internal combustion engine. There is a possibility that PM also accumulates in the exhaust purification catalyst, and the accumulation of PM may make it difficult to exhibit the original exhaust purification ability. In particular, PM accumulation is likely to occur in an exhaust purification catalyst arranged on the upstream side of the filter. Therefore, according to the technique disclosed in Patent Document 2, the exhaust gas temperature is further taken into consideration in the PM emission amount calculated from the engine speed of the internal combustion engine, the engine load and the intake air amount. Thus, the clogged state due to PM in the exhaust purification catalyst is grasped.

特開2013−234595号公報JP 2013-234595 A 特開2007−32533号公報JP 2007-32533 A 特開2013−234610号公報JP2013-234610A

内燃機関の排気通路において、フィルタが配置される場合、該フィルタに堆積したPMを酸化除去する等の目的のために、該フィルタの上流側に酸化触媒が配置される場合がある。この酸化触媒に関しては、フィルタの上流側に位置するが故に、排気中のPMに晒される機会が多く、その結果、酸化触媒の排気流入側の端面にPMが堆積し酸化触媒が目詰まりを起こしやすい。そして、酸化触媒がPMによって目詰まりしてしまうと、排気通路における排気の流れが阻害され、又は、酸化触媒による酸化能力の発揮が妨げられるため、目詰まり状態の速やかな解消が求められる。   When a filter is disposed in the exhaust passage of the internal combustion engine, an oxidation catalyst may be disposed on the upstream side of the filter for the purpose of oxidizing and removing PM accumulated on the filter. Since this oxidation catalyst is located on the upstream side of the filter, it is often exposed to PM in the exhaust gas. As a result, PM accumulates on the end surface of the oxidation catalyst on the exhaust inflow side, causing the oxidation catalyst to become clogged. Cheap. If the oxidation catalyst is clogged with PM, the flow of exhaust gas in the exhaust passage is hindered or the oxidation ability of the oxidation catalyst is prevented from being exhibited, so that the clogged state is promptly eliminated.

しかし、上述の従来技術は、排気浄化触媒におけるPMによる目詰まり率を算出するものであり、PMが流れ込み堆積しやすい排気浄化触媒の排気流入側端面での目詰まりに着目したものではない。排気浄化触媒を部分毎に見たときに排気流入側端面でのPM堆積の推移は他の部位での堆積推移や触媒全体での堆積推移とは異なるため、従来技術では、排気浄化触媒の排気流入側端面でのPM堆積の状況を正確に把握することは困難である。   However, the above-described conventional technique calculates the clogging rate due to PM in the exhaust purification catalyst, and does not focus on clogging on the exhaust inflow side end face of the exhaust purification catalyst in which PM easily flows and accumulates. Since the transition of PM deposition on the exhaust inflow side end face is different from the deposition transition in other parts and the deposition transition in the entire catalyst when the exhaust purification catalyst is viewed for each part, in the prior art, the exhaust purification catalyst exhaust gas It is difficult to accurately grasp the state of PM deposition on the inflow side end face.

本発明は、上記した問題点に鑑みてなされたものであり、フィルタと酸化触媒を有する内燃機関の排気浄化装置において、フィルタの上流側に位置する酸化触媒の排気流入側端面でのPM堆積の状況を正確に把握することを目的とする。   The present invention has been made in view of the above-described problems. In an exhaust gas purification apparatus for an internal combustion engine having a filter and an oxidation catalyst, PM deposition on the exhaust gas inflow side end surface of the oxidation catalyst located upstream of the filter is performed. The purpose is to grasp the situation accurately.

本発明において、上記課題を解決するために、内燃機関の運転状態に基づいて算出されるPMの排出量と、実際のフィルタにおけるPM堆積の状況を反映する該フィルタの上流側と下流側との排気圧力差から算出されるPM堆積量との差に着目した。これは、フィルタの上流側に位置する酸化触媒の排気流入側端面においてPMの堆積が進むと当該差が拡大することを本出願人が見出したことによる。   In the present invention, in order to solve the above-mentioned problem, the amount of PM emission calculated based on the operating state of the internal combustion engine and the upstream side and the downstream side of the filter reflecting the state of PM accumulation in the actual filter The difference from the PM accumulation amount calculated from the exhaust pressure difference was noted. This is because the present applicant has found that the difference increases as PM deposition progresses on the exhaust inflow side end face of the oxidation catalyst located on the upstream side of the filter.

具体的には、本発明は、内燃機関の排気浄化装置であって、内燃機関の排気通路に設けられ、排気中の粒子状物質を捕集するフィルタと、前記フィルタの上流側の前記排気通路に設けられた酸化触媒と、前記内燃機関の機関回転速度、該内燃機関における機関負荷及び吸入空気量に基づいて、該内燃機関から排出され前記フィルタに流れ込む排気に含まれる粒子状物質の積算量であるPM排出量を算出する第1算出部と、前記フィルタの上流側と下流側との排気圧力差、該フィルタに流れ込む排気の流量及び温度に基づいて、前記フィルタに捕集された粒子状物質の堆積量であるPM堆積量を算出する第2算出部と、前記第1算出部によって算出された前記PM排出量と前記第2算出部によって算出された前記PM堆積量との差に基づいて、前記酸化触媒における排気流入側の端面での目詰まり率である端面目詰まり率を算出する第3算出部と、を備える。   Specifically, the present invention is an exhaust gas purification apparatus for an internal combustion engine, which is provided in an exhaust passage of the internal combustion engine and collects particulate matter in the exhaust, and the exhaust passage upstream of the filter. And an integrated amount of particulate matter contained in the exhaust gas discharged from the internal combustion engine and flowing into the filter based on the engine speed of the internal combustion engine, the engine load in the internal combustion engine, and the intake air amount The particulate matter collected by the filter based on the first calculation unit for calculating the PM emission amount, the exhaust pressure difference between the upstream side and the downstream side of the filter, the flow rate and temperature of the exhaust gas flowing into the filter A second calculation unit that calculates a PM deposition amount that is a deposition amount of a substance; and a difference between the PM emission amount calculated by the first calculation unit and the PM deposition amount calculated by the second calculation unit. And Comprising serial and third calculation unit for calculating an end face clogging index is a clogging ratio of the end surface of the exhaust inlet side of the oxidation catalyst.

本発明に係る排気浄化装置は、フィルタが排気通路に設けられる構成により、主に排気中のPMの捕集が行われる。ここで、第1算出部は、内燃機関から排出されフィルタに流れ込む排気に含まれるPMの積算量を算出する。排気中のPM量は、内燃機関での燃料の燃焼状態に依存することから、内燃機関の機関回転速度、機関負荷及び吸入空気量に基づいて、第1算出部による算出が行われる。   The exhaust gas purification apparatus according to the present invention mainly collects PM in the exhaust gas by the configuration in which the filter is provided in the exhaust passage. Here, the first calculation unit calculates the integrated amount of PM contained in the exhaust gas discharged from the internal combustion engine and flowing into the filter. Since the PM amount in the exhaust gas depends on the combustion state of the fuel in the internal combustion engine, the calculation by the first calculation unit is performed based on the engine rotational speed, the engine load, and the intake air amount of the internal combustion engine.

更に、上記排気浄化装置は第2算出部を備え、当該第2算出部は、第1算出部とは異なり、フィルタに捕集され堆積しているPM量を算出する。具体的には、フィルタでのPM堆積量は、フィルタの上流側と下流側との排気圧力差と強い相関を有することを踏まえて、第2算出部は当該排気圧力差を利用してPM堆積量の算出を行う。なお、当該排気圧力差は、フィルタ全体を挟んだ場所での排気の圧力差であるから、第2算出部により算出されるPM堆積量は、フィルタ全体において堆積しているPM量である。また、第2算出部は、排気圧力差に加えて排気流量及び排気温度を利用することで、内燃機関の運転状態の影響を可及的に排除して正確なPM堆積量の算出を可能とする。   Further, the exhaust purification apparatus includes a second calculation unit, and unlike the first calculation unit, the second calculation unit calculates the amount of PM collected and accumulated in the filter. Specifically, based on the fact that the PM accumulation amount in the filter has a strong correlation with the exhaust pressure difference between the upstream side and the downstream side of the filter, the second calculation unit uses the exhaust pressure difference to perform PM deposition. The amount is calculated. The exhaust pressure difference is an exhaust pressure difference at a location across the entire filter, so the PM accumulation amount calculated by the second calculation unit is the PM amount accumulated in the entire filter. In addition, the second calculation unit uses the exhaust gas flow rate and the exhaust temperature in addition to the exhaust pressure difference, thereby making it possible to accurately calculate the PM deposition amount by eliminating the influence of the operating state of the internal combustion engine as much as possible. To do.

ここで、内燃機関の排気通路においては、フィルタにより排気中のPMが捕集され、その外部への放出が抑制されるが、フィルタに流れ込む排気温度を上昇させフィルタに捕集されたPMを酸化除去等するために、該フィルタの上流側に酸化触媒が配置されている。しかし、酸化触媒はフィルタの上流側に位置しているため、フィルタによるPM除去が行われる前の排気が流れ込むことになり、少なからず酸化触媒にもPMが堆積してしまう可能性がある。特に、酸化触媒での排気流入側の端面においては、PMの堆積が顕著になりやすい。このように酸化触媒でPMが堆積し、その端面がPMによって目詰まり状態となると、排気通路における排気の流れが阻害され、内燃機関の燃焼効率に影響が及ぶ。また、酸化触媒でのPM堆積量が増えるとその酸化能力を効果的に発揮しにくくなる。そのため、酸化触媒の排気流入側の端面におけるPMの堆積状態、すなわち該端面でのPMによる目詰まり状態を正確に検出できることが好ましい。これにより、酸化触媒での排気流入側端面における目詰まり状態を適時に把握し、その解消を図ることが可能となる。   Here, in the exhaust passage of the internal combustion engine, PM in the exhaust gas is collected by the filter, and its release to the outside is suppressed, but the exhaust gas flowing into the filter is raised to oxidize the PM collected in the filter. An oxidation catalyst is disposed upstream of the filter for removal and the like. However, since the oxidation catalyst is located on the upstream side of the filter, the exhaust before PM removal by the filter is performed flows, and there is a possibility that PM is deposited on the oxidation catalyst as well. In particular, PM deposition tends to be noticeable on the end surface of the oxidation catalyst on the exhaust inflow side. When PM accumulates on the oxidation catalyst in this way and its end face becomes clogged with PM, the flow of exhaust gas in the exhaust passage is obstructed and the combustion efficiency of the internal combustion engine is affected. Further, when the amount of PM deposited on the oxidation catalyst increases, it becomes difficult to effectively exhibit its oxidation ability. Therefore, it is preferable that the PM accumulation state on the end surface of the oxidation catalyst on the exhaust inflow side, that is, the clogged state due to PM on the end surface can be accurately detected. This makes it possible to grasp the clogged state at the exhaust inflow side end surface of the oxidation catalyst in a timely manner and to solve it.

そこで、本願発明に係る内燃機関の排気浄化装置では、第1算出部により算出されたPM排出量と第2算出部により算出されたPM堆積量との差に着目した。これは、酸化触媒において排気流入側端面でのPM堆積が顕著となると、当該差が拡大することを本出願人
が見出したことによる。すなわち、内燃機関から排出されたPMをフィルタが捕集するとの前提に立てば、仮に内燃機関からのPM排出量とフィルタでのPM堆積量との間に差が存在する場合は、その差に相当するPMが酸化触媒に捕えられた状態となっていると合理的に考え得る。そこで、第3算出部は、上記差に基づいて、酸化触媒の排気流入側端面でのPM堆積の状態、すなわち、当該端面でのPMによる目詰まり率である端面目詰まり率を算出するように構成される。なお、端面目詰まり率は、酸化触媒の端面で排気が流通可能な空間体積においてPMが占有する空間体積の割合を示すパラメータである。したがって、端面目詰まり率が100%である状態は、酸化触媒の排気流入側端面がPMによって完全に閉塞した状態であることを意味する。
Therefore, in the exhaust gas purification apparatus for an internal combustion engine according to the present invention, attention is paid to the difference between the PM emission amount calculated by the first calculation unit and the PM accumulation amount calculated by the second calculation unit. This is because the present applicant has found that the difference increases when PM deposition on the exhaust inflow side end face becomes significant in the oxidation catalyst. That is, assuming that the filter collects PM discharged from the internal combustion engine, if there is a difference between the amount of PM discharged from the internal combustion engine and the amount of PM deposited on the filter, the difference It can be reasonably considered that the corresponding PM is trapped by the oxidation catalyst. Therefore, the third calculation unit calculates the state of PM accumulation on the exhaust inflow side end surface of the oxidation catalyst, that is, the end surface clogging rate, which is the clogging rate due to PM, on the end surface based on the above difference. Composed. The end face clogging rate is a parameter indicating the ratio of the space volume occupied by PM in the space volume through which exhaust gas can flow on the end face of the oxidation catalyst. Therefore, the state where the end surface clogging rate is 100% means that the exhaust catalyst inflow end surface of the oxidation catalyst is completely blocked by PM.

このような構成を採用することで、本願発明に係る内燃機関の排気浄化装置は、酸化触媒の排気流入側端面でのPM堆積を好適に検出することが可能となる。上記の通り、本来的にはPM捕集のためには設置されていない酸化触媒の排気流入側端面での目詰まり率が高くなると、排気通路における排気流れの抵抗が高くなるため、その目詰まりを適切に解消するのが好ましい。この場合、酸化触媒の温度を、PM除去に適した温度にまで上昇させる処理を採用することができる。   By adopting such a configuration, the exhaust gas purification apparatus for an internal combustion engine according to the present invention can suitably detect PM accumulation on the exhaust inflow side end face of the oxidation catalyst. As described above, if the clogging rate at the end face on the exhaust inflow side of the oxidation catalyst that is not originally installed for PM collection becomes higher, the resistance of the exhaust flow in the exhaust passage becomes higher. It is preferable to eliminate the above appropriately. In this case, a process of raising the temperature of the oxidation catalyst to a temperature suitable for PM removal can be employed.

本発明によれば、フィルタと酸化触媒を有する内燃機関の排気浄化装置において、フィルタの上流側に位置する酸化触媒の排気流入側端面でのPM堆積の状況を正確に把握することが可能となる。   According to the present invention, in an exhaust gas purification apparatus for an internal combustion engine having a filter and an oxidation catalyst, it is possible to accurately grasp the state of PM deposition on the exhaust inflow side end face of the oxidation catalyst located upstream of the filter. .

本発明に係る内燃機関の排気浄化装置の概略構成を示す図である。It is a figure showing a schematic structure of an exhaust-air-purification device of an internal-combustion engine concerning the present invention. 図1に示す内燃機関の排気浄化装置で実行される再生制御のフローチャートである。2 is a flowchart of regeneration control that is executed by the exhaust gas purification apparatus for an internal combustion engine shown in FIG. 1. フィルタの上流側と下流側との排気圧力差と、該フィルタでのPM堆積量との相関を示す図である。It is a figure which shows the correlation with the exhaust pressure difference of the upstream and downstream of a filter, and the amount of PM deposits in this filter. 内燃機関から排出されたPM量とフィルタでのPM堆積量との差分量と、フィルタの排気流入側端面での目詰まり率との相関を示す図である。It is a figure which shows the correlation with the difference amount of PM amount discharged | emitted from the internal combustion engine, and the PM accumulation amount in a filter, and the clogging rate in the exhaust gas inflow side end surface of a filter.

以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施例に記載されている構成部品の寸法、材質、形状、その相対配置等は、特に記載がない限りは発明の技術的範囲をそれらのみに限定する趣旨のものではない。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the present embodiment are not intended to limit the technical scope of the invention to those unless otherwise specified.

図1は、本発明に係る内燃機関1の排気浄化装置の概略構成を示す。内燃機関1は車両駆動用のディーゼルエンジンである。内燃機関1には排気通路2が接続されている。排気通路2には、排気中のPMを捕集するパティキュレートフィルタ4(以下、単に「フィルタ」という。)が設けられている。また、排気通路2におけるフィルタ4より上流側には、酸化触媒3が備えられている。酸化触媒3は、流入する排気中の未燃燃料成分やNO等を酸化する機能を有する。   FIG. 1 shows a schematic configuration of an exhaust emission control device for an internal combustion engine 1 according to the present invention. The internal combustion engine 1 is a diesel engine for driving a vehicle. An exhaust passage 2 is connected to the internal combustion engine 1. The exhaust passage 2 is provided with a particulate filter 4 (hereinafter simply referred to as “filter”) that collects PM in the exhaust. An oxidation catalyst 3 is provided upstream of the filter 4 in the exhaust passage 2. The oxidation catalyst 3 has a function of oxidizing unburned fuel components, NO, and the like in the inflowing exhaust gas.

そして、酸化触媒3の上流側に、該酸化触媒3に流れ込む排気に燃料(未燃燃料)を供給する燃料供給弁5が設けられている。また、酸化触媒3に流入する排気の温度を測定する温度センサ6と、当該酸化触媒3から流れ出る排気の温度を測定する温度センサ7が、該酸化触媒3の上流側および下流に設けられている。また、フィルタ4の周辺においては、フィルタ4の下流側の排気通路2を流れる排気の温度を検出する温度センサ9と、フィルタ4を挟んだ上流側および下流側の排気通路における排気圧力の差を検出する差圧セン
サ8も設けられている。
A fuel supply valve 5 for supplying fuel (unburned fuel) to the exhaust gas flowing into the oxidation catalyst 3 is provided upstream of the oxidation catalyst 3. A temperature sensor 6 for measuring the temperature of the exhaust gas flowing into the oxidation catalyst 3 and a temperature sensor 7 for measuring the temperature of the exhaust gas flowing out of the oxidation catalyst 3 are provided upstream and downstream of the oxidation catalyst 3. . Further, in the vicinity of the filter 4, the difference between the exhaust pressure in the temperature sensor 9 that detects the temperature of the exhaust gas flowing in the exhaust passage 2 downstream of the filter 4 and the upstream and downstream exhaust passages sandwiching the filter 4 is calculated. A differential pressure sensor 8 for detection is also provided.

また、内燃機関の吸気通路13には、該吸気通路13を流れる吸気流量を計測可能なエアフローメータ10が配置されている。そして、内燃機関1には電子制御ユニット(ECU)20が併設されており、該ECU20は内燃機関1の運転状態等を制御するユニットである。このECU20には、上述した燃料供給弁5や温度センサ6、7、9、差圧センサ8、エアフローメータ10、クランクポジションセンサ11及びアクセル開度センサ12等が電気的に接続され、燃料供給弁5は、ECU20からの指示に従い排気への燃料供給制御を行い、また、各センサによる検出値がECU20に渡されている。例えば、クランクポジションセンサ11は内燃機関1のクランク角を検出し、アクセル開度センサ12は内燃機関1を搭載した車両のアクセル開度を検出し、ECU20へと送る。その結果、ECU20は、クランクポジションセンサ11の検出値に基づいて内燃機関1の機関回転速度を導出し、アクセル開度センサ12の検出値に基づいて内燃機関1の機関負荷を導出する。また、ECU20は、温度センサ6の検出値に基づいて酸化触媒3に流入する排気温度を検出し、温度センサ7の検出値に基づいて酸化触媒3の温度を推定し、また排気温度センサ9の検出値に基づいてフィルタ4の温度を推定することができる。また、ECU20は、差圧センサ8の検出値に基づいてフィルタ4におけるPMの堆積状況を把握することが可能であり、その処理については後述する。   An air flow meter 10 capable of measuring an intake air flow rate flowing through the intake passage 13 is disposed in the intake passage 13 of the internal combustion engine. The internal combustion engine 1 is provided with an electronic control unit (ECU) 20 that controls the operating state of the internal combustion engine 1 and the like. The ECU 20 is electrically connected to the above-described fuel supply valve 5, temperature sensors 6, 7, 9, differential pressure sensor 8, air flow meter 10, crank position sensor 11, accelerator opening sensor 12, and the like, and the fuel supply valve 5 performs fuel supply control to the exhaust gas in accordance with an instruction from the ECU 20, and detection values from the sensors are passed to the ECU 20. For example, the crank position sensor 11 detects the crank angle of the internal combustion engine 1, and the accelerator opening sensor 12 detects the accelerator opening of the vehicle on which the internal combustion engine 1 is mounted and sends it to the ECU 20. As a result, the ECU 20 derives the engine rotation speed of the internal combustion engine 1 based on the detection value of the crank position sensor 11 and derives the engine load of the internal combustion engine 1 based on the detection value of the accelerator opening sensor 12. The ECU 20 detects the exhaust temperature flowing into the oxidation catalyst 3 based on the detection value of the temperature sensor 6, estimates the temperature of the oxidation catalyst 3 based on the detection value of the temperature sensor 7, and Based on the detected value, the temperature of the filter 4 can be estimated. Further, the ECU 20 can grasp the PM accumulation state in the filter 4 based on the detection value of the differential pressure sensor 8, and the processing will be described later.

上記の通り構成される内燃機関1の排気浄化装置では、概略的には、排気に含まれるPM(粒子状物質)はフィルタ4によって捕集され、外部への放出が抑制される。その他、図示されない排気浄化用の触媒(NOx浄化用の触媒等)が設けられてもよい。ここで、フィルタ4によって捕集されたPMは、フィルタ4での限界捕集量まで堆積すると排気通路2における背圧が上昇するため、排気温度の上昇等の手法により酸化除去され、フィルタ4の捕集能力の再生が図られる。当該捕集能力再生のための処理を、本明細書では、「フィルタ再生処理」という。具体的に、フィルタ再生処理では、燃料供給弁5から所定量の燃料が排気中に供給されて、酸化触媒3で燃焼されることで、排気温度が昇温され、それによりフィルタに堆積しているPMの酸化除去が行われる。   In the exhaust emission control device of the internal combustion engine 1 configured as described above, roughly, PM (particulate matter) contained in the exhaust is collected by the filter 4 and is suppressed from being released to the outside. In addition, an exhaust purification catalyst (such as a NOx purification catalyst) (not shown) may be provided. Here, when PM collected by the filter 4 is accumulated up to the limit collection amount in the filter 4, the back pressure in the exhaust passage 2 rises, so that it is oxidized and removed by a method such as raising the exhaust temperature, and the filter 4 The collection ability is regenerated. In the present specification, the process for regeneration of the collection ability is referred to as “filter regeneration process”. Specifically, in the filter regeneration process, a predetermined amount of fuel is supplied into the exhaust gas from the fuel supply valve 5 and burned by the oxidation catalyst 3, whereby the exhaust gas temperature is raised and thereby accumulated on the filter. PM is removed by oxidation.

このようにフィルタ再生処理を適時に行うことで、フィルタのPM捕集能力は維持され、内燃機関の運転状態を好適に維持しながら、排気中のPMが多量に外部に放出されるのを防ぐことが可能となる。ここで、酸化触媒3に着目すると、酸化触媒3はフィルタ4の上流側に配置されているため、本来的にはPMを捕集するためのものではないものの、特に酸化触媒3の排気流入側の端面においてPMが堆積し目詰まりを生じやすい。このような排気流入側端面での目詰まりは、排気通路2での排気流れに対する抵抗になるものであるから、適切に酸化触媒3の排気流入側端面での目詰まりを解消させる必要がある。   By performing the filter regeneration process in a timely manner as described above, the PM trapping ability of the filter is maintained, and a large amount of PM in the exhaust gas is prevented from being released to the outside while suitably maintaining the operating state of the internal combustion engine. It becomes possible. Here, paying attention to the oxidation catalyst 3, since the oxidation catalyst 3 is disposed upstream of the filter 4, it is not originally intended to collect PM, but in particular to the exhaust inflow side of the oxidation catalyst 3. PM is likely to be clogged due to the accumulation of PM on the end face of the substrate. Such clogging at the exhaust inflow side end surface becomes a resistance against the exhaust flow in the exhaust passage 2, and therefore it is necessary to appropriately eliminate clogging at the exhaust inflow side end surface of the oxidation catalyst 3.

そこで、本発明に係る内燃機関1の排気浄化装置では、図2に示す再生制御が実行される。当該再生制御は、ECU20において所定の制御プログラムが実行されることで繰り返し実行される制御である。まず、S101では、内燃機関1から排出される排気中のPM量であるPM排出量X1が算出される。なお、このPM排出量は、本再生制御が開始されてからの排出量の積算値である。具体的には、クランクポジションセンサ11で検出された内燃機関1の機関回転速度と、アクセル開度センサ12で検出された内燃機関1の機関負荷(又は、内燃機関1における燃料噴射量)に基づいて、現時点における排気中のPM量が算出される。なお、機関回転速度及び機関負荷と、PM量との相関を予め実験等で測定し、当該相関を制御マップの形でECU20内のメモリに格納しておくことで、制御マップへのアクセスを介して当該算出が実行される。更に、排気中のPM量は、内燃機関1の燃焼室内の吸気量に依存することから、エアフローメータ10による吸気量に基づいて上記算出されたPM排出量を補正し、その補正PM排出量を、前回までのS101の処理で算出されたPM排出量に加えることで、すなわち、補正PM排出量を積算していくこ
とで、最終的なPM排出量X1とする。S101の処理が終了すると、S102へ進む。
Therefore, in the exhaust emission control device for the internal combustion engine 1 according to the present invention, the regeneration control shown in FIG. 2 is executed. The regeneration control is control that is repeatedly executed when a predetermined control program is executed in the ECU 20. First, in S101, a PM emission amount X1, which is a PM amount in the exhaust discharged from the internal combustion engine 1, is calculated. The PM emission amount is an integrated value of the emission amount after the start of the regeneration control. Specifically, based on the engine speed of the internal combustion engine 1 detected by the crank position sensor 11 and the engine load of the internal combustion engine 1 detected by the accelerator opening sensor 12 (or the fuel injection amount in the internal combustion engine 1). Thus, the PM amount in the exhaust gas at the present time is calculated. Note that the correlation between the engine speed and the engine load and the PM amount is measured in advance through experiments or the like, and the correlation is stored in the memory in the ECU 20 in the form of a control map, thereby allowing access to the control map. The calculation is executed. Further, since the amount of PM in the exhaust gas depends on the amount of intake air in the combustion chamber of the internal combustion engine 1, the calculated PM emission amount is corrected based on the amount of intake air by the air flow meter 10, and the corrected PM emission amount is reduced. The final PM emission amount X1 is obtained by adding to the PM emission amount calculated in the process of S101 up to the previous time, that is, by integrating the corrected PM emission amount. When the process of S101 ends, the process proceeds to S102.

S102では、差圧センサ8によって検出された、フィルタ4の上流側と下流側との排気圧力差に基づいて、フィルタ4全体に堆積しているPM堆積量X2の算出が行われる。ここで、フィルタ4でのPM堆積量と排気圧力差との関係においては、PM堆積量が多くなるほど排気圧力差は大きくなる傾向があり、また、PM堆積量が同じであってもフィルタ4に流れ込む排気流量が大きくなるほど排気圧力差が大きくなる傾向がある。更に、フィルタ4における排気流量はその排気温度に依存することも知られている。そこで、PM堆積量X2の算出に当たり、排気流量と排気温度との依存関係を踏まえて、以下の式1に従い排気圧力差を補正する。
補正排気圧力差=検出排気圧力差/(排気流量*(排気温度/573)) ・・・式1
ここで、「排気流量」は、エアフローメータ10で検出された吸気流量に、内燃機関1において燃焼に供された燃料噴射量を加えた値とし、その単位はg/sである。また、「排気温度」は、温度センサ9の検出値によって算出されたフィルタ4の温度を利用し、その単位はKである。
In S102, the PM accumulation amount X2 accumulated in the entire filter 4 is calculated based on the exhaust pressure difference between the upstream side and the downstream side of the filter 4 detected by the differential pressure sensor 8. Here, in the relationship between the PM accumulation amount in the filter 4 and the exhaust pressure difference, the exhaust pressure difference tends to increase as the PM accumulation amount increases. The exhaust pressure difference tends to increase as the exhaust flow rate flowing in increases. Further, it is known that the exhaust flow rate in the filter 4 depends on the exhaust temperature. Therefore, in calculating the PM accumulation amount X2, the exhaust pressure difference is corrected according to the following equation 1 in consideration of the dependency between the exhaust flow rate and the exhaust temperature.
Corrected exhaust pressure difference = detected exhaust pressure difference / (exhaust flow rate * (exhaust temperature / 573))
Here, the “exhaust flow rate” is a value obtained by adding the fuel injection amount provided for combustion in the internal combustion engine 1 to the intake air flow rate detected by the air flow meter 10, and its unit is g / s. The “exhaust temperature” uses the temperature of the filter 4 calculated based on the detection value of the temperature sensor 9, and its unit is K.

式1に従うことで、差圧センサ8によって検出された排気圧力差は、現在の排気流量を、内燃機関1の通常運転時の典型的な状態であるフィルタ4の内部温度が摂氏300度(573K)であるときの流量に置き換えたときの、単位流量当りの検出圧力差に相当する補正排気圧力差に置き換えられることになる。この補正排気圧力差は、内燃機関1の運転状態変化による排気圧力差への影響が除かれ、且つPM堆積量を的確に反映する排気圧力差である。   By following Formula 1, the exhaust pressure difference detected by the differential pressure sensor 8 is calculated based on the current exhaust flow rate, and the internal temperature of the filter 4, which is a typical state during normal operation of the internal combustion engine 1, is 300 degrees Celsius (573 K). ), It is replaced with a corrected exhaust pressure difference corresponding to the detected pressure difference per unit flow rate. The corrected exhaust pressure difference is an exhaust pressure difference that excludes the influence on the exhaust pressure difference due to the change in the operating state of the internal combustion engine 1 and accurately reflects the PM accumulation amount.

そして、上述の補正排気圧力差に基づいて、図3に示す補正排気圧力差とPM堆積量との相関を示す制御マップを介して、フィルタ4におけるPM堆積量が算出される。図3に示す制御マップは、補正排気圧力差とPM堆積量との相関を予め実験等で測定し、当該相関を制御マップの形でECU20内のメモリに格納したものである。S102の処理が終了すると、S103へ進む。   Based on the above-described corrected exhaust pressure difference, the PM accumulation amount in the filter 4 is calculated through a control map showing the correlation between the corrected exhaust pressure difference and the PM accumulation amount shown in FIG. The control map shown in FIG. 3 is obtained by measuring the correlation between the corrected exhaust pressure difference and the PM accumulation amount in advance by experiments or the like, and storing the correlation in the memory in the ECU 20 in the form of a control map. When the process of S102 ends, the process proceeds to S103.

S103では、S102で算出されたPM堆積量X2が、通常のフィルタ再生処理を行うための閾値であるPM量X0以上であるか否かが判定される。当該通常のフィルタ再生処理は、フィルタ4全体においてPMが堆積し、そのPM捕集能力が低下した状態となっていると見なすことのできるフィルタ4に対して行われるPM除去のための再生処理である。したがって、閾値X0としては、典型的なフィルタ4におけるPM堆積状態を想定した上で、その堆積PMの除去処理を行いPM捕集能力を回復させるべきと判断される堆積量が設定されることになる。S103で肯定判定されるとS104へ進み、否定判定されるとS105へ進む。   In S103, it is determined whether or not the PM accumulation amount X2 calculated in S102 is equal to or greater than the PM amount X0 that is a threshold for performing a normal filter regeneration process. The normal filter regeneration process is a regeneration process for removing PM, which is performed on the filter 4 that can be regarded as a state in which PM is accumulated in the entire filter 4 and its PM collection capability is reduced. is there. Accordingly, as the threshold value X0, a deposition amount that is determined to recover the PM trapping capacity by performing the removal process of the deposited PM after assuming the PM deposition state in the typical filter 4 is set. Become. If a positive determination is made in S103, the process proceeds to S104, and if a negative determination is made, the process proceeds to S105.

なお、S104における通常のフィルタ再生処理では、フィルタ4に流れ込む排気温度、すなわち温度センサ7によって検出される排気温度が、フィルタ4に堆積しているPMの酸化除去を可能とする温度となるまで、燃料供給弁5による排気への燃料添加が行われる。排気に添加された燃料は酸化触媒3によって酸化され排気温度を上昇させる。なお、燃料供給弁5による燃料の添加量は、温度センサ6によって検出される排気温度と、PMの酸化除去のために到達すべき排気温度との温度差に基づいて決定される。   In the normal filter regeneration process in S104, until the exhaust temperature flowing into the filter 4, that is, the exhaust temperature detected by the temperature sensor 7, reaches a temperature at which the PM accumulated on the filter 4 can be oxidized and removed. Fuel is added to the exhaust by the fuel supply valve 5. The fuel added to the exhaust is oxidized by the oxidation catalyst 3 to raise the exhaust temperature. The amount of fuel added by the fuel supply valve 5 is determined based on the temperature difference between the exhaust temperature detected by the temperature sensor 6 and the exhaust temperature to be reached for PM oxidation removal.

また、S103で否定判定された場合、本再生制御の処理はS105へ進む。そして、S105では、酸化触媒3の排気流入側端面での目詰まり率(以下、「端面目詰まり率」という)Rpが算出される。この端面目詰まり率Rpは、酸化触媒3の排気流入側端面において排気が流入可能な空間体積における堆積PMの占有率として定義され、端面目詰まり率Rpが大きくなるほど、排気が酸化触媒3に入り込みにくくなり、排気通路2での背
圧上昇を招くことになる。そして、酸化触媒3の排気流入側端面に全くPMが堆積していない状態では、端面目詰まり率は0%となり、PMの排気流入側端面でのPM堆積が進み端面目詰まり率Rpが100%となると、完全に閉塞した状態に至ることを意味する。
If a negative determination is made in S103, the process of the reproduction control proceeds to S105. In S105, the clogging rate (hereinafter referred to as “end-face clogging rate”) Rp at the exhaust inflow end surface of the oxidation catalyst 3 is calculated. This end face clogging rate Rp is defined as the occupancy rate of the deposited PM in the space volume into which exhaust can flow at the exhaust inflow side end face of the oxidation catalyst 3, and the exhaust enters the oxidation catalyst 3 as the end face clogging rate Rp increases. As a result, the back pressure in the exhaust passage 2 increases. When no PM is deposited on the exhaust inflow side end face of the oxidation catalyst 3, the end face clogging rate is 0%, and PM accumulation on the exhaust inflow side end face of PM proceeds and the end face clogging rate Rp is 100%. Then, it means reaching a completely closed state.

ここで、具体的には、S101で算出されたPM排出量X1とS102で算出されたPM堆積量X2との差分量(X1−X2)に基づいて、図4に示す当該差分量と端面目詰まり率Rpとの相関を示す制御マップを介して、端面目詰まり率Rpが算出される。図4に示す制御マップは、差分量と端面目詰まり率Rpとの相関を予め実験等で測定し、当該相関を制御マップの形でECU20内のメモリに格納したものである。酸化触媒3においては、排気流入側端面でPMの堆積が進むと、本来フィルタ4で捕集されるべきPMが酸化触媒において捕集された状態となってしまい、内燃機関1からのPM排出量X1とフィルタ4でのPM堆積量との間にずれが生じる。このPM排出量とPM堆積量のずれが、上記差分量X1−X2として現れることになる。そこで、S105では、当該差分量に基づいて図4に示す制御マップにアクセスすることで、端面目詰まり率Rpを合理的に算出することが可能となる。   Specifically, based on the difference amount (X1-X2) between the PM emission amount X1 calculated in S101 and the PM deposition amount X2 calculated in S102, the difference amount and the end face shown in FIG. The end face clogging rate Rp is calculated through a control map showing a correlation with the clogging rate Rp. The control map shown in FIG. 4 is obtained by measuring the correlation between the difference amount and the end face clogging rate Rp in advance through experiments or the like, and storing the correlation in the memory of the ECU 20 in the form of a control map. In the oxidation catalyst 3, when PM is accumulated on the end face on the exhaust inflow side, PM that should be collected by the filter 4 is collected in the oxidation catalyst, and the amount of PM discharged from the internal combustion engine 1 is increased. There is a deviation between X1 and the amount of PM deposited on the filter 4. The difference between the PM discharge amount and the PM accumulation amount appears as the difference amount X1-X2. Therefore, in S105, the end face clogging rate Rp can be reasonably calculated by accessing the control map shown in FIG. 4 based on the difference amount.

なお、図4に示す制御マップでは、差分量がある程度を越えると、差分量の増加とともに端面目詰まり率Rpが増加していく傾向が明らかである。これは、酸化触媒3においてPMがさほど捕集されていない初期の段階では、PMも排気の流れに乗って下流側に流れ出しやすい状態にあるものの、排気流入側端面でPMが捕集されPM堆積が進むと、当該端面においてPMがより堆積しやすくなるため、内燃機関1からのPM排出量が増え、差分量が拡大するに従い、端面目詰まり率Rpを押し上げているものと考えられる。S105の処理が終了すると、S106へ進む。   In the control map shown in FIG. 4, when the difference amount exceeds a certain level, it is clear that the end face clogging rate Rp tends to increase as the difference amount increases. This is because, in the initial stage where PM is not collected so much in the oxidation catalyst 3, PM is also in a state where it tends to flow downstream on the exhaust flow, but PM is collected and deposited on the end face of the exhaust inflow side. Since the PM easily accumulates on the end face as the engine speed increases, it is considered that the end face clogging rate Rp is increased as the PM discharge amount from the internal combustion engine 1 increases and the difference amount increases. When the process of S105 ends, the process proceeds to S106.

S106では、S105で算出された端面目詰まり率Rpが、酸化触媒3での目詰まり状態を解消するための再生処理(酸化触媒再生処理)を行うための閾値であるRp0以上であるか否かが判定される。当該酸化触媒再生処理は、酸化触媒3の排気流入側端面にPMが堆積し、その内部へ排気がある程度は流入しにくい状態で、酸化触媒3の温度を上昇させてその堆積PMを除去する再生処理である。したがって、閾値Rp0としては、酸化触媒3の排気流入側端面でのPM堆積状態を想定した上で、燃料供給弁5より排気に添加された燃料が酸化触媒3に到達し、そこで酸化反応に供せられるように設定されることになる。例えば、閾値Rp0を比較的高く設定してしまうと、酸化触媒3の内部に添加燃料を含む排気が流れにくい状態で酸化触媒再生処理が行われることになり、効率的な目詰まりの解消が図りにくくなる。そこで、効率的な目詰まりの解消の観点から当該閾値Rp0を設定するのが好ましい。S106で肯定判定されるとS107へ進み、否定判定されるとS101以降の処理が再び繰り返される。   In S106, whether or not the end face clogging rate Rp calculated in S105 is equal to or higher than Rp0, which is a threshold value for performing a regeneration process (oxidation catalyst regeneration process) for eliminating the clogged state in the oxidation catalyst 3. Is determined. The oxidation catalyst regeneration process is a regeneration in which PM is deposited on the exhaust inflow side end surface of the oxidation catalyst 3 and the temperature of the oxidation catalyst 3 is increased to remove the deposited PM in a state where the exhaust does not easily flow into the interior. It is processing. Therefore, the threshold Rp0 is assumed to be a PM accumulation state on the exhaust inflow side end face of the oxidation catalyst 3, and the fuel added to the exhaust from the fuel supply valve 5 reaches the oxidation catalyst 3, where it is used for the oxidation reaction. It will be set to be able to. For example, if the threshold value Rp0 is set to a relatively high value, the oxidation catalyst regeneration process is performed in a state in which the exhaust gas containing the added fuel hardly flows inside the oxidation catalyst 3, thereby effectively eliminating clogging. It becomes difficult. Therefore, it is preferable to set the threshold value Rp0 from the viewpoint of efficiently eliminating clogging. If an affirmative determination is made in S106, the process proceeds to S107, and if a negative determination is made, the processing from S101 onward is repeated again.

S107では、酸化触媒再生処理が実行される。当該酸化触媒再生処理は、酸化触媒3の排気流入側端面に堆積しているPMを除去することを主な目的として行われる。具体的には、酸化触媒3の温度が、そこに堆積しているPMの酸化除去に必要な温度(例えば、500度)に到達するように、燃料供給弁5からの燃料添加が制御される。なお、この場合、フィルタ4に流れ込む排気温度も昇温されることになり、フィルタ4に堆積しているPMの酸化除去も図られることになる。そこで、S107の処理は、酸化触媒3の排気流入側端面での目詰まりが解消するだけでなく、フィルタ4の堆積PMを酸化除去し終えるまで行う。   In S107, an oxidation catalyst regeneration process is executed. The oxidation catalyst regeneration process is performed mainly for the purpose of removing PM deposited on the exhaust inflow side end face of the oxidation catalyst 3. Specifically, the fuel addition from the fuel supply valve 5 is controlled so that the temperature of the oxidation catalyst 3 reaches a temperature (for example, 500 degrees) necessary for oxidizing and removing the PM accumulated therein. . In this case, the exhaust temperature flowing into the filter 4 is also raised, and the PM deposited on the filter 4 is removed by oxidation. Therefore, the process of S107 is performed until the clogging on the exhaust inflow side end face of the oxidation catalyst 3 is eliminated and the accumulated PM of the filter 4 is completely removed by oxidation.

S107の処理が終了すると、本再生制御は終了する。このとき、酸化触媒3の端面目詰まりは解消され、またフィルタ4の堆積PMは酸化除去されているので、通常フィルタ再生処理及び酸化触媒再生処理に関する各パラメータ(PM排出量X1、PM堆積量X2、端面目詰まり率Rp)はリセットされる。   When the process of S107 ends, the reproduction control ends. At this time, the clogging of the end face of the oxidation catalyst 3 is eliminated, and the accumulated PM of the filter 4 is oxidized and removed. Therefore, parameters relating to the normal filter regeneration process and the oxidation catalyst regeneration process (PM discharge amount X1, PM deposition amount X2). The end face clogging rate Rp) is reset.

<その他の実施例>
本発明に係る内燃機関1の排気浄化装置で行われる図2に示す制御は、酸化触媒3及びフィルタ4に関する再生処理(S104の処理及びS107の処理)を含むものであるが、これらの再生処理を行わず、酸化触媒3の排気流入側端面での目詰まり率Rpを算出する制御のみを行う排気浄化装置も、本願発明の範疇に属するものである。
<Other examples>
The control shown in FIG. 2 performed in the exhaust emission control device for the internal combustion engine 1 according to the present invention includes regeneration processes (the process of S104 and the process of S107) related to the oxidation catalyst 3 and the filter 4, and these regeneration processes are performed. Of course, an exhaust purification device that performs only control for calculating the clogging rate Rp at the exhaust inflow side end face of the oxidation catalyst 3 also belongs to the category of the present invention.

1 内燃機関
2 排気通路
3 酸化触媒
4 フィルタ
5 燃料供給弁
6、7、9 排気温度センサ
8 差圧センサ
10 エアフローメータ
11 クランクポジションセンサ
12 アクセル開度センサ
13 吸気通路
20 ECU
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Exhaust passage 3 Oxidation catalyst 4 Filter 5 Fuel supply valve 6, 7, 9 Exhaust temperature sensor 8 Differential pressure sensor 10 Air flow meter 11 Crank position sensor 12 Accelerator opening sensor 13 Intake passage 20 ECU

Claims (1)

内燃機関の排気通路に設けられ、排気中の粒子状物質を捕集するフィルタと、
前記フィルタの上流側の前記排気通路に設けられた酸化触媒と、
前記内燃機関の機関回転速度、該内燃機関における機関負荷及び吸入空気量に基づいて、該内燃機関から排出され前記フィルタに流れ込む排気に含まれる粒子状物質の積算量であるPM排出量を算出する第1算出部と、
前記フィルタの上流側と下流側との排気圧力差、該フィルタに流れ込む排気の流量及び温度に基づいて、前記フィルタに捕集された粒子状物質の堆積量であるPM堆積量を算出する第2算出部と、
前記第1算出部によって算出された前記PM排出量と前記第2算出部によって算出された前記PM堆積量との差に基づいて、前記酸化触媒における排気流入側の端面での目詰まり率である端面目詰まり率を算出する第3算出部と、
を備える、内燃機関の排気浄化装置。
A filter provided in an exhaust passage of the internal combustion engine for collecting particulate matter in the exhaust;
An oxidation catalyst provided in the exhaust passage upstream of the filter;
Based on the engine rotational speed of the internal combustion engine, the engine load in the internal combustion engine, and the intake air amount, a PM emission amount that is an integrated amount of particulate matter contained in the exhaust gas discharged from the internal combustion engine and flowing into the filter is calculated. A first calculation unit;
A PM deposition amount, which is a deposition amount of particulate matter collected in the filter, is calculated based on an exhaust pressure difference between the upstream side and the downstream side of the filter, and a flow rate and temperature of exhaust gas flowing into the filter. A calculation unit;
Based on the difference between the PM emission amount calculated by the first calculation unit and the PM deposition amount calculated by the second calculation unit, the clogging rate at the end face on the exhaust inflow side of the oxidation catalyst. A third calculation unit for calculating an end face clogging rate;
An exhaust purification device for an internal combustion engine, comprising:
JP2014100953A 2014-05-14 2014-05-14 Internal combustion engine exhaust emission control device Pending JP2015218605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014100953A JP2015218605A (en) 2014-05-14 2014-05-14 Internal combustion engine exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014100953A JP2015218605A (en) 2014-05-14 2014-05-14 Internal combustion engine exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2015218605A true JP2015218605A (en) 2015-12-07

Family

ID=54778210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014100953A Pending JP2015218605A (en) 2014-05-14 2014-05-14 Internal combustion engine exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2015218605A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133488A (en) * 2016-01-29 2017-08-03 三菱重工業株式会社 Regeneration control unit for exhaust gas processing device
EP3460211A4 (en) * 2016-06-30 2019-05-15 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Regeneration control device of exhaust gas processing device
JP2019112955A (en) * 2017-12-20 2019-07-11 株式会社クボタ engine
JP2020063709A (en) * 2018-10-18 2020-04-23 トヨタ自動車株式会社 Control device of internal combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133488A (en) * 2016-01-29 2017-08-03 三菱重工業株式会社 Regeneration control unit for exhaust gas processing device
WO2017131086A1 (en) * 2016-01-29 2017-08-03 三菱重工エンジン&ターボチャージャ株式会社 Regeneration control device for exhaust gas treatment device
EP3460211A4 (en) * 2016-06-30 2019-05-15 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Regeneration control device of exhaust gas processing device
US10871095B2 (en) 2016-06-30 2020-12-22 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Regeneration control device for exhaust gas treatment device
JP2019112955A (en) * 2017-12-20 2019-07-11 株式会社クボタ engine
JP2020063709A (en) * 2018-10-18 2020-04-23 トヨタ自動車株式会社 Control device of internal combustion engine
JP7211756B2 (en) 2018-10-18 2023-01-24 トヨタ自動車株式会社 Control device for internal combustion engine

Similar Documents

Publication Publication Date Title
JP4506539B2 (en) Exhaust gas purification device for internal combustion engine
US9645068B2 (en) Method and system for particulate filter leakage detection
JP4513593B2 (en) Exhaust gas purification device for internal combustion engine
JP6103075B2 (en) Exhaust gas purification system for internal combustion engine
JP6233450B2 (en) Control device for exhaust purification system
US9551262B1 (en) Method and system for particulate filter leakage detection
JP2007315275A (en) Exhaust gas purifying filter failure diagnosis device and method
US9169766B2 (en) System to monitor regeneration frequency of particulate filter
JP2008190470A (en) Regeneration device for exhaust emission control filter
JP2007247550A (en) Exhaust emission control device for internal combustion engine
JP2008267178A (en) Exhaust emission control device for internal combustion engine
JP2006090153A (en) Exhaust emission control device for internal combustion engine
JP2015218605A (en) Internal combustion engine exhaust emission control device
JP2006063970A (en) Exhaust emission control device of internal combustion engine
JP6131834B2 (en) Engine exhaust purification system
JP2009103043A (en) Exhaust emission control device for internal combustion engine
CN107060970B (en) Method and system for particulate filter leak detection
JP2007154732A (en) Control system of internal combustion engine
JP2005120986A (en) Exhaust emission control system for internal combustion engine
JP5516267B2 (en) Engine exhaust purification system
JP4349219B2 (en) Exhaust gas purification device for internal combustion engine
JP4033189B2 (en) Exhaust gas purification device for internal combustion engine
JP6183659B2 (en) Exhaust gas purification device
JP5540684B2 (en) Diesel particulate filter differential pressure detection method and diesel particulate filter differential pressure detection device
JP2004245109A (en) Emission control device of internal combustion engine