JP2013253578A - Exhaust gas emission control device for internal combustion engine - Google Patents

Exhaust gas emission control device for internal combustion engine Download PDF

Info

Publication number
JP2013253578A
JP2013253578A JP2012130701A JP2012130701A JP2013253578A JP 2013253578 A JP2013253578 A JP 2013253578A JP 2012130701 A JP2012130701 A JP 2012130701A JP 2012130701 A JP2012130701 A JP 2012130701A JP 2013253578 A JP2013253578 A JP 2013253578A
Authority
JP
Japan
Prior art keywords
storage catalyst
internal combustion
combustion engine
amount
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012130701A
Other languages
Japanese (ja)
Inventor
Shotaro Kishi
章太郎 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2012130701A priority Critical patent/JP2013253578A/en
Publication of JP2013253578A publication Critical patent/JP2013253578A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas emission control device for an internal combustion engine capable of preventing hazardous material release regardless of a long lasting low-temperature and inactive state of an occluding catalyst.SOLUTION: An exhaust gas emission control device for an internal combustion engine includes an occluding catalyst 17 disposed in an exhauster 4 of an internal combustion engine 1 and adsorbing hazardous materials, an adsorbed amount estimating means 18 estimating an amount of the hazardous materials adsorbed by the occluding catalyst, and a regeneration control means 19 executing regeneration control for removing the hazardous materials from the occluding catalyst based on the adsorbed amount of the hazardous materials estimated by the adsorbed amount estimating means. The exhaust gas emission control device includes an active state detection means detecting an active state of the occluding catalyst, and a forced regeneration means 21 executing the regeneration control when an inactive state of the occluding catalyst is detected by the active state detection means and the occluding catalyst is determined to be in a saturated state based on the adsorbed amount of the hazardous materials estimated by the adsorbed amount estimating means.

Description

この発明は内燃機関の排気浄化装置に係り、特に、排気装置に備えた吸蔵触媒に有害物質を一時的に吸着させ、吸蔵触媒が飽和状態となった場合に再生処理して有害物質を除去させる内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly, a harmful substance is temporarily adsorbed on a storage catalyst provided in the exhaust apparatus, and when the storage catalyst becomes saturated, the regeneration process is performed to remove the harmful substance. The present invention relates to an exhaust emission control device for an internal combustion engine.

内燃機関の排気浄化装置には、ガソリンエンジン、ディーゼルエンジンなどの排気中の有蓋成分であるNOxやパティキュレート(炭素などの粒子状物質)を吸着し、浄化する吸蔵触媒を備えているものがある。
例えば、排気浄化装置としては、排気装置に有害物質であるNOxを吸着する吸蔵触媒を備え、内燃機関がリーン燃焼状態であるときに排気中のNOxを吸蔵触媒に吸着し、その後燃焼状態がリッチとなると排気中に含まれるCO及びHCと、吸蔵触媒に吸蔵したNOxとを反応(還元)させて浄化し、吸蔵触媒を再生するものが知られている。(例えば、特許文献1)
この特許文献1の排気浄化装置においては、吸蔵触媒にNOxが過剰に吸着されると飽和状態となり、その後はNOxが吸蔵触媒に吸着されずに排気装置から排出される。このため、上記の排気浄化装置は、吸蔵触媒にNOxがどの程度吸着されているかを推定するため、内燃機関の回転数と負荷(サージタンクの吸気圧)に基づいて、単位時間当たりのNOx吸着量を求めている。(明細書の段落[0027])
また、排気装置に有害物質であるパティキュレートを吸着して捕集する吸蔵触媒を備えた排気浄化装置には、内燃機関がリーン燃焼状態であるときに排気中のパティキュレートを吸蔵触媒に吸着し、吸蔵触媒に堆積したパティキュレートを燃焼させて浄化し、吸蔵触媒を再生するものがある。(例えば、特許文献2)
この特許文献2の排気浄化装置においては、車両の走行状況を勘案し、排気温度が十分に高温となってパティキュレートの自然燃焼による除去を確実に行う道路に車両を案内することで、パティキュレートの浄化処理を促進している。(明細書の段落[0008])
2. Description of the Related Art Some exhaust gas purification apparatuses for internal combustion engines include a storage catalyst that adsorbs and purifies NOx and particulates (particulate matter such as carbon) that are covered components in exhaust such as gasoline engines and diesel engines. .
For example, as an exhaust purification device, the exhaust device is equipped with a storage catalyst that adsorbs NOx, which is a harmful substance, and when the internal combustion engine is in a lean combustion state, NOx in the exhaust is adsorbed on the storage catalyst, and then the combustion state is rich. Then, CO and HC contained in the exhaust gas and NOx occluded in the occlusion catalyst are reacted (reduced) to purify and regenerate the occlusion catalyst. (For example, Patent Document 1)
In the exhaust purification device of this Patent Document 1, when NOx is excessively adsorbed by the storage catalyst, it becomes saturated, and thereafter NOx is not adsorbed by the storage catalyst and is discharged from the exhaust device. For this reason, in order to estimate how much NOx is adsorbed by the storage catalyst, the exhaust purification device described above adsorbs NOx per unit time based on the rotational speed and load of the internal combustion engine (intake pressure of the surge tank). Seeking the amount. (Paragraph [0027] of description)
In addition, an exhaust purification device equipped with an occlusion catalyst that adsorbs and collects particulates that are harmful substances to the exhaust device, adsorbs particulates in the exhaust gas to the occlusion catalyst when the internal combustion engine is in a lean combustion state. Some of them regenerate the storage catalyst by burning and purifying the particulates deposited on the storage catalyst. (For example, Patent Document 2)
In the exhaust emission control device of Patent Document 2, the vehicle is guided to the road where the exhaust temperature is sufficiently high and the particulates are surely removed by natural combustion in consideration of the traveling state of the vehicle. Promoting the purification process. (Paragraph [0008] of the description)

特開平8−14030号公報JP-A-8-14030 特開2010−216323号公報JP 2010-216323 A

ところで、上述特許文献1のような排気浄化装置において、リーン状態で有害物質のNOxを吸着し、リッチ状態で還元により浄化する吸蔵触媒は、低温である場合に非活性状態となり、浄化能力が低下する特性がある。このため、排気浄化装置は、吸蔵触媒が低温状態では吸着したNOxが排気装置から排出されないよう、燃焼状態をリーン燃焼状態に維持して吸着するように制御していた。
しかしながら、近年、所謂アイドリングストップ機能を備えた車両においては、内燃機関が停止する機会が多くなり、内燃機関の暖気が完了する前に吸蔵触媒のNOx吸着量が飽和状態となり、NOxが吸蔵触媒に吸着されずに排気装置から排出されるおそれがあった。
また、上述特許文献2のような排気浄化装置においても、同様に、所謂アイドリングストップ機能を備えた車両においては、内燃機関が停止する機会が多くなることから、内燃機関の暖気が完了する前に吸蔵触媒のパティキュレート堆積量が飽和状態となり、パティキュレートが吸蔵触媒に吸着されずに排気装置から排出されるおそれがあった。
By the way, in the exhaust gas purification apparatus as in the above-mentioned Patent Document 1, the storage catalyst that adsorbs NOx as a harmful substance in a lean state and purifies by reduction in a rich state becomes inactive when the temperature is low, and the purification capacity is reduced. There is a characteristic to do. For this reason, the exhaust purification device is controlled so that the adsorbed NOx is not exhausted from the exhaust device when the storage catalyst is in a low temperature state, and is adsorbed while maintaining the lean combustion state.
However, in recent years, in vehicles equipped with a so-called idling stop function, there are many opportunities for the internal combustion engine to stop, and the NOx adsorption amount of the storage catalyst becomes saturated before warming up of the internal combustion engine is completed, so that NOx becomes a storage catalyst. There was a risk of exhaustion from the exhaust system without being adsorbed.
Similarly, in the exhaust gas purification apparatus as described in Patent Document 2, in a vehicle having a so-called idling stop function, there are many opportunities for the internal combustion engine to stop, so before the warm-up of the internal combustion engine is completed. There is a possibility that the particulate accumulation amount of the storage catalyst becomes saturated, and the particulates are not adsorbed by the storage catalyst and are discharged from the exhaust device.

そこで、この発明は、上記の問題に鑑みて成されたものであり、吸蔵触媒が長期間低温で非活性状態にあっても、有害物質の排出を防止できる内燃機関の排気浄化装置を提供することを目的とする。   Therefore, the present invention has been made in view of the above problems, and provides an exhaust gas purification apparatus for an internal combustion engine that can prevent discharge of harmful substances even when the storage catalyst is in an inactive state at a low temperature for a long period of time. For the purpose.

この発明は、内燃機関の排気装置に設けられ有害物質を吸着する吸蔵触媒と、前記吸蔵触媒に吸着された有害物質の量を推定する吸着量推定手段と、前記吸着量推定手段により推定された有害物質の吸着量に基づき前記吸蔵触媒から有害物質を除去させる再生制御を実行する再生制御手段とを備えた内燃機関の排気浄化装置において、前記排気浄化装置は、前記吸蔵触媒の活性状態を検出する活性状態検出手段と、前記活性状態検出手段により前記吸蔵触媒の非活性状態が検出され、前記吸着量推定手段により推定された有害物質の吸着量に基づき前記吸蔵触媒が飽和状態であると判定したとき、前記再生制御を実行する強制再生手段とを備えたことを特徴とする。   The present invention is estimated by an occlusion catalyst that is provided in an exhaust device of an internal combustion engine and adsorbs harmful substances, an adsorption amount estimation means that estimates the amount of harmful substances adsorbed on the occlusion catalyst, and the adsorption amount estimation means. An exhaust gas purification apparatus for an internal combustion engine having a regeneration control means for executing regeneration control for removing harmful substances from the storage catalyst based on an adsorption amount of the harmful substances, wherein the exhaust purification device detects an active state of the storage catalyst The inactive state of the storage catalyst is detected by the active state detection means and the active state detection means, and the storage catalyst is determined to be saturated based on the amount of adsorption of the harmful substance estimated by the adsorption amount estimation means. And a forced regeneration means for executing the regeneration control.

この発明は、吸蔵触媒が長期間非活性状態にあっても、吸蔵触媒に吸着された有害物質の量が飽和状態となった場合に、吸蔵触媒を強制的に再生処理するため、非活性時に吸蔵触媒の吸着量が飽和状態となり、有害物質が吸着されずに排出されることを防止できる。なお、吸蔵触媒が低温状態で再生処理を実行した場合、有害物質は排出されるが、飽和状態により排出される量と比較すれば軽微であるため、有害物質の排出量を抑制することができる。   Even if the storage catalyst is in an inactive state for a long period of time, the storage catalyst is forcibly regenerated when the amount of harmful substances adsorbed on the storage catalyst becomes saturated. The adsorption amount of the storage catalyst becomes saturated, and it can be prevented that harmful substances are discharged without being adsorbed. In addition, when the storage catalyst is regenerated in a low temperature state, harmful substances are discharged, but since the amount is slight compared with the amount discharged in a saturated state, the amount of harmful substances discharged can be suppressed. .

図1は内燃機関の排気浄化装置のブロック図である。(実施例1)FIG. 1 is a block diagram of an exhaust gas purification apparatus for an internal combustion engine. Example 1 図2は内燃機関の排気浄化装置によるNOx吸着時のシステム図である。(実施例1)FIG. 2 is a system diagram at the time of NOx adsorption by the exhaust purification device of the internal combustion engine. Example 1 図3は内燃機関の排気浄化装置によるNOx浄化時のシステム図である。(実施例1)FIG. 3 is a system diagram at the time of NOx purification by the exhaust gas purification apparatus of the internal combustion engine. Example 1 図4は内燃機関の排気浄化装置によるNOx処理の論理回路図である。(実施例1)FIG. 4 is a logic circuit diagram of NOx processing by the exhaust gas purification apparatus for an internal combustion engine. Example 1 図5は内燃機関の排気浄化装置によるNOx処理のフローチャートである。(実施例1)FIG. 5 is a flow chart of NOx processing by the exhaust gas purification apparatus for an internal combustion engine. Example 1 図6は機関回転数と燃料噴射量とからNOx濃度を求めるためのNOx濃度マップである。(実施例1)FIG. 6 is a NOx concentration map for obtaining the NOx concentration from the engine speed and the fuel injection amount. Example 1 図7はNOx濃度と機関始動後経過時間とからNOx積算レートを求めるためのNOx積算レートマップである。(実施例1)FIG. 7 is a NOx integrated rate map for obtaining the NOx integrated rate from the NOx concentration and the elapsed time after engine start. Example 1 図8はNOx濃度の値に応じた吸蔵触媒の飽和吸蔵時間を求めるための飽和吸蔵時間マップである。(実施例1)FIG. 8 is a saturation storage time map for obtaining the saturation storage time of the storage catalyst according to the value of the NOx concentration. Example 1 図9は内燃機関の排気浄化装置のブロック図である。(実施例2)FIG. 9 is a block diagram of an exhaust purification device for an internal combustion engine. (Example 2) 図10は内燃機関の排気浄化装置によるパティキュレート処理のシステム図である。(実施例2)FIG. 10 is a system diagram of the particulate processing by the exhaust gas purification device of the internal combustion engine. (Example 2) 図11は内燃機関の排気浄化装置によるパティキュレート処理のフローチャートである。(実施例2)FIG. 11 is a flowchart of the particulate processing performed by the exhaust gas purification apparatus for the internal combustion engine. (Example 2) 図12は機関回転数と燃料噴射量とからパティキュレートの堆積速度を求めるための堆積速度マップである。(実施例2)FIG. 12 is a deposition rate map for obtaining the particulate deposition rate from the engine speed and the fuel injection amount. (Example 2) 図13はパティキュレートの堆積速度と機関始動後経過時間とからパティキュレートの堆積積算レートを求めるための堆積積算レートマップである。(実施例2)FIG. 13 is a cumulative accumulation rate map for obtaining the cumulative particulate accumulation rate from the particulate deposition rate and the elapsed time after engine start. (Example 2) 図14はパティキュレートの堆積速度に応じた吸蔵触媒の飽和堆積時間を求めるための飽和堆積時間マップである。(実施例2)FIG. 14 is a saturation deposition time map for obtaining the saturation deposition time of the storage catalyst in accordance with the particulate deposition rate. (Example 2)

以下、図面に基づいて、この発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1〜図8は、この発明の実施例1を示すものである。図1において、1は内燃機関、2は燃焼室、3は吸気装置、4は排気装置である。車両に搭載された内燃機関1は、ガソリンエンジン、ディーゼルエンジンであり、吸気装置3として、燃焼室2に連通する吸気通路5を設け、吸気通路5にスロットルバルブ6を設けている。また、内燃機関1は、排気装置4として、燃焼室2に連通する排気通路7を設けている。内燃機関1は、燃料を噴射供給する燃料噴射装置8を備えている。燃料噴射装置8は、内燃機関1に燃料を供給する燃料噴射弁9を設けている。
前記燃料噴射装置8は、制御装置10の燃料噴射量算出手段11によって燃料噴射弁9の燃料噴射量を制御される。燃料噴射量算出手段11は、外気温度センサ12が検出する外気温度、大気圧センサ13が検出する大気圧、吸気量センサ14が検出する吸気量(又は、吸気圧センサが検出する吸気圧)、クランク角センサ15が検出する内燃機関1の機関回転数を参照し、外気温度、大気圧を考慮しつつ機関回転数と負荷を示す吸気量(又は吸気圧)とに基づき燃料噴射量を算出する。
前記燃料噴射量は、クランク角センサ15が検出する機関回転数と吸気量センサ14が検出する吸気量とに応じて決定される。このとき、外気温度が低いと、吸気中に含まれる酸素量が多くなるため、この酸素量に応じて燃料噴射量を減少させるように制御される。また、大気圧が低いと、吸気中の酸素量が少なくなるため、燃料噴射量が増加される。即ち、燃料噴射量は、外気温度と大気圧の変化に応じて、適切な出力が得られるよう増量又は減量される。
燃料噴射装置8は、燃料噴射量算出手段11の算出した燃料噴射量となるように燃料噴射弁9を作動して、燃料を吸気通路5に噴射供給する。内燃機関1は、吸気通路5により供給された空気と燃料噴射弁9により供給された燃料との混合気を燃焼室2において燃焼させ、駆動力を発生する。燃焼後の排気は、排気通路7により外部に排出される。
1 to 8 show Embodiment 1 of the present invention. In FIG. 1, 1 is an internal combustion engine, 2 is a combustion chamber, 3 is an intake device, and 4 is an exhaust device. An internal combustion engine 1 mounted on a vehicle is a gasoline engine or a diesel engine. As an intake device 3, an intake passage 5 communicating with a combustion chamber 2 is provided, and a throttle valve 6 is provided in the intake passage 5. In addition, the internal combustion engine 1 is provided with an exhaust passage 7 communicating with the combustion chamber 2 as the exhaust device 4. The internal combustion engine 1 includes a fuel injection device 8 that injects and supplies fuel. The fuel injection device 8 is provided with a fuel injection valve 9 that supplies fuel to the internal combustion engine 1.
In the fuel injection device 8, the fuel injection amount of the fuel injection valve 9 is controlled by the fuel injection amount calculation means 11 of the control device 10. The fuel injection amount calculating means 11 includes an outside air temperature detected by the outside air temperature sensor 12, an atmospheric pressure detected by the atmospheric pressure sensor 13, an intake air amount detected by the intake air amount sensor 14 (or an intake air pressure detected by the intake air pressure sensor), With reference to the engine speed of the internal combustion engine 1 detected by the crank angle sensor 15, the fuel injection amount is calculated based on the engine speed and the intake air amount (or intake air pressure) indicating the load while taking the outside air temperature and atmospheric pressure into consideration. .
The fuel injection amount is determined according to the engine speed detected by the crank angle sensor 15 and the intake air amount detected by the intake air sensor 14. At this time, if the outside air temperature is low, the amount of oxygen contained in the intake air increases, so that the fuel injection amount is controlled to decrease according to the amount of oxygen. Further, when the atmospheric pressure is low, the amount of oxygen in the intake air decreases, so the fuel injection amount increases. That is, the fuel injection amount is increased or decreased according to changes in the outside air temperature and the atmospheric pressure so as to obtain an appropriate output.
The fuel injection device 8 operates the fuel injection valve 9 so as to achieve the fuel injection amount calculated by the fuel injection amount calculation means 11 and injects and supplies the fuel to the intake passage 5. The internal combustion engine 1 burns an air-fuel mixture of air supplied through the intake passage 5 and fuel supplied from the fuel injection valve 9 in the combustion chamber 2 to generate driving force. The exhaust after combustion is discharged to the outside through the exhaust passage 7.

前記内燃機関1は、排気を浄化する排気浄化装置16を設けている。排気浄化装置16は、排気通路7に排気中の有害物質であるNOxを吸着し、吸蔵したNOxを浄化する吸蔵触媒17を備えている。排気浄化装置16は、吸蔵触媒17に吸着されて吸蔵したNOxの量(NOx吸着量)を推定する吸着量推定手段18と、吸着量推定手段18により推定されたNOx吸着量に基づき吸蔵触媒17からNOxを除去させる再生制御を実行する再生制御手段19とを、前記制御装置10に備えている。
前記排気浄化装置16は、内燃機関1がリーン燃焼状態であるときに、図2に示すように、式(R1)に示すNOx吸蔵化学反応式に従い、排気中のNOxを吸蔵触媒17に吸着する。その後、排気浄化装置16は、再生制御手段19によって、吸着量推定手段18により推定された吸蔵触媒17のNOx吸着量に基づき、吸蔵触媒17のNOx吸着量が飽和状態であるか否かを判断する。再生制御手段19は、吸蔵触媒17のNOx吸着量が飽和状態であると判定したとき、吸蔵触媒17からNOxを除去させる再生制御を実行する。
再生制御においては、燃料噴射弁9の燃料噴射量を増加(若しくは、燃焼行程後に燃料噴射)させて内燃機関1をリッチ燃焼状態とし、図3に示すように、式(R2)に示すNOx酸化反応式、式(R3)に示すNOx還元反応式に従い、排気中に含まれるCO及びHCと、吸蔵触媒17に吸蔵したNOxとを反応(還元)させて浄化し、吸蔵触媒17を再生処理する。
The internal combustion engine 1 is provided with an exhaust purification device 16 that purifies exhaust. The exhaust purification device 16 includes a storage catalyst 17 that adsorbs NOx, which is a harmful substance in exhaust gas, to the exhaust passage 7 and purifies the stored NOx. The exhaust purification device 16 estimates the amount of NOx adsorbed and stored by the storage catalyst 17 (NOx adsorption amount), and the storage catalyst 17 based on the NOx adsorption amount estimated by the adsorption amount estimation means 18. The control device 10 is provided with a regeneration control means 19 for performing regeneration control for removing NOx from the control device 10.
When the internal combustion engine 1 is in a lean combustion state, the exhaust purification device 16 adsorbs NOx in the exhaust to the storage catalyst 17 according to the NOx storage chemical reaction formula shown in the formula (R1) as shown in FIG. . Thereafter, the exhaust purification device 16 determines whether or not the NOx adsorption amount of the storage catalyst 17 is saturated based on the NOx adsorption amount of the storage catalyst 17 estimated by the adsorption amount estimation unit 18 by the regeneration control unit 19. To do. When it is determined that the NOx adsorption amount of the storage catalyst 17 is in a saturated state, the regeneration control unit 19 executes regeneration control for removing NOx from the storage catalyst 17.
In the regeneration control, the fuel injection amount of the fuel injection valve 9 is increased (or the fuel is injected after the combustion stroke) to bring the internal combustion engine 1 into a rich combustion state, and as shown in FIG. 3, the NOx oxidation shown in the equation (R2) In accordance with the NOx reduction reaction equation shown in the reaction equation, equation (R3), CO and HC contained in the exhaust gas and NOx occluded in the occlusion catalyst 17 are reacted (reduced) and purified, and the occlusion catalyst 17 is regenerated. .

この内燃機関1の排気浄化装置16は、吸蔵触媒17の活性状態を検出する活性状態検出手段として、吸蔵触媒17の触媒温度を検出する触媒温度センサ20を制御装置10に備えている。制御装置10には、触媒温度センサ20の検出する触媒温度に基づき吸蔵触媒17の再生制御を実行する強制再生手段21を備えている。強制再生手段21は、触媒温度センサ20の検出する吸蔵触媒17の触媒温度が活性温度未満の低温状態で、吸蔵触媒17の非活性状態が検出され、吸着量推定手段18により推定された吸蔵触媒17のNOx吸着量に基づき吸蔵触媒17が飽和状態と判定されたとき、強制的に再生制御を実行する。再生制御においては、前述のように、内燃機関1をリッチ燃焼状態とし、排気中に含まれるCO及びHCと、吸蔵触媒17に吸蔵したNOxとを反応(還元)させて浄化し、吸蔵触媒17を再生処理する。
また、排気浄化装置16は、計時手段22を備えている。計時手段22は、内燃機関1の始動時からの経過時間(以下「機関始動後経過時間Te」と記す。)を計測する機関始動タイマ23と、前記再生制御を停止した時からの経過時間(以下「再生停止後経過時間Tr」と記す。)を計測する再生停止タイマ24とを備えている。前記強制再生手段21は、機関始動タイマ23が計測する機関始動後経過時間Teが設定値以上となったとき、又は再生停止タイマ24が計測する再生停止後経過時間Trが設定値以上となったとき、吸蔵触媒17が飽和状態であると判定する。
前記機関始動後経過時間Te及び再生停止後経過時間Trを判定する設定値は、飽和吸蔵時間算出手段25により算出される。飽和吸蔵時間算出手段25は、図8に示すように、飽和吸蔵時間マップに基づき吸蔵触媒17に入る前のNOx濃度(実線)に応じて、吸蔵触媒17のNOx吸着量が飽和状態となる閾値(破線)に達するまでの時間を、飽和吸蔵時間Tsとして算出する。強制再生手段21は、飽和吸蔵時間算出手段25が算出した飽和吸蔵時間Tsを設定値とし、機関始動後経過時間Teが設定値である飽和吸蔵時間Ts以上となったとき、又は再生停止後経過時間Trが設定値である飽和吸蔵時間Ts以上となったとき、吸蔵触媒17が飽和状態であると判定する。
さらに、排気浄化装置16は、記憶手段26を制御装置10に備えている。記憶手段26には、燃料噴射量と機関回転数とから吸蔵触媒17に入る前のNOx濃度を求めるためのNOx濃度マップ(図6)、NOx濃度マップで求めたNOx濃度と内燃機関1の機関始動後経過時間TeとからNOx積算レート(NOx濃度と時間との比率)を求めるためのNOx積算レートマップ(図7)、NOx濃度マップで求めたNOx濃度の値に応じて吸蔵触媒17のNOx吸着量が飽和状態となる閾値に達するまでの飽和吸蔵時間Tsを求めるための飽和吸蔵時間マップ(図8)を記憶している。排気浄化装置16は、NOx濃度マップ(図6)、NOx積算レートマップ(図7)、飽和吸蔵時間マップ(図8)から、判定のための各種設定値を算出する。
The exhaust purification device 16 of the internal combustion engine 1 includes a catalyst temperature sensor 20 that detects a catalyst temperature of the storage catalyst 17 as an active state detection unit that detects an active state of the storage catalyst 17 in the control device 10. The control device 10 includes a forced regeneration means 21 that performs regeneration control of the storage catalyst 17 based on the catalyst temperature detected by the catalyst temperature sensor 20. The forced regeneration means 21 detects the inactive state of the storage catalyst 17 when the catalyst temperature of the storage catalyst 17 detected by the catalyst temperature sensor 20 is lower than the activation temperature, and the storage catalyst estimated by the adsorption amount estimation means 18. When it is determined that the storage catalyst 17 is saturated based on the NOx adsorption amount of 17, the regeneration control is forcibly executed. In the regeneration control, as described above, the internal combustion engine 1 is brought into a rich combustion state, and CO and HC contained in the exhaust gas are reacted (reduced) with NOx occluded in the occlusion catalyst 17 to purify the occlusion catalyst 17. Is played back.
Further, the exhaust purification device 16 includes a time measuring means 22. The time measuring means 22 includes an engine start timer 23 for measuring an elapsed time since the start of the internal combustion engine 1 (hereinafter referred to as “elapsed time Te after engine start”), and an elapsed time (from when the regeneration control is stopped). (Hereinafter referred to as “elapsed time Tr after playback stop”), and a playback stop timer 24 for measuring. In the forced regeneration means 21, the elapsed time Te after the engine start measured by the engine start timer 23 becomes equal to or greater than the set value, or the elapsed time Tr after the regeneration stop measured by the regeneration stop timer 24 becomes equal to or greater than the set value. At this time, it is determined that the storage catalyst 17 is saturated.
The set values for determining the elapsed time Te after the engine start and the elapsed time Tr after the regeneration stop are calculated by the saturated storage time calculating means 25. As shown in FIG. 8, the saturated storage time calculating means 25 is a threshold at which the NOx adsorption amount of the storage catalyst 17 becomes saturated according to the NOx concentration (solid line) before entering the storage catalyst 17 based on the saturated storage time map. The time to reach (broken line) is calculated as the saturated storage time Ts. The forced regeneration means 21 uses the saturation storage time Ts calculated by the saturation storage time calculation means 25 as a set value, and when the elapsed time Te after engine start becomes equal to or greater than the saturation storage time Ts that is the set value, or after the regeneration has stopped. When the time Tr becomes equal to or longer than the saturation storage time Ts that is the set value, it is determined that the storage catalyst 17 is in a saturated state.
Further, the exhaust purification device 16 includes a storage unit 26 in the control device 10. The storage means 26 stores a NOx concentration map (FIG. 6) for obtaining the NOx concentration before entering the storage catalyst 17 from the fuel injection amount and the engine speed, the NOx concentration obtained from the NOx concentration map, and the engine of the internal combustion engine 1. The NOx integrated rate map (FIG. 7) for determining the NOx integrated rate (the ratio between the NOx concentration and time) from the elapsed time Te after starting, and the NOx of the storage catalyst 17 in accordance with the value of the NOx concentration determined by the NOx concentration map. A saturated occlusion time map (FIG. 8) for determining the saturated occlusion time Ts until the adsorption amount reaches a threshold value for saturation is stored. The exhaust purification device 16 calculates various set values for determination from the NOx concentration map (FIG. 6), the NOx integrated rate map (FIG. 7), and the saturated storage time map (FIG. 8).

次に作用を説明する。
内燃機関1の排気浄化装置16は、図5に示すように、制御装置10による制御がスタートし(A01)、イグニッションスイッチのONにより内燃機関1が始動されると(A02)、機関始動タイマ23により機関始動後経過時間Teの計測が開始され(A03)、燃料噴射量算出手段11が算出する燃料噴射量とクランク角センサ15が検出する機関回転数とを取得する(A04)。
NOx濃度マップ(図6参照)に基づき前記取得した燃料噴射量と機関回転数との値に応じたNOx濃度を求め(A05)、NOx積算レートマップ(図7参照)に基づき前記NOx濃度マップで求めたNOx濃度のレート曲線と前記始動タイマ23が計測した機関始動後経過時間Teとの値に応じたNOx積算レートを求める。(A06)
前記NOx濃度マップで求めたNOx濃度と前記NOx積算レートマップで求めたNOx積算レートとを乗算して、吸蔵触媒17に吸着されたNOx吸着量を算出(NOx吸着量=NOx濃度×NOx積算レート)する(A07)。そして、飽和吸蔵時間マップ(図8参照)に基づき、前記NOx濃度マップで求めたNOx濃度の値に応じたNOx濃度直線とNOx吸着量の閾値とより飽和吸蔵時間Tsを求める(A08)。NOx吸着量は、前記吸着量推定手段21により求められる。飽和吸蔵時間Tsは、前記飽和吸蔵時間算出手段25により求められる。
Next, the operation will be described.
As shown in FIG. 5, the exhaust purification device 16 of the internal combustion engine 1 starts control by the control device 10 (A01), and when the internal combustion engine 1 is started by turning on the ignition switch (A02), the engine start timer 23 Thus, the measurement of the elapsed time Te after the engine start is started (A03), and the fuel injection amount calculated by the fuel injection amount calculation means 11 and the engine speed detected by the crank angle sensor 15 are acquired (A04).
Based on the NOx concentration map (see FIG. 6), the NOx concentration corresponding to the obtained fuel injection amount and engine speed is obtained (A05), and based on the NOx integrated rate map (see FIG. 7), the NOx concentration map is used. A NOx integrated rate corresponding to the value of the obtained NOx concentration rate curve and the elapsed time Te after engine start measured by the start timer 23 is obtained. (A06)
The NOx concentration obtained by the NOx concentration map is multiplied by the NOx integrated rate obtained by the NOx integrated rate map to calculate the NOx adsorbed amount adsorbed by the storage catalyst 17 (NOx adsorbed amount = NOx concentration × NOx integrated rate). (A07). Then, based on the saturated storage time map (see FIG. 8), the saturated storage time Ts is obtained from the NOx concentration straight line corresponding to the value of the NOx concentration obtained from the NOx concentration map and the threshold value of the NOx adsorption amount (A08). The NOx adsorption amount is obtained by the adsorption amount estimating means 21. The saturated storage time Ts is obtained by the saturated storage time calculation means 25.

前記NOx吸着量の算出(A07)及び飽和吸蔵時間Tsの算出(A08)の後に、触媒温度センサ20が検出する触媒温度により吸蔵触媒17が活性状態であるかを判断する(A09)。なお、吸蔵触媒17の活性状態を判定するための触媒温度センサ20は、ラジエータの水温を測定する温度センサで代用することもできる。
前記吸蔵触媒17が活性状態であるかの判断(A09)がYESの場合は、吸蔵触媒17に吸着されたNOx吸着量が飽和状態となる閾値以上(NOx吸着量≧閾値)であるかを判断する(A10)。NOx吸着量は、図8に示すように、NOx濃度直線に応じて飽和状態の閾値に達するまでの飽和吸蔵時間Tsが相違し、NOx濃度が高いほど閾値に達するまでの飽和吸蔵時間Tsが短くなる。
この判断(A10)がNOの場合は、燃料噴射量と機関回転数との取得(A04)に戻る。この判断(A10)がYESの場合は、再生制御手段19により吸蔵触媒17からNOxを除去させる再生制御を実行し(A11)、再生制御の実行時間が所定時間を経過したかを判断する(A12)。
この判断(A12)がNOの場合は、再生制御(A11)を継続する。この判断(A12)がYESの場合は、再生制御を停止し(A13)、再生停止タイマ24により再生停止後経過時間Trの計測を開始し(A14)、機関回転数と燃料噴射量との取得(A04)に戻る。
一方、前記吸蔵触媒17が活性状態であるかの判断(A09)がNOの場合は、機関始動後経過時間Teが飽和吸蔵時間Ts以上であるか(Te≧Ts)、又は、再生制御の再生停止後経過時間Trが飽和吸蔵時間Ts以上であるか(Tr≧Ts)を判断する(A15)。
この判断(A15)がNOの場合は、燃料噴射量と機関回転数との取得(A04)に戻る。この判断(A15)がYESの場合は、強制再生手段21により吸蔵触媒17からNOxを除去させる再生制御の実行(A11)に移行し、前述判断(A12)〜処理(A14)を行い、機関回転数と燃料噴射量との取得(A04)に戻る。
即ち、排気浄化装置16は、吸蔵触媒17が活性化するまでの間(A09:NO)は、内燃機関1の機関始動後経過時間Te、又は再生制御の再生停止後経過時間Trにより吸蔵触媒17が飽和状態であるか否かを判定し、吸蔵触媒17が飽和状態であれば再生制御を実行する。これに対して、排気浄化装置16は、吸蔵触媒17の活性後(A09:YES)には、吸蔵触媒17の経年劣化を考慮したNOx吸着量により吸蔵触媒17が飽和状態であるか否かを判断(A10)する。
これより、排気浄化装置16は、図4に示すように、NOx吸着量が飽和状態である閾値以上となった場合、あるいは機関始動後経過時間Te、又は再生停止後経過時間Trが飽和吸着時間Ts以上となった場合に、吸蔵触媒17に吸蔵したNOxを浄化して吸蔵触媒17を再生する再生制御を実行する。
After calculating the NOx adsorption amount (A07) and calculating the saturated storage time Ts (A08), it is determined whether the storage catalyst 17 is in an active state based on the catalyst temperature detected by the catalyst temperature sensor 20 (A09). The catalyst temperature sensor 20 for determining the active state of the storage catalyst 17 can be replaced by a temperature sensor that measures the water temperature of the radiator.
If the determination whether the storage catalyst 17 is in the active state (A09) is YES, it is determined whether the NOx adsorption amount adsorbed on the storage catalyst 17 is equal to or greater than the threshold value at which the storage catalyst 17 is saturated (NOx adsorption amount ≧ threshold value). (A10). As shown in FIG. 8, the NOx adsorption amount differs in the saturated storage time Ts until reaching the saturation threshold value according to the NOx concentration line, and the saturation storage time Ts until reaching the threshold value becomes shorter as the NOx concentration becomes higher. Become.
If this determination (A10) is NO, the process returns to obtaining the fuel injection amount and the engine speed (A04). If this determination (A10) is YES, regeneration control for removing NOx from the storage catalyst 17 is executed by the regeneration control means 19 (A11), and it is determined whether the execution time of regeneration control has passed a predetermined time (A12). ).
If this determination (A12) is NO, the regeneration control (A11) is continued. When this determination (A12) is YES, the regeneration control is stopped (A13), the regeneration stop timer 24 starts to measure the elapsed time Tr after the regeneration stop (A14), and the engine speed and the fuel injection amount are acquired. Return to (A04).
On the other hand, if the determination as to whether the storage catalyst 17 is in the active state (A09) is NO, whether the elapsed time Te after the engine start is equal to or longer than the saturated storage time Ts (Te ≧ Ts), or regeneration of the regeneration control It is determined whether the elapsed time Tr after the stop is equal to or longer than the saturated storage time Ts (Tr ≧ Ts) (A15).
When this determination (A15) is NO, the process returns to obtaining the fuel injection amount and the engine speed (A04). If this determination (A15) is YES, the process proceeds to execution of regeneration control (A11) in which NOx is removed from the storage catalyst 17 by the forced regeneration means 21, the above-mentioned determination (A12) to processing (A14) are performed, and the engine rotation is performed. Return to the acquisition of the number and the fuel injection amount (A04).
In other words, the exhaust purification device 16 has the storage catalyst 17 until the storage catalyst 17 is activated (A09: NO) by the elapsed time Te after the engine start of the internal combustion engine 1 or the elapsed time Tr after the regeneration stop of the regeneration control. Is determined to be saturated or not, and if the storage catalyst 17 is saturated, regeneration control is executed. On the other hand, the exhaust purification device 16 determines whether or not the storage catalyst 17 is saturated by the NOx adsorption amount taking into account the aging of the storage catalyst 17 after the storage catalyst 17 is activated (A09: YES). Determine (A10).
Accordingly, as shown in FIG. 4, the exhaust purification device 16 is configured such that when the NOx adsorption amount becomes equal to or greater than the threshold value at which saturation occurs, the elapsed time Te after engine start or the elapsed time Tr after regeneration stop is the saturated adsorption time. When the temperature becomes equal to or higher than Ts, regeneration control for purifying NOx stored in the storage catalyst 17 and regenerating the storage catalyst 17 is executed.

このように、内燃機関1の排気浄化装置16は、強制再生手段21によって、触媒温度センサ20により吸蔵触媒17の非活性状態が検出され、吸着量推定手段21により推定されたNOxの吸着量に基づき吸蔵触媒17のNOx吸着量が飽和状態であると判定したとき、再生制御を実行する。
これにより、排気浄化装置16は、吸蔵触媒17が長期間低温で非活性状態にあっても、吸蔵触媒17に吸着されたNOxの量が飽和状態となった場合に、吸蔵触媒17を強制的に再生処理するため、非活性時に吸蔵触媒17が飽和状態となり、NOxが吸着されずに排出されることを防止できる。なお、吸蔵触媒17が低温状態で再生処理を実行した場合、NOxは排出されるが、吸蔵触媒17の飽和状態により排出される量と比較すれば軽微であるため、排出量を抑制することができる。
また、短期間に複数回内燃機関1を停止するような車両(いわゆるアイドリングストップ車両)にあっては、内燃機関1の機関負荷や機関回転数の変動が大きく、これらの数値に基づいて吸蔵触媒17のNOx吸着量を推定すると、NOx吸着量の推定に誤差が生じ易くなる。
そこで、この排気浄化装置16は、強制再生手段19によって、内燃機関1の機関始動後経過時間Te、又は再生制御の再生停止後経過時間TrによりNOx吸着量を推定し吸蔵触媒17の飽和状態を判断するため、NOx吸着量の推定に誤差が生じる事が無くなり、吸蔵触媒17の飽和状態を的確に判定することができ、確実に再生制御を実行することができる。
Thus, in the exhaust gas purification device 16 of the internal combustion engine 1, the forced regeneration means 21 detects the inactive state of the storage catalyst 17 by the catalyst temperature sensor 20, and the NOx adsorption amount estimated by the adsorption amount estimation means 21 is obtained. Based on this, when it is determined that the NOx adsorption amount of the storage catalyst 17 is saturated, regeneration control is executed.
As a result, the exhaust purification device 16 forces the storage catalyst 17 when the amount of NOx adsorbed by the storage catalyst 17 becomes saturated even if the storage catalyst 17 remains in an inactive state at a low temperature for a long period of time. Therefore, it is possible to prevent the NOx from being exhausted without being adsorbed because the storage catalyst 17 is saturated when inactive. In addition, when the storage catalyst 17 performs the regeneration process in a low temperature state, NOx is discharged. However, since the amount is small compared with the amount discharged due to the saturated state of the storage catalyst 17, it is possible to suppress the discharge amount. it can.
Further, in a vehicle that stops the internal combustion engine 1 a plurality of times in a short period of time (so-called idling stop vehicle), fluctuations in the engine load and engine speed of the internal combustion engine 1 are large, and the storage catalyst is based on these values. If the NOx adsorption amount of 17 is estimated, an error is likely to occur in the estimation of the NOx adsorption amount.
Therefore, the exhaust purification device 16 estimates the NOx adsorption amount by the forced regeneration means 19 based on the elapsed time Te after the engine start of the internal combustion engine 1 or the elapsed time Tr after the regeneration stop of the regeneration control, and sets the saturation state of the storage catalyst 17. Therefore, no error occurs in the estimation of the NOx adsorption amount, the saturation state of the storage catalyst 17 can be accurately determined, and the regeneration control can be executed reliably.

図9〜図14は、この発明の実施例2を示すものである。図9において、101は内燃機関、102は燃焼室、103は吸気装置、104は排気装置である。車両に搭載された内燃機関101は、ディーゼルエンジンであり、吸気装置103として、燃焼室102に連通する吸気通路105を設け、吸気通路105にスロットルバルブ106を設けている。また、内燃機関101は、排気装置104として、燃焼室102に連通する排気通路107を設けている。内燃機関101は、燃料を噴射供給する燃料噴射装置108を備えている。燃料噴射装置108は、内燃機関101に燃料を供給する燃料噴射弁109を設けている。
前記燃料噴射装置108は、制御装置110の燃料噴射量算出手段111によって燃料噴射弁109の燃料噴射量を制御される。燃料噴射量算出手段111は、外気温度センサ112が検出する外気温度、大気圧センサ113が検出する大気圧、吸気量センサ114が検出する吸気量(又は、吸気圧センサが検出する吸気圧)、クランク角センサ115が検出する内燃機関1の機関回転数を参照し、外気温度、大気圧を考慮しつつ機関回転数と負荷を示す吸気量(又は吸気圧)とに基づき燃料噴射量を算出する。
前記燃料噴射量は、クランク角センサ115が検出する機関回転数と吸気量センサ114が検出する吸気量とに応じて決定される。このとき、外気温度が低いと、吸気中に含まれる酸素量が多くなるため、この酸素量に応じて燃料噴射量を減少させるように制御される。また、大気圧が低いと、吸気中の酸素量が少なくなるため、燃料噴射量が増加される。即ち、燃料噴射量は、外気温度と大気圧の変化に応じて、適切な出力が得られるよう増量又は減量される。
燃料噴射装置108は、燃料噴射量算出手段111の算出した燃料噴射量となるように燃料噴射弁109を作動して、燃料を吸気通路105に噴射供給する。内燃機関101は、吸気通路105により供給された空気と燃料噴射弁109により供給された燃料との混合気を燃焼室102において燃焼させ、駆動力を発生する。燃焼後の排気は、排気通路107により外部に排出される。
9 to 14 show Embodiment 2 of the present invention. In FIG. 9, 101 is an internal combustion engine, 102 is a combustion chamber, 103 is an intake device, and 104 is an exhaust device. An internal combustion engine 101 mounted on a vehicle is a diesel engine. As an intake device 103, an intake passage 105 communicating with a combustion chamber 102 is provided, and a throttle valve 106 is provided in the intake passage 105. In addition, the internal combustion engine 101 is provided with an exhaust passage 107 communicating with the combustion chamber 102 as the exhaust device 104. The internal combustion engine 101 includes a fuel injection device 108 that injects and supplies fuel. The fuel injection device 108 is provided with a fuel injection valve 109 that supplies fuel to the internal combustion engine 101.
In the fuel injection device 108, the fuel injection amount of the fuel injection valve 109 is controlled by the fuel injection amount calculation means 111 of the control device 110. The fuel injection amount calculating means 111 includes an outside air temperature detected by the outside air temperature sensor 112, an atmospheric pressure detected by the atmospheric pressure sensor 113, an intake air amount detected by the intake air amount sensor 114 (or an intake air pressure detected by the intake air pressure sensor), With reference to the engine speed of the internal combustion engine 1 detected by the crank angle sensor 115, the fuel injection amount is calculated based on the engine speed and the intake air amount (or intake air pressure) indicating the load while taking the outside air temperature and atmospheric pressure into consideration. .
The fuel injection amount is determined according to the engine speed detected by the crank angle sensor 115 and the intake air amount detected by the intake air sensor 114. At this time, if the outside air temperature is low, the amount of oxygen contained in the intake air increases, so that the fuel injection amount is controlled to decrease according to the amount of oxygen. Further, when the atmospheric pressure is low, the amount of oxygen in the intake air decreases, so the fuel injection amount increases. That is, the fuel injection amount is increased or decreased according to changes in the outside air temperature and the atmospheric pressure so as to obtain an appropriate output.
The fuel injection device 108 operates the fuel injection valve 109 so that the fuel injection amount calculated by the fuel injection amount calculation means 111 is obtained, and supplies the fuel to the intake passage 105 by injection. The internal combustion engine 101 burns the air-fuel mixture of the air supplied through the intake passage 105 and the fuel supplied through the fuel injection valve 109 in the combustion chamber 102 to generate driving force. The exhaust gas after combustion is discharged to the outside through the exhaust passage 107.

前記内燃機関101は、排気を浄化する排気浄化装置116を設けている。排気浄化装置116は、排気通路107に排気中の有害物質であるパティキュレートを吸着し、吸蔵したパティキュレートを浄化する吸蔵触媒(DPF:Diesel Particurate Filter)117を備えている。排気浄化装置116は、吸蔵触媒117に吸着されて堆積したパティキュレートの量(パティキュレート堆積量)を推定する堆積量推定手段118と、堆積量推定手段118により推定されたパティキュレート堆積量に基づき吸蔵触媒117からパティキュレートを除去させる再生制御を実行する再生制御手段119とを、前記制御装置110に備えている。
前記排気浄化装置116は、内燃機関101がリーン燃焼状態であるときに排気中のパティキュレートを吸蔵触媒117に吸着する。その後、排気浄化装置116は、再生制御手段119によって、堆積量推定手段118により推定された吸蔵触媒117のパティキュレート堆積量に基づき、吸蔵触媒117のパティキュレート堆積量が飽和状態であるか否かを判断する。再生制御手段119は、吸蔵触媒117のパティキュレート堆積量が飽和状態であると判定したとき、吸蔵触媒117からパティキュレートを除去させる再生制御を実行する。
再生制御においては、図10に示すように、燃料噴射弁109の燃料噴射量を増加(若しくは、燃焼行程後に燃料噴射)させて内燃機関101をリッチ燃焼状態とし、排気中に含まれる燃料により吸蔵触媒117に吸蔵したパティキュレートを燃焼させて浄化し、吸蔵触媒117を再生処理する。なお、再生制御には、図10に示すように、吸蔵触媒117にヒータ117Hを設け、このヒータ117Hにより吸蔵触媒117に吸蔵したパティキュレートを燃焼させて浄化し、吸蔵触媒117を再生処理する方法もある。
The internal combustion engine 101 is provided with an exhaust purification device 116 that purifies exhaust. The exhaust purification device 116 includes a storage catalyst (DPF: Diesel Particulate Filter) 117 that adsorbs particulates, which are harmful substances in exhaust gas, to the exhaust passage 107 and purifies the stored particulates. The exhaust purification device 116 estimates the amount of particulates adsorbed and deposited by the storage catalyst 117 (particulate deposition amount), and the particulate deposition amount estimated by the deposition amount estimation unit 118. The control device 110 is provided with regeneration control means 119 for performing regeneration control for removing particulates from the storage catalyst 117.
The exhaust purification device 116 adsorbs particulates in the exhaust to the storage catalyst 117 when the internal combustion engine 101 is in a lean combustion state. Thereafter, the exhaust purification device 116 determines whether or not the particulate deposition amount of the storage catalyst 117 is saturated based on the particulate deposition amount of the storage catalyst 117 estimated by the regeneration amount estimation unit 118 by the regeneration control unit 119. Judging. When it is determined that the particulate accumulation amount of the storage catalyst 117 is saturated, the regeneration control unit 119 performs regeneration control for removing particulates from the storage catalyst 117.
In the regeneration control, as shown in FIG. 10, the fuel injection amount of the fuel injection valve 109 is increased (or the fuel is injected after the combustion stroke) to bring the internal combustion engine 101 into a rich combustion state and occluded by the fuel contained in the exhaust gas. The particulates stored in the catalyst 117 are burned and purified, and the storage catalyst 117 is regenerated. In the regeneration control, as shown in FIG. 10, a heater 117H is provided in the storage catalyst 117, and the particulate matter stored in the storage catalyst 117 is burned and purified by the heater 117H, and the storage catalyst 117 is regenerated. There is also.

この内燃機関101の排気浄化装置116は、吸蔵触媒117の活性状態を検出する活性状態検出手段として、吸蔵触媒117の触媒温度を検出する触媒温度センサ120を制御装置110に備えている。制御装置110には、触媒温度センサ120の検出する触媒温度に基づき吸蔵触媒117の再生制御を実行する強制再生手段121を備えている。強制再生手段121は、触媒温度センサ120の検出する吸蔵触媒117の触媒温度が活性温度未満の低温状態で、吸蔵触媒117の非活性状態が検出され、堆積量推定手段118により推定された吸蔵触媒117のパティキュレート堆積量に基づき吸蔵触媒117が飽和状態と判定されたとき、強制的に再生制御を実行する。再生制御においては、前述のように、内燃機関101をリッチ燃焼状態とし、排気中に含まれる燃料により吸蔵触媒117に吸蔵したパティキュレートを燃焼させて浄化し、あるいは、ヒータ117Hによりパティキュレートを燃焼させて浄化し、吸蔵触媒117を再生処理する。
また、排気浄化装置116は、計時手段122を備えている。計時手段122は、内燃機関101の始動時からの経過時間(以下「機関始動後経過時間Te」と記す。)を計測する機関始動タイマ123と、前記再生制御を停止した時からの経過時間(以下「再生停止後経過時間Tr」と記す。)を計測する再生停止タイマ124とを備えている。前記強制再生手段121は、機関始動タイマ123が計測する機関始動後経過時間Teが設定値以上となったとき、又は再生停止タイマ124が計測する再生停止後経過時間Trが設定値以上となったとき、吸蔵触媒117が飽和状態であると判定する。
前記機関始動後経過時間Te及び再生停止後経過時間Trを判定する設定値は、飽和堆積時間算出手段125により算出される。飽和堆積時間算出手段125は、図14に示すように、飽和堆積時間マップに基づき吸蔵触媒117でのパティキュレートの堆積速度(実線)に応じて、吸蔵触媒117のパティキュレートの堆積量が飽和状態となる閾値(破線)に達するまでの時間を、飽和堆積時間Tsとして算出する。強制再生手段121は、飽和堆積時間算出手段125が算出した飽和堆積時間Tsを設定値とし、機関始動後経過時間Teが設定値である飽和堆積時間Ts以上となったとき、又は再生停止後経過時間Trが設定値である飽和堆積時間Ts以上となったとき、吸蔵触媒117が飽和状態であると判定する。
さらに、排気浄化装置116は、記憶手段126を制御装置110に備えている。記憶手段126には、燃料噴射量と機関回転数とから吸蔵触媒117でのパティキュレートの堆積速度を求めるための堆積速度マップ(図12)、堆積速度マップで求めたパティキュレートの堆積速度と内燃機関1の機関始動後経過時間Teとから堆積積算レート(パティキュレートの堆積速度と時間との比率)を求めるための堆積積算レートマップ(図13)、堆積速度マップで求めたパティキュレートの堆積速度の値に応じて吸蔵触媒117のパティキュレートの堆積量が飽和状態となる閾値に達するまでの飽和堆積時間Tsを求めるための飽和堆積時間マップ(図14)を記憶している。排気浄化装置116は、堆積速度マップ(図12)、堆積積算レートマップ(図13)、飽和堆積時間マップ(図14)から、判定のための各種設定値を算出する。
The exhaust gas purification device 116 of the internal combustion engine 101 includes a catalyst temperature sensor 120 that detects the catalyst temperature of the storage catalyst 117 as an active state detection unit that detects the active state of the storage catalyst 117. The control device 110 includes a forced regeneration means 121 that performs regeneration control of the storage catalyst 117 based on the catalyst temperature detected by the catalyst temperature sensor 120. The forced regeneration means 121 detects the inactive state of the storage catalyst 117 when the catalyst temperature of the storage catalyst 117 detected by the catalyst temperature sensor 120 is lower than the activation temperature, and the storage catalyst estimated by the accumulation amount estimation means 118. When the storage catalyst 117 is determined to be saturated based on the particulate accumulation amount 117, regeneration control is forcibly executed. In the regeneration control, as described above, the internal combustion engine 101 is brought into a rich combustion state, and the particulate matter stored in the storage catalyst 117 is burned and purified by the fuel contained in the exhaust, or the particulate matter is burned by the heater 117H. Then, the storage catalyst 117 is regenerated.
Further, the exhaust purification device 116 includes a time measuring means 122. The time measuring means 122 includes an engine start timer 123 for measuring an elapsed time since the start of the internal combustion engine 101 (hereinafter referred to as “elapsed time Te after engine start”), and an elapsed time since the regeneration control was stopped ( (Hereinafter referred to as “elapsed time Tr after playback stop”) and a playback stop timer 124 for measuring. In the forced regeneration means 121, when the elapsed time Te after the engine start measured by the engine start timer 123 becomes equal to or greater than the set value, or the elapsed time Tr after the regeneration stop measured by the regeneration stop timer 124 becomes greater than or equal to the set value At this time, it is determined that the storage catalyst 117 is saturated.
The set values for determining the elapsed time Te after the engine start and the elapsed time Tr after the regeneration stop are calculated by the saturation deposition time calculation means 125. As shown in FIG. 14, the saturation deposition time calculation unit 125 saturates the particulate deposition amount of the storage catalyst 117 according to the particulate deposition rate (solid line) on the storage catalyst 117 based on the saturation deposition time map. The time until the threshold value (broken line) is reached is calculated as the saturation deposition time Ts. The forced regeneration means 121 uses the saturation deposition time Ts calculated by the saturation deposition time calculation means 125 as a set value, and when the elapsed time Te after the engine start becomes equal to or greater than the saturation deposition time Ts that is the set value, or after the regeneration stop. When the time Tr becomes equal to or longer than the saturation deposition time Ts that is the set value, it is determined that the storage catalyst 117 is in a saturated state.
Further, the exhaust purification device 116 includes a storage unit 126 in the control device 110. The storage means 126 stores a deposition rate map (FIG. 12) for determining the particulate deposition rate on the storage catalyst 117 from the fuel injection amount and the engine speed, the particulate deposition rate determined by the deposition rate map, and the internal combustion engine. Accumulated deposition rate map (FIG. 13) for determining the accumulated accumulation rate (ratio between the deposition rate of particulates and time) from the elapsed time Te after the engine start of the engine 1, and the deposition rate of the particulates determined by the deposition rate map The saturation deposition time map (FIG. 14) for obtaining the saturation deposition time Ts until the particulate deposition amount of the storage catalyst 117 reaches the threshold value for saturation is stored. The exhaust purification device 116 calculates various set values for determination from the deposition rate map (FIG. 12), the accumulated accumulation rate map (FIG. 13), and the saturation deposition time map (FIG. 14).

次に作用を説明する。
内燃機関101の排気浄化装置116は、図11に示すように、制御装置110による制御がスタートし(B01)、イグニッションスイッチのONにより内燃機関101が始動されると(B02)、機関始動タイマ123により機関始動後経過時間Teの計測が開始され(B03)、燃料噴射量算出手段111が算出する燃料噴射量とクランク角センサ115が検出する機関回転数とを取得する(B04)。
堆積速度マップ(図12参照)に基づき前記取得した燃料噴射量と機関回転数との値に応じたパティキュレートの堆積速度を求め(B05)、堆積積算レートマップ(図13参照)に基づき前記堆積速度マップで求めた堆積速度のレート曲線と前記始動タイマ123が計測した機関始動後経過時間Teとの値に応じた堆積積算レートを求める。(B06)
前記堆積速度マップで求めたパティキュレートの堆積速度と前記堆積積算レートマップで求めたパティキュレートの堆積積算レートとを乗算して、吸蔵触媒117に吸着されて堆積したパティキュレートの堆積量を算出(パティキュレートの堆積量=堆積速度×堆積積算レート)する(B07)。そして、飽和堆積時間マップ(図14参照)に基づき、前記堆積速度マップで求めた堆積速度の値に応じた堆積速度直線と堆積量の閾値とより飽和堆積時間Tsを求める(B08)。パティキュレートの堆積量は、前記堆積量推定手段121により求められる。飽和堆積時間Tsは、前記飽和堆積時間算出手段125により求められる。
Next, the operation will be described.
As shown in FIG. 11, the exhaust purification device 116 of the internal combustion engine 101 starts control by the control device 110 (B01), and when the internal combustion engine 101 is started by turning on the ignition switch (B02), the engine start timer 123 is started. Thus, the measurement of the elapsed time Te after engine start is started (B03), and the fuel injection amount calculated by the fuel injection amount calculation means 111 and the engine speed detected by the crank angle sensor 115 are acquired (B04).
Based on the deposition rate map (see FIG. 12), the particulate deposition rate corresponding to the acquired fuel injection amount and engine speed is obtained (B05), and the deposition is based on the accumulated deposition rate map (see FIG. 13). A cumulative accumulation rate corresponding to the value of the rate curve of the deposition rate obtained from the speed map and the elapsed time Te after the engine start measured by the start timer 123 is obtained. (B06)
Multiplying the particulate deposition rate obtained by the deposition rate map by the particulate accumulation rate obtained by the deposition cumulative rate map, the amount of particulates adsorbed and deposited by the storage catalyst 117 is calculated ( (Particulate deposition amount = deposition rate × deposition integration rate) (B07). Then, based on the saturation deposition time map (see FIG. 14), the saturation deposition time Ts is obtained from the deposition rate straight line corresponding to the value of the deposition rate obtained from the deposition rate map and the threshold of the deposition amount (B08). The accumulated amount of particulates is obtained by the accumulated amount estimating means 121. The saturation deposition time Ts is obtained by the saturation deposition time calculation means 125.

前記パティキュレートの堆積量の算出(B07)及び飽和堆積時間Tsの算出(B08)の後に、触媒温度センサ120が検出する触媒温度により吸蔵触媒117が活性状態であるかを判断する(B09)。なお、吸蔵触媒117の活性状態を判定するための触媒温度センサ120は、ラジエータの水温を測定する温度センサで代用することもできる。
前記吸蔵触媒117が活性状態であるかの判断(B09)がYESの場合は、吸蔵触媒117に吸着されたパティキュレートの堆積量が飽和状態となる閾値以上(堆積量≧閾値)であるかを判断する(B10)。パティキュレートの堆積量は、図14に示すように、堆積速度直線に応じて飽和状態の閾値に達するまでの飽和堆積時間Tsが相違し、堆積速度が高いほど閾値に達するまでの飽和堆積時間Tsが短くなる。
この判断(B10)がNOの場合は、燃料噴射量と機関回転数との取得(B04)に戻る。この判断(B10)がYESの場合は、再生制御手段119により吸蔵触媒117からパティキュレートを除去させる再生制御を実行し(B11)、再生制御の実行時間が所定時間を経過したかを判断する(B12)。
この判断(B12)がNOの場合は、再生制御(B11)を継続する。この判断(B12)がYESの場合は、再生制御を停止し(B13)、再生停止タイマ124により再生停止後経過時間Trの計測を開始し(B14)、機関回転数と燃料噴射量との取得(B04)に戻る。
一方、前記吸蔵触媒117が活性状態であるかの判断(B09)がNOの場合は、機関始動後経過時間Teが飽和吸蔵時間Ts以上であるか(Te≧Ts)、又は、再生制御の再生停止後経過時間Trが飽和吸蔵時間Ts以上であるか(Tr≧Ts)を判断する(B15)。
この判断(B15)がNOの場合は、燃料噴射量と機関回転数との取得(B04)に戻る。この判断(B15)がYESの場合は、強制再生手段121により吸蔵触媒117からパティキュレートを除去させる再生制御の実行(B11)に移行し、前述判断(B12)〜処理(B14)を行い、機関回転数と燃料噴射量との取得(B04)に戻る。
即ち、排気浄化装置116は、吸蔵触媒117が活性化するまでの間(B09:NO)は、内燃機関101の機関始動後経過時間Te、又は再生制御の再生停止後経過時間Trにより吸蔵触媒117が飽和状態であるか否かを判定し、吸蔵触媒117が飽和状態であれば再生制御を実行する。これに対して、排気浄化装置116は、吸蔵触媒117の活性後(B09:YES)には、吸蔵触媒117の経年劣化を考慮したパティキュレート堆積量により吸蔵触媒117が飽和状態であるか否かを判断(B110)する。
これより、排気浄化装置116は、パティキュレートの堆積量が飽和状態である閾値以上となった場合、あるいは機関始動後経過時間Te、又は再生停止後経過時間Trが飽和堆積時間Ts以上となった場合に、吸蔵触媒117に吸蔵したパティキュレートを浄化して吸蔵触媒117を再生する再生制御を実行する。
After the calculation of the particulate deposition amount (B07) and the saturation deposition time Ts (B08), it is determined whether the storage catalyst 117 is in an active state based on the catalyst temperature detected by the catalyst temperature sensor 120 (B09). Note that the catalyst temperature sensor 120 for determining the active state of the storage catalyst 117 can be replaced by a temperature sensor that measures the water temperature of the radiator.
If the determination of whether the storage catalyst 117 is in the active state (B09) is YES, it is determined whether or not the accumulation amount of the particulate adsorbed on the storage catalyst 117 is equal to or greater than a threshold value at which the accumulation catalyst is saturated (deposition amount ≧ threshold value). Judgment is made (B10). As shown in FIG. 14, the amount of particulate deposition differs in the saturation deposition time Ts until the saturation threshold is reached according to the deposition rate line, and the saturation deposition time Ts until the threshold is reached as the deposition rate increases. Becomes shorter.
If this determination (B10) is NO, the process returns to obtaining the fuel injection amount and the engine speed (B04). When this determination (B10) is YES, regeneration control for removing particulates from the storage catalyst 117 is performed by the regeneration control means 119 (B11), and it is determined whether the execution time of regeneration control has passed a predetermined time ( B12).
If this determination (B12) is NO, the regeneration control (B11) is continued. If this determination (B12) is YES, the regeneration control is stopped (B13), the regeneration stop timer 124 starts measuring the elapsed time Tr after the regeneration stop (B14), and the engine speed and the fuel injection amount are acquired. Return to (B04).
On the other hand, if the determination as to whether the storage catalyst 117 is in an active state (B09) is NO, whether the elapsed time Te after engine start is equal to or greater than the saturated storage time Ts (Te ≧ Ts), or regeneration of regeneration control It is determined whether the elapsed time Tr after the stop is equal to or longer than the saturated storage time Ts (Tr ≧ Ts) (B15).
If this determination (B15) is NO, the process returns to obtaining the fuel injection amount and the engine speed (B04). When this determination (B15) is YES, the forced regeneration means 121 shifts to regeneration control execution (B11) in which the particulates are removed from the storage catalyst 117, and the above-described determination (B12) to processing (B14) are performed. The process returns to obtaining the rotation speed and the fuel injection amount (B04).
In other words, the exhaust purification device 116 has the storage catalyst 117 until the storage catalyst 117 is activated (B09: NO) by the elapsed time Te after the engine start of the internal combustion engine 101 or the elapsed time Tr after the regeneration stop of the regeneration control. Is determined to be saturated, and if the storage catalyst 117 is saturated, regeneration control is executed. On the other hand, after the activation of the storage catalyst 117 (B09: YES), the exhaust purification device 116 determines whether or not the storage catalyst 117 is in a saturated state based on the particulate accumulation amount considering the aging of the storage catalyst 117. Is determined (B110).
Thus, in the exhaust purification device 116, when the accumulated amount of particulates is equal to or greater than a threshold value that is saturated, the elapsed time Te after engine start or the elapsed time Tr after regeneration stop is equal to or greater than the saturated deposition time Ts. In this case, regeneration control for regenerating the storage catalyst 117 by purifying the particulates stored in the storage catalyst 117 is executed.

このように、内燃機関101の排気浄化装置116は、強制再生手段121によって、触媒温度センサ120により吸蔵触媒117の非活性状態が検出され、堆積量推定手段121により推定されたパティキュレートの堆積量に基づき吸蔵触媒117のパティキュレート堆積量が飽和状態であると判定したとき、再生制御を実行する。
これにより、排気浄化装置116は、吸蔵触媒117が長期間低温で非活性状態にあっても、吸蔵触媒117に吸着されたパティキュレートの量が飽和状態となった場合に、吸蔵触媒117を強制的に再生処理するため、非活性時に吸蔵触媒117が飽和状態となり、パティキュレートが吸着されずに排出されることを防止できる。なお、吸蔵触媒117が低温状態で再生処理を実行した場合、パティキュレートは排出されるが、吸蔵触媒117の飽和状態により排出される量と比較すれば軽微であるため、排出量を抑制することができる。
また、短期間に複数回内燃機関101を停止するような車両(いわゆるアイドリングストップ車両)にあっては、内燃機関101の機関負荷や機関回転数の変動が大きく、これらの数値に基づいて吸蔵触媒117のパティキュレート堆積量を推定すると、パティキュレート堆積量の推定に誤差が生じ易くなる。
そこで、この排気浄化装置116は、強制再生手段119によって、内燃機関101の機関始動後経過時間Te、又は再生制御の再生停止後経過時間Trによりパティキュレートの堆積量を推定し吸蔵触媒117の飽和状態を判断するため、パティキュレートの堆積量の推定に誤差が生じる事が無くなり、吸蔵触媒117の飽和状態を的確に判定することができ、確実に再生制御を実行することができる。
In this way, in the exhaust purification device 116 of the internal combustion engine 101, the forced regeneration means 121 detects the inactive state of the storage catalyst 117 by the catalyst temperature sensor 120, and the accumulated amount of particulates estimated by the accumulated amount estimation means 121. When it is determined that the particulate accumulation amount of the storage catalyst 117 is saturated based on the above, regeneration control is executed.
As a result, the exhaust purification device 116 forces the storage catalyst 117 when the amount of particulate adsorbed on the storage catalyst 117 becomes saturated even if the storage catalyst 117 is in an inactive state at a low temperature for a long period of time. Therefore, the storage catalyst 117 is saturated when inactive, and the particulates can be prevented from being discharged without being adsorbed. In addition, when the storage catalyst 117 performs the regeneration process in a low temperature state, the particulates are discharged. However, since the amount is small compared with the amount discharged due to the saturated state of the storage catalyst 117, the discharge amount is suppressed. Can do.
Further, in a vehicle that stops the internal combustion engine 101 a plurality of times in a short period of time (so-called idling stop vehicle), fluctuations in the engine load and engine speed of the internal combustion engine 101 are large, and the storage catalyst is based on these values. If the particulate deposition amount 117 is estimated, an error is likely to occur in the estimation of the particulate deposition amount.
Therefore, the exhaust purifying device 116 estimates the particulate accumulation amount from the elapsed time Te after the engine start of the internal combustion engine 101 or the elapsed time Tr after the regeneration stop of the regeneration control by the forced regeneration means 119, and saturates the storage catalyst 117. Since the state is determined, no error occurs in the estimation of the amount of accumulated particulates, the saturated state of the storage catalyst 117 can be accurately determined, and the regeneration control can be executed reliably.

この発明は、吸蔵触媒が長期間低温で非活性状態にあっても、有害物質の排出を防止できるものであり、ガソリンエンジンやディーゼルエンジンなどの内燃機関だけでなく、ボイラーや焼却炉などの燃焼装置の排気処理にも応用が可能である。   This invention is capable of preventing emission of harmful substances even when the storage catalyst is in an inactive state at low temperatures for a long period of time, and not only internal combustion engines such as gasoline engines and diesel engines, but also combustion such as boilers and incinerators. It can also be applied to the exhaust treatment of equipment.

1 内燃機関
2 燃焼室
3 吸気装置
4 排気装置
8 燃料噴射装置
9 燃料噴射弁
10 制御装置
11 燃料噴射量算出手段
12 外気温度センサ
13 大気圧センサ
14 吸気量センサ
15 クランク角センサ
16 排気浄化装置
17 吸蔵触媒
18 吸着量推定手段
19 再生制御手段
20 触媒温度センサ
21 強制再生手段
22 計時手段
23 機関始動タイマ
24 再生停止タイマ
25 飽和吸着時間算出手段
26 記憶手段
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Combustion chamber 3 Intake device 4 Exhaust device 8 Fuel injection device 9 Fuel injection valve 10 Control device 11 Fuel injection amount calculation means 12 Outside temperature sensor 13 Atmospheric pressure sensor 14 Intake amount sensor 15 Crank angle sensor 16 Exhaust purification device 17 Storage catalyst 18 Adsorption amount estimation means 19 Regeneration control means 20 Catalyst temperature sensor 21 Forced regeneration means 22 Timing means 23 Engine start timer 24 Regeneration stop timer 25 Saturation adsorption time calculation means 26 Storage means

Claims (2)

内燃機関の排気装置に設けられ有害物質を吸着する吸蔵触媒と、前記吸蔵触媒に吸着された有害物質の量を推定する吸着量推定手段と、前記吸着量推定手段により推定された有害物質の吸着量に基づき前記吸蔵触媒から有害物質を除去させる再生制御を実行する再生制御手段とを備えた内燃機関の排気浄化装置において、前記排気浄化装置は、前記吸蔵触媒の活性状態を検出する活性状態検出手段と、前記活性状態検出手段により前記吸蔵触媒の非活性状態が検出され、前記吸着量推定手段により推定された有害物質の吸着量に基づき前記吸蔵触媒が飽和状態であると判定したとき、前記再生制御を実行する強制再生手段とを備えたことを特徴とする内燃機関の排気浄化装置。   An occlusion catalyst for adsorbing harmful substances provided in an exhaust system of an internal combustion engine, an adsorption amount estimation means for estimating the amount of harmful substances adsorbed on the occlusion catalyst, and adsorption of harmful substances estimated by the adsorption amount estimation means And a regeneration control means for performing regeneration control for removing harmful substances from the storage catalyst based on the amount, wherein the exhaust purification device detects an active state of the storage catalyst. And an inactive state of the storage catalyst is detected by the active state detection means, and when it is determined that the storage catalyst is saturated based on the adsorption amount of the harmful substance estimated by the adsorption amount estimation means, An exhaust emission control device for an internal combustion engine, comprising: forced regeneration means for executing regeneration control. 前記排気浄化装置は、前記内燃機関の始動時からの経過時間、又は、再生制御停止時からの経過時間を計測する計時手段を備え、前記強制再生手段は、前記計時手段が計測する経過時間が設定値以上となったとき、前記吸蔵触媒が飽和状態であると判定することを特徴とする請求項1記載の内燃機関の排気浄化装置。   The exhaust purification device includes a time measuring unit that measures an elapsed time from the start of the internal combustion engine or an elapsed time from the stop of the regeneration control, and the forced regeneration unit includes an elapsed time measured by the time measuring unit. 2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the storage catalyst is determined to be in a saturated state when a set value or more is reached.
JP2012130701A 2012-06-08 2012-06-08 Exhaust gas emission control device for internal combustion engine Pending JP2013253578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012130701A JP2013253578A (en) 2012-06-08 2012-06-08 Exhaust gas emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012130701A JP2013253578A (en) 2012-06-08 2012-06-08 Exhaust gas emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2013253578A true JP2013253578A (en) 2013-12-19

Family

ID=49951274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012130701A Pending JP2013253578A (en) 2012-06-08 2012-06-08 Exhaust gas emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2013253578A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016151182A (en) * 2015-02-16 2016-08-22 いすゞ自動車株式会社 Exhaust emission control system for internal combustion engine, internal combustion engine and exhaust emission control method for internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016151182A (en) * 2015-02-16 2016-08-22 いすゞ自動車株式会社 Exhaust emission control system for internal combustion engine, internal combustion engine and exhaust emission control method for internal combustion engine
WO2016132874A1 (en) * 2015-02-16 2016-08-25 いすゞ自動車株式会社 Exhaust gas purification system for internal combustion engine, internal combustion engine, and exhaust gas purification method for internal combustion engine
CN107429588A (en) * 2015-02-16 2017-12-01 五十铃自动车株式会社 The exhaust gas cleaning method of the exhaust gas cleaning system of internal combustion engine, internal combustion engine and internal combustion engine
CN107429588B (en) * 2015-02-16 2019-10-25 五十铃自动车株式会社 The exhaust gas cleaning method of the exhaust gas cleaning system of internal combustion engine, internal combustion engine and internal combustion engine
US10753245B2 (en) 2015-02-16 2020-08-25 Isuzu Motors Limited Exhaust gas purification system for internal combustion engine, internal combustion engine, and exhaust gas purification method for internal combustion engine

Similar Documents

Publication Publication Date Title
JP6036772B2 (en) Control device for internal combustion engine
JP4506874B2 (en) Exhaust gas purification device for internal combustion engine
JP5861720B2 (en) Control device for internal combustion engine
JP6102907B2 (en) Exhaust purification device deterioration diagnosis device
JP6278039B2 (en) Degradation diagnosis device for selective catalytic reduction catalyst
JP6087866B2 (en) Exhaust gas purification device abnormality diagnosis device
JP5604953B2 (en) Exhaust gas purification device and control method of exhaust gas purification device
JP6278005B2 (en) Exhaust purification device deterioration diagnosis device
JP2012036860A (en) Device for diagnosing catalyst degradation
JP2017025863A (en) ABNORMALITY DIAGNOSIS DEVICE OF NOx OCCLUSION REDUCTION TYPE CATALYST
JP2008223719A (en) Exhaust emission control device for internal combustion engine
JP5251711B2 (en) Exhaust gas purification device for internal combustion engine
JP2013036345A (en) Exhaust emission control system for internal combustion engine
JP6248978B2 (en) Control device for internal combustion engine
JP2020051399A (en) Exhaust emission control system for internal combustion engine and exhaust emission control method for internal combustion engine
JP2010249076A (en) Exhaust emission control device of internal combustion engine
JP2016188604A (en) Exhaust emission control device
JP2015197086A (en) Deterioration determination device of selectively reducing catalyst
JP2012057591A (en) Exhaust emission control device
JP2010275947A (en) Deterioration diagnostic system of exhaust emission control device
JP2013253578A (en) Exhaust gas emission control device for internal combustion engine
JP2016079883A (en) Exhaust emission control system
JP2012031761A (en) Catalyst abnormality diagnostic device
JPH11247650A (en) Exhaust emission control device of internal combustion engine
JP2015014213A (en) Deterioration detection device for selective reduction type catalyst