JP2016079883A - Exhaust emission control system - Google Patents

Exhaust emission control system Download PDF

Info

Publication number
JP2016079883A
JP2016079883A JP2014211690A JP2014211690A JP2016079883A JP 2016079883 A JP2016079883 A JP 2016079883A JP 2014211690 A JP2014211690 A JP 2014211690A JP 2014211690 A JP2014211690 A JP 2014211690A JP 2016079883 A JP2016079883 A JP 2016079883A
Authority
JP
Japan
Prior art keywords
amount
internal combustion
combustion engine
adsorption amount
stop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014211690A
Other languages
Japanese (ja)
Other versions
JP6112093B2 (en
Inventor
有史 松本
Yuji Matsumoto
有史 松本
徹 木所
Toru Kidokoro
徹 木所
大河 萩本
Taiga Hagimoto
大河 萩本
憲治 古井
Kenji Furui
憲治 古井
昭文 魚住
Akifumi Uozumi
昭文 魚住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014211690A priority Critical patent/JP6112093B2/en
Priority to DE102015117275.5A priority patent/DE102015117275B4/en
Publication of JP2016079883A publication Critical patent/JP2016079883A/en
Application granted granted Critical
Publication of JP6112093B2 publication Critical patent/JP6112093B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1621Catalyst conversion efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1622Catalyst reducing agent absorption capacity or consumption amount
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To restrict an estimated value of adsorption amount of NHat the time of restarting against its excessive reduction in respect to an actual adsorption amount of NHin the exhaust emission control system for estimating an adsorption amount of NHof SCR arranged at a discharging passage of an internal combustion engine.SOLUTION: This invention relates to an exhaust emission control system for estimating adsorption amount of NHat the starting time that is adsorption amount of NHof SCR catalyst at the restarting time of an internal combustion engine by subtracting a reduced amount of NHat the stopping time of the internal combustion engine from an adsorption amount of NHat the stopping time that is an adsorption amount of NHof SCR catalyst at the stopping time of the internal combustion engine, when adsorption amount of NHat the stopping time is larger than a prescribed threshold, an amount in which the reduced amount of NHis subtracted from an adsorption amount of NHat the stopping time is estimated as an adsorption amount of NHat the starting time, and when an adsorption amount of NHat the stopping time is less than a prescribed threshold, the adsorption amount of NHat the stopping time is estimated as an adsorption amount of NHat the starting time.SELECTED DRAWING: Figure 7

Description

本発明は、内燃機関の排気浄化システムに関し、特に内燃機関の排気通路に配置された選択還元型触媒のNH吸着量を推定する技術に関する。 The present invention relates to an exhaust gas purification system for an internal combustion engine, and more particularly to a technique for estimating the NH 3 adsorption amount of a selective catalytic reduction catalyst disposed in an exhaust passage of the internal combustion engine.

車両等に搭載される内燃機関の排気浄化システムとして、選択還元型触媒(SCR(Selective Catalytic Reduction)触媒)を含む排気浄化装置と、前記排気浄化装置へアン
モニア(NH)又はNHの前駆体である添加剤を供給する供給装置と、を備え、SCR触媒に吸着されているNHの量(以下、「NH吸着量」と記す)を推定し、その推定値が目標量となるように添加剤の添加量を制御するものが知られている。
As an exhaust gas purification system for an internal combustion engine mounted on a vehicle or the like, an exhaust gas purification device including a selective reduction catalyst (SCR (Selective Catalytic Reduction) catalyst), and ammonia (NH 3 ) or a precursor of NH 3 to the exhaust gas purification device And a supply device that supplies the additive, and estimates the amount of NH 3 adsorbed on the SCR catalyst (hereinafter referred to as “NH 3 adsorption amount”), so that the estimated value becomes the target amount. In addition, those that control the amount of additive added are known.

ところで、SCR触媒に吸着されたNHは、内燃機関の停止期間中にSCR触媒から脱離したり、又は排気通路内の酸素(O)と反応して酸化されたりする可能性がある。そのため、内燃機関が停止された後に再始動される場合において、前回停止時のNH吸着量に基づいて添加剤の供給量が制御されると、SCR触媒の実際のNH吸着量が目標量からかけ離れ、排気エミッションの悪化等を招く可能性がある。 By the way, NH 3 adsorbed on the SCR catalyst may be desorbed from the SCR catalyst during the stop period of the internal combustion engine, or may be oxidized by reacting with oxygen (O 2 ) in the exhaust passage. Therefore, when the internal combustion engine is restarted after being stopped, if the supply amount of the additive is controlled based on the NH 3 adsorption amount at the previous stop, the actual NH 3 adsorption amount of the SCR catalyst is set to the target amount. There is a possibility that exhaust emissions will be deteriorated.

よって、内燃機関が停止された後に再始動される場合において、添加剤の添加量をSCR触媒の実際のNH吸着量に見合った量にするためには、内燃機関の停止期間中におけるNH吸着量の減少量(以下、「NH減少量」と記す)を考慮して、再始動時のNH吸着量を推定する必要がある。NH減少量を推定する方法としては、内燃機関の停止期間の長さ、及び停止期間中における外気温度の履歴に基づいて、NH減少量を推定する方法が知られている(たとえば、特許文献1を参照)。 Therefore, when the internal combustion engine is restarted after being stopped, the amount of the additive to the amount corresponding to the actual NH 3 adsorption amount of the SCR catalyst, NH 3 during the stop period of the internal combustion engine It is necessary to estimate the NH 3 adsorption amount at the time of restart in consideration of the decrease amount of the adsorption amount (hereinafter referred to as “NH 3 decrease amount”). NH 3 as a method of estimating the amount of reduction, the length of the stop period of the engine, and based on the history of the outside air temperature during the stop period, a method of estimating the NH 3 reduction is known (e.g., patent Reference 1).

特開2010−209771号公報JP 2010-209711 A 特開2012−057591号公報JP 2012-057591 A 特開2010−223178号公報JP 2010-223178 A 特開2011−241686号公報JP 2011-241686 A

ところで、SCR触媒は、NHが脱離しやすい環境、又はNHが酸化しやすい環境においても、ある特定の量のNHを安定して吸着し続ける特性を有している。このような特性を考慮せずにNH減少量の推定が行われると、内燃機関の再始動時におけるNH吸着量の推定値が実際のNH吸着量に対して過剰に少なくなる可能性がある。 Incidentally, SCR catalyst, NH 3 is desorbed friendly environment, or even in the easily oxidized environment NH 3, has a continuously adsorbs NH 3 in a certain amount of stable characteristics. If the NH 3 reduction amount is estimated without taking such characteristics into consideration, the estimated value of the NH 3 adsorption amount when the internal combustion engine is restarted may be excessively smaller than the actual NH 3 adsorption amount. There is.

本発明は、上記したような実情に鑑みてなされたものであり、その目的は、内燃機関の排気通路に配置されたSCR触媒のNH吸着量を推定する排気浄化システムにおいて、内燃機関の再始動時におけるNH吸着量の推定値が実際のNH吸着量に対して過剰に少なくなることを抑制することにある。 The present invention has been made in view of the above situation, and an object of the present invention is to recycle an internal combustion engine in an exhaust purification system for estimating the NH 3 adsorption amount of an SCR catalyst disposed in an exhaust passage of the internal combustion engine. This is to prevent the estimated value of the NH 3 adsorption amount at the time of starting from becoming excessively small with respect to the actual NH 3 adsorption amount.

本発明は、上記した課題を解決するために、内燃機関の前回の停止時におけるSCR触媒のNH吸着量である停止時NH吸着量から、内燃機関の停止期間中におけるNH吸着量の減少量であるNH減少量を減算することで、内燃機関の始動時におけるSCR
触媒のNH吸着量である始動時NH吸着量を推定する排気浄化システムにおいて、停止時NH吸着量が所定の閾値より多い場合は前記始動時NH吸着量を所定の閾値以上に制限し、停止時NH吸着量が所定の閾値以下である場合は前記停止時NH吸着量を始動時NH吸着量に設定するようにした。
The present invention, in order to solve the problems described above, the stop adsorbed NH 3 amount is adsorbed NH 3 amount of the SCR catalyst at the previous stop of the internal combustion engine, the adsorbed NH 3 amount in the stop period of the internal combustion engine By subtracting the NH 3 reduction amount, which is the reduction amount, the SCR at the start of the internal combustion engine
In the exhaust purification system for estimating a starting adsorbed NH 3 amount NH 3 is adsorbed amount of catalyst, if stopped adsorbed NH 3 amount is larger than a predetermined threshold limit adsorbed NH 3 amount when the starting above a predetermined threshold value and, when stopped adsorbed NH 3 amount is less than the predetermined threshold has to set the start-time adsorbed NH 3 amount the stop adsorbed NH 3 amount.

詳細には、本発明は、内燃機関の排気通路に配置され、選択還元型触媒(SCR触媒)を具備する排気浄化装置と、前記排気浄化装置へ流入する排気に、アンモニア(NH)又はNHの前駆体である添加剤を添加する添加装置と、内燃機関の運転期間中において、前記排気浄化装置へ流入するNOの量と前記添加装置から添加される添加剤の量とをパラメータとして、前記SCR触媒に吸着されているNHの量であるNH吸着量を演算する演算手段と、を備えた排気浄化システムにおいて、内燃機関が停止された後に再始動される場合に、少なくとも内燃機関の停止時における前記選択還元型触媒の温度をパラメータとして、内燃機関の停止期間中におけるNH吸着量の減少量であるNH減少量を推定し、内燃機関の停止時における前記演算手段の演算結果である停止時NH吸着量から前記NH減少量を減算することで、内燃機関が再始動される時点で前記SCR触媒に吸着されているNHの量である始動時NH吸着量を推定する推定手段を更に備え、前記停止時NH吸着量が前記所定の閾値より多い場合に、前記推定手段は、前記停止時NH吸着量から前記NH減少量を減算して得られる差が所定の閾値以上であれば前記差を前記始動時NH吸着量として推定し、前記差が前記所定の閾値未満であれば前記所定の閾値を前記始動時NH吸着量として推定し、前記停止時NH吸着量が前記所定の閾値以下である場合に、前記推定手段は、前記停止時NH吸着量を前記始動時NH吸着量として推定するようにした。 Specifically, the present invention relates to an exhaust purification device that is disposed in an exhaust passage of an internal combustion engine and includes a selective reduction catalyst (SCR catalyst), and to the exhaust gas flowing into the exhaust purification device, ammonia (NH 3 ) or NH And an addition device for adding the additive as the precursor of No. 3 , and the amount of NO X flowing into the exhaust purification device and the amount of the additive added from the addition device during the operation period of the internal combustion engine, as parameters An exhaust gas purification system comprising: an NH 3 adsorption amount that is an amount of NH 3 adsorbed on the SCR catalyst; and at least an internal combustion engine when the internal combustion engine is restarted after being stopped the temperature of the selective reduction catalyst at the time of engine stop as a parameter, estimates the NH 3 reduction is a reduction amount of adsorbed NH 3 amount in the stop period of the internal combustion engine, stopping the internal combustion engine In the NH 3 reduction by subtracting the amount of NH 3 that is adsorbed on the SCR catalyst when the internal combustion engine is restarted from the stop adsorbed NH 3 amount is an operation result of said operation means during further comprising estimating means for estimating the certain starting adsorbed NH 3 amount when the stop time of adsorbed NH 3 amount is larger than the predetermined threshold, the estimation means, said NH 3 decreases from stop adsorbed NH 3 amount If the difference obtained by subtracting the amount is greater than or equal to a predetermined threshold value, the difference is estimated as the NH 3 adsorption amount at the time of starting, and if the difference is less than the predetermined threshold value, the predetermined threshold is set to the NH at starting time. 3 is estimated as an adsorption amount, when the stop time of adsorbed NH 3 amount is less than the predetermined threshold value, the estimating means, the stop time of adsorbed NH 3 amount to estimate as the starting NH 3 adsorption did.

ここでいう「所定の閾値」は、SCR触媒の温度が該SCR触媒からNHが脱離し易い温度域、又はNHがOと反応(酸化)し易い温度域にあっても、SCR触媒が安定して吸着し続けることができるNH吸着量である。 Here, the "predetermined threshold" is likely temperature range temperature away NH 3 from the SCR catalyst removal of the SCR catalyst, or NH 3 is even the O 2 reaction (oxidation) easily temperature range, the SCR catalyst Is the amount of NH 3 adsorption that can be adsorbed stably.

このように構成された排気浄化システムでは、推定手段は、内燃機関が停止された後に再始動される場合に、内燃機関の停止時におけるSCR触媒の温度をパラメータとしてNH減少量を推定する。ここで、内燃機関の停止期間中においては、SCR触媒に吸着されたNHが該SCR触媒から離脱し、又は排気通路内のOと反応(酸化)することで、NH吸着量が減少する。その際、SCR触媒から脱離するNHの量及びNHの酸化量は、内燃機関の停止時におけるSCR触媒の温度(以下、「停止時触媒温度」と記す)と相関する。たとえば、停止時触媒温度が高い場合は低い場合に比べ、内燃機関の停止期間中にSCR触媒から脱離するNHの量、及びSCR触媒において酸化されるNHの量が多くなる。よって、停止時触媒温度とNH減少量との相関を予め実験的に求めておくことで、停止時触媒温度をパラメータとしてNH減少量を推定することができる。なお、NH減少量は、内燃機関の停止期間の長さ(停止時間)によっても変化するため、停止時触媒温度と停止時間とNH減少量との関係を予め求めておき、停止時触媒温度と停止時間とをパラメータとして、NH減少量を推定してもよい。 In the exhaust purification system configured as described above, when the internal combustion engine is stopped and restarted, the estimation means estimates the NH 3 reduction amount using the temperature of the SCR catalyst when the internal combustion engine is stopped as a parameter. Here, during the stop period of the internal combustion engine, NH 3 adsorbed on the SCR catalyst is separated from the SCR catalyst or reacts (oxidizes) with O 2 in the exhaust passage, thereby reducing the NH 3 adsorption amount. To do. At that time, the amount and oxidation of NH 3 in NH 3 desorbed from the SCR catalyst, the temperature of the SCR catalyst at the time of stop of the internal combustion engine correlates (hereinafter referred to as "stop-time catalyst temperature") and. For example, compared to the case when stop-time catalyst temperature is high is low, becomes large amount of NH 3 which is oxidized amount of NH 3 desorbed from the SCR catalyst during the stop period of the internal combustion engine, and in the SCR catalyst. Therefore, the NH 3 decrease amount can be estimated using the stop catalyst temperature as a parameter by experimentally obtaining a correlation between the stop catalyst temperature and the NH 3 decrease amount in advance. Since the NH 3 decrease amount also changes depending on the length of the stop period (stop time) of the internal combustion engine, the relationship between the stop catalyst temperature, the stop time, and the NH 3 decrease amount is obtained in advance, and the stop catalyst is determined. The NH 3 reduction amount may be estimated using temperature and stop time as parameters.

上記したような方法によりNH減少量が推定されると、推定手段は、停止時NH吸着量からNH減少量を減算することで、始動時NH吸着量を推定する。このように始動時NH吸着量が推定されると、内燃機関の再始動後におけるNH吸着量の推定値が実際のNH吸着量より多くなることが抑制され、それに応じて添加装置から添加される添加剤の量が排気中のNOを過不足なく浄化することができる量(以下、「適正添加量」と記す)に対して少なくなることが抑制される。 When NH 3 reduction is estimated by the method as described above, the estimation means subtracts the NH 3 reduction from stop adsorbed NH 3 amount estimating the starting adsorbed NH 3 amount. When the startup NH 3 adsorption amount is estimated in this way, the estimated value of the NH 3 adsorption amount after the restart of the internal combustion engine is suppressed from being larger than the actual NH 3 adsorption amount, and accordingly, from the addition device It is suppressed that the amount of additive to be added is less than the amount that can purify NO X in the exhaust gas without excess or deficiency (hereinafter referred to as “appropriate addition amount”).

ところで、停止時NH吸着量が所定の閾値より多い場合は、内燃機関の停止期間中にSCR触媒のNH吸着量が減少するが、停止時NH吸着量が前記所定の閾値以下であ
る場合は、内燃機関の停止期間中にSCR触媒のNH吸着量が減少しない。よって、停止時NH吸着量が前記所定の閾値以下である場合に、停止時NH吸着量からNH減少量を減算して始動時NH吸着量が推定されると、始動時NH吸着量が実際のNH吸着量に対して過剰に少なくなる可能性がある。
By the way, when the stop NH 3 adsorption amount is larger than the predetermined threshold value, the NH 3 adsorption amount of the SCR catalyst decreases during the stop period of the internal combustion engine, but the stop NH 3 adsorption amount is equal to or less than the predetermined threshold value. In this case, the NH 3 adsorption amount of the SCR catalyst does not decrease during the stop period of the internal combustion engine. Therefore, when the stop time of adsorbed NH 3 amount is less than the predetermined threshold value, the adsorbed NH 3 amount at the starting time is estimated by subtracting the NH 3 reduction from stop adsorbed NH 3 amount, startup NH 3 There is a possibility that the adsorption amount becomes excessively small with respect to the actual NH 3 adsorption amount.

また、停止時NH吸着量が前記所定の閾値より多い場合は、内燃機関の停止期間中にSCR触媒のNH吸着量が減少するが、SCR触媒のNH吸着量が前記所定の閾値と等しい量まで減少すると、それ以降はNH吸着量が減少しなくなる。よって、停止時NH吸着量からNH減少量を減算して得られる差が前記所定の閾値より小さくなる場合に、該差が始動時NH吸着量として推定されると、始動時NH吸着量が実際のNH吸着量に対して過剰に少なくなる可能性がある。 Also, if the stop adsorbed NH 3 amount is larger than the predetermined threshold value is adsorbed NH 3 amount of the SCR catalyst is reduced during the stop period of the internal combustion engine, the adsorbed NH 3 amount of the SCR catalyst is above a predetermined threshold value When the amount is reduced to the same amount, the NH 3 adsorption amount does not decrease thereafter. Therefore, if the difference obtained by subtracting the NH 3 reduction from stop adsorbed NH 3 amount becomes smaller than the predetermined threshold value, the difference is estimated as the start timing adsorbed NH 3 amount, startup NH 3 There is a possibility that the adsorption amount becomes excessively small with respect to the actual NH 3 adsorption amount.

これに対し、本発明の推定手段は、停止時NH吸着量が所定の閾値以下であるときは、停止時NH吸着量を始動時NH吸着量として推定する。このように始動時NH吸着量が推定されると、該始動時NH吸着量が実際のNH吸着量に対して過剰に少なくなることが抑制される。さらに、本発明の推定手段は、前記停止時NH吸着量が前記所定の閾値より多い場合において、該停止時NH吸着量から前記NH減少量を減算して得られる差が前記所定の閾値未満であれば、前記始動時NH吸着量を前記所定の閾値と同量に推定する。このように始動時NH吸着量が前記所定の閾値以上に制限されると、始動時NH吸着量が実際のNH吸着量に対して過剰に少なくなることをより確実に抑制することができる。 On the other hand, when the stop NH 3 adsorption amount is equal to or less than a predetermined threshold, the estimation means of the present invention estimates the stop NH 3 adsorption amount as the start NH 3 adsorption amount. As described above, when the startup NH 3 adsorption amount is estimated, it is suppressed that the startup NH 3 adsorption amount becomes excessively smaller than the actual NH 3 adsorption amount. Furthermore, estimation means of the present invention, when the stop time of adsorbed NH 3 amount is larger than the predetermined threshold value, the difference obtained by subtracting the NH 3 reduction from the stop adsorbed NH 3 amount is predetermined If it is less than the threshold value, the startup NH 3 adsorption amount is estimated to be the same amount as the predetermined threshold value. In this way, when the startup NH 3 adsorption amount is limited to the predetermined threshold value or more, it is possible to more reliably suppress the startup NH 3 adsorption amount from being excessively smaller than the actual NH 3 adsorption amount. it can.

ここで、SCR触媒が安定して吸着し続けることができるNHの量は、SCR触媒の温度が低い場合より高い場合に少なくなる傾向がある。よって、前記所定の閾値は、内燃機関の停止時における前記選択還元型触媒の温度が高いときは低いときに比べ、小さい値に設定されてもよい。このように所定の閾値が設定されると、始動時NH吸着量と実際のNH吸着量との誤差をより確実に小さくすることができる。 Here, the amount of NH 3 that can be stably adsorbed by the SCR catalyst tends to decrease when the temperature of the SCR catalyst is higher than when the temperature of the SCR catalyst is low. Therefore, the predetermined threshold value may be set to a smaller value when the temperature of the selective catalytic reduction catalyst when the internal combustion engine is stopped is higher than when the temperature is low. When the predetermined threshold is set in this way, the error between the startup NH 3 adsorption amount and the actual NH 3 adsorption amount can be reduced more reliably.

本発明によれば、内燃機関の排気通路に配置されたSCR触媒のNH吸着量を推定する排気浄化システムにおいて、内燃機関の再始動時におけるNH吸着量の推定値が実際のNH吸着量に対して過剰に少なくなることを抑制することができる。 According to the present invention, in the exhaust purification system for estimating the adsorbed NH 3 amount of the SCR catalyst disposed in an exhaust passage of an internal combustion engine, the estimated value of the adsorbed NH 3 amount at the restart of the internal combustion engine is actually adsorbed NH 3 It can suppress that it decreases excessively with respect to quantity.

本発明を適用する内燃機関の排気系の概略構成を示す図である。It is a figure which shows schematic structure of the exhaust system of the internal combustion engine to which this invention is applied. SCR触媒を通過する排気の流量とSCR触媒の温度とSCR触媒のNO浄化率との関係を示す図である。It is a diagram showing the relationship between the NO X purification rate temperature and the SCR catalyst in the exhaust flow and SCR catalyst that passes through the SCR catalyst. SCR触媒のNH吸着量とSCR触媒の温度とNH酸化量との関係を示す図である。NH of the SCR catalyst 3 is a graph showing the relationship between the temperature and the NH 3 oxidation amount of adsorption amount and the SCR catalyst. SCR触媒のNH吸着量とSCR触媒の温度とSCR触媒から流出する排気のNH濃度との関係を示す図である。It is a diagram showing a relationship between the adsorbed NH 3 amount and the NH 3 concentration in exhaust gas flowing out of the temperature and the SCR catalyst of the SCR catalyst of the SCR catalyst. 外気温度が最も高い環境下における停止時触媒温度と停止時間と減少量との関係を示す図である。It is a figure which shows the relationship between the catalyst temperature at the time of a stop in the environment where external temperature is the highest, a stop time, and the amount of reductions. 停止時触媒温度と閾値との関係を示す図である。It is a figure which shows the relationship between the catalyst temperature at the time of a stop, and a threshold value. 始動時NH吸着量を推定する際にECUが実行する処理ルーチンを示すフローチャートである。It is a flowchart showing a processing routine executed by the ECU in estimating the starting adsorbed NH 3 amount.

以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施形態に記載される構成部品の寸法、材質、形状、相対配置等は、特に記載がない限り発明の技術的範
囲をそれらのみに限定する趣旨のものではない。
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the present embodiment are not intended to limit the technical scope of the invention to those unless otherwise specified.

図1は、本発明を適用する内燃機関の排気系の概略構成を示す図である。図1に示す内燃機関1は、希薄燃焼運転される圧縮着火式の内燃機関(ディーゼルエンジン)である。なお、内燃機関1は、希薄燃焼運転可能な火花点火式の内燃機関(ガソリンエンジン)であってもよい。   FIG. 1 is a diagram showing a schematic configuration of an exhaust system of an internal combustion engine to which the present invention is applied. An internal combustion engine 1 shown in FIG. 1 is a compression ignition type internal combustion engine (diesel engine) operated in a lean combustion mode. The internal combustion engine 1 may be a spark ignition type internal combustion engine (gasoline engine) capable of lean burn operation.

内燃機関1には、気筒内から排出される既燃ガス(排気)を流通させるための排気管2が接続されている。排気管2の途中には、第一触媒ケーシング3が配置されている。第一触媒ケーシング3より下流の排気管2には、第二触媒ケーシング4が配置されている。   The internal combustion engine 1 is connected to an exhaust pipe 2 for circulating burned gas (exhaust gas) discharged from the cylinder. A first catalyst casing 3 is disposed in the middle of the exhaust pipe 2. A second catalyst casing 4 is disposed in the exhaust pipe 2 downstream of the first catalyst casing 3.

第一触媒ケーシング3は、たとえば、筒状のケーシング内に酸化触媒とパティキュレートフィルタを内装している。その際、酸化触媒は、パティキュレートフィルタの上流に配置される触媒担体に担持されてもよく、或いはパティキュレートフィルタに担持されてもよい。なお、第一触媒ケーシング3は、酸化触媒の代わりに、三元触媒又は吸蔵還元型触媒を収容してもよい。   The first catalyst casing 3 includes, for example, an oxidation catalyst and a particulate filter inside a cylindrical casing. In that case, the oxidation catalyst may be carried on a catalyst carrier disposed upstream of the particulate filter, or may be carried on the particulate filter. The first catalyst casing 3 may contain a three-way catalyst or an occlusion reduction type catalyst instead of the oxidation catalyst.

第二触媒ケーシング4は、筒状のケーシング内に、SCR触媒が担持された触媒担体を収容する。前記触媒担体は、たとえば、コーディライトやFe−Cr−Al系の耐熱鋼等から形成されるハニカム形状の横断面を有するモノリスタイプの基材に、アルミナ系又はゼオライト系の活性成分(担体)をコーティングしたものである。なお、第二触媒ケーシング4におけるSCR触媒の下流には、酸化触媒が担持された触媒担体が配置されてもよい。その場合の酸化触媒は、SCR触媒へ供給されるNHのうち、SCR触媒をすり抜けたNHを酸化するために設けられる。第二触媒ケーシング4は、本発明に係わる「排気浄化装置」に相当する。 The second catalyst casing 4 accommodates a catalyst carrier on which an SCR catalyst is supported in a cylindrical casing. The catalyst carrier is composed of, for example, an alumina-based or zeolite-based active component (support) on a monolith type substrate having a honeycomb-shaped cross section formed of cordierite, Fe-Cr-Al heat-resistant steel, or the like. It is a coated one. Note that a catalyst carrier on which an oxidation catalyst is supported may be disposed downstream of the SCR catalyst in the second catalyst casing 4. The oxidation catalyst in that case is provided to oxidize NH 3 that has passed through the SCR catalyst out of NH 3 supplied to the SCR catalyst. The second catalyst casing 4 corresponds to an “exhaust gas purification device” according to the present invention.

第一触媒ケーシング3と第二触媒ケーシング4との間の排気管2には、アンモニア(NH)又はNHの前駆体である添加剤を排気中へ添加(噴射)するための添加弁5が配置されている。添加弁5は、ポンプ50を介して添加剤タンク51に接続されている。ポンプ50は、添加剤タンク51に貯留されている添加剤を吸引するとともに、吸引された添加剤を添加弁5へ圧送する。添加弁5は、ポンプ50から圧送されてくる添加剤を排気管2内へ噴射する。添加弁5とポンプ50と添加剤タンク51との組合せは、本発明に係わる「添加装置」に相当する。 An addition valve 5 for adding (injecting) ammonia (NH 3 ) or an additive that is a precursor of NH 3 into the exhaust pipe 2 between the first catalyst casing 3 and the second catalyst casing 4. Is arranged. The addition valve 5 is connected to an additive tank 51 via a pump 50. The pump 50 sucks the additive stored in the additive tank 51 and pumps the sucked additive to the addition valve 5. The addition valve 5 injects the additive pumped from the pump 50 into the exhaust pipe 2. The combination of the addition valve 5, the pump 50, and the additive tank 51 corresponds to the “addition device” according to the present invention.

ここで、添加剤タンク51に貯留される添加剤としては、NHガス、又は尿素やカルバミン酸アンモニウム等の水溶液である。本実施例では、当該添加剤として尿素水溶液を用いるものとする。添加弁5から尿素水溶液が噴射されると、該尿素水溶液が排気とともに第二触媒ケーシング4へ流入する。その際、尿素水溶液が排気の熱を受けて熱分解され、又はSCR触媒により加水分解される。尿素水溶液が熱分解又は加水分解されると、NHが生成される。このようにして生成されたNHは、SCR触媒に吸着(又は吸蔵)される。SCR触媒に吸着されたNHは、排気中に含まれるNOと反応してNや水(HO)を生成する。つまり、NHは、NOの還元剤として機能する。 Here, the additive stored in the additive tank 51 is NH 3 gas or an aqueous solution such as urea or ammonium carbamate. In this embodiment, an aqueous urea solution is used as the additive. When the urea aqueous solution is injected from the addition valve 5, the urea aqueous solution flows into the second catalyst casing 4 together with the exhaust gas. At that time, the urea aqueous solution is thermally decomposed by the heat of the exhaust or is hydrolyzed by the SCR catalyst. When the urea aqueous solution is thermally decomposed or hydrolyzed, NH 3 is generated. The NH 3 thus produced is adsorbed (or occluded) by the SCR catalyst. NH 3 adsorbed on the SCR catalyst reacts with NO X contained in the exhaust to generate N 2 and water (H 2 O). That is, NH 3 functions as a NO X reducing agent.

このように構成された内燃機関1には、ECU(Electronic Control Unit)8が併設
されている。ECU8は、CPU、ROM、RAM、バックアップRAM等を備えた電子制御ユニットである。ECU8には、NOセンサ6、排気温度センサ7、クランクポジションセンサ9、アクセルポジションセンサ10、及びエアフローメータ11等の各種センサが電気的に接続されている。
The internal combustion engine 1 configured as described above is provided with an ECU (Electronic Control Unit) 8. The ECU 8 is an electronic control unit that includes a CPU, ROM, RAM, backup RAM, and the like. Various sensors such as a NO X sensor 6, an exhaust temperature sensor 7, a crank position sensor 9, an accelerator position sensor 10, and an air flow meter 11 are electrically connected to the ECU 8.

NOセンサ6は、第二触媒ケーシング4より下流の排気管2に配置され、第二触媒ケ
ーシング4から流出する排気のNO濃度に相関する電気信号を出力する。なお、第二触媒ケーシング4がSCR触媒と酸化触媒とを収容している場合は、NOセンサ6は、SCR触媒と酸化触媒との間に配置されることが望ましい。排気温度センサ7は、第二触媒ケーシング4より下流の排気管2に配置され、第二触媒ケーシング4から流出する排気の温度と相関する電気信号を出力する。
The NO X sensor 6 is disposed in the exhaust pipe 2 downstream from the second catalyst casing 4, and outputs an electrical signal that correlates with the NO X concentration of the exhaust gas flowing out from the second catalyst casing 4. When the second catalyst casing 4 contains the SCR catalyst and the oxidation catalyst, the NO X sensor 6 is desirably arranged between the SCR catalyst and the oxidation catalyst. The exhaust temperature sensor 7 is disposed in the exhaust pipe 2 downstream from the second catalyst casing 4 and outputs an electrical signal correlated with the temperature of the exhaust gas flowing out from the second catalyst casing 4.

クランクポジションセンサ9は、内燃機関1の出力軸(クランクシャフト)の回転位置に相関する電気信号を出力する。アクセルポジションセンサ10は、アクセルペダルの操作量(アクセル開度)に相関する電気信号を出力する。エアフローメータ11は、内燃機関1に吸入される空気の量(質量)に相関する電気信号を出力する。   The crank position sensor 9 outputs an electrical signal correlated with the rotational position of the output shaft (crankshaft) of the internal combustion engine 1. The accelerator position sensor 10 outputs an electrical signal that correlates with the operation amount of the accelerator pedal (accelerator opening). The air flow meter 11 outputs an electrical signal correlated with the amount (mass) of air taken into the internal combustion engine 1.

また、ECU8は、内燃機関1に取り付けられた各種機器(たとえば、燃料噴射弁等)、添加弁5、及びポンプ50等と電気的に接続されている。ECU8は、前記した各種センサの出力信号に基づいて、内燃機関1の各種機器、添加弁5、及びポンプ50等を電気的に制御する。たとえば、ECU8は、内燃機関1の燃料噴射制御等のような既知の制御に加え、内燃機関1の運転期間中に添加弁5から間欠的に添加剤を噴射させる添加制御や、SCR触媒の故障診断等を実行する。添加制御では、ECU8は、第二触媒ケーシング4のSCR触媒に吸着されているNH量の推定値(推定NH吸着量)を求め、その推定NH吸着量に基づいて添加弁5を制御する。また、SCR触媒の故障診断では、ECU8は、推定NH吸着量が所定量以上であるときのSCR触媒のNO浄化率(SCR触媒へ流入するNOの量に対してSCR触媒で浄化されるNO量の比率)を求め、そのNO浄化率が所定の閾値より小さければ、SCR触媒が故障していると診断する。 Further, the ECU 8 is electrically connected to various devices (for example, a fuel injection valve) attached to the internal combustion engine 1, the addition valve 5, the pump 50, and the like. The ECU 8 electrically controls various devices of the internal combustion engine 1, the addition valve 5, the pump 50, and the like based on the output signals of the various sensors described above. For example, in addition to known control such as fuel injection control of the internal combustion engine 1, the ECU 8 performs addition control for intermittently injecting the additive from the addition valve 5 during the operation period of the internal combustion engine 1 or failure of the SCR catalyst. Execute diagnosis and so on. In the addition control, the ECU 8 obtains an estimated value (estimated NH 3 adsorption amount) of the NH 3 amount adsorbed on the SCR catalyst of the second catalyst casing 4, and controls the addition valve 5 based on the estimated NH 3 adsorption amount. To do. Further, in the fault diagnosis of the SCR catalyst, ECU 8 is cleaned by the SCR catalyst with respect to the amount of the NO X estimated adsorbed NH 3 amount flowing into the NO X purification rate of the SCR catalyst when at least a predetermined amount (SCR catalyst that the amount of NO X ratio) is obtained, if the NO X purification rate is less than a predetermined threshold value, it is diagnosed that the SCR catalyst is faulty.

前記添加制御や前記故障診断に用いられる推定NH吸着量は、SCR触媒に供給されるNH(尿素水溶液が排気中で熱分解されて生成されるNHと尿素水溶液がSCR触媒において加水分解されて生成されるNH)の量から、SCR触媒において消費されるNHの量を減算した値を積算することによって推定される。ここで、SCR触媒に供給されるNHの量は、添加弁5から添加される尿素水溶液の量をパラメータとして演算される。また、SCR触媒において消費されるNHの量は、SCR触媒において排気中のNOと反応するNHの量、SCR触媒において排気中の酸素(O)と反応するNHの量(以下、「NH酸化量」と記す)、及びSCR触媒から離脱するNHの量(以下、「NHスリップ量」と記す)の総和である。 Estimated adsorbed NH 3 amount to be used in the addition control and the fault diagnosis, NH 3 and urea aqueous NH 3 (the urea solution supplied to the SCR catalyst is produced is thermally decomposed in the exhaust gas is hydrolyzed in the SCR catalyst It is estimated by adding up a value obtained by subtracting the amount of NH 3 consumed in the SCR catalyst from the amount of NH 3 ) generated. Here, the amount of NH 3 supplied to the SCR catalyst is calculated using the amount of aqueous urea solution added from the addition valve 5 as a parameter. The amount of NH 3 to be consumed in the SCR catalyst, the amount of NH 3 that reacts with oxygen in the exhaust (O 2) amount of NH 3 that reacts with NO X in the exhaust gas in the SCR catalyst, the SCR catalyst (hereinafter , “NH 3 oxidation amount”) and the amount of NH 3 released from the SCR catalyst (hereinafter referred to as “NH 3 slip amount”).

SCR触媒においてNOと反応するNHの量は、NO流入量とNO浄化率とをパラメータとして演算される。その際、NO流入量は、内燃機関1から排出されるNOの量(内燃機関1において混合気が燃焼する際に発生するNOの量)に相関する。内燃機関1から排出されるNOの量は、混合気に含まれる酸素の量と、混合気に含まれる燃料の量と、燃料噴射時期と、機関回転速度とに相関する。混合気に含まれる酸素の量は、吸入空気量(エアフローメータ11の出力信号)に相関する。混合気に含まれる燃料の量は、燃料噴射量に相関する。よって、ECU8は、エアフローメータ11の出力信号と、燃料噴射量と、燃料噴射時期と、機関回転速度と、をパラメータとして、NO流入量を演算してもよい。なお、上記した種々のパラメータとNO流入量との関係を予め実験的に求めておき、それらの関係をマップや関数式の態様でECU8のROMに記憶させておくようにしてもよい。また、第一触媒ケーシング3と第二触媒ケーシング4との間の排気管2にNOセンサが配置される場合は、ECU8は、該NOセンサの検出値(NO濃度)と排気の量(吸入空気量と燃料噴射量との総和)とをパラメータとして、NO流入量を演算してもよい。 The amount of NH 3 that reacts with NO X in the SCR catalyst is calculated using the NO X inflow amount and the NO X purification rate as parameters. At this time, NO X inflow correlates to the amount of the NO X discharged from the internal combustion engine 1 (the amount of the NO X that mixture in the internal combustion engine 1 is generated when the combustion). The amount of the NO X discharged from the internal combustion engine 1, the amount of oxygen contained in the gas mixture, the amount of fuel contained in the mixture, the fuel injection timing, correlated to the engine speed. The amount of oxygen contained in the air-fuel mixture correlates with the amount of intake air (the output signal of the air flow meter 11). The amount of fuel contained in the air-fuel mixture correlates with the fuel injection amount. Therefore, the ECU 8 may calculate the NO X inflow amount using the output signal of the air flow meter 11, the fuel injection amount, the fuel injection timing, and the engine rotation speed as parameters. Incidentally, it is advisable to advance and determined experimentally, and stored in ECU8 the ROM in those aspects of the relationship between the map and functional expression the relationship between various parameters and the NO X flow rate described above. When the NO X sensor is disposed in the exhaust pipe 2 between the first catalyst casing 3 and the second catalyst casing 4, the ECU 8 detects the detected value (NO X concentration) of the NO X sensor and the amount of exhaust. The NO X inflow amount may be calculated using (the sum of the intake air amount and the fuel injection amount) as a parameter.

一方、NO浄化率は、単位時間あたりにSCR触媒へ流入する排気の流量(単位時間あたりの吸入空気量と単位時間あたりの燃料噴射量との総和)とSCR触媒の温度とをパ
ラメータとして推定される。図2は、排気の流量(単位時間あたりの吸入空気量と単位時間あたりの燃料噴射量との総和)と、SCR触媒の温度と、NO浄化率との関係を示す図である。NO浄化率は、排気流量が多くなるほど小さくなり、且つSCR触媒の温度が高くなるほど大きくなる(ただし、SCR触媒の温度が上限温度(たとえば、350℃)を超えると、SCR触媒の温度が高くなるほど小さくなる)傾向がある。そこで、ECU8は、図2に示したような関係に基づいて、SCR触媒のNO浄化率を求める。なお、図2に示すような関係を予め求めておき、それらの関係をマップ又は関数式の態様でECU8のROMに記憶させておくようにしてもよい。
On the other hand, NO X purification rate is estimated and a temperature of the SCR catalyst (the sum of the fuel injection amount per intake air amount and unit time per unit time) the flow rate of the exhaust gas flowing into the SCR catalyst per unit time as a parameter Is done. Figure 2 is a diagram showing the flow rate of the exhaust gas (the sum of the injection amount per intake air amount and unit time per unit time), and the temperature of the SCR catalyst, the relationship between the NO X purification rate. NO X purification rate becomes smaller as the exhaust flow rate increases, and the temperature of the SCR catalyst becomes more larger higher (provided that the temperature of the SCR catalyst is an upper limit temperature (for example, exceeding 350 ° C.), high temperature of the SCR catalyst There is a tendency to become smaller. Therefore, ECU 8, based on the relation shown in FIG. 2, obtaining the NO X purification rate of the SCR catalyst. 2 may be obtained in advance and stored in the ROM of the ECU 8 in a map or function form.

次に、NH酸化量は、SCR触媒へ流入する排気のO濃度と推定NH吸着量の前回の演算値とをパラメータとして演算される。図3は、SCR触媒へ流入する排気のO濃度とNH酸化量との関係を示す図である。図3において、NH酸化量は、NH吸着量が多くなるほど多くなり、且つ、SCR触媒の温度が高くなるほど多くなる。よって、ECU8は、図3に示したような関係に基づいて、NH酸化量を求める。なお、図3に示すような関係を予め実験的に求めておき、それらの関係をマップ又は関数式の態様でECU8のROMに記憶させておくようにしてもよい。 Next, the NH 3 oxidation amount is calculated using the O 2 concentration of the exhaust gas flowing into the SCR catalyst and the previous calculated value of the estimated NH 3 adsorption amount as parameters. FIG. 3 is a diagram showing the relationship between the O 2 concentration of the exhaust gas flowing into the SCR catalyst and the amount of oxidation of NH 3 . In FIG. 3, the amount of NH 3 oxidation increases as the amount of NH 3 adsorption increases, and increases as the temperature of the SCR catalyst increases. Therefore, the ECU 8 determines the amount of NH 3 oxidation based on the relationship as shown in FIG. 3 may be experimentally obtained in advance and stored in the ROM of the ECU 8 in a map or function form.

また、NHスリップ量は、推定NH吸着量の前回の演算値と、SCR触媒の温度と、単位時間あたりにSCR触媒を通過する排気の流量と、をパラメータとして求められる。図4は、SCR触媒を通過する排気の流量が一定である場合において、NH吸着量とSCR触媒の温度とSCR触媒から流出する排気のNH濃度との関係を示す図である。図4において、SCR触媒から流出する排気のNH濃度は、NH吸着量が多くなるほど濃くなり、且つSCR触媒の温度が高くなるほど濃くなる。よって、SCR触媒を通過する排気の流量が一定である場合は、NHスリップ量は、NH吸着量が多くなるほど、且つSCR触媒の温度が高くなるほど多くなるといえる。一方、SCR触媒から流出する排気のNH濃度が一定であれば、単位時間あたりにSCR触媒を通過する排気の流量が多くなるほど、単位時間あたりのNHスリップ量が多くなる。そこで、ECU8は、図4に示したような関係に基づいて、SCR触媒から流出する排気のNH濃度を求め、該NH濃度に単位時間あたりの排気流量(単位時間あたりの吸入空気量と単位時間あたりの燃料噴射量との総和)を乗算することにより、NHスリップ量を算出する。 Further, the NH 3 slip amount is obtained by using the previous calculated value of the estimated NH 3 adsorption amount, the temperature of the SCR catalyst, and the flow rate of the exhaust gas passing through the SCR catalyst per unit time as parameters. FIG. 4 is a diagram showing the relationship between the NH 3 adsorption amount, the temperature of the SCR catalyst, and the NH 3 concentration of the exhaust gas flowing out from the SCR catalyst when the flow rate of the exhaust gas passing through the SCR catalyst is constant. In FIG. 4, the NH 3 concentration of the exhaust gas flowing out from the SCR catalyst increases as the amount of NH 3 adsorption increases, and increases as the temperature of the SCR catalyst increases. Therefore, when the flow rate of the exhaust gas passing through the SCR catalyst is constant, it can be said that the NH 3 slip amount increases as the NH 3 adsorption amount increases and the temperature of the SCR catalyst increases. On the other hand, if the NH 3 concentration of the exhaust gas flowing out from the SCR catalyst is constant, the NH 3 slip amount per unit time increases as the flow rate of the exhaust gas passing through the SCR catalyst per unit time increases. Therefore, the ECU 8 obtains the NH 3 concentration of the exhaust gas flowing out from the SCR catalyst based on the relationship as shown in FIG. 4, and calculates the exhaust gas flow rate per unit time (the intake air amount per unit time and the NH 3 concentration). The NH 3 slip amount is calculated by multiplying the sum of the fuel injection amount per unit time).

以上述べた方法による推定NH吸着量の演算処理は、内燃機関1の運転期間中に所定の周期で繰り返し行われる。そして、ECU8は、推定NH吸着量が規定量より少なくなると、添加弁5から尿素水溶液を噴射させる。ここでいう「規定量」は、たとえば、SCR触媒が吸着することができる最大のNH量(SCR触媒のNH吸着速度とNH脱離速度とが平衡状態になるときのNH吸着量)から所定のマージンを差し引いた量である。また、ECU8は、推定NH吸着量が所定量以上であるときにSCR触媒のNO浄化率を求め、そのNO浄化率と所定の閾値とを比較することでSCR触媒の故障診断を実行する。なお、ECU8が上記した方法によって推定NH吸着量を演算することにより、本発明に係わる「演算手段」が実現される。 The calculation process of the estimated NH 3 adsorption amount by the method described above is repeatedly performed at a predetermined cycle during the operation period of the internal combustion engine 1. Then, when the estimated NH 3 adsorption amount becomes smaller than the prescribed amount, the ECU 8 injects the urea aqueous solution from the addition valve 5. Here, the "prescribed amount" is, for example, NH 3 adsorption amount when the maximum amount of NH 3 (NH 3 adsorption rate of the SCR catalyst and the NH 3 desorption rate capable SCR catalyst is adsorbed in equilibrium ) Minus a predetermined margin. Further, ECU 8 calculates the NO X purification rate of the SCR catalyst when the estimated adsorbed NH 3 amount is equal to or larger than the predetermined amount, executing the failure diagnosis of the SCR catalyst by comparing the NO X purification rate and a predetermined threshold value To do. Note that the “calculation means” according to the present invention is realized when the ECU 8 calculates the estimated NH 3 adsorption amount by the method described above.

ところで、内燃機関1が停止された後に再始動される場合においては、前回の停止時における推定NH吸着量(停止時NH吸着量)を用いて、再始動後に添加弁5から添加される尿素水溶液の量を制御する方法が考えられる。しかしながら、SCR触媒のNH吸着量は、内燃機関1の停止期間中に減少する可能性がある。よって、停止時NH吸着量が内燃機関1の再始動時におけるNH吸着量(始動時NH吸着量)として用いられると、始動時NH吸着量が実際のNH吸着量より多くなる可能性がある。その場合、内燃機関1の再始動後に添加弁5から添加される尿素水溶液の量が排気中のNOを過不足なく浄化するために必要な量(適正添加量)より少なくなる可能性がある。その結果、SCR触媒によって浄化されるNOの量が少なくなり、排気エミッションの悪化を招く
可能性がある。また、始動時NH吸着量が実際のNH吸着量より多くなると、内燃機関1の運転期間中に添加弁5から添加される尿素水溶液の量が適正添加量より少なくなるため、SCR触媒の故障診断が実行される際の推定NH吸着量が前記所定量より少なくなる可能性もある。その場合、SCR触媒が正常であるにもかかわらず、SCR触媒が故障していると誤診断される可能性もある。
Incidentally, in the case where the internal combustion engine 1 is restarted after being stopped, by using the estimated adsorbed NH 3 amount (stop adsorbed NH 3 amount) at the previous stop is added from the addition valve 5 after restarting A method of controlling the amount of the urea aqueous solution is conceivable. However, the NH 3 adsorption amount of the SCR catalyst may decrease during the stop period of the internal combustion engine 1. Therefore, when the NH 3 adsorption amount at the time of stop is used as the NH 3 adsorption amount at the restart of the internal combustion engine 1 (starting NH 3 adsorption amount), the startup NH 3 adsorption amount becomes larger than the actual NH 3 adsorption amount. there is a possibility. In that case, there is a possibility that the amount of urea aqueous solution to be added from the addition valve 5 after the restart of the internal combustion engine 1 is less than the amount (the proper amount) needed to purify NO X in the exhaust gas without excess or deficiency . As a result, the amount of the NO X to be purified by the SCR catalyst is reduced, which can lead to deterioration of the exhaust emission. Further, if the NH 3 adsorption amount at the time of start-up becomes larger than the actual NH 3 adsorption amount, the amount of urea aqueous solution added from the addition valve 5 during the operation period of the internal combustion engine 1 becomes smaller than the appropriate addition amount. There is also a possibility that the estimated NH 3 adsorption amount when the failure diagnosis is performed becomes smaller than the predetermined amount. In this case, there is a possibility that the SCR catalyst is erroneously diagnosed as being malfunctioning even though the SCR catalyst is normal.

そこで、本実施例では、内燃機関1の停止期間中におけるNH吸着量の減少量(NH減少量)を推定し、停止時NH吸着量からNH減少量を減算することで、始動時NH吸着量を求めるようにした。そして、ECU8は、内燃機関1の再始動後は、始動時NH吸着量を使用して推定NH吸着量の演算を行うとともに、その推定NH吸着量に基づいて尿素水溶液の添加量を制御したり、又はSCR触媒の故障診断処理を実行したりするものとする。 Therefore, in this embodiment, estimated decrease in the adsorbed NH 3 amount in the stopping period the internal combustion engine 1 (NH 3 reduction), by subtracting the NH 3 reduction from stop adsorbed NH 3 amount, starting The amount of NH 3 adsorption was calculated. Then, ECU 8 after restart the internal combustion engine 1, with using the starting NH 3 adsorption perform calculation of the estimated adsorbed NH 3 amount, the addition amount of the urea aqueous solution based on the estimated adsorbed NH 3 amount It is assumed that control or failure diagnosis processing of the SCR catalyst is executed.

内燃機関1の停止期間中にNH吸着量が減少する主な要因は、SCR触媒に吸着されているNHが該SCR触媒から離脱したり、又はSCR触媒に吸着されているNHが排気管2内のOと反応して酸化されたりすることにある。内燃機関1の停止期間中に、SCR触媒から離脱するNHの量、及び排気管2内のOと反応して酸化されるNHの量は、SCR触媒の温度に相関する。よって、内燃機関1の停止期間中におけるSCR触媒の温度推移をモニタし、その温度推移に基づいてNH減少量を求めてもよい。ただし、内燃機関1の停止期間中におけるSCR触媒の温度推移をモニタするためには、内燃機関1の停止期間中もECU8や排気温度センサ7等を作動させる必要があり、ECU8や図示しないバッテリの負荷が大きくなる。 The main factors adsorbed NH 3 amount decreases during the stop period engine 1, NH 3 adsorbed on the SCR catalyst or disengaged from the SCR catalyst, or NH 3 adsorbed on the SCR catalyst exhaust by reacting with O 2 in the tube 2 is to or oxidized. During the stop period the internal combustion engine 1, the amount of NH 3 which is oxidized by reacting with O 2 of NH amount of 3, and the exhaust pipe 2 that leaves the SCR catalyst is correlated to the temperature of the SCR catalyst. Therefore, the temperature transition of the SCR catalyst during the stop period of the internal combustion engine 1 may be monitored, and the NH 3 reduction amount may be obtained based on the temperature transition. However, in order to monitor the temperature transition of the SCR catalyst during the stop period of the internal combustion engine 1, it is necessary to operate the ECU 8, the exhaust temperature sensor 7 and the like even during the stop period of the internal combustion engine 1. The load increases.

そこで、内燃機関1の停止時におけるSCR触媒の温度(停止時触媒温度)をパラメータとして、NH減少量を推定する方法が考えられる。ただし、停止時触媒温度が同じであっても、停止期間の長さ(停止時間)によってNH減少量が異なる可能性がある。そのため、停止時触媒温度と停止時間とをパラメータとして、NH減少量を推定することが望ましい。また、内燃機関1の停止期間中におけるSCR触媒の温度推移は、停止期間中の外気温度の推移によって変化する可能性がある。しかしながら、前述したように、内燃機関1の停止期間中における外気温度の推移をモニタしようとすると、ECU8やバッテリの負荷が大きくなる。よって、本実施例では、内燃機関1の停止期間中における外気温度が最も高い状況を想定して、停止時触媒温度と停止時間とNH減少量との関係を求めておき、それらの関係に基づいてNH減少量を推定するようにした。 Therefore, a method of estimating the NH 3 reduction amount using the temperature of the SCR catalyst when the internal combustion engine 1 is stopped (catalyst temperature when stopped) as a parameter can be considered. However, even if the catalyst temperature at the time of stoppage is the same, there is a possibility that the NH 3 decrease amount varies depending on the length of the stop period (stop time). Therefore, it is desirable to estimate the NH 3 reduction amount using the catalyst temperature at stop and the stop time as parameters. Further, the temperature transition of the SCR catalyst during the stop period of the internal combustion engine 1 may change depending on the transition of the outside air temperature during the stop period. However, as described above, when it is attempted to monitor the transition of the outside air temperature during the stop period of the internal combustion engine 1, the load on the ECU 8 and the battery increases. Therefore, in the present embodiment, assuming the situation where the outside air temperature is the highest during the stop period of the internal combustion engine 1, the relationship among the catalyst temperature during stop, the stop time, and the NH 3 reduction amount is obtained, Based on this, the NH 3 decrease amount was estimated.

ここで、外気温度が最も高い環境下における停止時触媒温度と停止時間とNH減少量との関係を図5に示す。図5に示すように、停止時触媒温度が高いときは低いときに比べ、NH減少量が多くなる。また、停止期間が長いときは短いときに比べ、NH減少量が多くなる。このような関係に基づいてNH減少量が推定されると、内燃機関1の停止期間中にECU8や排気温度センサ7等を作動させることなく、NH減少量を推定することができる。また、外気温度が最も高い環境、言い換えると、SCR触媒の温度が最も低下し難い環境を想定してNH減少量を推定することで、その推定値が実際のNH減少量に対して過剰に少なくなることが抑制される。その結果、NH減少量の推定値を用いて求められる始動時NH吸着量が実際のNH吸着量より多くなることが抑制される。よって、内燃機関1の始動後に添加弁5から添加される尿素水溶液の量が前記適正添加量より少なくなる事態を回避することができ、尿素水溶液の不足による排気エミッションの悪化を抑制することができる。 Here, FIG. 5 shows the relationship between the catalyst temperature at stop, the stop time, and the NH 3 reduction amount in an environment where the outside air temperature is the highest. As shown in FIG. 5, when the catalyst temperature at the time of stoppage is high, the amount of decrease in NH 3 increases compared to when it is low. In addition, when the stop period is long, the amount of NH 3 decrease is greater than when the stop period is short. When NH 3 reduction on the basis of such a relationship is estimated, without operating the ECU8 and exhaust gas temperature sensor 7 or the like during the stop period the internal combustion engine 1, it is possible to estimate the NH 3 reduction. Further, by estimating the NH 3 decrease amount assuming the environment where the outside air temperature is the highest, in other words, the environment where the temperature of the SCR catalyst is most difficult to decrease, the estimated value is excessive with respect to the actual NH 3 decrease amount. Is reduced. As a result, it is suppressed that the startup NH 3 adsorption amount obtained using the estimated value of the NH 3 decrease amount is larger than the actual NH 3 adsorption amount. Therefore, it is possible to avoid a situation in which the amount of the urea aqueous solution added from the addition valve 5 after the internal combustion engine 1 is started is smaller than the appropriate addition amount, and it is possible to suppress the deterioration of the exhaust emission due to the shortage of the urea aqueous solution. .

なお、SCR触媒から脱離するNHの量は、停止時NH吸着量が多くなるほど多くなる可能性があるため、上記図5に示した関係に基づいて求められたNH減少量を、停止時NH吸着量に応じて補正してもよい。たとえば、停止時NH吸着量が多くなるほ
ど、NH減少量が多くなるように補正してもよい。このように、停止時NH吸着量を考慮してNH減少量を推定すると、その推定精度をより高めることができる。
Since the amount of NH 3 desorbed from the SCR catalyst may increase as the amount of NH 3 adsorbed at the time of stoppage increases, the amount of NH 3 reduction obtained based on the relationship shown in FIG. it may be corrected in accordance with the stop adsorbed NH 3 amount. For example, the NH 3 decrease amount may be corrected so as to increase as the stop NH 3 adsorption amount increases. As described above, when the NH 3 decrease amount is estimated in consideration of the stop NH 3 adsorption amount, the estimation accuracy can be further increased.

ところで、SCR触媒は、SCR触媒の温度がNHの脱離し易い温度域、及びNHの酸化し易い温度域にあっても、特定の量(所定の閾値)のNHを安定して吸着し続ける特性を有している。そのため、停止時NH吸着量が前記所定の閾値以下である場合は、たとえ内燃機関1の停止期間中におけるSCR触媒の温度がNHの脱離し易い温度域、又はNHの酸化し易い温度域にあっても、SCR触媒のNH吸着量が停止時NH吸着量から減少しない。また、内燃機関1の停止期間中に、SCR触媒のNH吸着量が前記所定の閾値まで減少すると、たとえSCR触媒の温度がNHの脱離し易い温度域、又はNHの酸化し易い温度域にあっても、SCR触媒のNH吸着量がそれ以上減少しなくなる。 By the way, the SCR catalyst stably adsorbs a specific amount (predetermined threshold value) of NH 3 even when the temperature of the SCR catalyst is in a temperature range where NH 3 is easily desorbed and in a temperature range where NH 3 is easily oxidized. It has the property to continue. Therefore, when stop adsorbed NH 3 amount is less than the predetermined threshold value, even if desorbed easily temperature range of the temperature of NH 3 SCR catalyst during the stop period the internal combustion engine 1, or oxidizable temperature of the NH 3 Even in the range, the NH 3 adsorption amount of the SCR catalyst does not decrease from the NH 3 adsorption amount at the time of stoppage. Further, during the stop period the internal combustion engine 1, when the adsorbed NH 3 amount of the SCR catalyst is decreased to the predetermined threshold value, even eliminated easily temperature range of the temperature of NH 3 SCR catalyst, or oxidizable temperature of the NH 3 Even in the region, the NH 3 adsorption amount of the SCR catalyst does not decrease any more.

上記したようなSCR触媒の特性を考慮せずに、NH減少量が推定されると、その推定値を用いて求められる始動時NH吸着量が実際のNH吸着量に対して過剰に少なくなる可能性がある。特に、前述したように、内燃機関1の停止期間中における外気温度が最も高い環境を想定してNH減少量が推定される方法においては、始動時NH吸着量が実際のNH吸着量に対して過剰に少なくなる可能性が高い。 If the NH 3 reduction amount is estimated without considering the characteristics of the SCR catalyst as described above, the startup NH 3 adsorption amount obtained using the estimated value is excessive with respect to the actual NH 3 adsorption amount. May be less. In particular, as described above, in the method in which the NH 3 reduction amount is estimated on the assumption that the outside air temperature is highest during the stop period of the internal combustion engine 1, the NH 3 adsorption amount at the start time is the actual NH 3 adsorption amount. There is a high possibility that it will be excessively small.

よって、本実施例では、停止時NH吸着量が前記所定の閾値以下である場合は、始動時NH吸着量を停止時NH吸着量と同量に推定するようにした。また、停止時NH吸着量が前記所定の閾値より多い場合において、停止時NH吸着量からNH減少量を減算した量が前記所定の閾値未満であれば、始動時NH吸着量を前記所定の閾値と同量に推定するものとする。 Therefore, in this embodiment, when the stop NH 3 adsorption amount is equal to or less than the predetermined threshold, the start NH 3 adsorption amount is estimated to be the same as the stop NH 3 adsorption amount. Further, when the stop NH 3 adsorption amount is larger than the predetermined threshold, if the amount obtained by subtracting the NH 3 decrease amount from the stop NH 3 adsorption amount is less than the predetermined threshold, the start NH 3 adsorption amount is set to The amount is estimated to be the same amount as the predetermined threshold value.

上記したように、SCR触媒の特性を考慮して始動時NH吸着量が推定されると、その始動時NH吸着量が実際のNH吸着量に対して過剰に少なくなることが抑制される。その結果、内燃機関1の始動後に添加弁5から添加される尿素水溶液の量が前記適正添加量に対して過剰に多くなることが抑制され、尿素水溶液の不要な消費を少なく抑えることができる。 As described above, when the startup NH 3 adsorption amount is estimated in consideration of the characteristics of the SCR catalyst, it is suppressed that the startup NH 3 adsorption amount becomes excessively smaller than the actual NH 3 adsorption amount. The As a result, the amount of the urea aqueous solution added from the addition valve 5 after the start of the internal combustion engine 1 is suppressed from being excessively increased with respect to the appropriate addition amount, and unnecessary consumption of the urea aqueous solution can be suppressed to a low level.

なお、SCR触媒が安定して吸着し続けることができるNHの量(所定の閾値)は、停止時触媒温度に応じて異なる。たとえば、図6に示すように、停止時触媒温度が高いときは低いときに比べ、前記所定の閾値が小さくなる。よって、前記所定の閾値は、停止時触媒温度をパラメータとして決定されるものとする。 It should be noted that the amount of NH 3 (predetermined threshold) that the SCR catalyst can continue to adsorb stably varies depending on the catalyst temperature at the time of stop. For example, as shown in FIG. 6, the predetermined threshold value is smaller when the catalyst temperature during stoppage is high than when it is low. Therefore, the predetermined threshold value is determined using the catalyst temperature at the time of stop as a parameter.

以下、本実施例において始動時NH吸着量を推定する手順について図7に沿って説明する。図7は、始動時NH吸着量を推定する際にECU8が実行する処理ルーチンを示すフローチャートである。この処理ルーチンは、内燃機関1の始動時(たとえば、イグニッションスイッチがオフからオンへ切り替えられたとき)に、ECU8によって実行される処理ルーチンであり、予めECU8のROMに記憶されている。 The procedure for estimating the startup NH 3 adsorption amount in the present embodiment will be described below with reference to FIG. FIG. 7 is a flowchart showing a processing routine executed by the ECU 8 when estimating the startup NH 3 adsorption amount. This processing routine is a processing routine that is executed by the ECU 8 when the internal combustion engine 1 is started (for example, when the ignition switch is switched from OFF to ON), and is stored in the ROM of the ECU 8 in advance.

図7の処理ルーチンでは、ECU8は、先ずS101の処理において、内燃機関1の前回の停止時におけるSCR触媒のNH吸着量である停止時NH吸着量ΣNHstpを読み込む。停止時NH吸着量ΣNHstpは、内燃機関1の前回の運転停止時にバックアップRAM等の不揮発性のメモリに記憶されるものとする。 In the processing routine of FIG. 7, the ECU 8 first reads a stop-time NH 3 adsorption amount ΣNH 3 stp that is the NH 3 adsorption amount of the SCR catalyst at the time of the previous stop of the internal combustion engine 1 in the process of S101. The stopped NH 3 adsorption amount ΣNH 3 stp is stored in a non-volatile memory such as a backup RAM when the internal combustion engine 1 is stopped last time.

S102の処理では、ECU8は、内燃機関1の前回の停止時におけるSCR触媒の温度(停止時触媒温度)Tscrを読み込む。停止時触媒温度Tscrも、上記した停止時NH吸着量ΣNHstpと同様に、内燃機関1の前回の運転停止時にバックアップR
AM等の不揮発性のメモリに記憶されるものとする。なお、SCR触媒の温度は、内燃機関1の運転履歴から推定されてもよく、或いは排気温度センサ7の測定値を代用してもよい。
In the process of S102, the ECU 8 reads the temperature of the SCR catalyst (stop catalyst temperature) Tscr when the internal combustion engine 1 was stopped last time. Similarly to the stop NH 3 adsorption amount ΣNH 3 stp, the stop catalyst temperature Tscr is also backed up when the internal combustion engine 1 is stopped last time.
It is assumed that it is stored in a non-volatile memory such as AM. The temperature of the SCR catalyst may be estimated from the operation history of the internal combustion engine 1, or the measured value of the exhaust temperature sensor 7 may be substituted.

S103の処理では、ECU8は、前記S102の処理で読み込まれた停止時触媒温度Tscrと前述の図6に示した関係とに基づいて、所定の閾値ΣNHthreを演算する。続いて、ECU8は、S104の処理へ進み、前記S101の処理で読み込まれた停止時NH吸着量ΣNHstpが前記S103の処理で算出された所定の閾値ΣNHthreより多いか否かを判別する。 In the process of S103, the ECU 8 calculates a predetermined threshold ΣNH 3 thre based on the stop-time catalyst temperature Tscr read in the process of S102 and the relationship shown in FIG. Subsequently, the ECU 8 proceeds to the process of S104, and determines whether or not the stop NH 3 adsorption amount ΣNH 3 stp read in the process of S101 is larger than a predetermined threshold ΣNH 3 thre calculated in the process of S103. Determine.

前記S104の処理において肯定判定された場合(ΣNHstp>ΣNHthre)は、ECU8は、S105の処理へ進む。S105の処理では、ECU8は、前記S102の処理で読み込まれた停止時触媒温度Tscrと停止時間と前述の図5に示した関係とに基づいて、内燃機関1の停止期間中におけるNH吸着量の減少量であるNH減少量ΔNHを推定(演算)する。その際、停止時間は、内燃機関1の前回の停止時の日時と今回の再始動時の日時との差から演算されるものとする。 If an affirmative determination is made in the process of S104 (ΣNH 3 stp> ΣNH 3 thre), the ECU 8 proceeds to the process of S105. In the process of S105, the ECU 8 determines the adsorption amount of NH 3 during the stop period of the internal combustion engine 1 based on the stop-time catalyst temperature Tscr and the stop time read in the process of S102 and the relationship shown in FIG. the NH 3 reduction DerutaNH 3 is a reduction of estimating (calculating). At this time, the stop time is calculated from the difference between the date and time when the internal combustion engine 1 was stopped last time and the date and time when the internal combustion engine 1 was restarted this time.

S106の処理では、ECU8は、前記S101の処理で読み込まれた停止時NH吸着量ΣNHstpから前記S105の処理で推定されたNH減少量ΔNHを減算して得られる差(ΣNHstp−ΔNH)が前記S103の処理で算出された所定の閾値ΣNHthre以上であるか否かを判別する。 In the process of S106, the ECU 8 subtracts the NH 3 decrease amount ΔNH 3 estimated in the process of S105 from the stop-time NH 3 adsorption amount ΣNH 3 stp read in the process of S101 (ΣNH 3 It is determined whether or not (stp−ΔNH 3 ) is equal to or greater than a predetermined threshold value ΣNH 3 thre calculated in the process of S103.

前記S106の処理において肯定判定された場合((ΣNHstp−ΔNH)≧ΣNHthre)は、ECU8は、S107の処理へ進み、前記停止時NH吸着量ΣNHstpから前記NH減少量ΔNHを減算して得られる差(ΣNHstp−ΔNH)を始動時NH吸着量ΣNHstrとして推定する。一方、S106の処理において否定判定された場合(ΣNHstp−ΔNH)<ΣNHthre)は、ECU8は、S108の処理へ進み、前記所定の閾値ΣNHthreを始動時NH吸着量ΣNHstrとして推定する。 If an affirmative determination is made in the process of S106 ((ΣNH 3 stp−ΔNH 3 ) ≧ ΣNH 3 thre), the ECU 8 proceeds to the process of S107, and the NH 3 decrease is reduced from the NH 3 adsorption amount ΣNH 3 stp at the time of stoppage. the amount DerutaNH 3 the difference obtained by subtracting (ΣNH 3 stp-ΔNH 3) to estimate the starting adsorbed NH 3 amount ΣNH 3 str. On the other hand, when a negative determination is made in the process of S106 (ΣNH 3 stp−ΔNH 3 ) <ΣNH 3 thre), the ECU 8 proceeds to the process of S108 and sets the predetermined threshold value ΣNH 3 thre to the startup NH 3 adsorption amount ΣNH. Estimated as 3 str.

また、前記S104の処理において否定判定された場合(ΣNHstp≦ΣNHthre)は、ECU8は、S109の処理へ進む。S109の処理では、ECU8は、前記停止時NH吸着量ΣNHstpを始動時NH吸着量ΣNHstrとして推定する。 If a negative determination is made in the process of S104 (ΣNH 3 stp ≦ ΣNH 3 thre), the ECU 8 proceeds to the process of S109. In the process of S109, the ECU 8 estimates the stop time NH 3 adsorption amount ΣNH 3 stp as a start time NH 3 adsorption amount ΣNH 3 str.

以上述べたようにECU8が図7の処理ルーチンを実行することにより、本発明に係わる「推定手段」が実現される。その結果、内燃機関1の停止期間中にECU8や排気温度センサ7等を作動させることなく、始動時NH吸着量を推定することができる。さらに、始動時NH吸着量が実際のNH吸着量をより多くなることを抑制しつつ、始動時NH吸着量が実際のNH吸着量に対して過剰に少なくなることも抑制することができる。よって、内燃機関1の始動後に添加弁5から添加される尿素水溶液の量が排気中のNOを過不足なく浄化するために必要な量(適正添加量)から乖離することも抑制することができるため、内燃機関1の始動後における排気エミッションの悪化を抑制しつつ、尿素水溶液の消費量の不要な増加も抑制することができる。また、SCR触媒の故障診断が実行される際に、SCR触媒が正常であるにもかかわらず、SCR触媒が異常であると誤診断されることも抑制することができる。 As described above, when the ECU 8 executes the processing routine of FIG. 7, the “estimator” according to the present invention is realized. As a result, it is possible to estimate the startup NH 3 adsorption amount without operating the ECU 8, the exhaust temperature sensor 7, or the like during the stop period of the internal combustion engine 1. Furthermore, while suppressing that the starting adsorbed NH 3 amount becomes more actual NH 3 adsorption, possible to suppress the excessively small with respect to the start time of adsorbed NH 3 amount is actually adsorbed NH 3 amount Can do. Thus, it is possible to suppress to deviate from the amount required for the amount of the aqueous urea solution to be added from the addition valve 5 after the start of the internal combustion engine 1 for purifying NO X in the exhaust gas without excess or deficiency (appropriate amount) Therefore, an unnecessary increase in the consumption amount of the urea aqueous solution can be suppressed while suppressing the deterioration of the exhaust emission after starting the internal combustion engine 1. In addition, when a failure diagnosis of the SCR catalyst is executed, it is possible to suppress erroneous diagnosis that the SCR catalyst is abnormal although the SCR catalyst is normal.

1 内燃機関
2 排気管
3 第一触媒ケーシング
4 第二触媒ケーシング
5 添加弁
6 NOセンサ
7 排気温度センサ
8 ECU
50 ポンプ
51 添加剤タンク
Reference Signs List 1 internal combustion engine 2 exhaust pipe 3 first catalyst casing 4 second catalyst casing 5 addition valve 6 NO X sensor 7 exhaust temperature sensor 8 ECU
50 Pump 51 Additive tank

Claims (2)

内燃機関の排気通路に配置され、選択還元型触媒を具備する排気浄化装置と、
前記排気浄化装置へ流入する排気に、アンモニア又はアンモニアの前駆体である添加剤を添加する添加装置と、
内燃機関の運転期間中において、前記排気浄化装置へ流入するNOの量と前記添加装置から添加される添加剤の量とをパラメータとして、前記選択還元型触媒に吸着されているアンモニアの量であるNH吸着量を演算する演算手段と、
を備えた排気浄化システムにおいて、
内燃機関が停止された後に再始動される場合に、少なくとも内燃機関の停止時における前記選択還元型触媒の温度をパラメータとして、内燃機関の停止期間中におけるNH吸着量の減少量であるNH減少量を推定し、内燃機関の停止時における前記演算手段の演算結果である停止時NH吸着量から前記NH減少量を減算することで、内燃機関が再始動される時点で前記SCR触媒に吸着されているNHの量である始動時NH吸着量を推定する推定手段を更に備え、
前記停止時NH吸着量が前記所定の閾値より多い場合に、前記推定手段は、前記停止時NH吸着量から前記NH減少量を減算して得られる差が所定の閾値以上であれば、前記差を前記始動時NH吸着量として推定し、前記差が前記所定の閾値未満であれば、前記所定の閾値を前記始動時NH吸着量として推定し、
前記停止時NH吸着量が前記所定の閾値以下である場合に、前記推定手段は、前記停止時NH吸着量を前記始動時NH吸着量として推定する排気浄化システム。
An exhaust purification device that is disposed in an exhaust passage of the internal combustion engine and includes a selective reduction catalyst;
An addition device that adds ammonia or an additive that is a precursor of ammonia to the exhaust gas flowing into the exhaust purification device;
During the operation period of the internal combustion engine, and the amount of additive to be added from the amount and the addition device of the NO X flowing into the exhaust gas purifier as parameters, an amount of ammonia adsorbed on the selective reduction catalyst A computing means for computing a certain NH 3 adsorption amount;
In an exhaust purification system equipped with
When the internal combustion engine is restarted after being stopped, NH 3 the temperature of the selective reduction catalyst at the time of stoppage of at least the internal combustion engine as a parameter, an amount of decrease in NH 3 adsorption in the stop period of the internal combustion engine When the internal combustion engine is restarted by estimating the decrease amount and subtracting the NH 3 decrease amount from the stop NH 3 adsorption amount that is the calculation result of the calculation means when the internal combustion engine is stopped, the SCR catalyst further comprising estimation means for estimating starting adsorbed NH 3 amount is an amount of NH 3 adsorbed in the,
When the stop NH 3 adsorption amount is larger than the predetermined threshold, the estimation means is configured such that the difference obtained by subtracting the NH 3 decrease amount from the stop NH 3 adsorption amount is equal to or greater than a predetermined threshold. , The difference is estimated as the startup NH 3 adsorption amount, and if the difference is less than the predetermined threshold, the predetermined threshold is estimated as the startup NH 3 adsorption amount,
An exhaust purification system wherein the stop adsorbed NH 3 amount when the is less than a predetermined threshold value, the estimating means, for estimating the stop-period adsorbed NH 3 amount as the starting adsorbed NH 3 amount.
前記所定の閾値は、内燃機関の停止時における前記選択還元型触媒の温度が高いときは低いときに比べ、小さい値に設定される請求項1に記載の排気浄化システム。
The exhaust purification system according to claim 1, wherein the predetermined threshold is set to a smaller value when the temperature of the selective catalytic reduction catalyst is high when the internal combustion engine is stopped than when the temperature is low.
JP2014211690A 2014-10-16 2014-10-16 Exhaust purification system Active JP6112093B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014211690A JP6112093B2 (en) 2014-10-16 2014-10-16 Exhaust purification system
DE102015117275.5A DE102015117275B4 (en) 2014-10-16 2015-10-09 Exhaust emission control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014211690A JP6112093B2 (en) 2014-10-16 2014-10-16 Exhaust purification system

Publications (2)

Publication Number Publication Date
JP2016079883A true JP2016079883A (en) 2016-05-16
JP6112093B2 JP6112093B2 (en) 2017-04-12

Family

ID=55638097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014211690A Active JP6112093B2 (en) 2014-10-16 2014-10-16 Exhaust purification system

Country Status (2)

Country Link
JP (1) JP6112093B2 (en)
DE (1) DE102015117275B4 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018105236A (en) * 2016-12-27 2018-07-05 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
JP2018105233A (en) * 2016-12-27 2018-07-05 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
JP2019167935A (en) * 2018-03-26 2019-10-03 マツダ株式会社 Exhaust gas state estimation method for engine, catalyst abnormality determination method for engine, and catalyst abnormality determination device for engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082354A1 (en) * 2009-01-19 2010-07-22 トヨタ自動車株式会社 Abnormality detection device for exhaust purification device and abnormality detection method for exhaust purification device
JP2010209771A (en) * 2009-03-10 2010-09-24 Denso Corp Malfunction diagnosis device for exhaust emission control system, and exhaust emission control system
WO2013190659A1 (en) * 2012-06-20 2013-12-27 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5126141B2 (en) 2009-03-25 2013-01-23 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP5560089B2 (en) 2010-05-14 2014-07-23 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2012057591A (en) 2010-09-13 2012-03-22 Toyota Central R&D Labs Inc Exhaust emission control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082354A1 (en) * 2009-01-19 2010-07-22 トヨタ自動車株式会社 Abnormality detection device for exhaust purification device and abnormality detection method for exhaust purification device
JP2010209771A (en) * 2009-03-10 2010-09-24 Denso Corp Malfunction diagnosis device for exhaust emission control system, and exhaust emission control system
WO2013190659A1 (en) * 2012-06-20 2013-12-27 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018105236A (en) * 2016-12-27 2018-07-05 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
JP2018105233A (en) * 2016-12-27 2018-07-05 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
JP2019167935A (en) * 2018-03-26 2019-10-03 マツダ株式会社 Exhaust gas state estimation method for engine, catalyst abnormality determination method for engine, and catalyst abnormality determination device for engine

Also Published As

Publication number Publication date
JP6112093B2 (en) 2017-04-12
DE102015117275A1 (en) 2016-04-21
DE102015117275B4 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
JP4692911B2 (en) NOx sensor output calibration apparatus and output calibration method
JP6614187B2 (en) Exhaust gas purification device for internal combustion engine
AU2017268543B2 (en) Exhaust gas control apparatus for internal combustion engine
JP6087866B2 (en) Exhaust gas purification device abnormality diagnosis device
JPWO2018097246A1 (en) Abnormality diagnosis system for exhaust purification system
JP2017194022A (en) Control device for exhaust emission control device
JP2010031731A (en) Exhaust emission control system of internal-combustion engine
JP2014037787A (en) Exhaust emission control system for internal combustion engine
JP5910759B2 (en) Exhaust gas purification system for internal combustion engine
JP6911479B2 (en) Exhaust gas purification system control device
JP6112093B2 (en) Exhaust purification system
JP2019152137A (en) Exhaust emission control device for internal combustion engine
JP2010261320A (en) Exhaust emission control device of internal combustion engine
JP2016153605A (en) Urea addition control device and learning device
EP3135875B1 (en) Exhaust purifying system
JP6149940B2 (en) Exhaust gas purification device for internal combustion engine
JP2015197086A (en) Deterioration determination device of selectively reducing catalyst
JP2013253540A (en) Exhaust cleaning system for internal combustion engine
JP6573225B2 (en) Automatic engine stop control device
JP2018071490A (en) Deterioration diagnosis device of selective reduction catalyst
JP2013221487A (en) Exhaust emission control system of internal combustion engine
JP2015101988A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170227

R151 Written notification of patent or utility model registration

Ref document number: 6112093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151