JP2013251497A - Semiconductor device and manufacturing method of the same - Google Patents

Semiconductor device and manufacturing method of the same Download PDF

Info

Publication number
JP2013251497A
JP2013251497A JP2012127216A JP2012127216A JP2013251497A JP 2013251497 A JP2013251497 A JP 2013251497A JP 2012127216 A JP2012127216 A JP 2012127216A JP 2012127216 A JP2012127216 A JP 2012127216A JP 2013251497 A JP2013251497 A JP 2013251497A
Authority
JP
Japan
Prior art keywords
gate
breakdown voltage
region
semiconductor substrate
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012127216A
Other languages
Japanese (ja)
Inventor
Hisashi Yonemoto
久 米元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2012127216A priority Critical patent/JP2013251497A/en
Publication of JP2013251497A publication Critical patent/JP2013251497A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device which can effectively inhibit unnecessary raise of on-resistance and field concentration on a gate end.SOLUTION: A semiconductor device comprises one and more types of high-voltage transistors each having a MOS transistor structure including a gate part formed by stacking on a semiconductor substrate 1, element isolation regions 2 formed by an STI method, an active region partitioned by the element isolation regions 2, a source region 16 and a drain region 17 which are formed in the active region at a distance from each other; and a gate insulation film 10 and a gate electrode 11 on a surface of the semiconductor substrate 1 between the source region 16 and the drain region 17. The high-voltage transistor includes below the semiconductor substrate surface at an end of the gate part, a gate end insulation part 3 formed by filling an insulator in a groove formed on the semiconductor substrate. A depth of the gate end insulation part 3 from the semiconductor substrate surface is made larger than a film thickness of the gate insulation film 10 of the high-voltage transistor and smaller than a depth of the element isolation region 2 from the semiconductor substrate surface.

Description

本発明は、半導体装置に関し、特に、高耐圧なMOS型トランジスタに関する。   The present invention relates to a semiconductor device, and more particularly to a high voltage MOS transistor.

論理回路用トランジスタにおいて、動作速度の向上やコスト低減を図るために、トランジスタの微細化は不可欠であり、低消費電力化を図るべく電源電圧も下がる傾向がある。一方では、電源用入出力インターフェース回路、フラッシュメモリ等でのデータ書き込み消去用回路、液晶パネルの駆動用回路等は、一般の論理回路よりも高い入出力電圧を取り扱うため、耐圧の高いトランジスタを必要とする。   In a logic circuit transistor, miniaturization of the transistor is indispensable in order to improve the operation speed and reduce the cost, and the power supply voltage tends to decrease in order to reduce power consumption. On the other hand, a power input / output interface circuit, a data write / erase circuit in a flash memory, a liquid crystal panel drive circuit, etc. handle a higher input / output voltage than a general logic circuit, and therefore requires a transistor with a high breakdown voltage. And

一般的な高耐圧トランジスタについては、耐圧を確保するために、ゲート酸化膜を厚くし、ゲートと高濃度拡散領域間の距離を確保する必要があり、トランジスタ及び素子分離領域の寸法は低電圧トランジスタよりも大きくなる傾向がある。このため、ドリフト部に素子分離領域に使用するSTI(Shallow Trench Isolation)を採用し、深さ方向に距離を確保することによって、素子の縮小化が図れるトレンチオフセット型の中・高耐圧MOSトランジスタが提案されている。   For a general high voltage transistor, it is necessary to make the gate oxide film thick and to secure a distance between the gate and the high concentration diffusion region in order to ensure a withstand voltage, and the dimensions of the transistor and the element isolation region are low voltage transistors. Tend to be bigger. For this reason, a trench offset type medium / high voltage MOS transistor that can reduce the size of the element by adopting STI (Shallow Trench Isolation) used in the element isolation region in the drift portion and securing a distance in the depth direction is provided. Proposed.

また、高耐圧・低オン抵抗素子として周知のLDMOS(Lateral Diffused MOS) トランジスタでは、低電圧トランジスタのゲート酸化膜を利用することにより、チャネル部の濃度をドレイン側ドリフト部よりも濃度を高くすることができ、チャネル側への空乏層の伸びを抑制することによって、チャネル長を縮小し、高耐圧・低オン抵抗化を実現している。但し、薄いゲート酸化膜を利用した高耐圧トランジスタにおいては、耐圧を決める要因として、第1に、チャネル部のウェルとドレイン側ドリフト部間の耐圧、第2に、ドレイン側ドリフト部と基板間の耐圧、第3に、ドレイン側ドリフト部とドレイン側ゲート端部での電界集中による耐圧の3種類の耐圧があり、ゲート酸化膜を薄くするに従い、ゲート端部での電界集中が支配的になってしまう。これを改善するために、ドレイン側のゲート端部にLOCOS(Local Oxidation of Silicon)法により厚い酸化膜を形成し、ゲート端部での電界集中を緩和する方法(例えば、下記の特許文献1等参照)や、LOCOSの代わりにSTIにより緩和する方法が提案されている(例えば、下記の特許文献2等参照)。   Further, in a well-known LDMOS (Lateral Diffused MOS) transistor as a high breakdown voltage / low on-resistance element, the concentration of the channel portion is made higher than that of the drain side drift portion by using the gate oxide film of the low voltage transistor. Therefore, by suppressing the extension of the depletion layer to the channel side, the channel length is reduced, and high breakdown voltage and low on-resistance are realized. However, in a high breakdown voltage transistor using a thin gate oxide film, the factors that determine the breakdown voltage are firstly the breakdown voltage between the well of the channel part and the drain side drift part, and secondly, between the drain side drift part and the substrate. Third, there are three types of breakdown voltage, the breakdown voltage due to the electric field concentration at the drain side drift portion and the drain side gate end portion, and the electric field concentration at the gate end portion becomes dominant as the gate oxide film becomes thinner. End up. In order to improve this, a method of forming a thick oxide film by LOCOS (Local Oxidation of Silicon) method at the gate end on the drain side to alleviate electric field concentration at the gate end (for example, Patent Document 1 below) And a method of relaxing by STI instead of LOCOS has been proposed (see, for example, Patent Document 2 below).

図17及び図18に、一般的なSTIオフセット型のn型高耐圧MOSトランジスタと、STIオフセット型のn型LDMOSトランジスタの断面構造の一例を夫々模式的に示す。当該STIオフセット型の素子構造では、ゲート端部の厚い酸化膜によりドレインとゲート間の電界集中が緩和されるため、耐圧の向上が図れるが、その反面、ドリフト部での電流経路がSTIを下方側に迂回することで長くなり、オン抵抗の上昇を伴うという問題がある。   FIGS. 17 and 18 schematically show examples of cross-sectional structures of a general STI offset type n-type high breakdown voltage MOS transistor and an STI offset type n-type LDMOS transistor, respectively. In the STI offset type element structure, since the electric field concentration between the drain and the gate is relaxed by the thick oxide film at the gate end portion, the breakdown voltage can be improved. However, the current path in the drift portion is below the STI. There is a problem that it becomes longer by detouring to the side and accompanied by an increase in on-resistance.

更に、図17及び図18に示す一般的なSTIオフセット型の中・高耐圧トランジスタでは、ゲート端部にSTIを配置することにより、GIDL(Gate Induced Drain Leakage)の原因となる空乏層のドレイン側への押し付けを抑制することは可能であるが、ゲート端部に配置されるSTIとして素子分離領域のSTIを使用しているため、STIが深くなり、オン抵抗が増加している。   Further, in the general STI offset type medium / high breakdown voltage transistors shown in FIGS. 17 and 18, the drain side of the depletion layer that causes GIDL (Gate Induced Drain Leakage) by arranging the STI at the gate end. However, since the STI of the element isolation region is used as the STI disposed at the gate end, the STI is deepened and the on-resistance is increased.

特開平8−236757号公報JP-A-8-236757 特開2011−187853号公報JP 2011-187853 A

上述のオン抵抗の増加を抑制する方法として、特許文献2では、LDMOSトランジスタの耐圧とオン抵抗のトレードオフ関係を改善するために、STI形成時のトレンチエッチ後にSTI底部に不純物注入を追加することで、STI下方部の不純物濃度を上げ、ドリフト抵抗の低減を行い、オン抵抗を下げる試みが行われている。しかし、当該方法では、追加の不純物注入工程により工程数が増加し、製造コスト高騰の要因となる。   As a method for suppressing the increase in the on-resistance, in Patent Document 2, an impurity implantation is added to the bottom of the STI after the trench etch during the STI formation in order to improve the trade-off relationship between the breakdown voltage and the on-resistance of the LDMOS transistor. Attempts have been made to increase the impurity concentration in the lower portion of the STI, reduce the drift resistance, and lower the on-resistance. However, in this method, the number of steps increases due to the additional impurity implantation step, which causes an increase in manufacturing cost.

一方、ゲート端部に配置されるSTIの深さを素子分離領域のSTIより浅くすることで、ドリフト部での電流経路のSTIの迂回距離を短くして、オン抵抗の増加を抑制することが考えられるが、ゲート端部に配置されるSTIの深さを浅くするには、ゲート端部に配置されるSTIのトレンチと素子分離領域のSTIのトレンチを夫々別工程で形成しなければならず、工程数が増加し、製造コスト高騰の要因となる。   On the other hand, by making the depth of the STI disposed at the gate end portion shallower than the STI of the element isolation region, the detour distance of the STI of the current path in the drift portion can be shortened, and the increase in on-resistance can be suppressed. In order to reduce the depth of the STI disposed at the gate end, the STI trench disposed at the gate end and the STI trench of the element isolation region must be formed in separate processes. This increases the number of processes and increases manufacturing costs.

本発明は、上記の問題点に鑑みてなされたもので、その目的は、オン抵抗の不必要な上昇やゲート端部での電界集中を効果的に抑制可能な半導体装置を提供する点にある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a semiconductor device capable of effectively suppressing an unnecessary increase in on-resistance and electric field concentration at the gate end. .

上記目的を達成するため、本発明は、半導体基板上にSTI(Shallow Trench Isolation)法により形成された素子分離領域、前記素子分離領域により区画された活性領域、前記活性領域内に互いに離間して形成されたソース領域とドレイン領域、及び、前記ソース領域とドレイン領域間の前記半導体基板の表面上にゲート絶縁膜とゲート電極を積層してなるゲート部を備えてなるMOS型トランジスタ構造の1種類以上の高耐圧トランジスタを有し、前記高耐圧トランジスタの前記ゲート部の端部の前記半導体基板表面より下方に、前記半導体基板に形成された溝内に絶縁体を充填してなるゲート端絶縁部を有し、前記ゲート端絶縁部の幅が、前記素子分離領域の最小幅より細く、前記ゲート端絶縁部の前記半導体基板表面からの深さが、前記高耐圧トランジスタの前記ゲート絶縁膜の膜厚より大きく、前記素子分離領域の前記半導体基板表面からの深さより小さいことを特徴とする半導体装置を提供する。   To achieve the above object, the present invention provides an element isolation region formed on a semiconductor substrate by an STI (Shallow Trench Isolation) method, an active region partitioned by the element isolation region, and spaced apart from each other in the active region. One type of MOS transistor structure comprising a formed source region and drain region, and a gate portion formed by laminating a gate insulating film and a gate electrode on the surface of the semiconductor substrate between the source region and the drain region. A gate end insulating portion comprising the above high breakdown voltage transistor, wherein an insulator is filled in a groove formed in the semiconductor substrate below the surface of the semiconductor substrate at the end of the gate portion of the high breakdown voltage transistor. The gate end insulating portion is narrower than the minimum width of the element isolation region, and the semiconductor of the gate end insulating portion There is provided a semiconductor device characterized in that a depth from a substrate surface is larger than a film thickness of the gate insulating film of the high breakdown voltage transistor and smaller than a depth from the semiconductor substrate surface of the element isolation region.

ここで、上記特徴の半導体装置は、前記高耐圧トランジスタの内の1種類のトランジスタが、前記ゲート部の前記ドレイン領域側の端部にのみ、前記ゲート端絶縁部を有することが好ましい。   Here, in the semiconductor device having the above characteristics, it is preferable that one of the high breakdown voltage transistors includes the gate end insulating portion only at the end of the gate portion on the drain region side.

更に、上記特徴の半導体装置は、前記高耐圧トランジスタの内の1種類のトランジスタが、前記ゲート部の前記ドレイン領域側と前記ソース領域側の各端部に、前記ゲート端絶縁部を夫々有することが好ましい。   Furthermore, in the semiconductor device having the above characteristics, one of the high breakdown voltage transistors has the gate end insulating portion at each end of the gate portion on the drain region side and the source region side. Is preferred.

更に、上記特徴の半導体装置は、前記高耐圧トランジスタの内の1種類のトランジスタが、前記ゲート部の前記ドレイン領域側と前記ソース領域側の各端部に、前記ゲート端絶縁部を夫々有し、前記ドレイン領域側の端部の前記ゲート端絶縁部の前記半導体基板表面からの深さと、前記ソース領域側の端部の前記ゲート端絶縁部の前記半導体基板表面からの深さが異なることが好ましい。   Furthermore, in the semiconductor device having the above characteristics, one type of the high breakdown voltage transistors has the gate end insulating portion at each end of the gate portion on the drain region side and the source region side. The depth of the gate end insulating portion at the end on the drain region side from the surface of the semiconductor substrate is different from the depth of the gate end insulating portion at the end on the source region side from the surface of the semiconductor substrate. preferable.

更に、上記特徴の半導体装置は、前記高耐圧トランジスタより低耐圧の前記MOS型トランジスタ構造の1種類以上の低耐圧トランジスタを有し、前記低耐圧トランジスタの前記ゲート部の端部の前記半導体基板表面より下方に、前記ゲート端絶縁部が形成されていないことが好ましい。   Furthermore, the semiconductor device having the above characteristics has at least one kind of low breakdown voltage transistor having the MOS type transistor structure having a lower breakdown voltage than the high breakdown voltage transistor, and the surface of the semiconductor substrate at the end of the gate portion of the low breakdown voltage transistor. It is preferable that the gate end insulating portion is not formed further below.

更に、上記特徴の半導体装置は、前記高耐圧トランジスタの前記ゲート絶縁膜と、前記低耐圧トランジスタの前記ゲート絶縁膜が、同じ膜厚であることが好ましい。   Furthermore, in the semiconductor device having the above characteristics, it is preferable that the gate insulating film of the high breakdown voltage transistor and the gate insulating film of the low breakdown voltage transistor have the same film thickness.

更に、上記特徴の半導体装置は、前記ゲート端絶縁部の前記半導体基板表面からの深さの異なる2種類以上の前記高耐圧トランジスタを備えることが好ましい。   Furthermore, the semiconductor device having the above characteristics preferably includes two or more types of the high breakdown voltage transistors having different depths from the surface of the semiconductor substrate of the gate end insulating portion.

更に、上記特徴の半導体装置は、2種類以上の前記高耐圧トランジスタの内の1種類のトランジスタが、ESD保護素子として使用されることが好ましい。   Furthermore, in the semiconductor device having the above characteristics, it is preferable that one of the two or more types of the high breakdown voltage transistors is used as an ESD protection element.

更に、上記目的を達成するため、本発明は、上記特徴の半導体装置の製造方法であって、前記半導体基板に、前記素子分離領域の溝と前記ゲート端絶縁部の溝を、45°〜85°の間に調整されたエッチング角度のエッチングにより同時に形成することを特徴とする半導体装置の製造方法を提供する。   Furthermore, in order to achieve the above object, the present invention provides a method of manufacturing a semiconductor device having the above characteristics, wherein the groove of the element isolation region and the groove of the gate end insulating portion are formed in the semiconductor substrate at 45 ° to 85 °. Provided is a method for manufacturing a semiconductor device, wherein the semiconductor devices are simultaneously formed by etching with an etching angle adjusted between.

上記特徴の半導体装置及びその製造方法によれば、高耐圧トランジスタが、ゲート部のドレイン領域側或、ソース領域側、或いは、その両側の端部の半導体基板表面より下方にゲート絶縁膜の膜厚より深さが大きいゲート端絶縁部を備えることで、ゲート部とドレイン領域或いはソース領域間の離間距離を確保できるため、当該端部での電界集中を効果的に緩和できる。更に、ゲート端絶縁部の深さが素子分離領域の前記半導体基板表面からの深さより小さくできるので、当該高耐圧トランジスタのオン抵抗が不必要に上昇することも抑制できる。   According to the semiconductor device having the above characteristics and the method of manufacturing the same, the high breakdown voltage transistor has a gate insulating film thickness below the surface of the semiconductor substrate on the drain region side, the source region side, or both ends of the gate portion. By providing the gate end insulating portion having a greater depth, a separation distance between the gate portion and the drain region or the source region can be secured, so that electric field concentration at the end portion can be effectively reduced. Furthermore, since the depth of the gate end insulating portion can be made smaller than the depth of the element isolation region from the surface of the semiconductor substrate, it is possible to suppress the on-resistance of the high voltage transistor from increasing unnecessarily.

特に、素子分離領域とゲート端絶縁部は、何れも半導体基板に形成された溝内に絶縁体を充填してなる構造であり、当該各溝を同じ工程で同時に形成できる。しかも、ゲート端絶縁部の溝の幅が素子分離領域の溝の最小幅より細いため、ゲート端絶縁部の溝の深さを素子分離領域の溝の深さより浅く加工できる。より具体的には、溝の幅の異なる素子分離領域とゲート端絶縁部の各溝を、エッチング角度を調整することで、同じエッチング工程で異なる深さに形成することができる。つまり、素子分離領域とゲート端絶縁部を何れもSTIで形成した場合において、夫々の溝の深さの異なるSTIを同一工程で形成できるため、従来のSTIオフセット型の高耐圧MOSトランジスタやLDMOSトランジスタのように、ゲート端絶縁部のSTIを別工程で形成することによる製造コストの高騰を招くことなく、ゲート端絶縁部を不必要に深く形成しなくても良いので、電界集中領域のSTIの深さを耐圧に応じて自由に調整でき、オン抵抗の上昇を抑制することが可能となる。   In particular, each of the element isolation region and the gate end insulating portion has a structure in which an insulator is filled in a groove formed in a semiconductor substrate, and each groove can be formed simultaneously in the same process. In addition, since the width of the groove in the gate end insulating portion is narrower than the minimum width of the groove in the element isolation region, the depth of the groove in the gate end insulating portion can be processed shallower than the depth of the groove in the element isolation region. More specifically, the element isolation regions having different groove widths and the grooves in the gate end insulating portion can be formed at different depths in the same etching step by adjusting the etching angle. That is, when both the element isolation region and the gate end insulating portion are formed by STI, STIs having different groove depths can be formed in the same process, so that conventional STI offset type high breakdown voltage MOS transistors and LDMOS transistors can be formed. As described above, since the gate end insulating portion does not need to be unnecessarily deeply formed without causing an increase in manufacturing cost due to the formation of the STI of the gate end insulating portion in a separate process, The depth can be freely adjusted according to the withstand voltage, and an increase in on-resistance can be suppressed.

また、LDMOSトランジスタでは、ゲート電極とドリフト領域にオーバーラップ領域を持たせることにより、ドリフト部のゲート端絶縁部(STI)下のドリフトキャリア濃度をゲート電極の電圧により高めることができるため、オン抵抗を低減できる。   In addition, in the LDMOS transistor, by providing an overlap region between the gate electrode and the drift region, the drift carrier concentration under the gate end insulating portion (STI) of the drift portion can be increased by the voltage of the gate electrode. Can be reduced.

更に、ゲート部の端部にゲート端絶縁部を有する2種類以上の高耐圧トランジスタを搭載している半導体装置であっても、各高耐圧トランジスタの耐圧に応じて、同一工程で、各ゲート端絶縁部の深さを調整できるため、工程数を増やすことなく、2種類以上の高耐圧トランジスタを混載した半導体装置を提供することができる。   Further, even in a semiconductor device in which two or more types of high breakdown voltage transistors having a gate end insulating portion at the end of the gate portion are mounted, each gate end is formed in the same process according to the breakdown voltage of each high breakdown voltage transistor. Since the depth of the insulating portion can be adjusted, a semiconductor device in which two or more types of high voltage transistors are mixedly mounted can be provided without increasing the number of processes.

本発明の半導体装置に含まれる高耐圧及び低耐圧MOSトランジスタの製造過程(工程1)を模式的に示す工程断面図Process sectional drawing which shows typically the manufacturing process (process 1) of the high voltage | pressure-resistant and low voltage | pressure-resistant MOS transistor contained in the semiconductor device of this invention. 本発明の半導体装置に含まれる高耐圧及び低耐圧MOSトランジスタの製造過程(工程2)を模式的に示す工程断面図Process sectional drawing which shows typically the manufacturing process (process 2) of the high voltage | pressure-resistant and low voltage | pressure-resistant MOS transistor contained in the semiconductor device of this invention. 本発明の半導体装置に含まれる高耐圧及び低耐圧MOSトランジスタの製造過程(工程3)を模式的に示す工程断面図Process sectional drawing which shows typically the manufacturing process (process 3) of the high voltage | pressure-resistant and low voltage | pressure-resistant MOS transistor contained in the semiconductor device of this invention. 本発明の半導体装置に含まれる高耐圧及び低耐圧MOSトランジスタの製造過程(工程4)を模式的に示す工程断面図Process sectional drawing which shows typically the manufacturing process (process 4) of the high voltage | pressure-resistant and low voltage | pressure-resistant MOS transistor contained in the semiconductor device of this invention. 本発明の半導体装置に含まれる高耐圧及び低耐圧MOSトランジスタの製造過程(工程5)を模式的に示す工程断面図Process sectional drawing which shows typically the manufacturing process (process 5) of the high voltage | pressure-resistant and low voltage | pressure-resistant MOS transistor contained in the semiconductor device of this invention. 本発明の半導体装置に含まれる高耐圧及び低耐圧MOSトランジスタの製造過程(工程6)を模式的に示す工程断面図Process sectional drawing which shows typically the manufacturing process (process 6) of the high voltage | pressure-resistant and low voltage | pressure-resistant MOS transistor contained in the semiconductor device of this invention. 本発明の半導体装置に含まれる高耐圧及び低耐圧MOSトランジスタの製造過程(工程7)を模式的に示す工程断面図Process sectional drawing which shows typically the manufacturing process (process 7) of the high voltage | pressure-resistant and low voltage | pressure-resistant MOS transistor contained in the semiconductor device of this invention. 本発明の半導体装置に含まれる高耐圧及び低耐圧MOSトランジスタの製造過程(工程8及び9)を模式的に示す工程断面図Process sectional drawing which shows typically the manufacturing process (process 8 and 9) of the high voltage | pressure-resistant and low voltage | pressure-resistant MOS transistor contained in the semiconductor device of this invention. 本発明の半導体装置に含まれる高耐圧及び低耐圧MOSトランジスタの製造過程(工程10)を模式的に示す工程断面図Process sectional drawing which shows typically the manufacturing process (process 10) of the high voltage | pressure-resistant and low voltage | pressure-resistant MOS transistor contained in the semiconductor device of this invention. 本発明の半導体装置に含まれる高耐圧及び低耐圧MOSトランジスタの製造過程(工程11)を模式的に示す工程断面図Process sectional drawing which shows typically the manufacturing process (process 11) of the high voltage | pressure-resistant and low voltage | pressure-resistant MOS transistor contained in the semiconductor device of this invention. ゲート端絶縁部の幅Wgeとトレンチ深さD1の関係を、エッチング角度が45°、60°、70°、80°の場合について示す図The figure which shows the relationship between the gate edge insulating part width Wge and the trench depth D1 when the etching angles are 45 °, 60 °, 70 ° and 80 °. ゲート端絶縁部のトレンチ深さD1と、LDMOSトランジスタの素子耐圧Vtor及びオン抵抗Ronとの関係を模式的に示す図The figure which shows typically the relationship between the trench depth D1 of a gate end insulating part, element breakdown voltage Vtor, and ON resistance Ron of a LDMOS transistor. LDMOSトランジスタのゲート電極とドリフト領域のオーバーラップ長とLDMOSトランジスタのオン抵抗と間の関係を模式的に示す図The figure which shows typically the relationship between the overlap length of the gate electrode of a LDMOS transistor, and a drift region, and the ON resistance of a LDMOS transistor 本発明の半導体装置に含まれる高耐圧MOSトランジスタの他の素子構造を模式的に示す断面図Sectional drawing which shows typically the other element structure of the high voltage | pressure-resistant MOS transistor contained in the semiconductor device of this invention 本発明の半導体装置に含まれる高耐圧MOSトランジスタの他の素子構造を模式的に示す断面図Sectional drawing which shows typically the other element structure of the high voltage | pressure-resistant MOS transistor contained in the semiconductor device of this invention 本発明の半導体装置に含まれる高耐圧MOSトランジスタの他の素子構造を模式的に示す断面図Sectional drawing which shows typically the other element structure of the high voltage | pressure-resistant MOS transistor contained in the semiconductor device of this invention 従来のSTIオフセット型の高耐圧MOSトランジスタの素子構造の一例を模式的に示す断面図Sectional drawing which shows typically an example of the element structure of the conventional STI offset type high voltage MOS transistor 従来のSTIオフセット型の高耐圧LDMOSトランジスタの素子構造を模式的に示す断面図Sectional drawing which shows typically the element structure of the conventional STI offset type high voltage | pressure-resistant LDMOS transistor

以下において、本発明の半導体装置及びその製造方法の実施形態につき図面を参照して説明する。先ず、本発明の半導体装置に含まれる高耐圧MOSトランジスタと低耐圧MOSトランジスタの製造方法について、図1〜図10を参照して説明する。   Hereinafter, embodiments of a semiconductor device and a manufacturing method thereof according to the present invention will be described with reference to the drawings. First, a method of manufacturing a high voltage MOS transistor and a low voltage MOS transistor included in the semiconductor device of the present invention will be described with reference to FIGS.

図1〜図10では、高耐圧MOSトランジスタと低耐圧MOSトランジスタは、何れもnチャネル型MOSトランジスタである場合を想定し、更に、高耐圧MOSトランジスタとして、LDMOSトランジスタを一例として示す。図1〜図10は、夫々、右側が高耐圧MOSトランジスタ(LDMOSトランジスタ)の製造過程を示す工程断面図であり、左側が低耐圧MOSトランジスタの製造過程を示す工程断面図である。尚、図1〜図10では、説明の理解を容易にするために、要部を強調して記載しているため、図示された各部の寸法比は、必ずしも実際の素子の寸法比とは一致しない。   1 to 10, it is assumed that the high breakdown voltage MOS transistor and the low breakdown voltage MOS transistor are both n-channel MOS transistors, and an LDMOS transistor is shown as an example of the high breakdown voltage MOS transistor. 1 to 10 are process cross-sectional views showing a manufacturing process of a high voltage MOS transistor (LDMOS transistor) on the right side and process cross-sectional views showing a manufacturing process of a low voltage MOS transistor on the left side. In FIGS. 1 to 10, the main parts are emphasized for easy understanding of the explanation, and therefore the dimensional ratios of the respective parts shown in the drawings do not necessarily match the dimensional ratios of the actual elements. do not do.

図1に示すように、p型半導体基板であるシリコン基板1に、STI技術を用いて、低耐圧MOSトランジスタ領域内に素子分離領域2を、高耐圧MOSトランジスタ領域内に素子分離領域2とゲート端絶縁部3を、夫々同時に形成する(工程1)。工程1では、シリコン基板1を局所的に掘り込んでトレンチを形成するトレンチエッチングを、周知のRIE(Reactive Ion Eching)等の異方性ドライエッチングを用いて行う。尚、当該トレンチエッチング時において、ゲート端絶縁部3の幅Wgeを、素子分離領域2の最小幅より小さく調整し、更に、エッチング角度を45〜80°の範囲内に調整することにより、ゲート端絶縁部3のトレンチの深さD1を素子分離領域2のトレンチの深さD2より浅く形成する。尚、エッチング角度は、シリコン基板1の表面からの角度として規定される。素子分離領域2とゲート端絶縁部3の各トレンチ内に所定の絶縁膜(例えば、シリコン酸化膜)をCVD(Chemical Vapor Deposition)法等により埋設し、CMP(Chemical−Mechanical Polishing)法等による平坦化処理を行い、素子分離領域2とゲート端絶縁部3が形成される。本実施形態では、一例として、素子分離領域2のトレンチ深さD2を0.3〜1.0μmとし、ゲート端絶縁部3のトレンチ深さD1を0.05〜0.5μmとする。   As shown in FIG. 1, an element isolation region 2 is formed in a low breakdown voltage MOS transistor region and an element isolation region 2 and a gate are formed in a low breakdown voltage MOS transistor region on a silicon substrate 1 which is a p-type semiconductor substrate by using STI technology. The end insulating portions 3 are formed simultaneously (step 1). In step 1, trench etching for locally digging the silicon substrate 1 to form a trench is performed using anisotropic dry etching such as well-known RIE (Reactive Ion Etching). At the time of the trench etching, the width Wge of the gate end insulating portion 3 is adjusted to be smaller than the minimum width of the element isolation region 2, and further, the etching angle is adjusted to be within a range of 45 to 80 °. The trench depth D1 of the insulating portion 3 is formed shallower than the trench depth D2 of the element isolation region 2. The etching angle is defined as an angle from the surface of the silicon substrate 1. A predetermined insulating film (for example, silicon oxide film) is buried in each trench of the element isolation region 2 and the gate end insulating portion 3 by a CVD (Chemical Vapor Deposition) method or the like, and is flattened by a CMP (Chemical-Mechanical Polishing) method or the like. The element isolation region 2 and the gate end insulating portion 3 are formed by performing the process. In this embodiment, as an example, the trench depth D2 of the element isolation region 2 is set to 0.3 to 1.0 μm, and the trench depth D1 of the gate end insulating portion 3 is set to 0.05 to 0.5 μm.

図11に、素子分離領域2のトレンチ深さD2が1.0μmとする場合における、ゲート端絶縁部3の幅Wgeとトレンチ深さD1の関係を、エッチング角度が45°、60°、70°、80°の場合について示す。但し、トレンチエッチは、ドライエッチング法を用い、RFパワーを1000W、HBrとClガスの流量比を1:1〜5:1の間で変化させてエッチング角度の調整を行った。また、エッチング角度が85°の場合における、幅Wgeとトレンチ深さD1の関係を、比較例として図11に併記する。図11より、ゲート端絶縁部3の幅Wgeとエッチング角度を夫々個別に調整することにより、ゲート端絶縁部3のトレンチ深さD1を、素子分離領域2のトレンチ深さD2より浅くできることが分かる。 FIG. 11 shows the relationship between the width Wge of the gate end insulating portion 3 and the trench depth D1 when the trench depth D2 of the element isolation region 2 is 1.0 μm. The etching angles are 45 °, 60 °, and 70 °. The case of 80 ° will be described. However, for the trench etch, a dry etching method was used, and the etching angle was adjusted by changing the RF power to 1000 W and the flow ratio of HBr to Cl 2 gas between 1: 1 to 5: 1. Further, the relationship between the width Wge and the trench depth D1 when the etching angle is 85 ° is also shown in FIG. 11 as a comparative example. 11 that the trench depth D1 of the gate end insulating portion 3 can be made shallower than the trench depth D2 of the element isolation region 2 by individually adjusting the width Wge of the gate end insulating portion 3 and the etching angle. .

また、トレンチエッチは、シリコン基板1の結晶方位に対してエッチング速度の異なる薬液を用いたウエットエッチングを用いて行っても良い。例えば、周知のKOH溶液を用いた場合、(100)Siウェハに対してエッチング角度が約55°で加工できる。   Further, the trench etching may be performed using wet etching using chemicals having different etching rates with respect to the crystal orientation of the silicon substrate 1. For example, when a known KOH solution is used, it can be processed at an etching angle of about 55 ° with respect to a (100) Si wafer.

引き続き、図2に示すように、シリコン基板1の全面に犠牲酸化膜4を膜厚10〜30nmで形成した後、高耐圧MOSトランジスタ側の一部領域が開口したレジストマスク5を用いて、n型不純物、例えばP(燐)イオンを、ドーズ量が6.0×1012ions/cm、注入エネルギが100〜150KeVで注入を行い、900℃〜1100℃の熱処理によりLDMOSトランジスタのドリフト領域6を形成する(工程2)。尚、本Pイオンの注入は、耐圧仕様に応じて変更できることは言うまでもない。また、ドリフト領域6の形成は、注入のみの多段注入により形成しても問題ない。また、高耐圧MOSトランジスタ領域の全面にドリフト領域6が形成されても良い(図14参照)。 Subsequently, as shown in FIG. 2, after a sacrificial oxide film 4 is formed on the entire surface of the silicon substrate 1 to a thickness of 10 to 30 nm, a resist mask 5 having an opening in a partial region on the high voltage MOS transistor side is used to form n. A type impurity, for example, P (phosphorus) ions are implanted at a dose of 6.0 × 10 12 ions / cm 2 and an implantation energy of 100 to 150 KeV, and a heat treatment at 900 ° C. to 1100 ° C. causes the drift region 6 of the LDMOS transistor. Is formed (step 2). Needless to say, the implantation of the P ions can be changed according to the breakdown voltage specification. The drift region 6 can be formed by multi-stage injection only by injection. Further, the drift region 6 may be formed on the entire surface of the high voltage MOS transistor region (see FIG. 14).

引き続き、図3に示すように、周知のフォトリソグラフィを用いて、レジストマスク7にて低耐圧MOSトランジスタ領域の全面、及び、高耐圧MOSトランジスタ側の一部領域に2回以上の多段注入により、p型不純物、例えばB(ボロン)のイオン注入を行い、低耐圧MOSトランジスタのp型ウェル8、LDMOSトランジスタのp型ボディ領域9を同時に形成する(工程3)。本実施形態では、ゲート端絶縁部3のトレンチ深さD1が350nmの場合、Bイオンを、ドーズ量が1.0×1013ions/cmで、注入エネルギが200KeVのイオン注入、ドーズ量が7.0×1012ions/cmで、注入エネルギが100KeVのイオン注入、ドーズ量が5.0×1012ions/cmで、注入エネルギが20KeVのイオン注入の合計3回のイオン注入を行うことにより、高耐圧MOSトランジスタ(LDMOSトランジスタ)の接合耐圧(例えば、30V以上)に影響を及ぼすことなく、高耐圧MOSトランジスタと低耐圧トランジスタの閾値電圧の制御が可能である。尚、高エネルギ側でのイオン注入は、ゲート端絶縁部3のトレンチ深さD1及び高耐圧MOSトランジスタの所望耐圧に合わせて、注入エネルギ及びドーズ量の調整を行うことは言うまでもない。 Subsequently, as shown in FIG. 3, by using well-known photolithography, the resist mask 7 is used to perform multi-stage implantation twice or more on the entire surface of the low breakdown voltage MOS transistor region and a partial region on the high breakdown voltage MOS transistor side. A p-type impurity, for example, B (boron) is ion-implanted to simultaneously form the p-type well 8 of the low breakdown voltage MOS transistor and the p-type body region 9 of the LDMOS transistor (step 3). In this embodiment, when the trench depth D1 of the gate end insulating portion 3 is 350 nm, B ions are implanted at a dose of 1.0 × 10 13 ions / cm 2 and an implantation energy of 200 KeV, and the dose is Ion implantation with an energy of 100 KeV at 7.0 × 10 12 ions / cm 2 and an ion implantation with a dose of 5.0 × 10 12 ions / cm 2 and an energy of 20 KeV for a total of three times. By doing so, the threshold voltage of the high voltage MOS transistor and the low voltage transistor can be controlled without affecting the junction breakdown voltage (for example, 30 V or more) of the high voltage MOS transistor (LDMOS transistor). Needless to say, in the ion implantation on the high energy side, the implantation energy and the dose amount are adjusted in accordance with the trench depth D1 of the gate end insulating portion 3 and the desired breakdown voltage of the high breakdown voltage MOS transistor.

引き続き、図4に示すように、犠牲酸化膜4を除去し、素子分離領域2で囲まれた活性領域の表面において、酸素雰囲気中にて、800〜900℃の温度で熱酸化を行い、低耐圧MOSトランジスタ用の3〜15nmの膜厚のゲート酸化膜10を形成する(工程4)。本実施形態では、工程4のゲート酸化膜10は、高耐圧MOSトランジスタ側の活性領域上にも同時に形成され、高耐圧MOSトランジスタのゲート酸化膜として使用される場合を想定する。尚、ゲート酸化膜10は、上記の熱酸化膜に代えて、CVD法等により堆積した誘電体膜であっても良い。   Subsequently, as shown in FIG. 4, the sacrificial oxide film 4 is removed, and the surface of the active region surrounded by the element isolation region 2 is thermally oxidized in an oxygen atmosphere at a temperature of 800 to 900 ° C. A gate oxide film 10 having a thickness of 3 to 15 nm for a breakdown voltage MOS transistor is formed (step 4). In the present embodiment, it is assumed that the gate oxide film 10 in step 4 is simultaneously formed on the active region on the high voltage MOS transistor side and used as the gate oxide film of the high voltage MOS transistor. The gate oxide film 10 may be a dielectric film deposited by a CVD method or the like instead of the thermal oxide film.

引き続き、図5に示すように、高耐圧MOSトランジスタ及び低耐圧MOSトランジスタの両方のゲート電極となる第1のポリシリコン層を100〜200nmの膜厚で、CVD法にて堆積し、所定の平面視パターンでパターニングして、各MOSトランジスタのゲート電極11を同時に形成する(工程5)。尚、図5中に示すLDMOSトランジスタのゲート電極11とドリフト領域6のオーバーラップ長Lxは、図13に例示するLDMOSトランジスタのオン抵抗と当該オーバーラップ長Lxとの関係において参照される。   Subsequently, as shown in FIG. 5, a first polysilicon layer serving as the gate electrodes of both the high voltage MOS transistor and the low voltage MOS transistor is deposited with a film thickness of 100 to 200 nm by a CVD method to obtain a predetermined plane. The gate electrode 11 of each MOS transistor is formed simultaneously by patterning with a visual pattern (step 5). Note that the overlap length Lx of the gate electrode 11 and the drift region 6 of the LDMOS transistor shown in FIG. 5 is referred to in the relationship between the on-resistance of the LDMOS transistor illustrated in FIG. 13 and the overlap length Lx.

引き続き、図6に示すように、周知のフォトリソグラフィを用いて、低耐圧MOSトランジスタ領域の全面が開口したレジストマスク12を形成し、当該レジストマスク12とゲート電極11をマスクとして、n型不純物、例えば、As(砒素)イオンのLDD(Lightly Doped Drain)注入を行い、低耐圧MOSトランジスタのLDD領域13を形成する(工程6)。当該LDD注入は、一例として、ドーズ量2.0×1013ions/cm、注入エネルギ100KeVで行う。ここで、ショートチャネル抑制のためにp型イオン種を用いたHalo注入を同時に行っても良い。尚、本実施形態では、低耐圧MOSトランジスタ領域以外にも、高耐圧MOSトランジスタのゲート電極11のソース側の側方部とゲート電極11のソース側の一部が開口したレジストマスク12を用いることで、高耐圧MOSトランジスタのゲート電極11のソース側の側方部にも、低耐圧MOSトランジスタと同様のLDD領域13を形成しているが、高耐圧MOSトランジスタ側のLDD領域13は、必要に応じて形成すれば良い。 Subsequently, as shown in FIG. 6, a resist mask 12 having the entire surface of the low breakdown voltage MOS transistor region is formed by using well-known photolithography, and the n-type impurity, the resist mask 12 and the gate electrode 11 are used as a mask. For example, LDD (Lightly Doped Drain) implantation of As (arsenic) ions is performed to form the LDD region 13 of the low breakdown voltage MOS transistor (Step 6). For example, the LDD implantation is performed with a dose amount of 2.0 × 10 13 ions / cm 2 and an implantation energy of 100 KeV. Here, Halo implantation using a p-type ion species may be simultaneously performed for short channel suppression. In the present embodiment, in addition to the low breakdown voltage MOS transistor region, a resist mask 12 in which a side portion on the source side of the gate electrode 11 of the high breakdown voltage MOS transistor and a part on the source side of the gate electrode 11 are used is used. Thus, the LDD region 13 similar to the low breakdown voltage MOS transistor is formed in the side portion on the source side of the gate electrode 11 of the high breakdown voltage MOS transistor, but the LDD region 13 on the high breakdown voltage MOS transistor side is necessary. It may be formed accordingly.

引き続き、図7に示すように、低耐圧MOSトランジスタ領域と高耐圧MOSトランジスタ領域の全面にゲート電極11の側壁絶縁膜14となる、シリコン酸化膜を100nmの膜厚でCDV法により堆積させ、全面エッチバックを行い、低耐圧MOSトランジスタと高耐圧MOSトランジスタの各ゲート電極11の側壁に、側壁絶縁膜14を形成する(工程7)。尚、シリコン酸化膜の代わりに、他の誘電体膜を堆積しても良い。   Subsequently, as shown in FIG. 7, a silicon oxide film to be a sidewall insulating film 14 of the gate electrode 11 is deposited on the entire surface of the low breakdown voltage MOS transistor region and the high breakdown voltage MOS transistor region by a CDV method with a film thickness of 100 nm. Etch back is performed to form sidewall insulating films 14 on the sidewalls of the gate electrodes 11 of the low breakdown voltage MOS transistor and the high breakdown voltage MOS transistor (step 7). Note that another dielectric film may be deposited instead of the silicon oxide film.

引き続き、図8に示すように、図示しない所定の平面視パターンのn型の不純物注入領域以外を被覆するレジストマスクを形成し、当該レジストマスクとゲート電極11と側壁絶縁膜14をマスクとして、n型不純物、例えば、As(砒素)イオンを、ドーズ量3.0×1015ions/cm、注入エネルギ40KeVで注入し、低耐圧MOSトランジスタのソース・ドレイン領域15、及び、高耐圧MOSトランジスタのソース領域16とドレイン領域17を、夫々同時に形成する(工程8)。引き続き、図8に示すように、図示しない所定の平面視パターンのp型の不純物注入領域以外を被覆するレジストマスクを形成し、当該レジストマスクをマスクとして、p型不純物、例えば、ボロン(B)のイオン注入を、一例として、ドーズ量3.0×1015ions/cm、注入エネルギ5KeVで行い、p型高濃度拡散領域18を形成した後、不活性ガス雰囲気中で700〜850℃の熱処理を行うか、或いは、RTA(Rapid Thermal Annealing)法等により、上記高濃度イオン注入による欠陥の回復及び不純物イオンの活性化を行う(工程9)。高耐圧MOSトランジスタにおいては、p型高濃度拡散領域18は、p型ボディ領域9と電気的に接続する。尚、ゲート電極11、ソース・ドレイン領域15、ソース領域16、及び、ドレイン領域17の表面に対して、周知の技術によりシリサイドを形成し、各領域の低抵抗化を図ることも可能である。 Subsequently, as shown in FIG. 8, a resist mask that covers a region other than the n-type impurity implantation region having a predetermined plan view pattern (not shown) is formed, and the resist mask, the gate electrode 11 and the sidewall insulating film 14 are used as a mask. A type impurity, for example, As (arsenic) ions is implanted at a dose of 3.0 × 10 15 ions / cm 2 and an implantation energy of 40 KeV, and the source / drain region 15 of the low breakdown voltage MOS transistor and the high breakdown voltage MOS transistor The source region 16 and the drain region 17 are formed simultaneously (step 8). Subsequently, as shown in FIG. 8, a resist mask that covers a region other than the p-type impurity implantation region having a predetermined plan view pattern (not shown) is formed, and a p-type impurity such as boron (B) is formed using the resist mask as a mask. As an example, the ion implantation is performed at a dose of 3.0 × 10 15 ions / cm 2 and an implantation energy of 5 KeV to form the p-type high concentration diffusion region 18 and then at 700 to 850 ° C. in an inert gas atmosphere. Heat treatment is performed, or recovery of defects and activation of impurity ions by the high concentration ion implantation are performed by an RTA (Rapid Thermal Annealing) method or the like (step 9). In the high voltage MOS transistor, p type high concentration diffusion region 18 is electrically connected to p type body region 9. It is also possible to form silicide on the surfaces of the gate electrode 11, the source / drain region 15, the source region 16, and the drain region 17 by a known technique to reduce the resistance of each region.

引き続き、図9に示すように、層間絶縁膜材料(例えば、P−SiO)を1000nmの膜厚で、CVD法により堆積させ、CMP法により平坦化し層間絶縁膜19を形成する(工程10)。   Subsequently, as shown in FIG. 9, an interlayer insulating film material (for example, P-SiO) is deposited to a thickness of 1000 nm by the CVD method, and planarized by the CMP method to form the interlayer insulating film 19 (step 10).

引き続き、図10に示すように、層間絶縁膜19に、ソース・ドレイン領域15、ソース領域16、ドレイン領域17、及び、p型高濃度拡散領域18の各表面に到達するコンタクト孔20を夫々形成し、周知の技術により、当該コンタクト孔20内に導電性材料を充填し、当該コンタクト孔20上に金属電極21を形成する(工程11)。   Subsequently, as shown in FIG. 10, contact holes 20 reaching the respective surfaces of the source / drain region 15, the source region 16, the drain region 17, and the p-type high concentration diffusion region 18 are formed in the interlayer insulating film 19. Then, by a well-known technique, the contact hole 20 is filled with a conductive material, and the metal electrode 21 is formed on the contact hole 20 (step 11).

以上、図1〜図10に示す工程1〜11を経て、図10に例示する高耐圧MOSトランジスタと低耐圧MOSトランジスタが形成される。   As described above, the high voltage MOS transistor and the low voltage MOS transistor illustrated in FIG. 10 are formed through steps 1 to 11 shown in FIGS.

図12に、図1に示す工程1で形成されるゲート端絶縁部3のトレンチ深さD1と、LDMOSトランジスタの素子耐圧Vtor及びオン抵抗Ronとの関係を模式的に示す。また、図13に、LDMOSトランジスタのゲート電極11とドリフト領域6のオーバーラップ長Lx(図5参照)とLDMOSトランジスタのオン抵抗Ronとの関係に及ぼすゲート端絶縁部3のトレンチ深さD1の影響を模式的に示す。   FIG. 12 schematically shows the relationship between the trench depth D1 of the gate end insulating portion 3 formed in step 1 shown in FIG. 1, the element breakdown voltage Vtor and the on-resistance Ron of the LDMOS transistor. FIG. 13 shows the influence of the trench depth D1 of the gate end insulating portion 3 on the relationship between the overlap length Lx (see FIG. 5) of the gate electrode 11 and the drift region 6 of the LDMOS transistor and the on-resistance Ron of the LDMOS transistor. Is shown schematically.

図12に示すように、ゲート端絶縁部3のトレンチ深さD1は、浅い範囲内では、トレンチ深さD1が大きくなるにつれて、素子耐圧Vtorは大きくなるが、当該浅い範囲を超えて大きくなっても、素子耐圧Vtorはそれ以上大きくならない。一方、オン抵抗Ronは、トレンチ深さD1が大きくなるにつれて、大きくなる傾向がある。従って、本実施形態では、トレンチ深さD1として、上述の浅い範囲を僅かに超えた深さAで、素子分離領域2のトレンチ深さD2より小さい値を使用することで、素子耐圧Vtorとして、従来と同程度を維持しながら、オン抵抗Ronを大幅に低抵抗化している。   As shown in FIG. 12, the trench depth D1 of the gate end insulating portion 3 is increased within the shallow range as the trench depth D1 increases, but the device withstand voltage Vtor increases, but increases beyond the shallow range. However, the element withstand voltage Vtor does not increase any more. On the other hand, the on-resistance Ron tends to increase as the trench depth D1 increases. Therefore, in the present embodiment, as the trench withstand voltage Vtor, the trench depth D1 is a depth A slightly exceeding the shallow range described above and smaller than the trench depth D2 of the element isolation region 2. While maintaining the same level as before, the on-resistance Ron is greatly reduced.

更に、図13に示すように、LDMOSトランジスタのゲート電極11とドリフト領域6のオーバーラップ長Lxが大きくなるにつれて、チャンネル長が短くなるため、オン抵抗Ronは低抵抗化するが、ゲート端絶縁部3のトレンチ深さD1が大きいと、ドレイン領域17からソース領域16に至る電流経路が、ゲート端絶縁部3の下方を大きく迂回するようになり、オン抵抗Ronの低下が抑制される。この結果として、図12に示すようなオン抵抗Ronとトレンチ深さD1との間の関係を呈することになる。   Further, as shown in FIG. 13, as the overlap length Lx between the gate electrode 11 of the LDMOS transistor and the drift region 6 becomes larger, the channel length becomes shorter, so the on-resistance Ron is lowered, but the gate end insulating portion is reduced. When the trench depth D1 of 3 is large, the current path from the drain region 17 to the source region 16 greatly detours below the gate end insulating portion 3, and the decrease in the on-resistance Ron is suppressed. As a result, a relationship between the on-resistance Ron and the trench depth D1 as shown in FIG. 12 is exhibited.

[別実施形態]
以下、上記実施形態の半導体装置及びその製造方法の別実施形態について説明する。
[Another embodiment]
Hereinafter, another embodiment of the semiconductor device of the above embodiment and a method for manufacturing the semiconductor device will be described.

〈1〉上記実施形態では、高耐圧MOSトランジスタと低耐圧MOSトランジスタがn型チャネルMOSトランジスタである場合について説明したが、n型半導体基板を使用するか、或いは、n型ウェルを形成し、上記n型或いはp型の各不純物注入工程(工程2、3、6、8、9)において、n型の不純物種をp型に、p型の不純物種をn型に、夫々変更することで、pチャネル型MOSトランジスタに対しても、上記実施形態で説明した製造過程及びトランジスタ構造が適用できる。   <1> In the above embodiment, the case where the high breakdown voltage MOS transistor and the low breakdown voltage MOS transistor are n-type channel MOS transistors has been described. However, an n-type semiconductor substrate is used or an n-type well is formed, By changing the n-type impurity species to p-type and the p-type impurity species to n-type in each of the n-type or p-type impurity implantation steps (steps 2, 3, 6, 8, and 9), The manufacturing process and transistor structure described in the above embodiment can also be applied to a p-channel MOS transistor.

〈2〉更に、nチャネル型の高耐圧MOSトランジスタとpチャネル型の高耐圧MOSトランジスタが混載された半導体装置や、nチャネル型の低耐圧MOSトランジスタとpチャネル型の低耐圧MOSトランジスタが混載された半導体装置を形成しても良い。   <2> Further, a semiconductor device in which an n-channel type high-voltage MOS transistor and a p-channel type high-voltage MOS transistor are mixedly mounted, or an n-channel type low-voltage MOS transistor and a p-channel type low-voltage MOS transistor are mixedly mounted. Alternatively, a semiconductor device may be formed.

この場合、n型或いはp型の各不純物注入工程(工程2、3、6、8、9)において、nチャネル型の高耐圧及び低耐圧MOSトランジスタの注入とpチャネル型の高耐圧及び低耐圧MOSトランジスタの注入を、夫々の形成領域以外をマスクして交互に不純物注入を行えば良い。   In this case, in each of the n-type or p-type impurity implantation steps (steps 2, 3, 6, 8, and 9), n-channel high breakdown voltage and low breakdown voltage MOS transistors are implanted and p-channel high breakdown voltage and low breakdown voltage. Implantation of MOS transistors may be performed alternately by masking areas other than the respective formation regions.

〈3〉更に、上記実施形態では、高耐圧MOSトランジスタとして、図10に示すようなLDMOSトランジスタを想定したが、同じLDMOSトランジスタの場合でも、図14に示すように、ドリフト領域6を、p型ボディ領域9を内包するように、高耐圧MOSトランジスタ領域の全面に形成するようにしても良い。更に、高耐圧MOSトランジスタとして、図15に示すように、ドレイン・ソース間で対称な構造として、ゲート電極11のソース側とドレイン側の両方の端部に夫々、ゲート端絶縁部3を設けるようにしても良い。この場合、ソース側にも、p型ボディ領域9に代えてドリフト領域6を形成するのが好ましい。   <3> Furthermore, in the above embodiment, the LDMOS transistor as shown in FIG. 10 is assumed as the high voltage MOS transistor. However, even in the case of the same LDMOS transistor, the drift region 6 is formed as a p-type as shown in FIG. It may be formed on the entire surface of the high voltage MOS transistor region so as to include the body region 9. Further, as a high voltage MOS transistor, as shown in FIG. 15, a gate end insulating portion 3 is provided at both ends of the source side and the drain side of the gate electrode 11 as a symmetric structure between the drain and source. Anyway. In this case, it is preferable to form drift region 6 on the source side instead of p-type body region 9.

更に、ゲート電極11のソース側とドレイン側の両方の端部に夫々、ゲート端絶縁部3を設ける場合、ゲート・ソース間とゲート・ドレイン間で要求される耐圧が異なる場合、例えば、ゲート・ドレイン間の耐圧の方が、ゲート・ソース間の耐圧より高い場合、図16に示すように、ソース側のゲート端絶縁部3のトレンチ深さD1sを、ドレイン側のゲート端絶縁部3のトレンチ深さD1dより浅く形成しても良い。この場合、ソース側のゲート端絶縁部3の幅Wgesを、ドレイン側のゲート端絶縁部3の幅Wgedより狭くすことで、夫々のトレンチ深さD1s,D1dを上記のように調整できる。   Further, when the gate end insulating portion 3 is provided at both the source side and drain side ends of the gate electrode 11, when the required breakdown voltage differs between the gate and the source and between the gate and the drain, When the breakdown voltage between the drains is higher than the breakdown voltage between the gate and the source, the trench depth D1s of the gate end insulating part 3 on the source side is set to the trench of the gate end insulating part 3 on the drain side as shown in FIG. It may be formed shallower than the depth D1d. In this case, the trench depths D1s and D1d can be adjusted as described above by making the width Wges of the gate-side insulating part 3 on the source side narrower than the width Wged of the gate-side insulating part 3 on the drain side.

〈4〉更に、上記実施形態及び別実施形態〈3〉では、高耐圧MOSトランジスタとして、図10または図14に示すようなゲート電極11のドレイン側の端部にのみゲート端絶縁部3を設ける構造の高耐圧MOSトランジスタ、図15または図16に示すようなゲート電極11のソース側とドレイン側の両方の端部にゲート端絶縁部3を設ける構造の高耐圧MOSトランジスタの内の何れか1種類を搭載する半導体装置を想定したが、同じシリコン基板上に、2種類以上の高耐圧MOSトランジスタを混載しても良い。この場合、図10,14〜16に示すトランジスタ構造の内の1つのトランジスタ構造について、ゲート端絶縁部3のトレンチ深さD1の異なる2種類以上の高耐圧MOSトランジスタを設けても良く、また、図10,14〜16に示すトランジスタ構造の内の2以上のトランジスタ構造の高耐圧MOSトランジスタを設けても良く、また、前者と後者を組み合わせてもの良い。   <4> Further, in the above embodiment and another embodiment <3>, the gate end insulating portion 3 is provided only at the drain side end of the gate electrode 11 as shown in FIG. One of the high breakdown voltage MOS transistors having the structure and the high breakdown voltage MOS transistor having the structure in which the gate end insulating portion 3 is provided at both ends of the source side and the drain side of the gate electrode 11 as shown in FIG. 15 or FIG. Although semiconductor devices having different types are assumed, two or more types of high voltage MOS transistors may be mixedly mounted on the same silicon substrate. In this case, two or more types of high voltage MOS transistors having different trench depths D1 of the gate end insulating portion 3 may be provided for one of the transistor structures shown in FIGS. High voltage MOS transistors having two or more transistor structures out of the transistor structures shown in FIGS. 10 and 14 to 16 may be provided, or the former and the latter may be combined.

尚、2種類以上の高耐圧MOSトランジスタのゲート端絶縁部3のトレンチ深さD1を、各高耐圧MOSトランジスタに要求される耐圧に応じて夫々異ならせる場合、トレンチ深さD1が大きい高耐圧MOSトランジスタほど、ゲート端絶縁部3の幅を大きくする。   When the trench depth D1 of the gate end insulating portion 3 of two or more types of high voltage MOS transistors is made different according to the voltage resistance required for each high voltage MOS transistor, the high voltage MOS having a large trench depth D1. The width of the gate end insulating portion 3 is increased as the transistor is used.

更に、同じシリコン基板上に2種類以上の高耐圧MOSトランジスタを混載する場合、その内の少なくとも1種類の高耐圧MOSトランジスタを、ESD保護素子として使用するのも好ましい。   Furthermore, when two or more types of high voltage MOS transistors are mixedly mounted on the same silicon substrate, it is preferable to use at least one type of high voltage MOS transistor as an ESD protection element.

〈5〉上記実施形態で説明した高耐圧及び低耐圧MOSトランジスタの製造工程で例示した、各部の寸法、各不純物注入工程(工程2、3、6、8、9)における注入条件、及び、熱処理温度等は、一例であって、上記実施形態で例示した数値及び数値範囲に限定されるものではない。   <5> Dimensions of each part, implantation conditions in each impurity implantation step (steps 2, 3, 6, 8, 9), and heat treatment exemplified in the manufacturing process of the high breakdown voltage and low breakdown voltage MOS transistors described in the above embodiment The temperature and the like are merely examples, and are not limited to the numerical values and numerical ranges exemplified in the above embodiment.

〈6〉上記実施形態では、同じシリコン基板上に、高耐圧MOSトランジスタと低耐圧MOSトランジスタが夫々搭載される場合を想定したが、同じシリコン基板上に、1種類以上の高耐圧MOSトランジスタが搭載され、低耐圧MOSトランジスタが搭載されない場合にも、上記実施形態で説明した製造過程及びトランジスタ構造が適用できる。   <6> In the above embodiment, it is assumed that a high voltage MOS transistor and a low voltage MOS transistor are mounted on the same silicon substrate, but one or more types of high voltage MOS transistors are mounted on the same silicon substrate. Even when the low breakdown voltage MOS transistor is not mounted, the manufacturing process and transistor structure described in the above embodiment can be applied.

更に、同じシリコン基板上に、高耐圧MOSトランジスタと低耐圧MOSトランジスタが夫々搭載される場合であっても、高耐圧MOSトランジスタと低耐圧MOSトランジスタの各ゲート酸化膜の膜厚は、両MOSトランジスタ間で同じでなくても良い。   Furthermore, even when a high voltage MOS transistor and a low voltage MOS transistor are mounted on the same silicon substrate, the film thicknesses of the gate oxide films of the high voltage MOS transistor and the low voltage MOS transistor are both MOS transistors. It doesn't have to be the same.

1: 半導体基板(シリコン基板)
2: 素子分離領域
3: ゲート端絶縁部
4: 犠牲酸化膜
5: レジストマスク
6: ドリフト領域
7: レジストマスク
8: p型ウェル
9: p型ボディ領域
10: ゲート酸化膜
11: ゲート電極
12: レジストマスク
13: LDD領域
14: 側壁絶縁膜
15: 低耐圧MOSトランジスタのソース・ドレイン領域
16: 高耐圧MOSトランジスタのソース領域
17: 高耐圧MOSトランジスタのドレイン領域
18: p型高濃度拡散領域
19: 層間絶縁膜
20: コンタクト孔
21: 金属電極
1: Semiconductor substrate (silicon substrate)
2: element isolation region 3: gate end insulating portion 4: sacrificial oxide film 5: resist mask 6: drift region 7: resist mask 8: p-type well 9: p-type body region 10: gate oxide film 11: gate electrode 12: Resist mask 13: LDD region 14: Side wall insulating film 15: Source / drain region of low breakdown voltage MOS transistor 16: Source region of high breakdown voltage MOS transistor 17: Drain region of high breakdown voltage MOS transistor 18: P-type high concentration diffusion region 19: Interlayer insulating film 20: Contact hole 21: Metal electrode

Claims (9)

半導体基板上にSTI(Shallow Trench Isolation)法により形成された素子分離領域、前記素子分離領域により区画された活性領域、前記活性領域内に互いに離間して形成されたソース領域とドレイン領域、及び、前記ソース領域とドレイン領域間の前記半導体基板の表面上にゲート絶縁膜とゲート電極を積層してなるゲート部を備えてなるMOS型トランジスタ構造の1種類以上の高耐圧トランジスタを有し、
前記高耐圧トランジスタの前記ゲート部の端部の前記半導体基板表面より下方に、前記半導体基板に形成された溝内に絶縁体を充填してなるゲート端絶縁部を有し、
前記ゲート端絶縁部の幅が、前記素子分離領域の最小幅より細く、
前記ゲート端絶縁部の前記半導体基板表面からの深さが、前記高耐圧トランジスタの前記ゲート絶縁膜の膜厚より大きく、前記素子分離領域の前記半導体基板表面からの深さより小さいことを特徴とする半導体装置。
An element isolation region formed on a semiconductor substrate by an STI (Shallow Trench Isolation) method, an active region partitioned by the element isolation region, a source region and a drain region formed separately from each other in the active region, and Having one or more types of high-breakdown-voltage transistors having a MOS transistor structure comprising a gate portion formed by laminating a gate insulating film and a gate electrode on the surface of the semiconductor substrate between the source region and the drain region;
A gate end insulating portion formed by filling an insulator in a groove formed in the semiconductor substrate below the surface of the semiconductor substrate at the end of the gate portion of the high breakdown voltage transistor;
A width of the gate end insulating portion is narrower than a minimum width of the element isolation region;
The depth of the gate end insulating portion from the surface of the semiconductor substrate is larger than the thickness of the gate insulating film of the high breakdown voltage transistor and smaller than the depth of the element isolation region from the surface of the semiconductor substrate. Semiconductor device.
前記高耐圧トランジスタの内の1種類のトランジスタが、前記ゲート部の前記ドレイン領域側の端部にのみ、前記ゲート端絶縁部を有することを特徴とする請求項1に記載の半導体装置。   2. The semiconductor device according to claim 1, wherein one type of the high-breakdown-voltage transistors has the gate end insulating portion only at the end of the gate portion on the drain region side. 前記高耐圧トランジスタの内の1種類のトランジスタが、前記ゲート部の前記ドレイン領域側と前記ソース領域側の各端部に、前記ゲート端絶縁部を夫々有することを特徴とする請求項1または2に記載の半導体装置。   3. The one or more types of the high breakdown voltage transistors each include the gate end insulating portion at each end of the gate portion on the drain region side and the source region side. A semiconductor device according to 1. 前記高耐圧トランジスタの内の1種類のトランジスタが、前記ゲート部の前記ドレイン領域側と前記ソース領域側の各端部に、前記ゲート端絶縁部を夫々有し、
前記ドレイン領域側の端部の前記ゲート端絶縁部の前記半導体基板表面からの深さと、前記ソース領域側の端部の前記ゲート端絶縁部の前記半導体基板表面からの深さが異なることを特徴とする請求項1〜3の何れか1項に記載の半導体装置。
One of the high breakdown voltage transistors has the gate end insulating portion at each end of the gate portion on the drain region side and the source region side,
The depth of the end of the drain region from the surface of the semiconductor substrate of the gate end insulating portion is different from the depth of the end of the source region of the gate end insulating portion from the surface of the semiconductor substrate. The semiconductor device according to claim 1.
前記高耐圧トランジスタより低耐圧の前記MOS型トランジスタ構造の1種類以上の低耐圧トランジスタを有し、
前記低耐圧トランジスタの前記ゲート部の端部の前記半導体基板表面より下方に、前記ゲート端絶縁部が形成されていないことを特徴とする請求項1〜4の何れか1項に記載の半導体装置。
Having one or more low breakdown voltage transistors of the MOS type transistor structure having a lower breakdown voltage than the high breakdown voltage transistor;
5. The semiconductor device according to claim 1, wherein the gate end insulating portion is not formed below the surface of the semiconductor substrate at an end portion of the gate portion of the low breakdown voltage transistor. .
前記高耐圧トランジスタの前記ゲート絶縁膜と、前記低耐圧トランジスタの前記ゲート絶縁膜が、同じ膜厚であることを特徴とする請求項5に記載の半導体装置。   6. The semiconductor device according to claim 5, wherein the gate insulating film of the high breakdown voltage transistor and the gate insulating film of the low breakdown voltage transistor have the same film thickness. 前記ゲート端絶縁部の前記半導体基板表面からの深さの異なる2種類以上の前記高耐圧トランジスタを備えることを特徴とする請求項1〜6の何れか1項に記載の半導体装置。   The semiconductor device according to claim 1, further comprising two or more types of the high breakdown voltage transistors having different depths of the gate end insulating portion from the surface of the semiconductor substrate. 2種類以上の前記高耐圧トランジスタの内の1種類のトランジスタが、ESD保護素子として使用されることを特徴とする請求項7に記載の半導体装置。   8. The semiconductor device according to claim 7, wherein one of the two or more types of high breakdown voltage transistors is used as an ESD protection element. 請求項1〜8の何れか1項に記載の半導体装置の製造方法であって、
前記半導体基板に、前記素子分離領域の溝と前記ゲート端絶縁部の溝を、45°〜80°の間に調整されたエッチング角度のエッチングにより同時に形成することを特徴とする半導体装置の製造方法。
A method of manufacturing a semiconductor device according to claim 1,
A method of manufacturing a semiconductor device, wherein the groove of the element isolation region and the groove of the gate end insulating portion are simultaneously formed on the semiconductor substrate by etching with an etching angle adjusted between 45 ° and 80 °. .
JP2012127216A 2012-06-04 2012-06-04 Semiconductor device and manufacturing method of the same Pending JP2013251497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012127216A JP2013251497A (en) 2012-06-04 2012-06-04 Semiconductor device and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012127216A JP2013251497A (en) 2012-06-04 2012-06-04 Semiconductor device and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2013251497A true JP2013251497A (en) 2013-12-12

Family

ID=49849874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012127216A Pending JP2013251497A (en) 2012-06-04 2012-06-04 Semiconductor device and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2013251497A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015167167A (en) * 2014-03-03 2015-09-24 ルネサスエレクトロニクス株式会社 semiconductor device
JP2015204308A (en) * 2014-04-10 2015-11-16 旭化成エレクトロニクス株式会社 Semiconductor manufacturing method and semiconductor device
JP2020136402A (en) * 2019-02-15 2020-08-31 富士電機株式会社 Method for manufacturing semiconductor integrated circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015167167A (en) * 2014-03-03 2015-09-24 ルネサスエレクトロニクス株式会社 semiconductor device
JP2015204308A (en) * 2014-04-10 2015-11-16 旭化成エレクトロニクス株式会社 Semiconductor manufacturing method and semiconductor device
JP2020136402A (en) * 2019-02-15 2020-08-31 富士電機株式会社 Method for manufacturing semiconductor integrated circuit
JP7279393B2 (en) 2019-02-15 2023-05-23 富士電機株式会社 Manufacturing method of semiconductor integrated circuit

Similar Documents

Publication Publication Date Title
KR100781580B1 (en) A dual structure finfet and the manufacturing method the same
US10777551B2 (en) Integrated semiconductor device and method for manufacturing the same
JP4736114B2 (en) Semiconductor device with low and high voltage transistors
KR100974697B1 (en) Lateral double diffused metal oxide semiconductor device and manufacturing method of lateral double diffused metal oxide semiconductor device
US9252280B2 (en) MOSFET and method for manufacturing the same
US9245975B2 (en) Recessed channel insulated-gate field effect transistor with self-aligned gate and increased channel length
TWI548086B (en) Trench lateral diffusion metal oxide semiconductor device and manufacturing method of the same
JP2004241755A (en) Semiconductor device
US9660020B2 (en) Integrated circuits with laterally diffused metal oxide semiconductor structures and methods for fabricating the same
TWI512886B (en) Trench transistor
KR101531882B1 (en) Semiconductor device and method for manufacturing the same
US8049283B2 (en) Semiconductor device with deep trench structure
JP2009521126A (en) Semiconductor device having field plate and method of manufacturing the same
KR100618827B1 (en) Semiconductor device comprising FinFET and fabricating method thereof
US7569480B2 (en) Semiconductor devices and methods of fabricating the same
US7279367B1 (en) Method of manufacturing a thyristor semiconductor device
JP2013251497A (en) Semiconductor device and manufacturing method of the same
JP5544880B2 (en) Semiconductor device and manufacturing method thereof
KR101063567B1 (en) Mos device and the manufacturing method thereof
KR100424414B1 (en) Method for forming high voltage transistor
JP5055697B2 (en) Insulated gate field effect transistor and method of operating the same
KR20080088095A (en) Method for forming gate of semiconductor device
KR100448090B1 (en) Method for fabricating high-performance semiconductor device by reducing junction capacitance
KR100762895B1 (en) Method of manufacturing semiconductor device with recess gate
KR100660337B1 (en) Method for forming transistor of semiconductor device