JP2013251338A - Semiconductor device for high-voltage power - Google Patents

Semiconductor device for high-voltage power Download PDF

Info

Publication number
JP2013251338A
JP2013251338A JP2012123461A JP2012123461A JP2013251338A JP 2013251338 A JP2013251338 A JP 2013251338A JP 2012123461 A JP2012123461 A JP 2012123461A JP 2012123461 A JP2012123461 A JP 2012123461A JP 2013251338 A JP2013251338 A JP 2013251338A
Authority
JP
Japan
Prior art keywords
layer
trench
conductivity type
conductivity
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012123461A
Other languages
Japanese (ja)
Other versions
JP6153151B2 (en
Inventor
Ichiro Omura
一郎 大村
Kota Seto
康太 瀬戸
Masanori Fuda
正則 附田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Original Assignee
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC filed Critical Kyushu Institute of Technology NUC
Priority to JP2012123461A priority Critical patent/JP6153151B2/en
Publication of JP2013251338A publication Critical patent/JP2013251338A/en
Application granted granted Critical
Publication of JP6153151B2 publication Critical patent/JP6153151B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Element Separation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device for high-voltage power that has reduced useless space, is easy to be formed, and has short working process time.SOLUTION: A semiconductor device for high-voltage power includes: a first first-conductivity-type semiconductor layer (high-resistance Nlayer) 1; a first second-conductivity-type layer (P layer) 2 selectively formed on one surface of the first first-conductivity-type semiconductor layer 1; a second first-conductivity-type layer (Nlayer) 3 formed on the other surface of the first first-conductivity-type semiconductor layer 1; a trench 4 formed in contact with the first second-conductivity-type layer 2; an insulator 5 in the trench 4; a second second-conductivity-type layer (P layer) 6 formed on a side wall and a bottom of the trench 4; and a third first-conductivity-type layer (Nlayer) 7 selectively formed on the bottom of the trench 4. A depletion layer does not spread to a termination portion of the first first-conductivity-type semiconductor layer 1 by the third first-conductivity-type layer 7 and a termination distance becomes shorter, so that the width of the semiconductor device can be reduced by cutting the termination portion of the first-conductivity-type semiconductor layer 1.

Description

本発明は、たとえば600〜1200Vで使用されるパワー半導体等の、高電圧電力用半導体装置に関する。   The present invention relates to a semiconductor device for high voltage power such as a power semiconductor used at 600 to 1200 V, for example.

電力用半導体装置、特に小型チップ用の高電圧電力用半導体装置の小型化のネックとなっているのは、チップの終端部領域の寸法の問題である。   The bottleneck in miniaturization of power semiconductor devices, particularly high voltage power semiconductor devices for small chips, is the problem of the size of the end region of the chip.

パワー半導体では、シリコンチップ内部に高電界部分を有する構造になっているが、図13(平面図(a)、終端部領域の拡大断面図(b)、終端部領域の拡大平面図(c))に示すように、チップ20における回路部21の周辺の端部付近(終端部22)では、高電界をチップ20の表面に逃がすためにガードリング23と呼ばれるリング状のP型層を形成する構造が用いられている(例えば、非特許文献1参照。)。しかし、このガードリング構造は、高電圧を段階的に低くするために複数の同心状のリングを設ける必要があるために、広いスペースがとられ、チップ20の小型化の障壁となっている。このスペースを削減するために、チップ終端部にトレンチを形成する研究が多くなされている(例えば、非特許文献2〜4参照。)。   The power semiconductor has a structure having a high electric field portion inside the silicon chip. FIG. 13 (plan view (a), enlarged sectional view (b) of the termination region, enlarged plan view (c) of the termination region. As shown in FIG. 2, in the vicinity of the end portion (termination portion 22) around the circuit portion 21 in the chip 20, a ring-shaped P-type layer called a guard ring 23 is formed to release a high electric field to the surface of the chip 20. The structure is used (for example, refer nonpatent literature 1). However, since this guard ring structure needs to be provided with a plurality of concentric rings in order to lower the high voltage stepwise, a large space is taken and becomes a barrier to miniaturization of the chip 20. In order to reduce this space, many studies have been made to form a trench at the end of the chip (for example, see Non-Patent Documents 2 to 4).

トレンチ終端の構造は、図13(d)に示すように、チップ20における回路部21の終端部に、電圧保持をしている際(電流を流さないオフ状態)に空乏層が広がる高抵抗層の厚さとほぼ同じ深さのトレンチ(溝)24を形成したものである。   As shown in FIG. 13D, the trench termination structure is a high-resistance layer in which a depletion layer spreads at the termination portion of the circuit portion 21 in the chip 20 when voltage is held (off state where no current flows). A trench (groove) 24 having a depth substantially equal to the thickness of is formed.

また、特許文献1では、パワー半導体の終端部分に、高電圧が掛かる高抵抗層(低濃度層)をほぼ貫通する形でトレンチが形成されている。   In Patent Document 1, a trench is formed in a terminal portion of the power semiconductor so as to substantially penetrate a high resistance layer (low concentration layer) to which a high voltage is applied.

特許文献2に開示されたパワー半導体では、終端部に形成したトレンチの内部に多結晶シリコン等の導電体を形成した構造となっており、高電圧では十分な耐圧が得られない。   The power semiconductor disclosed in Patent Document 2 has a structure in which a conductor such as polycrystalline silicon is formed inside a trench formed in a terminal portion, and a sufficient breakdown voltage cannot be obtained at a high voltage.

米国特許第7855415号明細書US Pat. No. 7,855,415 米国特許第6833584号明細書US Pat. No. 6,833,584

M. Adler et al. "Theory and Breakdown Voltage for Planar Devices with a Single Field Limiting Ring", IEEE Transactions on Electron Devices, Vol.24, No.2, pp.107-113, Feb. 1977.M. Adler et al. "Theory and Breakdown Voltage for Planar Devices with a Single Field Limiting Ring", IEEE Transactions on Electron Devices, Vol.24, No.2, pp.107-113, Feb. 1977. R. Kamibaba et al. "Design of trench termination for High Voltage Device", Proc. of ISPSD 2010, pp. 107-110, 2010.R. Kamibaba et al. "Design of trench termination for High Voltage Device", Proc. Of ISPSD 2010, pp. 107-110, 2010. D. Dragomirescu et al. "Novel Concepts High Voltage Junction Termination Techniques Using Very Deep Trenches", Proc. of Semiconductor Conference 1999, pp.67-70, 1999.D. Dragomirescu et al. "Novel Concepts High Voltage Junction Termination Techniques Using Very Deep Trenches", Proc. Of Semiconductor Conference 1999, pp.67-70, 1999. W. Hsu et al. "Innovative Designs Enable 300-V TMBS with Ultra-low On-state Voltage and Fast Switching Speed", Proc. of ISPSD 2011, pp80-83, 2011.W. Hsu et al. "Innovative Designs Enable 300-V TMBS with Ultra-low On-state Voltage and Fast Switching Speed", Proc. Of ISPSD 2011, pp80-83, 2011. T.Drabe et al. "Theoretical Investigation of Planer Junction Termination", Solid-State Electronics, Vol.39, No. 3, pp. 323-328, Mar. 1996.T. Drabe et al. "Theoretical Investigation of Planer Junction Termination", Solid-State Electronics, Vol.39, No. 3, pp. 323-328, Mar. 1996.

最近のパワー半導体では、高性能化のためにウエハ(チップ)の薄化が進んでおり(例えば、ウエハ表面の構造が5〜6ミクロン、高抵抗層が40〜120ミクロン、裏面の構造が数μm)、特に600V以上のIGBTやPiNダイオードでは高抵抗層の厚さがチップの厚さのほとんどを占めるようになってきている。   In recent power semiconductors, wafers (chips) have been thinned for higher performance (for example, the structure on the front surface of the wafer is 5 to 6 microns, the high resistance layer is 40 to 120 microns, and the number of structures on the back surface is several. μm), especially in IGBTs and PiN diodes of 600 V or higher, the thickness of the high resistance layer has come to occupy most of the thickness of the chip.

このような深いトレンチを形成する場合には、次のような問題点がある。
(1)高抵抗層とほぼ同じ深さのトレンチをウエハ上に形成すると、部分的にウエハの非常に薄い部分が形成され、ウエハが構造的に弱くなり工程途中で割れてしまう。
When forming such a deep trench, there are the following problems.
(1) When a trench having substantially the same depth as that of the high resistance layer is formed on the wafer, a very thin portion of the wafer is partially formed, and the wafer becomes structurally weak and cracks during the process.

(2)深いトレンチを形成すると、加工時間が長く、トレンチ形成工程のコストが増大する。 (2) When a deep trench is formed, the processing time is long and the cost of the trench forming process increases.

(3)トレンチ形成後に絶縁体でトレンチを埋め戻す際、トレンチが深いと部分的に埋まらない部分が形成される。特に有機物をコーター(ウエハを回転させ、硬化前の液体状の有機物をウエハ前面に塗布する装置)でトレンチ内に埋め込む際、ボイドが発生する。 (3) When the trench is backfilled with an insulator after the trench is formed, if the trench is deep, a portion that is not partially filled is formed. In particular, voids are generated when an organic material is embedded in a trench by a coater (a device that rotates a wafer and applies a liquid organic material before curing to the front surface of the wafer).

(4)高電界がトレンチ内部の絶縁体を透過して、トレンチの反対側まで染み出すことにより、電界がチップ端面(ダイシング工程後のチップの切り口)における、ダイシング工程で形成された破砕層(結晶構造が破壊された部分)に近づくことにより、リーク電流が発生する。 (4) A high electric field permeates through the insulator inside the trench and oozes out to the opposite side of the trench, so that the electric field is crushed layer formed in the dicing process on the chip end face (the cut end of the chip after the dicing process) Leakage current is generated by approaching the portion where the crystal structure is destroyed.

そこで本発明は、無駄なスペースが少なく、形成が容易で加工工程時間が短い高電圧電力用半導体装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a high voltage power semiconductor device that has little wasted space, is easy to form, and has a short processing time.

前記課題を解決するため、本発明の高電圧電力用半導体装置は、
第1の第1導電型半導体層と、
前記第1の第1導電型半導体層の一方の面に選択的に形成された第1の第2導電型層と、
前記第1の第1導電型半導体層の他方の面に形成された第2の第1導電型層と、
前記第1の第2導電型層に接して前記第1の第1導電型半導体層に形成されたトレンチと、
前記トレンチ内に充填された絶縁体と、
前記トレンチの側壁ならびに底部に形成された第2の第2導電型層と、
前記第2の第2導電型層と離隔し、前記トレンチの側壁または底部に実質的に接して形成された第3の第1導電型層と
を有することを特徴とする。
In order to solve the above problems, a semiconductor device for high voltage power according to the present invention includes:
A first first conductivity type semiconductor layer;
A first second conductivity type layer selectively formed on one surface of the first first conductivity type semiconductor layer;
A second first conductivity type layer formed on the other surface of the first first conductivity type semiconductor layer;
A trench formed in the first first conductivity type semiconductor layer in contact with the first second conductivity type layer;
An insulator filled in the trench;
A second second conductivity type layer formed on the sidewall and bottom of the trench;
And a third first conductivity type layer formed apart from the second second conductivity type layer and substantially in contact with the side wall or bottom of the trench.

本発明においては、第2の第2導電型層と離隔し、トレンチの側壁または底部に実質的に接して第3の第1導電型層が形成されているので、この第3の第1導電型層により空乏層が第1の第1導電型半導体層の終端部まで広がらず、終端距離が短くなるため、第1導電型半導体層の終端部をカットし、半導体装置の幅を小さくすることができる。   In the present invention, the third first conductivity type layer is formed so as to be separated from the second second conductivity type layer and substantially in contact with the side wall or bottom of the trench. The depletion layer does not extend to the end portion of the first first conductivity type semiconductor layer by the mold layer, and the end distance is shortened. Therefore, the end portion of the first conductivity type semiconductor layer is cut to reduce the width of the semiconductor device. Can do.

前記トレンチ内に充填される絶縁体は、有機物あるいは有機物を含む材料であることが好ましい。   The insulator filled in the trench is preferably an organic substance or a material containing an organic substance.

前記トレンチの深さは、第1の第1電動型半導体層の厚さに対し0.3〜0.4であることが好ましい。   The depth of the trench is preferably 0.3 to 0.4 with respect to the thickness of the first first electric semiconductor layer.

前記トレンチ内に充填される絶縁体の誘電率は、比誘電率が2.65〜11.7の範囲であることが好ましい。   The dielectric constant of the insulator filled in the trench is preferably in the range of 2.65 to 11.7.

本発明により、無駄なスペースが少なく、形成が容易で加工工程時間が短い高電圧電力用半導体装置が得られる。   According to the present invention, it is possible to obtain a semiconductor device for high voltage power with little wasted space, easy formation, and short processing time.

本発明の実施の形態に係る高電圧電力用半導体装置の構成図である。1 is a configuration diagram of a semiconductor device for high voltage power according to an embodiment of the present invention. 高電圧電力用半導体装置の電位分布および空乏層の形状を比較したもので、(a)はトレンチの底部に第3の第1導電型層を形成した本実施の形態の場合、(b)は第3の第1導電型層を形成していない場合を示す。The potential distribution of the semiconductor device for high voltage power and the shape of the depletion layer are compared. (A) is the case of the present embodiment in which the third first conductivity type layer is formed at the bottom of the trench. The case where the 3rd 1st conductivity type layer is not formed is shown. トレンチ4の左右の表面で異なる電圧をとる素子の例を示す構成図である。FIG. 4 is a configuration diagram showing an example of an element that takes different voltages on the left and right surfaces of a trench 4. 本発明の実施の形態において、第1の第1導電型半導体層の長さLiをパラメータとしたときの標準化最小終端長と標準化トレンチ深さの関係を示すグラフである。In the embodiment of the present invention, it is a graph showing the relationship between the standardized minimum termination length and standardization trench depth when the length L i of the first first-conductivity type semiconductor layer as a parameter. 本発明の実施の形態において、絶縁体の比誘電率εrをパラメータとしたときの標準化最小終端長と標準化トレンチ深さの関係を示すグラフである。In the embodiment of the present invention, it is a graph showing the relationship between the standardized minimum termination length and the standardized trench depth when the relative dielectric constant ε r of the insulator is used as a parameter. 本発明の実施の形態において、トレンチの深さDT=55μmのときに、トレンチ底部の距離(終端長)WTを変えたときのP-層のドーズ量(不純物総量)と耐圧との関係を示すグラフである。In the embodiment of the present invention, when the trench depth D T = 55 μm, the relationship between the dose amount (total amount of impurities) of the P layer and the breakdown voltage when the distance (termination length) W T at the bottom of the trench is changed. It is a graph which shows. 本発明の実施の形態において、トレンチの深さDT=15μmのときに、トレンチ終端長WTを変えたときのP-層のドーズ量(不純物総量)と耐圧との関係を示すグラフである。In the embodiment of the present invention, when the trench depth D T = 15 μm, it is a graph showing the relationship between the dose amount (total amount of impurities) of the P layer and the breakdown voltage when the trench termination length W T is changed. . 本発明の実施の形態において、トレンチの深さDTを変えたときのトレンチ終端長WTと耐圧との関係を示すグラフである。In the embodiment of the present invention, it is a graph showing the relationship between the trench termination length W T and the breakdown voltage when the trench depth DT is changed. 本発明の実施の形態において、耐圧を変えたときの、トレンチ最小終端長とトレンチの深さDTとの関係を示すグラフである。In the embodiment of the present invention, when changing the breakdown voltage is a graph showing the relationship between the depth D T of the trench minimum termination length and the trench. 本発明の実施の形態において、トレンチの深さDTとトレンチ終端長WTを変えたときのトレンチ終端部の電位分布および空乏層の形状を示す説明図である。In the embodiment of the present invention, it is an explanatory view showing the shape of a potential distribution and the depletion layer of the trench end portion when varying the depth D T and a trench termination length W T of the trench. 本発明の実施の形態において、トレンチ終端長WTとトレンチにおける最大電界強度との関係を示すグラフである。In the embodiment of the present invention, it is a graph showing the relationship between the maximum electric field intensity in the trench termination length W T and the trench. 本発明の実施の形態に係る高電圧電力用半導体装置の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the semiconductor device for high voltage electric power which concerns on embodiment of this invention. 従来技術の説明図である。It is explanatory drawing of a prior art.

以下、本発明の実施の形態を、図面を参照しながら説明する。
図1は、実施の形態を示す構成図であり、半導体装置としてダイオード構造で記載している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram showing an embodiment, and a semiconductor device is described in a diode structure.

図1において、実施の形態に係る高電圧電力用半導体装置は、第1の第1導電型半導体層(本例では高抵抗N-層)1と、その一方の面に選択的に形成された第1の第2導電型層(本例ではP層)2と、他方の面に形成された第2の第1導電型層(本例ではN+層)3と、第1の第2導電型層2に接して形成されたトレンチ4と、トレンチ4内の絶縁体5と、トレンチ4の側壁ならびに底部に形成された第2の第2導電型層(本例ではP層)6と、トレンチ4の底部に選択的に形成された第3の第1導電型層(本例ではN+層)7とを有している。第1の第2導電型層2に接してアノード電極が形成され、第2の第1導電型層3に接してカソード電極が形成されている。また、絶縁体5の表面には絶縁層としてSiO2層が形成されている。なお、図1の右側の部分が終端部である。 In FIG. 1, the semiconductor device for high voltage power according to the embodiment is selectively formed on the first first conductivity type semiconductor layer (high resistance N layer in this example) 1 and one surface thereof. The first second conductivity type layer (P layer in this example) 2, the second first conductivity type layer (N + layer in this example) 3 formed on the other surface, and the first second conductivity type A trench 4 formed in contact with the mold layer 2, an insulator 5 in the trench 4, a second second conductivity type layer (P layer in this example) 6 formed on the side wall and bottom of the trench 4, It has a third first conductivity type layer (N + layer in this example) 7 selectively formed at the bottom of the trench 4. An anode electrode is formed in contact with the first second conductivity type layer 2, and a cathode electrode is formed in contact with the second first conductivity type layer 3. An SiO 2 layer is formed on the surface of the insulator 5 as an insulating layer. In addition, the right part of FIG. 1 is a termination | terminus part.

絶縁体5の材料としては、シリコン酸化物等の無機材料や、シリカと樹脂の混合物、またポリイミドやBCB(ベンゾシクロブテン)樹脂などの有機材料または有機材料を混合した材料を用いることができる。後者の有機材料または有機材料を混合した材料は、塗布や形成での温度が低く、不純物の拡散などのデバイス構造への影響が無く、応力等による形成後のウエハの反りが少ないという利点がある。   As a material of the insulator 5, an inorganic material such as silicon oxide, a mixture of silica and resin, an organic material such as polyimide or BCB (benzocyclobutene) resin, or a material mixed with an organic material can be used. The latter organic material or a mixture of organic materials has the advantage that the temperature during application and formation is low, there is no influence on the device structure such as diffusion of impurities, and there is little warping of the wafer after formation due to stress or the like. .

図1の上部の第1の第2導電型層(P層)2は、デバイス構造によってIGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal Oxide Semiconductor Field Effect Transistor)の構造に変更できる。   The first second conductivity type layer (P layer) 2 at the top of FIG. 1 can be changed to an IGBT (Insulated Gate Bipolar Transistor) or MOSFET (Metal Oxide Semiconductor Field Effect Transistor) structure depending on the device structure.

図2は、トレンチ4の底部に第3の第1導電型層(N+層)7を形成した本実施の形態の場合(a)と、第3の第1導電型層(N+層)7を形成していない場合(b)について、電位分布および空乏層の形状を比較したものである。第3の第1導電型層(N+層)7を形成していない場合は、図2(b)に示すように空乏層がチップの終端側に向かって広がり、実質的に電界を終端する距離(トレンチ左端から空乏層の広がった距離)が長くなっている。一方、第3の第1導電型層(N+層)7を形成している構造では、図2(a)に示すように空乏層が広がっておらず、終端距離をさらに短くすることができる。 FIG. 2 shows the case (a) of the present embodiment in which the third first conductivity type layer (N + layer) 7 is formed at the bottom of the trench 4 and the third first conductivity type layer (N + layer). 7 is a comparison of the potential distribution and the shape of the depletion layer. When the third first conductivity type layer (N + layer) 7 is not formed, the depletion layer spreads toward the terminal end side of the chip as shown in FIG. The distance (distance where the depletion layer spreads from the left end of the trench) is longer. On the other hand, in the structure in which the third first conductivity type layer (N + layer) 7 is formed, the depletion layer does not spread as shown in FIG. 2A, and the termination distance can be further shortened. .

なお本構造は、素子分離にも活用でき、トレンチ4の左右の表面で異なる電圧をとる素子を配置することができる。例えば、P/Nが反対の構造で図3のように、p+基板11の上にp-エピタキシャル成長層12と埋め込みn+層13があり、トレンチ14と、トレンチ14の底部および側壁に形成されたn-層15と、空乏層を止めるp+層16がトレンチ14の底部に選択的に形成されている構造では、トレンチ14を挟んだ両側の領域A,Bに、それぞれ、接地電圧の異なるICなどが形成可能である。このような構造は例えば、高電圧インバータに用いられるIGBTのゲート駆動回路で、ハイサイド駆動ICとローサイド駆動ICを同一チップ上に形成することを可能とする。この構造では、従来の分離に比べ高電圧が容易に実現でき、また分離した部分同士での容量結合成分が非常に小さくなるので、2つの部分の電位が瞬時に大きく変化して高いdV/dtを発生しても、誤動作等の可能性が少ないというメリットもある。また従来のSOI(Silicon on Insulator)技術による分離技術に比べてもコストが安いという利点がある。 This structure can also be used for element isolation, and elements that take different voltages on the left and right surfaces of the trench 4 can be arranged. For example, as shown in FIG. 3, with a P / N opposite structure, a p epitaxial growth layer 12 and a buried n + layer 13 are formed on a p + substrate 11. In the structure in which the n layer 15 and the p + layer 16 that stops the depletion layer are selectively formed at the bottom of the trench 14, the ground voltages are different in the regions A and B on both sides of the trench 14. An IC or the like can be formed. Such a structure is, for example, an IGBT gate drive circuit used for a high voltage inverter, and allows a high side drive IC and a low side drive IC to be formed on the same chip. In this structure, a high voltage can be easily realized as compared with the conventional separation, and since the capacitive coupling component between the separated portions becomes very small, the potential of the two portions changes greatly and instantaneously increases to a high dV / dt. Even if this occurs, there is also a merit that there is little possibility of malfunction. In addition, there is an advantage that the cost is low as compared with the separation technique based on the conventional SOI (Silicon on Insulator) technique.

図4は、理想耐圧(終端構造がない1次元構造)の90%の耐圧が確保できる構造パラメータを、高抵抗層(第1の第1導電型半導体層1)の長さLiに対する比率で表している。ただしトレンチ4内に絶縁体5を埋め込んだと想定している。絶縁体5は有機物を想定し比誘電率εrを2.65としている。この解析結果は、比誘電率εrが2.5〜3.5程度でも大きく変化しないことを示している。本結果より、高抵抗層(第1の第1導電型半導体層1)の長さLiが異なっていても、90%の耐圧を得る構造の比率はほとんど変化しない。 FIG. 4 shows a structural parameter that can ensure a breakdown voltage of 90% of the ideal breakdown voltage (one-dimensional structure without a termination structure) as a ratio to the length L i of the high resistance layer (first first conductivity type semiconductor layer 1). Represents. However, it is assumed that the insulator 5 is embedded in the trench 4. The insulator 5 is assumed to be organic and has a relative dielectric constant ε r of 2.65. This analysis result shows that the relative permittivity ε r does not change greatly even if it is about 2.5 to 3.5. From this result, even if the length L i of the high resistance layer (first first conductivity type semiconductor layer 1) is different, the ratio of the structure that obtains a breakdown voltage of 90% hardly changes.

高抵抗層(第1の第1導電型半導体層1)の長さLiに対する、表面P型層(第1の第2導電型層2)下からのトレンチ4の深さDTの比率DT/Liが0.5のとき、トレンチ4の表面P層(第2の第2導電型層6)側からトレンチ4の底部のN+層(第3の第1導電型層7)までの距離(終端長)WTとLiとの比WT/Liは0.3以上、DT/Liが0.32のときWT/Liは1.1以上、DT/Liが0.15のときWT/Liが2.4以上であることが望ましく、このようにトレンチ4の深さDT、終端長WTを設計することで、安定して理想耐圧の90%以上の耐圧を得ることができる。 High resistance layer (first first conductivity type semiconductor layer 1) to the length L i, a surface P-type layer ratio D of the (first of the second conductivity type layer 2) the depth D T of the trenches 4 from the bottom When T / Li is 0.5, from the surface P layer (second second conductivity type layer 6) side of the trench 4 to the N + layer (third first conductivity type layer 7) at the bottom of the trench 4 The ratio W T / L i between the distance (terminal length) W T and L i is 0.3 or more, and when D T / L i is 0.32, W T / L i is 1.1 or more, D T / When L i is 0.15, W T / L i is desirably 2.4 or more. By designing the depth D T and the termination length W T of the trench 4 in this way, the ideal breakdown voltage can be stably achieved. 90% or more of the breakdown voltage can be obtained.

図5は、トレンチ4に充填する絶縁体5の比誘電率εrに対する、理想耐圧90%を得る構造パラメータを示している。この例では、εr=11.7の誘電体(シリコンと同じ絶縁体を想定して計算しているが、例えば、高誘電率無機材料を樹脂に混合した材料)と、εr=2.65の誘電体(例えばBCBやシリコーン)の2つのケースを示している。それぞれの比誘電率εrで、標準化最小終端長WT/Liに対する標準化トレンチ深さDT/Liが大きく変化するが、DT/Liが0.3〜0.4の範囲であれば、絶縁体5の比誘電率εrが大きく異なっても設計の変更が不要となる。たとえば、トレンチ4内への埋め込み絶縁体4の材料の変更や、有機物の中に無機物のパーティクルを入れて埋め込み物の絶縁性能や長期信頼性を向上させるような場合は、この範囲の設計値が妥当である。また、絶縁体5の絶縁物が経年変化して比誘電率が変わっても、理想耐圧はほとんど変わらない。 FIG. 5 shows structural parameters for obtaining an ideal withstand voltage of 90% with respect to the relative dielectric constant ε r of the insulator 5 filling the trench 4. In this example, a dielectric having ε r = 11.7 (calculated assuming the same insulator as silicon, but a material obtained by mixing a high dielectric constant inorganic material with a resin) and ε r = 2. Two cases of 65 dielectrics (eg BCB and silicone) are shown. With each relative dielectric constant ε r , the standardized trench depth D T / L i with respect to the standardized minimum termination length W T / L i varies greatly, but D T / L i is in the range of 0.3 to 0.4. If so, no change in design is required even if the relative dielectric constant ε r of the insulator 5 is greatly different. For example, when the material of the buried insulator 4 in the trench 4 is changed or when inorganic particles are introduced into the organic material to improve the insulation performance and long-term reliability of the buried material, the design value in this range is It is reasonable. Further, even if the insulator of the insulator 5 changes over time and the relative dielectric constant changes, the ideal withstand voltage hardly changes.

図6および図7は、トレンチの深さDT=55μmおよびDT=15μmのときの、耐圧に対するRESURF効果を示している。ここで、RESURF効果とは、特定の構造とすることにより、平面接合で予想されるPN接合の耐圧よりも高い耐圧を実現できることを言う。これらの図において、最適なP-層のドーズ量(不純物総量)は、トレンチの深さDTと長さWTによって変化している。 6 and 7 show the RESURF effect on the breakdown voltage when the trench depths D T = 55 μm and D T = 15 μm. Here, the RESURF effect means that by using a specific structure, a withstand voltage higher than the withstand voltage of the PN junction expected in the planar junction can be realized. In these figures, the optimum dose (total amount of impurities) of the P layer varies depending on the trench depth D T and length W T.

図8は、各トレンチ構造の耐圧を、表1に示されるDTとWTの各組み合わせについて、プロットしたものである。図8には、理想平面接合終端の計算結果(Drabe's result:前掲非特許文献5参照)もプロットされている。 FIG. 8 is a plot of the breakdown voltage of each trench structure for each combination of D T and W T shown in Table 1. FIG. 8 also plots the calculation result (Drabe's result: see Non-Patent Document 5) described above.

110μmの長さのi層についての一次元PiNダイオード構造の理想的な耐圧は1526Vであり、各トレンチの深さに対する最小終端長は、理想耐圧の90%かそれ以上の耐圧を満足する長さによって決まる。それより浅いトレンチについては、推定値である。   The ideal breakdown voltage of a one-dimensional PiN diode structure for an i layer of 110 μm is 1526 V, and the minimum termination length for each trench depth is a length that satisfies a breakdown voltage of 90% or more of the ideal breakdown voltage. It depends on. For shallower trenches, this is an estimate.

トレンチ深さと最小終端長のトレード・オフ曲線を図9に示す。この曲線は、より浅いトレンチであっても、最小終端長を十分に短縮することを示している。特に、この図から、95μmから55μmまでトレンチ深さを短縮させても、終端長においてはほんの小さな増加にしかならないこと、すなわち、i層の半分の深さのトレンチでも終端長が十分短縮されることがわかる。   A trade-off curve between the trench depth and the minimum termination length is shown in FIG. This curve shows that the minimum termination length is sufficiently shortened even for shallower trenches. In particular, it can be seen from this figure that even if the trench depth is shortened from 95 μm to 55 μm, the termination length is only a small increase, that is, the termination length is sufficiently shortened even with a trench half as deep as the i layer. I understand that.

前掲の図5の曲線は、図10(a)〜(d)に示す、4つの異なるトレンチ深さについて裏付けられる。これらの構造は、理想耐圧の90%以上の耐圧およびトレンチの外側への減衰層拡張の抑制をうまく示している。深いトレンチ構造および半分の深さの構造は、終端長の相当の短縮をうまく実現している。一方、図11に示すように、トレンチ充填材(絶縁体)内部における電界は、最小終端長の減少に伴って増加している。
これにより、深さ比率0.3〜0.4が、絶縁体中の電界も緩和しつつ最小終端長を短縮することが両立でき、信頼性の高く、デッドスペースの少ない電力用半導体を提供することができる。
The curve of FIG. 5 above is supported for four different trench depths shown in FIGS. 10 (a)-(d). These structures successfully show a breakdown voltage of 90% or more of the ideal breakdown voltage and suppression of attenuation layer expansion to the outside of the trench. Deep trench structures and half-depth structures have successfully achieved a significant reduction in termination length. On the other hand, as shown in FIG. 11, the electric field inside the trench filler (insulator) increases as the minimum termination length decreases.
Thereby, the depth ratio of 0.3 to 0.4 can simultaneously reduce the minimum termination length while also relaxing the electric field in the insulator, and provides a power semiconductor with high reliability and less dead space. be able to.

本実施の形態における第2の第2導電型層6および第3の第1導電型層7の形成工程を図12に示す。
(1)まず、図12(a)に示す第1の第1導電型半導体層1の上面に第1の第2導電型層2を形成し、下面に第2の第1導電型層3を形成した基板に対し、上面よりRIE(Reactive Ion Etching)を行ってトレンチ4を形成する(図12(b)参照)。
(2)次いで、図12(c)に示すように、マスクによるホウ素のインプランテーション(斜めインプランテーション)を行い、第2の第2導電型層6を形成する。
(3)次に、図12(d)に示すように、ステンシルマスク10を用いて、スリット10aを通して第2の第2導電型層6の目標箇所にイオン(リン)を注入し、第3の第1導電型層の種8を形成する。
(4)次いで、図12(e)に示すように、熱拡散により種8を第1の第1導電型半導体層1に拡散させ、第3の第1導電型層7を形成する。
(5)最後に、図12(f)に示すように、コーターによる絶縁体塗布とエッチングにより、トレンチ4内部に絶縁体4を充填する。
このようにして、トレンチ4の底部に第3の第1導電型層7を形成することができる。
FIG. 12 shows a process of forming the second second conductivity type layer 6 and the third first conductivity type layer 7 in the present embodiment.
(1) First, the first second conductivity type layer 2 is formed on the upper surface of the first first conductivity type semiconductor layer 1 shown in FIG. 12A, and the second first conductivity type layer 3 is formed on the lower surface. The trench 4 is formed by performing RIE (Reactive Ion Etching) on the formed substrate from the upper surface (see FIG. 12B).
(2) Next, as shown in FIG. 12C, boron implantation (oblique implantation) using a mask is performed to form the second second conductivity type layer 6.
(3) Next, as shown in FIG. 12D, ions (phosphorus) are implanted into the target location of the second second conductivity type layer 6 through the slit 10a using the stencil mask 10, and the third A seed 8 of the first conductivity type layer is formed.
(4) Next, as shown in FIG. 12 (e), the seed 8 is diffused into the first first conductivity type semiconductor layer 1 by thermal diffusion to form a third first conductivity type layer 7.
(5) Finally, as shown in FIG. 12 (f), the insulator 4 is filled in the trench 4 by coating and etching the insulator with a coater.
In this way, the third first conductivity type layer 7 can be formed at the bottom of the trench 4.

以上の実施の形態においては、第3の第1導電型層7をトレンチ4の底部の終端部側に形成した例を示したが、この場所に限らず、トレンチ4の底部の左端よりWT以上離れていれば、トレンチ4の底部(またはコーナー)のいずれの場所に形成しても構わない。 In the above embodiments, although the third first-conductivity type layer 7 of an example formed on the terminal end side of the bottom of the trench 4 is not limited to this location, W T of the left end of the bottom of the trench 4 It may be formed at any location on the bottom (or corner) of the trench 4 as long as it is far away.

さらに、本実施の形態では、第1導電型をN型半導体、第2導電型をP型半導体としたが、逆に、第1導電型をP型半導体、第2導電型をN型半導体としてもよい。   Further, in the present embodiment, the first conductivity type is an N-type semiconductor and the second conductivity type is a P-type semiconductor. Conversely, the first conductivity type is a P-type semiconductor and the second conductivity type is an N-type semiconductor. Also good.

本発明は、無駄なスペースが少なく、形成が容易で加工工程時間が短い高電圧電力用半導体装置として、モータやエアコン等のドライブ用半導体装置、240V電源仕様の電気機器の電源等に好適に利用することができる。   INDUSTRIAL APPLICABILITY The present invention is suitably used as a high-voltage power semiconductor device with little wasted space, easy formation, and short processing time, such as a drive semiconductor device such as a motor and an air conditioner, and a power source for 240 V power supply type electrical equipment. can do.

1 第1の第1導電型半導体層
2 第1の第2導電型層
3 第2の第1導電型層
4 トレンチ
5 絶縁体
6 第2の第2導電型層
7 第3の第1導電型層
10 ステンシルマスク
11 p+基板
12 p-エピタキシャル成長層
13 埋め込みn+
14 トレンチ
15 n-
16 p+
DESCRIPTION OF SYMBOLS 1 1st 1st conductivity type semiconductor layer 2 1st 2nd conductivity type layer 3 2nd 1st conductivity type layer 4 Trench 5 Insulator 6 2nd 2nd conductivity type layer 7 3rd 1st conductivity type Layer 10 stencil mask 11 p + substrate 12 p - epitaxial growth layer 13 buried n + layer 14 trench 15 n - layer 16 p + layer

前記トレンチの深さは、第1の第1導電型半導体層の厚さに対し0.3〜0.4であることが好ましい。
The depth of the trench is preferably 0.3 to 0.4 with respect to the thickness of the first first conductivity type semiconductor layer.

Claims (4)

第1の第1導電型半導体層と、
前記第1の第1導電型半導体層の一方の面に選択的に形成された第1の第2導電型層と、
前記第1の第1導電型半導体層の他方の面に形成された第2の第1導電型層と、
前記第1の第2導電型層に接して前記第1の第1導電型半導体層に形成されたトレンチと、
前記トレンチ内に充填された絶縁体と、
前記トレンチの側壁ならびに底部に形成された第2の第2導電型層と、
前記第2の第2導電型層と離隔し、前記トレンチの側壁または底部に実質的に接して形成された第3の第1導電型層と
を有する高電圧電力用半導体装置。
A first first conductivity type semiconductor layer;
A first second conductivity type layer selectively formed on one surface of the first first conductivity type semiconductor layer;
A second first conductivity type layer formed on the other surface of the first first conductivity type semiconductor layer;
A trench formed in the first first conductivity type semiconductor layer in contact with the first second conductivity type layer;
An insulator filled in the trench;
A second second conductivity type layer formed on the sidewall and bottom of the trench;
A semiconductor device for high voltage power, comprising: a third first conductivity type layer formed apart from the second second conductivity type layer and substantially in contact with a side wall or bottom of the trench.
前記トレンチ内に充填される絶縁体は、有機物あるいは有機物を含む材料である請求項1記載の高電圧電力用半導体装置。   The semiconductor device for high voltage power according to claim 1, wherein the insulator filled in the trench is an organic substance or a material containing an organic substance. 前記トレンチの深さは、前記第1の第1電動型半導体層の厚さに対し0.3〜0.4である請求項1または2に記載の高電圧電力用半導体装置。   3. The high-voltage power semiconductor device according to claim 1, wherein a depth of the trench is 0.3 to 0.4 with respect to a thickness of the first first electric semiconductor layer. 前記トレンチ内に充填される絶縁体の誘電率は、比誘電率が2.65〜11.7の範囲である請求項1から3のいずれかの項に記載の高電圧電力用半導体装置。   4. The high voltage power semiconductor device according to claim 1, wherein a dielectric constant of an insulator filled in the trench is in a range of a relative dielectric constant of 2.65 to 11.7. 5.
JP2012123461A 2012-05-30 2012-05-30 High voltage power semiconductor devices Active JP6153151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012123461A JP6153151B2 (en) 2012-05-30 2012-05-30 High voltage power semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012123461A JP6153151B2 (en) 2012-05-30 2012-05-30 High voltage power semiconductor devices

Publications (2)

Publication Number Publication Date
JP2013251338A true JP2013251338A (en) 2013-12-12
JP6153151B2 JP6153151B2 (en) 2017-06-28

Family

ID=49849758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012123461A Active JP6153151B2 (en) 2012-05-30 2012-05-30 High voltage power semiconductor devices

Country Status (1)

Country Link
JP (1) JP6153151B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170162679A1 (en) * 2015-12-03 2017-06-08 Infineon Technologies Ag Semiconductor device with trench edge termination
US9786749B2 (en) 2015-11-20 2017-10-10 Fuji Electric Co., Ltd. Semiconductor device having a voltage resistant structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173319A (en) * 2005-12-19 2007-07-05 Toyota Motor Corp Insulated-gate semiconductor device and manufacturing method thereof
JP2012004312A (en) * 2010-06-16 2012-01-05 Denso Corp Method of manufacturing silicon carbide semiconductor device and silicon carbide semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173319A (en) * 2005-12-19 2007-07-05 Toyota Motor Corp Insulated-gate semiconductor device and manufacturing method thereof
JP2012004312A (en) * 2010-06-16 2012-01-05 Denso Corp Method of manufacturing silicon carbide semiconductor device and silicon carbide semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9786749B2 (en) 2015-11-20 2017-10-10 Fuji Electric Co., Ltd. Semiconductor device having a voltage resistant structure
US10109501B2 (en) 2015-11-20 2018-10-23 Fuji Electric Co., Ltd. Manufacturing method of semiconductor device having a voltage resistant structure
US20170162679A1 (en) * 2015-12-03 2017-06-08 Infineon Technologies Ag Semiconductor device with trench edge termination
US10008590B2 (en) * 2015-12-03 2018-06-26 Infineon Technologies Ag Semiconductor device with trench edge termination

Also Published As

Publication number Publication date
JP6153151B2 (en) 2017-06-28

Similar Documents

Publication Publication Date Title
RU2276429C2 (en) Semiconductor device and method for producing semiconductor device
CN106158800B (en) Semiconductor devices
US9136324B2 (en) Power semiconductor device and method for manufacturing the same
US8546875B1 (en) Vertical transistor having edge termination structure
US8680608B2 (en) Power semiconductor device with a low on resistence
CN105633168A (en) SiC grooved metal oxide semiconductor field effect transistor (MOSFET) with integration of Schottky diode and fabrication method of SiC grooved MOSFET
TWI575736B (en) Dual trench-gate igbt structure
JP5781383B2 (en) Power semiconductor devices
JPH10223896A (en) Semiconductor device of high withstand voltage and its manufacture
US10090403B2 (en) Power semiconductor device with semiconductor pillars
US10008590B2 (en) Semiconductor device with trench edge termination
TWI655769B (en) Power semiconductor device and manufacturing method thereof
US20110042714A1 (en) Power semiconductor device
JP2018537859A (en) Semiconductor device and manufacturing method thereof
CN105814690A (en) Edge termination for semiconductor devices and corresponding fabrication method
JP2010225833A (en) Semiconductor device
US10490629B2 (en) Method for fabricating power semiconductor device
EP2551910A1 (en) Insulated gate semiconductor device with optimized breakdown voltage and manufacturing method thereof
JP6153151B2 (en) High voltage power semiconductor devices
CN105474400B (en) Bipolar non-punch-through power semiconductor device
CN205595339U (en) Integrated schottky diode's siC ditch cell type MOSFET device
AU2006200447B2 (en) Semiconductor device and method of forming a semiconductor device
US9502498B2 (en) Power semiconductor device
Noblecourt et al. An improved junction termination design using deep trenches for superjunction power devices
CN204011432U (en) Power semiconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170524

R150 Certificate of patent or registration of utility model

Ref document number: 6153151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250