JP2013249966A - Heat pump type water heater - Google Patents

Heat pump type water heater Download PDF

Info

Publication number
JP2013249966A
JP2013249966A JP2012122658A JP2012122658A JP2013249966A JP 2013249966 A JP2013249966 A JP 2013249966A JP 2012122658 A JP2012122658 A JP 2012122658A JP 2012122658 A JP2012122658 A JP 2012122658A JP 2013249966 A JP2013249966 A JP 2013249966A
Authority
JP
Japan
Prior art keywords
hot water
water supply
supply fluid
temperature
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012122658A
Other languages
Japanese (ja)
Other versions
JP5838915B2 (en
Inventor
Hiroaki Kondo
浩明 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012122658A priority Critical patent/JP5838915B2/en
Publication of JP2013249966A publication Critical patent/JP2013249966A/en
Application granted granted Critical
Publication of JP5838915B2 publication Critical patent/JP5838915B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a heat pump type water heater capable of using a heating object fluid that has a viscosity variable with temperature.SOLUTION: A heat pump type water heater includes: a heat pump cycle 13 having a heat exchanger 18 for exchanging heat between a high temperature refrigerant discharged from a compressor 15 and a hot water supply fluid; a hot water supply fluid circulation circuit 12 having a hot water storage tank 11 for storing the hot water supply fluid heated in the heat exchanger 18 and a pressure-feeding means 14 for feeding the hot water supply fluid to the heat exchanger 18; temperature detecting means 21, 22 for detecting temperatures of the hot water supply fluid; and a control means 20 for controlling actuation of the pressure-feeding means 14 and of the compressor 15 on the basis of the temperature of the hot water supply fluid detected by the temperature detecting means 21. A fluid having a viscosity higher than a viscosity of water at a prescribed temperature or lower is used as the hot water supply fluid. The control means 20 starts actuation of the pressure feeding means 14 prior to the compressor 15, and when the temperature of the hot water supply fluid exceeds the prescribed temperature, the control means starts actuation of the compressor 15.

Description

本発明は、ヒートポンプサイクルによって給湯用流体を加熱するヒートポンプ式給湯機に関する。   The present invention relates to a heat pump type water heater that heats a hot water supply fluid by a heat pump cycle.

従来より、圧縮機から吐出された高温高圧冷媒と加熱対象流体とを熱交換器にて熱交換させて、加熱対象流体を加熱するヒートポンプサイクルが知られている。例えば、特許文献1には、ヒートポンプサイクルを用いて加熱対象流体としての給湯水を加熱するヒートポンプ式給湯機が開示されている。   Conventionally, a heat pump cycle is known in which heat is exchanged between a high-temperature and high-pressure refrigerant discharged from a compressor and a fluid to be heated in a heat exchanger to heat the fluid to be heated. For example, Patent Literature 1 discloses a heat pump type hot water heater that heats hot water as a fluid to be heated using a heat pump cycle.

特許第3227651号公報Japanese Patent No. 3227651

また、暖房専用用途として、ヒートポンプ式給湯機の加熱対象流体に不凍液を使用することが考えられている。不凍液は融点が低いため、0℃以下の温度領域でも使用可能であるが、低温になるほど粘度は高くなる傾向がある。このため、不凍液をヒートポンプ式給湯機の加熱対象流体として用いる場合には、低温環境下での起動時に粘度が高くなるため、熱交換器に必要な流量が確保できない。この状態でヒートポンプサイクルの圧縮機を起動させると、熱交換器に高温高圧冷媒が流入した際に熱交換器には充分な量の加熱対象流体が存在しないため、ヒートポンプサイクルの冷媒の圧力と温度が急激に上昇し、機器が破損するおそれがある。   In addition, as a dedicated heating application, it is considered to use an antifreeze liquid as a heating target fluid of a heat pump water heater. Since the antifreeze has a low melting point, it can be used in a temperature range of 0 ° C. or lower, but the viscosity tends to increase as the temperature decreases. For this reason, when using antifreeze as a fluid to be heated in a heat pump type hot water heater, the viscosity increases at the time of start-up in a low-temperature environment, and thus the flow rate required for the heat exchanger cannot be secured. When the heat pump cycle compressor is started in this state, when the high-temperature and high-pressure refrigerant flows into the heat exchanger, there is not a sufficient amount of fluid to be heated in the heat exchanger. May rise suddenly and damage the equipment.

これに対し、加熱対象流体を循環させるポンプを高揚程のものに変更するとともに、温度による加熱対象流体の粘性変化を考慮した制御を行うことが考えられるが、加熱対象流体として水を用いる従来のヒートポンプ式給湯機に対して大幅な仕様変更が必要となるという問題がある。   On the other hand, it is possible to change the pump for circulating the fluid to be heated to one having a high head and to perform control in consideration of the viscosity change of the fluid to be heated depending on the temperature. There is a problem that a large specification change is required for the heat pump type water heater.

本発明は上記点に鑑み、温度によって粘性が変化する加熱対象流体を使用可能なヒートポンプ式給湯機を提供することを目的とする。   In view of the above points, an object of the present invention is to provide a heat pump type water heater that can use a fluid to be heated whose viscosity changes depending on temperature.

上記目的を達成するため、本発明の請求項1に記載の発明では、冷媒を圧縮して吐出する圧縮機(15)から吐出された高温冷媒と給湯用流体とを熱交換させる熱交換器(18)を有するヒートポンプサイクル(13)と、前記熱交換器(18)にて加熱された給湯用流体を貯える貯湯タンク(11)、および、前記貯湯タンク(11)から流出した給湯用流体を前記熱交換器(18)へ圧送する圧送手段(14)を有する給湯用流体循環回路(12)と、前記給湯用流体の温度を検出する温度検出手段(21、22)と、前記温度検出手段(21、22)で検出した給湯用流体の温度に基づいて前記圧送手段(14)および前記圧縮機(15)の作動を制御する制御手段(20)とを備え、
前記給湯用流体は、所定温度以下での粘度が水より高い流体であり、前記制御手段(20)は、前記圧縮機(15)より先に前記圧送手段(14)の作動を開始し、前記給湯用流体の温度が前記所定温度を上回った場合に、前記圧縮機(15)の作動を開始することを特徴としている。
In order to achieve the above object, according to the first aspect of the present invention, a heat exchanger that exchanges heat between the high-temperature refrigerant discharged from the compressor (15) that compresses and discharges the refrigerant and the hot water supply fluid ( 18), a hot water storage tank (11) for storing hot water supply fluid heated by the heat exchanger (18), and a hot water supply fluid flowing out of the hot water storage tank (11). A hot water supply fluid circulation circuit (12) having a pumping means (14) for pumping to the heat exchanger (18), a temperature detection means (21, 22) for detecting the temperature of the hot water supply fluid, and the temperature detection means ( Control means (20) for controlling the operation of the pressure feeding means (14) and the compressor (15) based on the temperature of the hot water supply fluid detected in 21, 22),
The hot water supply fluid is a fluid having a higher viscosity than water at a predetermined temperature or less, and the control means (20) starts the operation of the pressure feeding means (14) before the compressor (15), When the temperature of the hot water supply fluid exceeds the predetermined temperature, the operation of the compressor (15) is started.

このように、低温起動時に圧縮機(15)に先だって圧送手段(14)を運転開始することで、給湯用流体の温度を上昇させ、これに伴い給湯用流体の粘度を低下させることができる。そして、給湯用流体の温度が所定温度Aを上回った時点で圧縮機(15)の運転を開始することで、熱交換器(16)において充分な流量の給湯用流体が確保でき、高温冷媒の有する熱量を熱交換器(16)で給湯用流体に確実に放熱させることができる。これにより、熱交換器(16)にて給湯用流体の流量が不足して冷媒の温度と圧力が急激に上昇するという不具合を防止することができる。この結果、給湯用流体として水を用いた従来のヒートポンプ式給湯機の圧送手段を変更することなく、温度によって粘性が変化する加熱対象流体を使用することができる。   Thus, by starting the operation of the pumping means (14) prior to the compressor (15) at the time of low temperature startup, the temperature of the hot water supply fluid can be raised, and the viscosity of the hot water supply fluid can be lowered accordingly. Then, by starting the operation of the compressor (15) when the temperature of the hot water supply fluid exceeds the predetermined temperature A, a sufficient flow rate of hot water supply fluid can be secured in the heat exchanger (16), and the high temperature refrigerant The amount of heat it has can be reliably radiated to the hot water supply fluid by the heat exchanger (16). Thereby, the malfunction that the flow rate of the hot water supply fluid is insufficient in the heat exchanger (16) and the temperature and pressure of the refrigerant rapidly increase can be prevented. As a result, it is possible to use a fluid to be heated whose viscosity changes depending on the temperature without changing the pumping means of a conventional heat pump type water heater using water as a hot water supply fluid.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

第1実施形態のヒートポンプ式給湯機の全体構成図である。It is a whole lineblock diagram of the heat pump type hot water heater of a 1st embodiment. 第1実施形態の沸き上げ運転の制御処理を示すフローチャートである。It is a flowchart which shows the control process of the boiling operation of 1st Embodiment. 起動時の流体ポンプと圧縮機の作動を示す説明図であり、(a)は起動時の給湯用流体温度が所定温度を上回っている場合を示し、(b)は起動時の給湯用流体温度が所定温度を上回っていない場合を示している。It is explanatory drawing which shows the action | operation of the fluid pump at the time of starting, and a compressor, (a) shows the case where the fluid temperature for hot water supply at the time of starting exceeds predetermined temperature, (b) shows the fluid temperature for hot water supply at the time of starting Shows a case where the temperature does not exceed the predetermined temperature. 第2実施形態のヒートポンプ式給湯機の全体構成図である。It is a whole block diagram of the heat pump type water heater of 2nd Embodiment. 第2実施形態の沸き上げ運転の制御処理を示すフローチャートである。It is a flowchart which shows the control processing of the boiling operation of 2nd Embodiment.

(第1実施形態)
以下、本発明の第1実施形態について図1〜図3に基づいて説明する。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.

図1に示すように、ヒートポンプ式給湯機10は、貯湯タンク11内の給湯用流体を循環させる給湯用流体循環回路12、および、加熱対象流体としての給湯用流体を加熱するためのヒートポンプサイクルであるヒートポンプサイクル13を備えている。本実施例では、給湯用流体として不凍液が用いられている。不凍液は、プロピレングリコールを主成分として含有する液体であり、0℃以下の低温環境下でも使用可能であるが、温度が低くなるほど粘度が高くなるという特性を有している。   As shown in FIG. 1, a heat pump type hot water heater 10 is a heat pump cycle for heating a hot water supply fluid circulation circuit 12 that circulates a hot water supply fluid in a hot water storage tank 11 and a hot water supply fluid as a fluid to be heated. A heat pump cycle 13 is provided. In this embodiment, antifreeze is used as the hot water supply fluid. The antifreeze is a liquid containing propylene glycol as a main component and can be used even in a low temperature environment of 0 ° C. or lower, but has a characteristic that the viscosity increases as the temperature decreases.

給湯用流体を貯留する貯湯タンク11は、耐食性に優れた金属(例えば、ステンレス)で形成され、断熱構造を有し、高温の給湯用流体を長時間保温することができるタンクである。貯湯タンク11に貯留された給湯用流体は、貯湯タンク11の上部に設けられた流出口から出湯され、床暖房等の暖房用途に用いられる。また、貯湯タンク11内の下部に設けられた流入口からは暖房に用いられた給湯用流体が再循環するようになっている。   The hot water storage tank 11 for storing hot water supply fluid is a tank that is formed of a metal (for example, stainless steel) having excellent corrosion resistance, has a heat insulating structure, and can retain a high temperature hot water supply fluid for a long time. The hot water supply fluid stored in the hot water storage tank 11 is discharged from an outlet provided in the upper part of the hot water storage tank 11 and used for heating applications such as floor heating. A hot water supply fluid used for heating is recirculated from an inflow port provided at a lower portion in the hot water storage tank 11.

給湯用流体循環回路12には、給湯用流体を循環させる圧送手段としての給湯用流体ポンプ14が配置されている。給湯用流体ポンプ14は、回転数を変化させることで圧送する給湯用流体の流量を変化させることができるように構成されており、制御装置20から出力される制御信号によって、その作動が制御される。そして、制御装置20が給湯用流体ポンプ14を作動させると、給湯用流体は、貯湯タンク11の下方側に設けられた給湯用流体出口11a→給湯用流体ポンプ14→後述する熱交換器16の給湯用流体通路16a→貯湯タンク11の上方側の給湯用流体入口11bの順に循環する。   The hot water supply fluid circulation circuit 12 is provided with a hot water supply fluid pump 14 as pressure feeding means for circulating the hot water supply fluid. The hot water supply fluid pump 14 is configured to be able to change the flow rate of the hot water supply fluid to be pumped by changing the rotation speed, and its operation is controlled by a control signal output from the control device 20. The When the control device 20 operates the hot water supply fluid pump 14, the hot water supply fluid is supplied from the hot water supply fluid outlet 11 a provided on the lower side of the hot water storage tank 11 → the hot water supply fluid pump 14 → the heat exchanger 16 described later. The hot water supply fluid passage 16 a circulates in the order of the hot water supply fluid inlet 11 b on the upper side of the hot water storage tank 11.

ヒートポンプサイクル13は、圧縮機15、熱交換器16、膨張弁17、蒸発器18等を順次配管で接続した冷凍サイクルである。このヒートポンプサイクル13では、冷媒として二酸化炭素を採用しており、圧縮機15から吐出された高圧冷媒の圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルを構成している。   The heat pump cycle 13 is a refrigeration cycle in which a compressor 15, a heat exchanger 16, an expansion valve 17, an evaporator 18 and the like are sequentially connected by piping. The heat pump cycle 13 employs carbon dioxide as a refrigerant, and constitutes a supercritical refrigeration cycle in which the pressure of the high-pressure refrigerant discharged from the compressor 15 is equal to or higher than the critical pressure of the refrigerant.

圧縮機15は、ヒートポンプサイクル13において冷媒を吸入し、臨界圧力以上となるまで圧縮して吐出するものである。圧縮機15としては、例えば固定容量型の電動圧縮機を用いることができる。   The compressor 15 sucks the refrigerant in the heat pump cycle 13 and compresses and discharges the refrigerant until it reaches a critical pressure or higher. As the compressor 15, for example, a fixed capacity type electric compressor can be used.

圧縮機15の冷媒吐出口には、熱交換器16の冷媒通路16b入口側が接続されている。熱交換器16は、給湯用流体が通過する給湯用流体通路16aと圧縮機15から吐出された高温高圧冷媒が通過する冷媒通路16bとを有して構成される熱交換器であって、圧縮機15から吐出された高温高圧冷媒の有する熱量を給湯用流体に放熱させて、給湯用流体を加熱する加熱用熱交換器である。なお、本実施形態のヒートポンプサイクル13では、前述の如く、超臨界冷凍サイクルを構成しているので、熱交換器16の冷媒通路16bを通過する冷媒は、凝縮することなく超臨界状態のまま放熱する。   The refrigerant discharge port of the compressor 15 is connected to the refrigerant passage 16 b inlet side of the heat exchanger 16. The heat exchanger 16 is a heat exchanger configured to include a hot water supply fluid passage 16a through which hot water supply fluid passes and a refrigerant passage 16b through which high-temperature and high-pressure refrigerant discharged from the compressor 15 passes. The heat exchanger for heating heats the hot water supply fluid by dissipating the amount of heat of the high-temperature and high-pressure refrigerant discharged from the machine 15 to the hot water supply fluid. In the heat pump cycle 13 of the present embodiment, as described above, the supercritical refrigeration cycle is configured. Therefore, the refrigerant passing through the refrigerant passage 16b of the heat exchanger 16 dissipates heat in the supercritical state without being condensed. To do.

熱交換器16の冷媒通路16b出口側には、膨張弁17の入口側が接続されている。膨張弁17は熱交換器16の冷媒通路16bから流出した高圧冷媒を減圧膨張させる可変絞り機構である。   The inlet side of the expansion valve 17 is connected to the outlet side of the refrigerant passage 16 b of the heat exchanger 16. The expansion valve 17 is a variable throttle mechanism that decompresses and expands the high-pressure refrigerant that has flowed out of the refrigerant passage 16 b of the heat exchanger 16.

膨張弁17の出口側には、蒸発器18が接続されている。蒸発器18は、膨張弁17にて減圧された低圧冷媒と図示しない送風ファンにより送風された外気(室外空気)とを熱交換させることによって、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用の熱交換器である。   An evaporator 18 is connected to the outlet side of the expansion valve 17. The evaporator 18 performs heat exchange between the low-pressure refrigerant decompressed by the expansion valve 17 and the outside air (outdoor air) blown by a blower fan (not shown), thereby evaporating the low-pressure refrigerant and exerting an endothermic effect. It is a heat exchanger.

なお、給湯用流体循環回路12の構成機器のうち、貯湯タンク11については、タンクユニット200として構成され、屋内に配置されている。また、給湯用流体循環回路12の給湯用流体ポンプ14やヒートポンプサイクル13の各構成機器15〜18等は、ヒートポンプユニット300として一体的に構成され、屋外に配置されている。このため、給湯用流体ポンプ14にて圧送される給湯用流体の温度は、外気温の影響を受けることとなる。   Of the components of the hot water supply fluid circulation circuit 12, the hot water storage tank 11 is configured as a tank unit 200 and is disposed indoors. Further, the hot water supply fluid pump 14 of the hot water supply fluid circulation circuit 12, the components 15 to 18 of the heat pump cycle 13, etc. are integrally configured as a heat pump unit 300 and are disposed outdoors. For this reason, the temperature of the hot water supply fluid pumped by the hot water supply fluid pump 14 is affected by the outside air temperature.

次に、本実施形態の制御装置20について説明する。制御装置20は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。制御装置20の出力側には、給湯用流体ポンプ14、圧縮機15等が接続され、これらの作動を制御する。また、制御装置20の入力側には、給湯用流体循環回路12における給湯用流体ポンプ14に流入する給湯用流体の温度(以下、「給湯用流体温度」という)を検出する第1温度センサ21、熱交換器16から流出する給湯用流体の温度を検出する第2温度センサ22等が接続されている。第1温度センサ21は、給湯用流体循環回路12における貯湯タンク11より下流側で給湯用流体ポンプ14の上流側に設けられ、第2温度センサ22は給湯用流体循環回路12における熱交換器16の下流側に設けられている。これらの温度センサ21、22は、雰囲気温度(外気温)に応じて変化する給湯用流体温度を検出するように構成されている。   Next, the control device 20 of the present embodiment will be described. The control device 20 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof. On the output side of the control device 20, a hot water supply fluid pump 14, a compressor 15 and the like are connected to control the operation thereof. Further, on the input side of the control device 20, a first temperature sensor 21 that detects the temperature of the hot water supply fluid flowing into the hot water supply fluid pump 14 in the hot water supply fluid circulation circuit 12 (hereinafter referred to as “hot water supply fluid temperature”). A second temperature sensor 22 for detecting the temperature of the hot water supply fluid flowing out from the heat exchanger 16 is connected. The first temperature sensor 21 is provided downstream of the hot water storage tank 11 in the hot water supply fluid circulation circuit 12 and upstream of the hot water supply fluid pump 14, and the second temperature sensor 22 is provided in the heat exchanger 16 in the hot water supply fluid circulation circuit 12. It is provided on the downstream side. These temperature sensors 21 and 22 are configured to detect a hot water supply fluid temperature that changes according to the ambient temperature (outside air temperature).

次に、上記の構成における本実施形態のヒートポンプ式給湯機10の作動を図2、図3を用いて説明する。なお、図2に示す制御処理は、ヒートポンプ式給湯機10に外部から電源が供給された状態で、図示しない操作パネルから沸き上げ運転開始要求信号が出力されることによりスタートする。   Next, the operation of the heat pump type water heater 10 of the present embodiment having the above configuration will be described with reference to FIGS. The control process shown in FIG. 2 starts when a heating operation start request signal is output from an operation panel (not shown) in a state where power is supplied to the heat pump type hot water heater 10 from the outside.

沸き上げ運転開始により、温度センサ21、22のセンサ信号に基づいて給湯用流体温度を検出し(S10)、給湯用流体温度が所定温度Aを上回っているか否かを判定する(S11)。ここで、所定温度Aについて説明する。上述のように、給湯用流体として不凍液を用いる場合には、低温環境下で粘度が高くなるため、給湯用流体ポンプ14を作動させても、熱交換器16に流入する給湯用流体の流量が少なくなる。このため、所定温度Aは、給湯用流体ポンプ14によって給湯用流体を循環させた場合に、熱交換器16に必要な給湯用流体の流量を確保できる程度に給湯用流体の粘度が低下する温度として設定される。所定温度Aは、給湯用流体として用いる不凍液の種類や濃度に基づいて設定すればよく、本実施形態では0℃としている。   When the boiling operation is started, the hot water supply fluid temperature is detected based on the sensor signals of the temperature sensors 21 and 22 (S10), and it is determined whether or not the hot water supply fluid temperature exceeds a predetermined temperature A (S11). Here, the predetermined temperature A will be described. As described above, when an antifreeze liquid is used as the hot water supply fluid, the viscosity increases in a low temperature environment. Therefore, even if the hot water supply fluid pump 14 is operated, the flow rate of the hot water supply fluid flowing into the heat exchanger 16 is high. Less. For this reason, the predetermined temperature A is a temperature at which the viscosity of the hot water supply fluid decreases to such an extent that the flow rate of the hot water supply fluid necessary for the heat exchanger 16 can be secured when the hot water supply fluid pump 14 circulates the hot water supply fluid. Set as The predetermined temperature A may be set based on the type and concentration of the antifreeze used as the hot water supply fluid, and is set to 0 ° C. in this embodiment.

S11の判定処理の結果、給湯用流体温度が所定温度Aを上回っていると判定された場合には(S11:YES)、給湯用流体ポンプ14によって給湯用流体を循環させた場合に、熱交換器16に必要な給湯用流体の流量を確保できるので、給湯用流体ポンプ14の運転を通常回転(第1回転数)にて開始し(S12)、圧縮機15の運転を開始する(S13)。   As a result of the determination process of S11, when it is determined that the hot water supply fluid temperature is higher than the predetermined temperature A (S11: YES), heat exchange is performed when the hot water supply fluid is circulated by the hot water supply fluid pump 14. Since the flow rate of the hot water supply fluid required for the water heater 16 can be secured, the operation of the hot water supply fluid pump 14 is started at the normal rotation (first rotation speed) (S12), and the operation of the compressor 15 is started (S13). .

これにより、図3(a)に示すように、起動時の給湯用流体温度が所定温度Aを上回っている場合には、給湯用流体ポンプ14と圧縮機15が同時に運転開始することとなる。なお、起動直後は、給湯用流体を給湯用流体循環回路12に早期に循環させるために、給湯用流体ポンプ14を定常運転より回転数が高い起動運転にて作動させる。その後、給湯用流体ポンプ14は、起動運転よりも回転数が低い定常運転に移行させる。   As a result, as shown in FIG. 3 (a), when the hot water supply fluid temperature at the time of activation exceeds a predetermined temperature A, the hot water supply fluid pump 14 and the compressor 15 start operating simultaneously. Immediately after the start-up, the hot water supply fluid pump 14 is operated in a start-up operation having a higher rotational speed than the steady operation in order to circulate hot water supply fluid through the hot water supply fluid circulation circuit 12 at an early stage. Thereafter, the hot water supply fluid pump 14 shifts to a steady operation having a lower rotational speed than the start operation.

一方、S11の判定処理の結果、給湯用流体温度が所定温度Aを上回っていないと判定された場合には(S11:NO)、給湯用流体ポンプ14によって給湯用流体を循環させた場合に、熱交換器16に必要な給湯用流体の流量を確保できないので、給湯用流体ポンプ14の運転を高回転(第2回転数)にて開始する(S14)。これにより、図3(b)に示すように、起動時の給湯用流体温度が所定温度A以下の場合には、給湯用流体ポンプ14のみが運転開始することとなる。なお、起動時の給湯用流体温度が所定温度A以下の場合には、給湯用流体(不凍液)の粘度が高くなっているので、流体ポンプの起動運転での回転数を図3(a)に示す起動時の給湯用流体温度が所定温度Aを上回っている場合よりも高回転としている。   On the other hand, as a result of the determination process of S11, when it is determined that the hot water supply fluid temperature does not exceed the predetermined temperature A (S11: NO), when the hot water supply fluid pump 14 circulates the hot water supply fluid, Since the flow rate of the hot water supply fluid necessary for the heat exchanger 16 cannot be secured, the operation of the hot water supply fluid pump 14 is started at a high speed (second rotation speed) (S14). Thereby, as shown in FIG.3 (b), when the hot water supply fluid temperature at the time of starting is below the predetermined temperature A, only the hot water supply fluid pump 14 will start operation. When the temperature of the hot water supply fluid at the time of startup is equal to or lower than the predetermined temperature A, the viscosity of the hot water supply fluid (antifreeze) is high. The hot water supply fluid temperature at the start-up shown is higher than that when the temperature is higher than the predetermined temperature A.

S14の処理で、給湯用流体ポンプ14の運転を開始することで、貯湯タンク11内で保温された高温の給湯用流体が循環を開始する。このため、当初は低温であった給湯用流体温度を徐々に上昇させていくことが可能となる。   By starting the operation of the hot water supply fluid pump 14 in the process of S14, the hot hot water supply fluid kept in the hot water storage tank 11 starts to circulate. For this reason, it is possible to gradually increase the temperature of the hot water supply fluid that was initially low.

次に、温度センサ21、22のセンサ信号に基づいて給湯用流体温度を検出し(S15)、給湯用流体温度が所定温度Aを上回っているか否かを判定する(S16)。そして、給湯用流体温度が所定温度Aを上回るまで、S15とS16の処理を繰り返し行い、給湯用流体温度が所定温度Aを上回った場合に(S16:YES)、圧縮機15の運転を開始する(S13)。   Next, the hot water supply fluid temperature is detected based on the sensor signals of the temperature sensors 21 and 22 (S15), and it is determined whether or not the hot water supply fluid temperature exceeds a predetermined temperature A (S16). Then, the processes of S15 and S16 are repeated until the hot water supply fluid temperature exceeds the predetermined temperature A. When the hot water supply fluid temperature exceeds the predetermined temperature A (S16: YES), the operation of the compressor 15 is started. (S13).

以上説明した本実施形態の構成によれば、不凍液からなる給湯用流体の粘度が高くなっている低温起動時に、圧縮機15に先だって給湯用流体ポンプ14を運転開始することで、給湯用流体温度を徐々に上昇させ、これに伴い給湯用流体の粘度を低下させることができる。そして、給湯用流体温度が所定温度Aを上回った時点では、熱交換器16において充分な流量の給湯用流体が確保できる。このため、給湯用流体温度が所定温度Aを上回った時点で圧縮機15の運転を開始することで、高温高圧冷媒の有する熱量を熱交換器16で給湯用流体に確実に放熱させることができる。このため、熱交換器16にて給湯用流体の流量が不足して冷媒の温度と圧力が急激に上昇するという不具合を防止することができる。この結果、給湯用流体として水を用いた従来のヒートポンプ式給湯機の流体ポンプを変更することなく、給湯用流体として温度によって粘性が変化する不凍液を用いることができる。   According to the configuration of the present embodiment described above, the hot water supply fluid pump 14 is started prior to the compressor 15 at the time of low temperature startup when the viscosity of the hot water supply fluid made of the antifreeze liquid is high. The viscosity of the hot water supply fluid can be lowered accordingly. When the hot water supply fluid temperature exceeds the predetermined temperature A, a sufficient flow rate of hot water supply fluid can be secured in the heat exchanger 16. For this reason, by starting the operation of the compressor 15 when the temperature of the hot water supply fluid exceeds the predetermined temperature A, the heat quantity of the high-temperature and high-pressure refrigerant can be reliably radiated to the hot water supply fluid by the heat exchanger 16. . For this reason, it is possible to prevent a problem that the flow rate of the hot water supply fluid is insufficient in the heat exchanger 16 and the temperature and pressure of the refrigerant rapidly increase. As a result, it is possible to use an antifreeze liquid whose viscosity changes with temperature as the hot water supply fluid without changing the fluid pump of the conventional heat pump type hot water heater using water as the hot water supply fluid.

(第2実施形態)
次に、本発明の第2実施形態を図4、図5に基づいて説明する。上記第1実施形態と同様の部分については同一の符号を付して説明を省略し、異なる部分についてのみ説明する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. The same parts as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and only different parts are described.

図4に示すように、本第2実施形態のヒートポンプ式給湯機10では、給湯用流体循環回路12の給湯用流体を加熱するための補助熱源としてヒータ23が設けられている。ヒータ23は、給湯用流体循環回路12における給湯用流体ポンプ14の上流側に配置されており、ヒートポンプユニット300に含まれている。本実施形態では、ヒータ23として電気ヒータを用いている。   As shown in FIG. 4, in the heat pump type water heater 10 of the second embodiment, a heater 23 is provided as an auxiliary heat source for heating the hot water supply fluid in the hot water supply fluid circulation circuit 12. The heater 23 is arranged on the upstream side of the hot water supply fluid pump 14 in the hot water supply fluid circulation circuit 12 and is included in the heat pump unit 300. In the present embodiment, an electric heater is used as the heater 23.

次に、本第2実施形態のヒートポンプ式給湯機10の作動を図5を用いて説明する。   Next, the operation of the heat pump type water heater 10 of the second embodiment will be described with reference to FIG.

本第2実施形態では、S11の判定処理で給湯用流体温度が所定温度Aを上回っていないと判定され、S14の処理で給湯用流体ポンプ14の運転を高回転にて開始した後に、給湯用流体ポンプ14の運転開始から所定時間が経過したか否かを判定する(S17)。   In the second embodiment, the hot water supply fluid temperature is determined not to exceed the predetermined temperature A in the determination process of S11, and the operation of the hot water supply fluid pump 14 is started at a high speed in the process of S14. It is determined whether a predetermined time has elapsed from the start of operation of the fluid pump 14 (S17).

この結果、所定時間が経過していないと判定された場合には(S17:NO)、S15の処理に移行する。一方、所定時間が経過したと判定された場合には(S17:YES)、ヒータ23を作動させ(S18)、S15の処理に移行する。   As a result, when it is determined that the predetermined time has not elapsed (S17: NO), the process proceeds to S15. On the other hand, when it is determined that the predetermined time has elapsed (S17: YES), the heater 23 is operated (S18), and the process proceeds to S15.

次に、S16の判定処理で給湯用流体温度が所定温度Aを上回っていると判定された場合には、ヒータ23が作動中か否かを判定する(S19)。この結果、ヒータ23が作動中でないと判定された場合には(S19:NO)、S13の処理に移行する。一方、ヒータ23が作動中であると判定された場合には(S19:YES)、ヒータ23の作動を停止し(S20)、S13の処理に移行する。   Next, when it is determined in the determination process of S16 that the hot water supply fluid temperature is higher than the predetermined temperature A, it is determined whether or not the heater 23 is operating (S19). As a result, when it is determined that the heater 23 is not operating (S19: NO), the process proceeds to S13. On the other hand, when it is determined that the heater 23 is operating (S19: YES), the operation of the heater 23 is stopped (S20), and the process proceeds to S13.

以上説明した本第2実施形態の構成によれば、低温起動時に給湯用流体ポンプ14を運転開始してから所定時間経過しても給湯用流体温度が所定温度Aまで上昇しない場合に、ヒータ23で給湯用流体を加熱することで、給湯用流体温度を強制的に所定温度A以上に上昇させることができる。これにより、貯湯タンク11内の給湯用流体温度が低く、貯湯タンク11内の給湯用流体が循環することによっては給湯用流体温度が上昇しない場合であっても、給湯用流体温度を上昇させることができ、熱交換器16において充分な流量の給湯用流体が確保できる。   According to the configuration of the second embodiment described above, when the hot water supply fluid temperature does not rise to the predetermined temperature A even after a predetermined time has elapsed since the operation of the hot water supply fluid pump 14 is started at low temperature startup, the heater 23 The hot water supply fluid temperature can be forcibly raised to a predetermined temperature A or higher by heating the hot water supply fluid. As a result, even if the hot water supply fluid temperature in the hot water storage tank 11 is low and the hot water supply fluid in the hot water storage tank 11 circulates, the hot water supply fluid temperature does not increase. Therefore, a sufficient amount of hot water supply fluid can be secured in the heat exchanger 16.

(他の実施形態)
本発明は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
(Other embodiments)
The present invention is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present invention.

例えば、上記各実施形態では、熱交換器16にて冷媒に加熱される加熱対象流体として不凍液を用いたが、加熱対象流体は所定温度A以下で水より粘度が高くなる流体であればよく、不凍液と異なる種類の流体であってもよい。   For example, in each of the above embodiments, the antifreeze liquid is used as the heating target fluid heated by the refrigerant in the heat exchanger 16, but the heating target fluid may be a fluid having a viscosity higher than water at a predetermined temperature A or lower, A different type of fluid from the antifreeze may be used.

また、上記各実施形態のヒートポンプサイクル13では、冷媒として二酸化炭素を用いて超臨界冷凍サイクルを構成しているが、これに限らず、フロン系、HC系等の冷媒のように高圧圧力が臨界圧力を超えない冷媒を用いて亜臨界冷凍サイクルを構成してもよい。   In the heat pump cycle 13 of each of the above embodiments, the supercritical refrigeration cycle is configured using carbon dioxide as a refrigerant. However, the present invention is not limited to this, and high pressure pressure is critical as in refrigerants such as chlorofluorocarbon and HC. You may comprise a subcritical refrigerating cycle using the refrigerant | coolant which does not exceed a pressure.

11 貯湯タンク
12 給湯用流体循環回路
13 ヒートポンプサイクル
14 流体ポンプ(圧送手段)
15 圧縮機
16 熱交換器
20 制御装置(制御手段)
21 第1温度センサ(温度検出手段)
22 第2温度センサ(温度検出手段)
23 ヒータ(加熱手段)
DESCRIPTION OF SYMBOLS 11 Hot water storage tank 12 Fluid circulation circuit for hot water supply 13 Heat pump cycle 14 Fluid pump (pressure feeding means)
15 Compressor 16 Heat exchanger 20 Control device (control means)
21 1st temperature sensor (temperature detection means)
22 Second temperature sensor (temperature detection means)
23 Heater (heating means)

Claims (3)

冷媒を圧縮して吐出する圧縮機(15)から吐出された高温冷媒と給湯用流体とを熱交換させる熱交換器(18)を有するヒートポンプサイクル(13)と、
前記熱交換器(18)にて加熱された給湯用流体を貯える貯湯タンク(11)、および、前記貯湯タンク(11)から流出した給湯用流体を前記熱交換器(18)へ圧送する圧送手段(14)を有する給湯用流体循環回路(12)と、
前記給湯用流体の温度を検出する温度検出手段(21、22)と、
前記温度検出手段(21、22)で検出した給湯用流体の温度に基づいて前記圧送手段(14)および前記圧縮機(15)の作動を制御する制御手段(20)とを備え、
前記給湯用流体は、所定温度以下での粘度が水より高い流体であり、
前記制御手段(20)は、前記圧縮機(15)より先に前記圧送手段(14)の作動を開始させ、前記給湯用流体の温度が前記所定温度を上回った場合に、前記圧縮機(15)の作動を開始させることを特徴とするヒートポンプ式給湯機。
A heat pump cycle (13) having a heat exchanger (18) for exchanging heat between the high-temperature refrigerant discharged from the compressor (15) that compresses and discharges the refrigerant, and the hot water supply fluid;
A hot water storage tank (11) for storing hot water supply fluid heated by the heat exchanger (18), and a pressure feeding means for pumping the hot water supply fluid flowing out of the hot water storage tank (11) to the heat exchanger (18) (14) a hot water supply fluid circulation circuit (12),
Temperature detecting means (21, 22) for detecting the temperature of the hot water supply fluid;
Control means (20) for controlling the operation of the pressure feeding means (14) and the compressor (15) based on the temperature of the hot water supply fluid detected by the temperature detection means (21, 22),
The hot water supply fluid is a fluid whose viscosity at a predetermined temperature or lower is higher than that of water,
The control means (20) starts the operation of the pressure feeding means (14) prior to the compressor (15), and when the temperature of the hot water supply fluid exceeds the predetermined temperature, the compressor (15 ) Is started, a heat pump type water heater.
前記圧送手段(14)は、回転数を変化させることで圧送する前記給湯用流体の流量を変化させることができるように構成され、
前記制御手段(20)は、前記給湯用流体の温度が前記所定温度を上回っている場合には、前記圧送手段(14)を第1回転数で作動させ、前記給湯用流体の温度が前記所定温度以下の場合には、前記圧送手段(14)を前記第1回転数より高回転の第2回転数で作動させることを特徴とする請求項1に記載のヒートポンプ式給湯機。
The pumping means (14) is configured to change the flow rate of the hot water supply fluid pumped by changing the number of rotations,
When the temperature of the hot water supply fluid is higher than the predetermined temperature, the control means (20) operates the pressure feeding means (14) at a first rotational speed so that the temperature of the hot water supply fluid is the predetermined temperature. 2. The heat pump type hot water heater according to claim 1, wherein when the temperature is equal to or lower than the temperature, the pumping means is operated at a second rotation speed higher than the first rotation speed.
前記給湯用流体を加熱する加熱手段(22)を備え、
前記制御手段(20)は、前記圧送手段(14)の運転開始から所定時間が経過した時点で、前記給湯用流体の温度が前記所定温度に到達しない場合には、前記加熱手段(22)にて前記給湯用流体を加熱させることを特徴とする請求項1または2に記載のヒートポンプ式給湯機。
Heating means (22) for heating the hot water supply fluid;
When the predetermined time has elapsed from the start of operation of the pressure feeding means (14), the control means (20) causes the heating means (22) to turn on the heating means (22) if the temperature of the hot water supply fluid does not reach the predetermined temperature. The heat pump type hot water heater according to claim 1 or 2, wherein the hot water supply fluid is heated.
JP2012122658A 2012-05-30 2012-05-30 Heat pump water heater Expired - Fee Related JP5838915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012122658A JP5838915B2 (en) 2012-05-30 2012-05-30 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012122658A JP5838915B2 (en) 2012-05-30 2012-05-30 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2013249966A true JP2013249966A (en) 2013-12-12
JP5838915B2 JP5838915B2 (en) 2016-01-06

Family

ID=49848831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012122658A Expired - Fee Related JP5838915B2 (en) 2012-05-30 2012-05-30 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP5838915B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61184357A (en) * 1985-02-08 1986-08-18 Takashi Miyagawa Heat exchanger
JPH04103571U (en) * 1991-02-15 1992-09-07 関西電力株式会社 Heat pump water heater
JPH0814657A (en) * 1994-06-24 1996-01-19 Matsushita Electric Ind Co Ltd Heat pump hot water supply system
JP3227651B2 (en) * 1998-11-18 2001-11-12 株式会社デンソー Water heater
JP2006090576A (en) * 2004-09-21 2006-04-06 Hitachi Home & Life Solutions Inc Heat pump water heater
JP2007298254A (en) * 2006-05-08 2007-11-15 Matsushita Electric Ind Co Ltd Heat pump type water heater and its starting method
JP2008121923A (en) * 2006-11-09 2008-05-29 Denso Corp Heat pump water heater
JP2009204251A (en) * 2008-02-28 2009-09-10 Denso Corp Heat pump type water heater and its control method
JP2010048518A (en) * 2008-08-25 2010-03-04 Denso Corp Heat pump water heater

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61184357A (en) * 1985-02-08 1986-08-18 Takashi Miyagawa Heat exchanger
JPH04103571U (en) * 1991-02-15 1992-09-07 関西電力株式会社 Heat pump water heater
JPH0814657A (en) * 1994-06-24 1996-01-19 Matsushita Electric Ind Co Ltd Heat pump hot water supply system
JP3227651B2 (en) * 1998-11-18 2001-11-12 株式会社デンソー Water heater
JP2006090576A (en) * 2004-09-21 2006-04-06 Hitachi Home & Life Solutions Inc Heat pump water heater
JP2007298254A (en) * 2006-05-08 2007-11-15 Matsushita Electric Ind Co Ltd Heat pump type water heater and its starting method
JP2008121923A (en) * 2006-11-09 2008-05-29 Denso Corp Heat pump water heater
JP2009204251A (en) * 2008-02-28 2009-09-10 Denso Corp Heat pump type water heater and its control method
JP2010048518A (en) * 2008-08-25 2010-03-04 Denso Corp Heat pump water heater

Also Published As

Publication number Publication date
JP5838915B2 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
WO2013076949A1 (en) Refrigeration cycle device and hot water production device equipped with same
JP5223795B2 (en) Heat pump water heater
EP2589901A2 (en) Refrigeration cycle apparatus and hot water generator
JP2008241173A (en) Heat pump water heater
JP2009204251A (en) Heat pump type water heater and its control method
JP6123650B2 (en) Heat pump cycle equipment
EP2594867A2 (en) Refrigeration cycle apparatus and hot water producing apparatus
JP5934916B2 (en) Refrigeration cycle apparatus and hot water generator provided with the same
JP2007139415A (en) Heat pump water heater
JP2010025517A (en) Heat pump type water heater
JP2011247547A (en) Refrigerating cycle device
JP2010266093A (en) Hot-water supply system
WO2015194167A1 (en) Heat pump device
JP5115283B2 (en) Heat pump type water heater
JP2008224067A (en) Heat pump hot water supply device
JP5838915B2 (en) Heat pump water heater
JP2002340439A (en) Heat pump type hot-water supplier
JP2007107756A (en) Heat pump water heater
JP5381749B2 (en) Refrigeration cycle equipment
JP2002213821A (en) Heat-pump water heater
JP2009085476A (en) Heat pump water heater
JP6394813B2 (en) Refrigeration cycle system
JP5842718B2 (en) Refrigeration cycle equipment
KR20120087385A (en) Air source water heater and operation control method thereof
JP2012002426A (en) Heat pump cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151026

LAPS Cancellation because of no payment of annual fees