JPH0814657A - Heat pump hot water supply system - Google Patents
Heat pump hot water supply systemInfo
- Publication number
- JPH0814657A JPH0814657A JP14329594A JP14329594A JPH0814657A JP H0814657 A JPH0814657 A JP H0814657A JP 14329594 A JP14329594 A JP 14329594A JP 14329594 A JP14329594 A JP 14329594A JP H0814657 A JPH0814657 A JP H0814657A
- Authority
- JP
- Japan
- Prior art keywords
- hot water
- temperature
- heater
- temperature detector
- refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 215
- 239000003507 refrigerant Substances 0.000 claims abstract description 15
- 238000009835 boiling Methods 0.000 claims description 8
- 238000011144 upstream manufacturing Methods 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 abstract description 10
- 230000006837 decompression Effects 0.000 description 4
- 239000008400 supply water Substances 0.000 description 3
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はヒートポンプ利用給湯機
の信頼性向上および貯湯熱量向上に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of reliability and heat quantity of stored hot water of a water heater using a heat pump.
【0002】[0002]
【従来の技術】従来、ヒートポンプ利用の給湯機は図2
に示す如く、圧縮機1、冷媒対水熱交換器2、減圧装置
3、蒸発器4からなる冷媒回路と、貯湯槽5、循環ポン
プ6、前記冷媒対水熱交換器2を接続した給湯回路から
なり、前記圧縮機1より吐出された高温高圧の過熱ガス
冷媒は前記冷媒対水熱交換器2に流入し、ここで凝縮熱
を利用して、前記循環ポンプ6から送られてきた水を加
熱し、前記貯湯槽5に蓄える。一方、前記冷媒対水熱交
換器2で凝縮液化した冷媒は前記減圧装置3で減圧さ
れ、前記蒸発器4に流入する。そして、ここで大気熱を
吸熱して蒸発ガス化し、前記圧縮機1にもどる。この
際、前記圧縮機1の高温度に於ける耐久性を考慮する
と、前記貯湯槽5に蓄える湯温は高温にはできない。従
って、十分な湯量を得るためには前記貯湯槽5は大きく
なることになる。それを防止するため、図2に示す如
く、前記冷媒対水熱交換器2から流出した湯を加熱器7
で高温まで加熱し、前記貯湯槽5の上部からしだいに高
温の湯をたくわえていくことが考えられる。2. Description of the Related Art Conventionally, a water heater using a heat pump is shown in FIG.
As shown in, a refrigerant circuit including a compressor 1, a refrigerant-to-water heat exchanger 2, a pressure reducing device 3, and an evaporator 4, a hot water tank 5, a circulation pump 6, and a refrigerant-to-water heat exchanger 2 are connected to a hot water supply circuit. The high-temperature high-pressure superheated gas refrigerant discharged from the compressor 1 flows into the refrigerant-to-water heat exchanger 2, where the heat of condensation is used to remove the water sent from the circulation pump 6. It is heated and stored in the hot water storage tank 5. On the other hand, the refrigerant condensed and liquefied in the refrigerant-to-water heat exchanger 2 is decompressed by the decompression device 3 and flows into the evaporator 4. Then, here, the heat of the atmosphere is absorbed to be vaporized and returned to the compressor 1. At this time, considering the durability of the compressor 1 at high temperatures, the hot water temperature stored in the hot water storage tank 5 cannot be high. Therefore, in order to obtain a sufficient amount of hot water, the hot water storage tank 5 becomes large. In order to prevent this, as shown in FIG. 2, the hot water flowing out from the refrigerant-to-water heat exchanger 2 is heated by the heater 7
It is conceivable that the hot water is gradually heated from the upper part of the hot water storage tank 5 by heating it to a high temperature.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記の
ような構成では、前記加熱器7の入力が一定の場合、前
記加熱器7の出口湯温を一定にする際に前記冷媒対水熱
交換器2から流出する湯温は給水温度および前記冷媒対
水熱交換器2の交換熱量で変化する。例えば、外気温度
が高くなると前記冷媒対水熱交換器2による加熱量が増
加して、前記冷媒対水熱交換器2から流出する湯温は高
くなり、前記圧縮機1を損なうほどの高温になる恐れも
生じる。仮に、前記加熱器7の入力が2kW一定で、前
記加熱器7の出口湯温85℃にする場合、冬季の給水温
度5℃、前記冷媒対水熱交換器2の加熱量が2kW時に
は、前記冷媒対水熱交換器2から流出する湯温は45℃
である。しかし、中間季には給水温度20℃、前記冷媒
対水熱交換器2の加熱量が4kWと増加するため、前記
冷媒対水熱交換器2から流出する湯温は63℃まで上昇
する。また、前記貯湯槽5の上部からしだいに高温湯を
たくわえていくため、前記貯湯槽5内で高温湯と、給水
された低温水の熱伝導により高温湯は温度低下、低温水
は温度上昇して、高温湯と低温水が混合した混合層が生
じる。従って、沸き上げ完了前では、実際の給水温度よ
り高くなった混合層の水が前記冷媒対水熱交換器2に流
入しはじめる。仮に、上記中間季の条件において、前記
冷媒対水熱交換器2の入口水温が給水温度20℃から混
合層の湯35℃になると前記冷媒対水熱交換器2から流
出する湯温は63℃が68℃にもなる。このように、湯
温が高くなると前記圧縮機1の吐出圧力は高くなり、モ
ーターの巻線温度の上昇となり、圧縮機の信頼性が課題
となる。However, in the above configuration, when the input of the heater 7 is constant, the refrigerant-to-water heat exchanger is used when the outlet hot water temperature of the heater 7 is constant. The temperature of the hot water flowing out of 2 changes depending on the feed water temperature and the amount of heat exchanged by the refrigerant-to-water heat exchanger 2. For example, when the outside air temperature rises, the amount of heat by the refrigerant-to-water heat exchanger 2 increases, the hot water temperature flowing out from the refrigerant-to-water heat exchanger 2 becomes high, and the temperature is high enough to damage the compressor 1. There is also a fear of becoming. If the input of the heater 7 is constant at 2 kW and the outlet hot water temperature of the heater 7 is set to 85 ° C., the supply water temperature in winter is 5 ° C., and the heating amount of the refrigerant-to-water heat exchanger 2 is 2 kW. The temperature of the hot water flowing out from the refrigerant-to-water heat exchanger 2 is 45 ° C.
Is. However, in the middle season, the feed water temperature is 20 ° C., and the heating amount of the refrigerant-to-water heat exchanger 2 is increased to 4 kW, so that the hot water temperature flowing out from the refrigerant-to-water heat exchanger 2 is increased to 63 ° C. In addition, since the high temperature hot water is gradually accumulated from the upper part of the hot water storage tank 5, the high temperature hot water and the low temperature water supplied in the hot water storage tank 5 conduct heat to lower the temperature of the hot water and increase the temperature of the low temperature water. As a result, a mixed layer of hot water and low temperature water is formed. Therefore, before the completion of boiling, the water in the mixed layer having a temperature higher than the actual feed water temperature starts to flow into the refrigerant-to-water heat exchanger 2. If the inlet water temperature of the refrigerant-to-water heat exchanger 2 changes from the supply water temperature of 20 ° C to the mixed layer hot water of 35 ° C under the above-mentioned intermediate season conditions, the hot-water temperature flowing out of the refrigerant-to-water heat exchanger 2 is 63 ° C. Can reach 68 ° C. In this way, when the hot water temperature rises, the discharge pressure of the compressor 1 also rises, the winding temperature of the motor rises, and the reliability of the compressor becomes a problem.
【0004】また、信頼性を確保するには、前記貯湯槽
5から前記冷媒対水熱交換器2に流れる水温が低い状態
のうちで運転を停止せざるをえない。その際には、前記
貯湯槽5にたくわえる熱量は減少し、給湯負荷を満足さ
せることができない。In order to ensure reliability, the operation must be stopped even when the temperature of the water flowing from the hot water storage tank 5 to the refrigerant / water heat exchanger 2 is low. In that case, the amount of heat stored in the hot water storage tank 5 decreases, and the hot water supply load cannot be satisfied.
【0005】[0005]
【課題を解決するための手段】本発明は上記欠点を解決
するため、圧縮機、冷媒対水熱交換器、減圧装置、蒸発
器を順次接続した冷媒循環回路と、貯湯槽、循環ポン
プ、前記冷媒対水熱交換器、ヒーター内蔵の加熱器を順
次接続した給湯回路と、前記冷媒対水熱交換器の下流に
設けた第1温度検知器と、前記加熱器の下流に設けた第
2温度検知器と、前記第1温度検知器および前記第2温
度検知器の信号で前記循環ポンプの回転数を制御する回
転数制御部と、前記貯湯槽の沸き上げ湯温を設定する湯
温設定器と、前記湯温設定器の信号で前記ヒーターの通
電を選択するとともに前記第1温度検知器あるいは前記
第2温度検知器の信号を決める優先制御部と、前記第2
温度検知器優先の信号においても前記第1温度検知器の
信号で前記ヒーターを制御し、前記第1温度検知器優先
に切り換える第1制御部と、前記第1温度検知器あるい
は前記第2温度検知器の信号で前記圧縮機および前記ヒ
ーターの通電を制御する運転制御部からなる。In order to solve the above-mentioned drawbacks, the present invention solves the above-mentioned drawbacks by a refrigerant circulation circuit in which a compressor, a refrigerant-to-water heat exchanger, a pressure reducing device and an evaporator are sequentially connected, a hot water tank, a circulation pump, A hot water supply circuit in which a refrigerant-to-water heat exchanger and a heater with a built-in heater are sequentially connected, a first temperature detector provided downstream of the refrigerant-to-water heat exchanger, and a second temperature provided downstream of the heater. A detector, a rotation speed control unit that controls the rotation speed of the circulation pump based on signals from the first temperature detector and the second temperature detector, and a hot water temperature setting device that sets the boiling water temperature of the hot water storage tank. A priority control unit that selects the energization of the heater with a signal from the hot water temperature setting device and determines a signal from the first temperature detector or the second temperature detector;
Even in the case of the temperature detector priority signal, the heater is controlled by the signal of the first temperature detector, and the first control unit switches to the first temperature detector priority, and the first temperature detector or the second temperature detector. The operation control unit controls the energization of the compressor and the heater by a signal from a container.
【0006】また、貯湯熱量の増加をはかるため、前記
冷媒対水熱交換器の上流に第3温度検知器を設け、前記
第1温度検知器および前記第3温度検知器の信号で前記
圧縮機あるいは前記ヒーターの通電を制御する第2制御
部からなる。Further, in order to increase the amount of heat stored in the hot water, a third temperature detector is provided upstream of the refrigerant-to-water heat exchanger, and the compressor is generated by signals from the first temperature detector and the third temperature detector. Alternatively, it comprises a second control unit for controlling the energization of the heater.
【0007】[0007]
【作用】本発明は上記構成によって、前記湯温設定器の
信号を受けて前記優先制御部は前記ヒーターの通電を選
択し、設定湯温が比較的低い場合には前記ヒーターは非
通電にするとともに前記第1温度検知器の信号で前記冷
媒対水熱交換器の出口湯温が一定となるように前記循環
ポンプの回転数を制御する。そして、運転継続中に前記
冷媒対水熱交換器の出口湯温が設定より高くなると、そ
れを前記第1温度検知器が検知して前記運転制御部に信
号を送り、前記圧縮機を停止する。つぎに、設定湯温が
高い場合においては、前記ヒーターに通電するとともに
前記第2温度検知器の信号で前記加熱器の出口湯温が一
定となるように前記循環ポンプの回転数を制御する。そ
して、運転継続中に前記加熱器の出口湯温が設定より高
くなると、それを前記第2温度検知器が検知して前記運
転制御部に信号を送り、前記圧縮機および前記ヒーター
への通電を停止する。この場合、前記加熱器の出口湯温
が一定に制御されるにもかかわらず、外気温度が高いた
め前記冷媒対水熱交換器の加熱量が大きくなり、前記冷
媒対水熱交換器の出口湯温が設定より高くなると、それ
を前記第1温度検知器が検知して前記第1制御部に送
り、前記ヒーターを非通電とする。そして、前記圧縮機
によるヒートポンプ単独運転に切り換わり運転を継続
し、再び前記第1温度検知器が湯温の高くなったことを
検知して前記圧縮機の運転を停止する。According to the present invention, the priority control section receives the signal from the hot water temperature setting device to select the energization of the heater, and deactivates the heater when the set hot water temperature is relatively low. At the same time, the rotation speed of the circulation pump is controlled by the signal from the first temperature detector so that the outlet hot water temperature of the refrigerant-to-water heat exchanger becomes constant. Then, when the outlet hot water temperature of the refrigerant-to-water heat exchanger becomes higher than the setting during continuous operation, the first temperature detector detects it and sends a signal to the operation control unit to stop the compressor. . Next, when the set hot water temperature is high, the heater is energized and the rotation speed of the circulation pump is controlled by the signal of the second temperature detector so that the hot water temperature at the outlet of the heater becomes constant. Then, when the outlet hot water temperature of the heater becomes higher than the set value during the continuous operation, the second temperature detector detects it and sends a signal to the operation control unit to energize the compressor and the heater. Stop. In this case, although the outlet hot water temperature of the heater is controlled to be constant, the heating amount of the refrigerant-to-water heat exchanger increases because the outside air temperature is high, and the outlet hot water of the refrigerant-to-water heat exchanger increases. When the temperature becomes higher than the set temperature, the first temperature detector detects the temperature and sends it to the first control unit to turn off the heater. Then, the operation is switched to the heat pump independent operation by the compressor and the operation is continued, and the first temperature detector again detects that the hot water temperature is high, and stops the operation of the compressor.
【0008】次に、前記ヒーターに通電した運転におい
て、外気温度が高く前記冷媒対水熱交換器の加熱量が大
きい場合、あるいは初期給水温度より高い混合層の湯が
前記冷媒対水熱交換器に流入する場合においては、前記
冷媒対水熱交換器出口の温度が設定より高くなったこと
を前記第1温度検知器で、一方、前記冷媒対水熱交換器
入口の温度を前記第3温度検知器で検知して、前記第2
制御部に信号を送る。そして、前記第3温度検知器の信
号が初期給水温度と同じ場合には、前記第2制御部は前
記冷媒対水熱交換器出口の温度が設定より高くなったこ
とを混合層の影響ではなく、前記冷媒対水熱交換器の加
熱量が大であると認識して前記ヒーターを非通電とし、
前記圧縮機によるヒートポンプ単独の運転のみをおこな
う。また、前記第3温度検知器が初期給水温度より高く
なりその信号を前記第2制御部に送った場合には、混合
層の湯の沸き上げ運転と判断して、前記圧縮機を停止
し、前記ヒーター単独運転を継続する。従って、前記貯
湯槽の下部が高温となるまで運転可能となり、貯湯熱量
が増加する。Next, in the operation in which the heater is energized, when the outside air temperature is high and the heating amount of the refrigerant-to-water heat exchanger is large, or the hot water in the mixed layer having a temperature higher than the initial feed water temperature is the refrigerant-to-water heat exchanger. In the case of flowing into the refrigerant, the first temperature detector indicates that the temperature of the refrigerant-to-water heat exchanger outlet is higher than the setting, while the temperature of the refrigerant-to-water heat exchanger inlet is set to the third temperature. The second by detecting with a detector
Send a signal to the control unit. When the signal of the third temperature detector is the same as the initial feed water temperature, the second control unit indicates that the temperature of the refrigerant-to-water heat exchanger outlet is higher than the setting, not the influence of the mixing layer. , Recognizing that the heating amount of the refrigerant-to-water heat exchanger is large, de-energizing the heater,
Only the heat pump by the compressor is operated alone. Further, when the third temperature detector is higher than the initial feed water temperature and sends the signal to the second controller, it is determined that the boiling water of the mixed layer is in operation, and the compressor is stopped, The heater alone operation is continued. Therefore, operation can be performed until the lower part of the hot water storage tank reaches a high temperature, and the heat quantity of hot water storage increases.
【0009】[0009]
【実施例】以下本発明の実施例を図1を参照して説明す
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.
【0010】図1において、1は圧縮機、2は冷媒対水
熱交換器、3は減圧装置、4は蒸発器であり、前記圧縮
機1、前記冷媒対水熱交換器2、前記減圧装置3、前記
蒸発器4は順次接続され、冷媒循環回路を構成する。5
は貯湯槽、6は循環ポンプ、7はヒーター8を内蔵した
加熱器であり、前記貯湯槽5、前記循環ポンプ6、前記
冷媒対水熱交換器2、前記加熱器7は順次接続され給湯
回路を構成する。9は第1温度検知器であり、前記冷媒
対水熱交換器の下流に、10は第2温度検知器であり、
前記加熱器7の下流に設けられている。11は回転数制
御部であり、前記第1温度検知器9および前記第2温度
検知器10の信号で前記循環ポンプ6の回転数を制御す
る。12は湯温設定器であり、前記貯湯槽5の沸き上げ
湯温を設定する。13は優先制御部であり、前記湯温設
定器12の信号で前記ヒーター8の通電を選択するとと
もに前記第1温度検知器9あるいは前記第2温度検知器
10の信号の優先を決める。14は第1制御部であり、
前記第2温度検知器10の優先信号においても前記第1
温度検知器9の信号で前記ヒーター8を制御し、前記第
1温度検知器9の優先に切り換える。15は運転制御部
であり、前記第1温度検知器9あるいは前記第2温度検
知器10の信号で前記圧縮機1および前記ヒーター8の
通電を制御する。16は第3温度検知器であり、前記冷
媒対水熱交換器2の上流に設けられている。17は第2
制御部であり、前記第1温度検知器9および前記第3温
度検知器16の信号で前記圧縮機1あるいは前記ヒータ
ー8の通電を制御する。In FIG. 1, 1 is a compressor, 2 is a refrigerant-to-water heat exchanger, 3 is a decompression device, 4 is an evaporator, and the compressor 1, the refrigerant-to-water heat exchanger 2 and the decompression device are shown. 3. The evaporator 4 is sequentially connected to form a refrigerant circulation circuit. 5
Is a hot water storage tank, 6 is a circulation pump, 7 is a heater having a built-in heater 8, and the hot water storage tank 5, the circulation pump 6, the refrigerant-to-water heat exchanger 2, and the heater 7 are sequentially connected to a hot water supply circuit. Make up. 9 is a first temperature detector, 10 is a second temperature detector downstream of the refrigerant-to-water heat exchanger,
It is provided downstream of the heater 7. Reference numeral 11 denotes a rotation speed control unit, which controls the rotation speed of the circulation pump 6 by signals of the first temperature detector 9 and the second temperature detector 10. Reference numeral 12 denotes a hot water temperature setting device, which sets the boiling water temperature of the hot water storage tank 5. Reference numeral 13 is a priority control unit, which selects the energization of the heater 8 by the signal of the hot water temperature setting device 12 and determines the priority of the signal of the first temperature detector 9 or the second temperature detector 10. 14 is a first control unit,
Even in the priority signal of the second temperature detector 10, the first signal
The heater 8 is controlled by the signal of the temperature detector 9, and the first temperature detector 9 is switched to the priority. Reference numeral 15 denotes an operation control unit, which controls energization of the compressor 1 and the heater 8 by a signal from the first temperature detector 9 or the second temperature detector 10. Reference numeral 16 is a third temperature detector, which is provided upstream of the refrigerant-to-water heat exchanger 2. 17 is the second
The control unit controls the energization of the compressor 1 or the heater 8 by the signals of the first temperature detector 9 and the third temperature detector 16.
【0011】上記構成において、最初に前記貯湯槽5の
沸き上げ湯温が低く設定され、ヒートポンプ単独で湯温
がえられる場合について述べる。この場合、前記湯温設
定器12の信号を受けて前記ヒーター8の通電は停止さ
れる。そして、前記圧縮機1から吐出された高温高圧の
過熱ガス冷媒は前記冷媒対水熱交換器2に流入し、ここ
で前記循環ポンプ6から送られてきた水を加熱する。そ
の際に放熱作用で凝縮液化した冷媒は前記減圧装置3で
減圧され、前記蒸発器4に流入する。そして、大気熱を
吸熱して蒸発ガス化し、前記圧縮機1にもどる。一方、
前記貯湯槽5の下部から流出した水は前記循環ポンプ6
を介して前記冷媒対水熱交換器2に流入し、冷媒の凝縮
熱で加熱され、前記貯湯槽5の上部にたくわえられる。
ここで、前記冷媒対水熱交換器2の出口湯温を前記第1
温度検知器9が検知し、前記回転数制御部11に信号を
送り、出口湯温が設定湯温になるように前記循環ポンプ
6の回転数を制御する。そして、この運転を続けなが
ら、前記貯湯槽5に設定湯温の湯をたくわえる。In the above structure, first, the case where the boiling water temperature of the hot water storage tank 5 is set low and the hot water temperature can be obtained by the heat pump alone will be described. In this case, the energization of the heater 8 is stopped in response to the signal from the hot water temperature setting device 12. Then, the high-temperature and high-pressure superheated gas refrigerant discharged from the compressor 1 flows into the refrigerant-to-water heat exchanger 2, where it heats the water sent from the circulation pump 6. At this time, the refrigerant condensed and liquefied by the heat dissipation effect is decompressed by the decompression device 3 and flows into the evaporator 4. Then, it absorbs atmospheric heat to be vaporized and returned to the compressor 1. on the other hand,
The water flowing out from the lower part of the hot water storage tank 5 is the circulation pump 6
It flows into the refrigerant-to-water heat exchanger 2 via, is heated by the heat of condensation of the refrigerant, and is stored in the upper part of the hot water storage tank 5.
Here, the outlet hot water temperature of the refrigerant-to-water heat exchanger 2 is set to the first hot water temperature.
The temperature detector 9 detects and sends a signal to the rotation speed control unit 11 to control the rotation speed of the circulation pump 6 so that the outlet hot water temperature becomes the set hot water temperature. Then, while continuing this operation, the hot water of the set hot water is stored in the hot water storage tank 5.
【0012】次ぎに、沸き上げ湯温が高く設定された場
合について述べる。この場合、前記湯温設定器12の信
号を受けて前記ヒーター8は通電される。そして、前記
冷媒対水熱交換器2で加熱された水を前記加熱器7でさ
らに高温に加熱し、前記貯湯槽5の上部にたくわえられ
る。ここで、前記加熱器7の出口湯温を前記第2温度検
知器10が検知し、前記回転数制御部11に信号を送
り、出口湯温が設定湯温になるように前記循環ポンプ6
の回転数を制御する。ここで、前記冷媒対水熱交換器2
で加熱された水が異常に高温になった場合、それを前記
第1温度検知器9が検知し、前記第1制御部14に信号
を送り、前記ヒーター8への通電を停止する。そして、
前記冷媒対水熱交換器2での単一加熱運転に切り換わり
前記第1温度検知器9の信号による前記循環ポンプ6の
回転数制御運転となる。従って、前記冷媒対水熱交換器
2の出口湯温が異常に高温となることもなく、前記圧縮
機1の信頼性が向上する。Next, the case where the boiling water temperature is set high will be described. In this case, the heater 8 is energized in response to the signal from the hot water temperature setting device 12. Then, the water heated by the refrigerant-to-water heat exchanger 2 is further heated by the heater 7 to a higher temperature and stored in the upper part of the hot water storage tank 5. Here, the second temperature detector 10 detects the outlet hot water temperature of the heater 7, sends a signal to the rotation speed control unit 11, and the circulation pump 6 is controlled so that the outlet hot water temperature becomes the set hot water temperature.
Control the rotation speed of. Here, the refrigerant-to-water heat exchanger 2
If the water heated in step 1 becomes abnormally high in temperature, the first temperature detector 9 detects it and sends a signal to the first controller 14 to stop energizing the heater 8. And
The single heating operation in the refrigerant-to-water heat exchanger 2 is switched to the rotation speed control operation of the circulation pump 6 based on the signal from the first temperature detector 9. Therefore, the outlet hot water temperature of the refrigerant-to-water heat exchanger 2 does not become abnormally high, and the reliability of the compressor 1 is improved.
【0013】次ぎに、貯湯熱量の増加をはかる場合につ
いて述べる。この場合、前記冷媒対水熱交換器2で加熱
された水が異常に高温になった場合、それを前記第1温
度検知器9が検知するとともに前記冷媒対水熱交換器2
の入口の水温を前記第3温度検知器16で検知し、前記
第1温度検知器9および前記第3温度検知器16の信号
が前記第2制御部17に送られる。そして、前記第3温
度検知器16の信号から前記冷媒対水熱交換器2の入口
水温が初期給水温度と同じ場合には、前記第2制御部1
7を介して前記ヒーター8への通電を停止し、前記冷媒
対水熱交換器2での単一加熱運転に切り換わる。一方、
前記冷媒対水熱交換器2の入口水温が初期給水温度より
高い場合には、前記第2制御部17を介して前記圧縮機
1を停止し、前記ヒーター8の単独運転となる。従っ
て、前記貯湯槽5の下部が高温となるまで運転可能とな
り、貯湯熱量が増加する。Next, the case of increasing the amount of heat stored in the hot water will be described. In this case, when the water heated in the refrigerant-to-water heat exchanger 2 becomes abnormally high in temperature, the first temperature detector 9 detects it and the refrigerant-to-water heat exchanger 2
The water temperature at the inlet of is detected by the third temperature detector 16, and the signals of the first temperature detector 9 and the third temperature detector 16 are sent to the second controller 17. When the inlet water temperature of the refrigerant-to-water heat exchanger 2 is the same as the initial feed water temperature from the signal from the third temperature detector 16, the second control unit 1
The electricity supply to the heater 8 is stopped via 7, and the operation is switched to the single heating operation in the refrigerant-to-water heat exchanger 2. on the other hand,
When the inlet water temperature of the refrigerant-to-water heat exchanger 2 is higher than the initial feed water temperature, the compressor 1 is stopped via the second controller 17, and the heater 8 is operated independently. Therefore, operation can be performed until the lower part of the hot water storage tank 5 reaches a high temperature, and the heat quantity of hot water storage increases.
【0014】[0014]
【発明の効果】以上説明したように本発明のヒートポン
プ給湯機は、圧縮機、冷媒対水熱交換器、減圧装置、蒸
発器を順次接続した冷媒循環回路と、貯湯槽、循環ポン
プ、前記冷媒対水熱交換器、ヒーター内蔵の加熱器を順
次接続した給湯回路と、前記冷媒対水熱交換器の下流に
設けた第1温度検知器と、前記加熱器の下流に設けた第
2温度検知器と、前記第1温度検知器および前記第2温
度検知器の信号で前記循環ポンプの回転数を制御する回
転数制御部と、前記貯湯槽の沸き上げ湯温を設定する湯
温設定器と、前記湯温設定器の信号で前記ヒーターの通
電を選択するとともに前記第1温度検知器あるいは前記
第2温度検知器の信号を決める優先制御部と、前記第2
温度検知器優先の信号においても前記第1温度検知器の
信号で前記ヒーターを制御し、前記第1温度検知器優先
に切り換える第1制御部と、前記第1温度検知器あるい
は前記第2温度検知器の信号で前記圧縮機および前記ヒ
ーターの通電を制御する運転制御部を備え、前記湯温設
定器の信号で前記優先制御部は前記ヒーターの通電を選
択し、設定湯温が比較的低い場合には前記ヒーターを非
通電するとともに前記第1温度検知器の信号で前記冷媒
対水熱交換器の出口湯温が一定となるように前記循環ポ
ンプの回転数を制御する。また、設定湯温が高い場合に
おいては、前記ヒーターを通電するとともに前記第2温
度検知器の信号で前記加熱器の出口湯温が一定となるよ
うに前記循環ポンプの回転数を制御する。そして、運転
継続中に前記加熱器の出口湯温が設定より高くなると、
それを前記第2温度検知器が検知して前記運転制御部に
信号を送り、前記圧縮機および前記ヒーターへの通電を
停止する。この場合、前記加熱器の出口湯温が一定に制
御されるにもかかわらず、前記冷媒対水熱交換器の出口
湯温が設定より高くなると、それを前記第1温度検知器
が検知して前記第1制御部に送り、前記ヒーターを非通
電する。そして、前記圧縮機によるヒートポンプ単独運
転に切り換わり運転を継続し、再び前記第1温度検知器
が湯温の高くなったことを検知して前記圧縮機の運転を
停止する。従って、前記冷媒対水熱交換器の出口湯温が
異常に高くなることもなく、前記圧縮機の信頼性は向上
する。As described above, the heat pump water heater of the present invention includes a refrigerant circulation circuit in which a compressor, a refrigerant-to-water heat exchanger, a pressure reducing device, and an evaporator are sequentially connected, a hot water tank, a circulation pump, and the refrigerant. A hot water supply circuit in which a water heat exchanger and a heater with a built-in heater are sequentially connected, a first temperature detector provided downstream of the refrigerant water heat exchanger, and a second temperature detection provided downstream of the heater. And a rotation speed control unit for controlling the rotation speed of the circulation pump by the signals of the first temperature detector and the second temperature detector, and a hot water temperature setting device for setting the boiling hot water temperature of the hot water storage tank. A priority control unit that selects the energization of the heater by a signal from the hot water temperature setting device and determines a signal from the first temperature detector or the second temperature detector;
Even in the case of the temperature detector priority signal, the heater is controlled by the signal of the first temperature detector, and the first control unit switches to the first temperature detector priority, and the first temperature detector or the second temperature detector. When the hot water temperature setter has a relatively low temperature, the operation control unit that controls the energization of the compressor and the heater by a signal of the heater is provided, and the priority control unit selects the energization of the heater by the signal of the hot water temperature setter First, the heater is de-energized, and the rotation speed of the circulation pump is controlled by the signal of the first temperature detector so that the outlet hot water temperature of the refrigerant-to-water heat exchanger becomes constant. When the set hot water temperature is high, the heater is energized and the rotation speed of the circulation pump is controlled by the signal from the second temperature detector so that the hot water at the outlet of the heater becomes constant. Then, when the outlet hot water temperature of the heater becomes higher than the setting during continuous operation,
The second temperature detector detects this and sends a signal to the operation controller to stop energizing the compressor and the heater. In this case, even if the outlet hot water temperature of the heater is controlled to be constant, if the outlet hot water temperature of the refrigerant-to-water heat exchanger becomes higher than the set value, the first temperature detector detects it. It is sent to the first control unit and the heater is de-energized. Then, the operation is switched to the heat pump independent operation by the compressor and the operation is continued, and the first temperature detector again detects that the hot water temperature is high, and stops the operation of the compressor. Therefore, the outlet hot water temperature of the refrigerant-to-water heat exchanger does not become abnormally high, and the reliability of the compressor is improved.
【0015】次ぎに、前記冷媒対水熱交換器の上流に第
3温度検知器を設け、前記第1温度検知器および前記第
3温度検知器の信号で前記圧縮機あるいは前記ヒーター
の通電を制御する第2制御部を備えることにより、前記
冷媒対水熱交換器の出口湯温が設定より高くなった場合
において、前記第1温度検知器の信号とともに、前記第
3温度検知器の信号を受けて前記第2制御部は前記圧縮
機あるいは前記ヒーターの通電を制御する。ここで、前
記冷媒対水熱交換器の流入水温が初期給水温度と同じ場
合には、前記第2制御部17を介して前記ヒーター8へ
の通電を停止し、前記冷媒対水熱交換器2での単一加熱
運転に切り換わる。一方、前記冷媒対水熱交換器2の入
口水温が初期給水温度より高い場合には、前記第2制御
部17を介して前記圧縮機1を停止し、前記ヒーター8
の単独運転となる。従って、前記貯湯槽5の下部が高温
となるまで運転可能となり、貯湯熱量が増加する。Next, a third temperature detector is provided upstream of the refrigerant-to-water heat exchanger, and the energization of the compressor or the heater is controlled by the signals of the first temperature detector and the third temperature detector. When the outlet hot water temperature of the refrigerant-to-water heat exchanger is higher than the set temperature, the second control unit for receiving the signal of the third temperature detector is received together with the signal of the first temperature detector. The second controller controls the energization of the compressor or the heater. Here, when the inflow water temperature of the refrigerant-to-water heat exchanger is the same as the initial supply water temperature, the energization of the heater 8 is stopped via the second control unit 17, and the refrigerant-to-water heat exchanger 2 Switch to single heating operation in. On the other hand, when the inlet water temperature of the refrigerant-to-water heat exchanger 2 is higher than the initial feed water temperature, the compressor 1 is stopped via the second controller 17, and the heater 8
It becomes an independent operation. Therefore, operation can be performed until the lower part of the hot water storage tank 5 reaches a high temperature, and the heat quantity of hot water storage increases.
【図1】本発明の一実施例におけるヒートポンプ給湯機
の構成図FIG. 1 is a configuration diagram of a heat pump water heater according to an embodiment of the present invention.
【図2】従来のヒートポンプ給湯機の構成図FIG. 2 is a block diagram of a conventional heat pump water heater.
1 圧縮機 2 冷媒対水熱交換器 3 減圧装置 4 蒸発器 5 貯湯槽 6 循環ポンプ 7 加熱器 8 ヒーター 9 第1温度検知器 10 第2温度検知器 11 回転数制御部 12 湯温設定器 13 優先制御部 14 第1制御部 15 運転制御部 16 第3温度検知器 17 第2制御部 1 Compressor 2 Refrigerant-to-Water Heat Exchanger 3 Decompressor 4 Evaporator 5 Hot Water Tank 6 Circulation Pump 7 Heater 8 Heater 9 First Temperature Detector 10 Second Temperature Detector 11 Rotation Speed Controller 12 Hot Water Temperature Setter 13 Priority control unit 14 First control unit 15 Operation control unit 16 Third temperature detector 17 Second control unit
Claims (2)
発器を順次接続した冷媒循環回路と、貯湯槽、循環ポン
プ、前記冷媒対水熱交換器、ヒーター内蔵の加熱器を順
次接続した給湯回路と、前記冷媒対水熱交換器の下流に
設けた第1温度検知器と、前記加熱器の下流に設けた第
2温度検知器と、前記第1温度検知器および前記第2温
度検知器の信号で前記循環ポンプの回転数を制御する回
転数制御部と、前記貯湯槽の沸き上げ湯温を設定する湯
温設定器と、前記湯温設定器の信号で前記ヒーターの通
電を選択するとともに前記第1温度検知器あるいは前記
第2温度検知器の信号を決める優先制御部と、前記第2
温度検知器優先の信号においても前記第1温度検知器の
信号で前記ヒーターを制御し、前記第1温度検知器優先
に切り換える第1制御部と、前記第1温度検知器あるい
は前記第2温度検知器の信号で前記圧縮機および前記ヒ
ーターの通電を制御する運転制御部からなるヒートポン
プ給湯機。1. A refrigerant circulation circuit in which a compressor, a refrigerant-to-water heat exchanger, a pressure reducing device, and an evaporator are sequentially connected, a hot water tank, a circulation pump, the refrigerant-to-water heat exchanger, and a heater with a built-in heater. A connected hot water supply circuit, a first temperature detector provided downstream of the refrigerant-to-water heat exchanger, a second temperature detector provided downstream of the heater, the first temperature detector and the second A rotation speed control unit that controls the rotation speed of the circulation pump with a signal from a temperature detector, a hot water temperature setting device that sets the boiling hot water temperature of the hot water storage tank, and the heater energization with a signal from the hot water temperature setting device. And a second priority control unit that determines the signal of the first temperature detector or the second temperature detector,
Even in the case of the temperature detector priority signal, the heater is controlled by the signal of the first temperature detector, and the first control unit switches to the first temperature detector priority, and the first temperature detector or the second temperature detector. A heat pump water heater comprising an operation control unit that controls energization of the compressor and the heater by a signal from a heater.
知器を設け、前記第1温度検知器および前記第3温度検
知器の信号で前記圧縮機あるいは前記ヒーターの通電を
制御する第2制御部からなるヒートポンプ給湯機。2. A third temperature detector is provided upstream of the refrigerant-to-water heat exchanger, and energization of the compressor or the heater is controlled by signals of the first temperature detector and the third temperature detector. A heat pump water heater including a second control unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14329594A JP2982615B2 (en) | 1994-06-24 | 1994-06-24 | Heat pump water heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14329594A JP2982615B2 (en) | 1994-06-24 | 1994-06-24 | Heat pump water heater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0814657A true JPH0814657A (en) | 1996-01-19 |
JP2982615B2 JP2982615B2 (en) | 1999-11-29 |
Family
ID=15335421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14329594A Expired - Fee Related JP2982615B2 (en) | 1994-06-24 | 1994-06-24 | Heat pump water heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2982615B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000161777A (en) * | 1998-11-30 | 2000-06-16 | Osaka Gas Co Ltd | Hot water supply apparatus |
JP2013249966A (en) * | 2012-05-30 | 2013-12-12 | Denso Corp | Heat pump type water heater |
KR101450549B1 (en) * | 2008-02-04 | 2014-10-14 | 엘지전자 주식회사 | Heat pump heating apparatus and Control method of the same |
CN110869680A (en) * | 2017-07-18 | 2020-03-06 | 三菱电机株式会社 | Hot water supply device |
-
1994
- 1994-06-24 JP JP14329594A patent/JP2982615B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000161777A (en) * | 1998-11-30 | 2000-06-16 | Osaka Gas Co Ltd | Hot water supply apparatus |
KR101450549B1 (en) * | 2008-02-04 | 2014-10-14 | 엘지전자 주식회사 | Heat pump heating apparatus and Control method of the same |
JP2013249966A (en) * | 2012-05-30 | 2013-12-12 | Denso Corp | Heat pump type water heater |
CN110869680A (en) * | 2017-07-18 | 2020-03-06 | 三菱电机株式会社 | Hot water supply device |
CN110869680B (en) * | 2017-07-18 | 2021-05-25 | 三菱电机株式会社 | Hot water supply device |
Also Published As
Publication number | Publication date |
---|---|
JP2982615B2 (en) | 1999-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4059616B2 (en) | Heat pump water heater | |
JP2002364925A (en) | Hybrid water-heater | |
JP3800862B2 (en) | Heat pump water heater | |
JP5194492B2 (en) | Heat pump water heater | |
JPH0814657A (en) | Heat pump hot water supply system | |
JP3937715B2 (en) | Heat pump water heater | |
JP2002340439A (en) | Heat pump type hot-water supplier | |
JPH08296895A (en) | Heat pump hot-water supply apparatus | |
JP4867925B2 (en) | Heat pump type water heater | |
JPH06288644A (en) | Heat pump water heater | |
JP3719162B2 (en) | Heat pump water heater | |
JPH0260950B2 (en) | ||
JP2009085476A (en) | Heat pump water heater | |
JPS6232378B2 (en) | ||
JP3840456B2 (en) | Heat pump water heater | |
JP3019731B2 (en) | Heat pump water heater | |
JP2003056907A (en) | Heat pump water heater | |
JP2008039360A (en) | Heat pump type water heater | |
JP3719161B2 (en) | Heat pump water heater | |
JP4223468B2 (en) | Hot water storage hot water heater | |
JP3850653B2 (en) | Heat pump type water heater | |
JP3055406B2 (en) | Heat pump water heater | |
JP3632660B2 (en) | Heat pump water heater | |
JP3365387B2 (en) | Heat pump water heater | |
JP2002295901A (en) | Heat pump hot-water supplier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080924 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080924 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090924 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090924 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100924 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |