JP2013246920A - Battery cooling structure - Google Patents

Battery cooling structure Download PDF

Info

Publication number
JP2013246920A
JP2013246920A JP2012118317A JP2012118317A JP2013246920A JP 2013246920 A JP2013246920 A JP 2013246920A JP 2012118317 A JP2012118317 A JP 2012118317A JP 2012118317 A JP2012118317 A JP 2012118317A JP 2013246920 A JP2013246920 A JP 2013246920A
Authority
JP
Japan
Prior art keywords
battery
fireproof
closing member
exhaust port
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012118317A
Other languages
Japanese (ja)
Other versions
JP5993209B2 (en
Inventor
Hajime Uchiumi
元 内海
Tsugunori Shima
嗣典 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tigers Polymer Corp
Original Assignee
Tigers Polymer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tigers Polymer Corp filed Critical Tigers Polymer Corp
Priority to JP2012118317A priority Critical patent/JP5993209B2/en
Publication of JP2013246920A publication Critical patent/JP2013246920A/en
Application granted granted Critical
Publication of JP5993209B2 publication Critical patent/JP5993209B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery cooling structure which can suppress spread of damage of fire even when the battery is ignited, in an air-cooled battery pack cooling structure.SOLUTION: A battery pack 1 consisting of a plurality of single cells 11 is housed in a housing 2 provided with a suction port 22 for introducing the cooling air thereinto and an exhaust port 21 for exhausting the cooling air, and the battery pack is cooled by the cooling air. The single cell 11 is a lithium ion secondary battery or a nickel-hydrogen secondary battery. A fireproof closing member 3, which expands with heat upon occurence of fire and closes the suction port or exhaust port, is provided at the suction port 22 or exhaust port 21. The fireproof closing member 3 is composed of a thermal expansion fireproof resin material containing an expansion material having an expansion start temperature of 270°C or lower.

Description

本発明は、電池の冷却構造に関する。特に複数の二次電池が組み合わされた組電池を筐体内に収容し、冷却風により組電池を冷却する電池冷却構造に関する。 The present invention relates to a cooling structure for a battery. In particular, the present invention relates to a battery cooling structure in which an assembled battery in which a plurality of secondary batteries are combined is housed in a casing and the assembled battery is cooled by cooling air.

ニッケル水素電池やリチウムイオン電池などの二次電池を複数組み合わせた組電池が、種々の産業分野で利用されている。例えば、組電池は、ハイブリッド自動車、電気自動車、燃料電池車などの電源やエネルギー回生に利用される。又、組電池は、系統電力の負荷平準を目的とした電力貯蔵、非常用電力貯蔵などに利用されることもある。これら二次電池を用いた組電池は、充電時や放電時に発熱するので、電池温度を維持するために冷却される。例えば自動車用の組電池であれば、組電池を冷却風により空冷するための電池冷却構造を採用することが多い。 An assembled battery in which a plurality of secondary batteries such as nickel metal hydride batteries and lithium ion batteries are combined is used in various industrial fields. For example, the assembled battery is used for power source and energy regeneration of a hybrid vehicle, an electric vehicle, a fuel cell vehicle, and the like. The assembled battery may also be used for power storage for the purpose of load leveling of system power, emergency power storage, and the like. Since the assembled battery using these secondary batteries generates heat during charging or discharging, it is cooled to maintain the battery temperature. For example, in the case of an assembled battery for an automobile, a battery cooling structure for air-cooling the assembled battery with cooling air is often adopted.

例えば、特許文献1には、車両用バッテリパックの冷却構造であって、前記バッテリパックは、バッテリモジュールを備えたバッテリ部と、前記バッテリ部に付属する電気部品を含んで構成される付属品部とから構成され、前記バッテリ部と前記付属品部とに並列に冷却媒体を流通させるための流通路と、前記流通路に前記冷却媒体を流通させる冷却ファンとを含む、バッテリパック冷却構造が開示されており、当該バッテリパック冷却構造によれば、バッテリと、バッテリに付属する電気機器とを効率的に冷却できることが開示されている。 For example, Patent Document 1 discloses a cooling structure for a vehicle battery pack, wherein the battery pack includes a battery unit including a battery module and an electrical part attached to the battery unit. A battery pack cooling structure comprising: a flow passage for flowing a cooling medium in parallel with the battery portion and the accessory portion; and a cooling fan for flowing the cooling medium in the flow passage. According to the battery pack cooling structure, it is disclosed that the battery and the electric device attached to the battery can be efficiently cooled.

特開2004−306726号公報JP 2004-306726 A

ところで、組電池の高容量化や高密度化が進むに伴って、使用条件によっては、電池自身が高温になる場合がある。そして、電池温度が異常に高くなると、高温になった電池から可燃性のガスが出るなどして、発火にいたる場合がある。電池が発火すると、火炎や高温のガスが、冷却風を送っていたダクトを通じて流れ、周囲の部材などを損傷させたり、延焼したりするおそれがある。 By the way, as the capacity and density of the assembled battery increase, the battery itself may become high temperature depending on use conditions. When the battery temperature becomes abnormally high, flammable gas may be emitted from the battery that has become hot, leading to ignition. When the battery ignites, flames and high-temperature gas may flow through the duct that sent the cooling air, damaging surrounding members and spreading the fire.

本発明の目的は、空冷式の組電池冷却構造において、電池が発火した場合であっても、火災の被害拡大を抑制できるような電池冷却構造を提供することにある。
An object of the present invention is to provide a battery cooling structure capable of suppressing the expansion of fire damage even when a battery ignites in an air-cooled assembled battery cooling structure.

発明者は、鋭意検討の結果、組電池筐体の冷却風吸気口または排気口に、火災発生時の熱により膨張して吸気口または排気口を閉塞する耐火閉塞部材を配置すると、火災時に冷却風通路を遮断できて、上記目的を達成できることを知見し、本発明を完成させた。 As a result of intensive studies, the inventor has arranged a fireproof closing member that expands due to heat at the time of a fire and closes the intake or exhaust port at the cooling air intake or exhaust port of the assembled battery case, and cools it in the event of a fire. The present invention has been completed by discovering that the above object can be achieved by blocking the air passage.

本発明は、複数の単電池で構成される組電池が筐体内部に収容され、筐体には冷却風を該筐体に導入するための吸気口と冷却風を排出するための排気口が設けられ、冷却風によって組電池を冷却する電池冷却構造であって、単電池はリチウムイオン二次電池またはニッケル水素二次電池であり、吸気口または排気口には、火災発生時の熱により膨張して吸気口または排気口を閉塞する耐火閉塞部材が配置されており、耐火閉塞部材は、膨張開始温度が270℃以下の膨張材料を含む熱膨張性耐火樹脂材料によって構成されている電池冷却構造である(第1発明)。 In the present invention, an assembled battery including a plurality of single cells is accommodated in a housing, and the housing has an intake port for introducing cooling air into the housing and an exhaust port for discharging the cooling air. A battery cooling structure that is provided and cools the assembled battery with cooling air, and the unit cell is a lithium ion secondary battery or a nickel metal hydride secondary battery, and the intake port or the exhaust port expands due to heat at the time of fire And a fire-resistant closing member that closes the intake port or the exhaust port is disposed, and the fire-resistant closing member is made of a thermally expandable refractory resin material containing an expansion material having an expansion start temperature of 270 ° C. or less. (First invention).

本発明においては、吸気口または排気口にはダクト部材が接続されると共に、耐火閉塞部材は吸気口または排気口の周面に沿うように配置される筒状の部分を有し、耐火閉塞部材の前記筒状の部分が、吸気口または排気口とダクト部材との間に介装されることが好ましい(第2発明)。また、本発明においては、組電池が自動車に搭載される組電池であり、吸気口には車室内に連絡するダクトが接続されると共に、耐火閉塞部材が吸気口に配置されることが好ましい(第3発明)。また、本発明においては、耐火閉塞部材は、内部に冷却風が通流する冷却風通路が設けられた部材であり、冷却風通路の幅方向の寸法よりも、耐火閉塞部材の冷却風流れ方向に沿う長さ寸法が長くされることが好ましい(第4発明)。また、本発明においては、膨張材料が熱膨張性黒鉛を含むことが好ましい(第5発明)。 In the present invention, a duct member is connected to the intake port or the exhaust port, and the fireproof blocking member has a cylindrical portion arranged along the peripheral surface of the intake port or the exhaust port, and the fireproof blocking member It is preferable that the cylindrical portion is interposed between the intake port or the exhaust port and the duct member (second invention). In the present invention, it is preferable that the assembled battery is an assembled battery mounted on an automobile, and a duct communicating with the vehicle interior is connected to the intake port, and a fireproof closing member is disposed at the intake port ( Third invention). Further, in the present invention, the fireproof closing member is a member provided with a cooling air passage through which the cooling air flows, and the cooling airflow direction of the fireproof closing member is larger than the dimension in the width direction of the cooling air passage. It is preferable that the length dimension along is increased (fourth invention). Moreover, in this invention, it is preferable that an expansion | swelling material contains a thermally expansible graphite (5th invention).

本発明の電池冷却構造(第1発明)によれば、火災発生時には、耐火閉塞部材が熱により膨張して導入口または排出口を閉塞するので、電池が発火した場合であっても、火災の被害拡大を抑制できる。 According to the battery cooling structure of the present invention (first invention), when a fire occurs, the fireproof closing member expands due to heat and closes the inlet or outlet, so that even if the battery ignites, Damage expansion can be suppressed.

さらに、第2発明においては、吸気口や排気口とダクトの接続部の隙間から高温のガスや火炎が漏れる不具合を効果的に抑制でき、火災の被害拡大を効果的に抑制できる。また、第3発明においては、火災の煙が車室内に流れることを抑制できる。また、第4発明や第5発明によれば、耐火閉塞部材によってより効果的に冷却風通路を閉塞できる。
Furthermore, in the second invention, it is possible to effectively suppress a problem that high temperature gas or flame leaks from a gap between the connection portion between the intake port and the exhaust port and the duct, and it is possible to effectively suppress the expansion of fire damage. Further, in the third invention, it is possible to suppress fire smoke from flowing into the passenger compartment. According to the fourth and fifth inventions, the cooling air passage can be more effectively closed by the fireproof closing member.

本発明の第1実施形態の電池冷却構造の全体構成を示す斜視図である。It is a perspective view showing the whole battery cooling structure composition of a 1st embodiment of the present invention. 第1実施形態の電池冷却構造の組電池周辺の構成を示す斜視図である。It is a perspective view which shows the structure of the assembled battery periphery of the battery cooling structure of 1st Embodiment. 耐火閉塞部材の形態例を示す斜視図である。It is a perspective view which shows the example of a form of a fireproof obstruction | occlusion member. 吸気口と吸気ダクトの接続構造の例を示す断面図である。It is sectional drawing which shows the example of the connection structure of an air inlet and an air intake duct. 耐火閉塞部材の他の形態例を示す正面図及び断面図である。It is the front view and sectional drawing which show the other example of a fireproof closure member. 耐火閉塞部材のさらに他の形態例を示す正面図及び断面図である。It is the front view and sectional drawing which show the further another example of a fireproof closure member. 耐火閉塞部材のさらに他の形態例を示す正面図及び側面図である。It is the front view and side view which show the further another example of a fireproof closure member. 吸気口と吸気ダクトの接続構造の他の例を示す断面図である。It is sectional drawing which shows the other example of the connection structure of an air inlet and an air intake duct.

以下図面を参照しながら、本発明の電池冷却構造の実施形態について、ハイブリッド自動車用の組電池を冷却する電池冷却構造を例にして説明する。図1は本発明の電池冷却構造の第1実施形態の斜視図である。また、図2は本実施形態の電池冷却構造の組電池周辺の構成を示す斜視図である。これら図においては、単電池に設けられるガス排出弁やバスバーなどといった電池の詳細な構成については図示を省略している。なお、本発明は以下に示す個別の実施形態に限定されるものではなく、その形態を変更して実施することもできる。 Hereinafter, embodiments of a battery cooling structure of the present invention will be described with reference to the drawings, taking as an example a battery cooling structure for cooling a battery pack for a hybrid vehicle. FIG. 1 is a perspective view of a first embodiment of a battery cooling structure of the present invention. FIG. 2 is a perspective view showing a configuration around the assembled battery of the battery cooling structure of the present embodiment. In these drawings, the detailed configuration of the battery such as a gas discharge valve and a bus bar provided in the unit cell is not shown. In addition, this invention is not limited to the separate embodiment shown below, The form can also be changed and implemented.

組電池構造体(以下、単に「組電池」と記載する)1において、組電池を構成する平板状の単電池11,11は、単電池の広い面同士が対向するように、互いに所定の間隔を隔てて積層状態に配置されている。単電池11,11はバスバー(図示せず)によって直列あるいは並列に電気的に接続されて組電池を構成する。本実施形態では、電池モジュールを構成する単電池11はリチウムイオン二次電池である。リチウムイオン二次電池はリチウムイオンポリマー電池であってもよい。単電池11は平板状(扁平な直方体状)の形状となっている。それぞれの電池の側面(広い平坦面に隣接する面)には電極端子が設けられている。単電池はニッケル水素電池であっても良い。本発明は、常温で運転される単電池を用いた組電池に対し適用可能である。 In an assembled battery structure (hereinafter simply referred to as “assembled battery”) 1, flat unit cells 11, 11 constituting the assembled battery are spaced apart from each other by a predetermined distance so that the wide surfaces of the unit cells face each other. They are arranged in a stacked state with a gap therebetween. The unit cells 11 and 11 are electrically connected in series or in parallel by a bus bar (not shown) to constitute an assembled battery. In the present embodiment, the single battery 11 constituting the battery module is a lithium ion secondary battery. The lithium ion secondary battery may be a lithium ion polymer battery. The unit cell 11 has a flat plate shape (flat rectangular parallelepiped shape). Electrode terminals are provided on the side surfaces (surfaces adjacent to a wide flat surface) of each battery. The single battery may be a nickel metal hydride battery. The present invention is applicable to an assembled battery using a single battery operated at room temperature.

組電池1は直方体状の筐体2の内部に収容されている。図1では筐体上面の一部を、図2では筐体上面の全体を図示せず、筐体内部の組電池1の配置を見えるように示している。筐体1は、好ましくは、電池火災に対する耐火性を高めるために、金属材料(例えば亜鉛メッキ鋼板)などの不燃性材料や、難燃性材料(例えば難燃化した樹脂材料)を含むように構成される。 The assembled battery 1 is accommodated in a rectangular parallelepiped casing 2. In FIG. 1, a part of the upper surface of the housing is shown, and in FIG. 2, the entire upper surface of the housing is not shown, and the arrangement of the assembled battery 1 inside the housing is visible. The housing 1 preferably includes a non-flammable material such as a metal material (for example, a galvanized steel plate) or a flame retardant material (for example, a flame retardant resin material) in order to improve fire resistance against battery fire. Composed.

筐体2には、中空筒状の吸気口22と排気口21,21が設けられている。吸気口22を通じて冷却風が該筐体2の内部に導入され、排気口21,21を通じて冷却風が筐体から排出される。筐体2の内部で、冷却風は単電池11,11の間の隙間を流れて組電池1(それぞれの単電池11)を冷却する。 The casing 2 is provided with a hollow cylindrical intake port 22 and exhaust ports 21 and 21. Cooling air is introduced into the housing 2 through the intake port 22, and cooling air is discharged from the housing through the exhaust ports 21 and 21. Inside the housing 2, the cooling air flows through the gaps between the single cells 11, 11 to cool the assembled battery 1 (each single cell 11).

本実施形態においては、吸気口22の上流側に、吸気ダクト52、送風ファンF、吸気ダクト51が順に接続されている。送風ファンFによって、吸気ダクト51の先端部から空気が吸入され、吸気ダクト52を通じて、吸気口22に冷却風が送られる。本実施形態においては接続されていないが、排気口21,21に排気ダクト(図示せず)を接続して、冷却風を所定の位置まで導いてから排出するようにしても良い。 In the present embodiment, the intake duct 52, the blower fan F, and the intake duct 51 are connected in order on the upstream side of the intake port 22. Air is sucked from the front end portion of the intake duct 51 by the blower fan F, and cooling air is sent to the intake port 22 through the intake duct 52. Although not connected in the present embodiment, an exhaust duct (not shown) may be connected to the exhaust ports 21 and 21 so that the cooling air is guided to a predetermined position and then discharged.

ハイブリッド自動車などにおいて、このような組電池及び電池冷却構造は、例えば、後部座席の後ろ側やトランクルームに配置され、車室内やトランクルーム内から冷却風を取り入れるように構成されることが多い。 In a hybrid vehicle or the like, such an assembled battery and a battery cooling structure are often arranged, for example, behind a rear seat or in a trunk room so as to take in cooling air from the vehicle interior or the trunk room.

本実施形態の電池冷却構造においては、耐火閉塞部材3,3が、吸気口22と排気口21,21の内側に配置されている。図3は、本実施形態における耐火閉塞部材3の形態を示す斜視図である。図4は、吸気口22と吸気ダクト52の接続部分に耐火閉塞部材3が配置された状態を示す断面図である。 In the battery cooling structure of the present embodiment, the fireproof blocking members 3, 3 are disposed inside the intake port 22 and the exhaust ports 21, 21. FIG. 3 is a perspective view showing a form of the fireproof closing member 3 in the present embodiment. FIG. 4 is a cross-sectional view showing a state in which the fireproof closing member 3 is arranged at the connection portion between the intake port 22 and the intake duct 52.

耐火閉塞部材3は、公知の手段によって、吸気口22と排気口21,21の内側に取付可能である。例えば、接着、嵌合、粘着材、係止爪などの手段により耐火閉塞部材3を固定できる。振動などによって耐火閉塞部材3が移動してしまわないように、これら手段により、耐火閉塞部材3を固定して取り付けることが好ましい。 The fireproof blocking member 3 can be attached to the inside of the intake port 22 and the exhaust ports 21 and 21 by a known means. For example, the fireproof closing member 3 can be fixed by means such as adhesion, fitting, adhesive material, and locking claws. It is preferable to fix and attach the fireproof closing member 3 by these means so that the fireproof closing member 3 does not move due to vibration or the like.

図3に示すように、耐火閉塞部材3は、中空額縁状をしている。即ち、耐火閉塞部材3は、中空筒状の吸気口22や排気口21の内周面形状に沿うような、所定の厚みと所定の長さを有する中空額縁状(短筒状)の部材である。耐火閉塞部材3が吸気口22や排気口21に取り付けられると、通常時(火災が発生していない時)は、耐火閉塞部材3の中空部分を通じて冷却風が流れることになる。 As shown in FIG. 3, the fireproof closing member 3 has a hollow frame shape. That is, the fire-resistant closing member 3 is a hollow frame-like (short cylindrical) member having a predetermined thickness and a predetermined length along the inner peripheral surface shape of the hollow cylindrical intake port 22 and the exhaust port 21. is there. When the fireproof closing member 3 is attached to the intake port 22 or the exhaust port 21, cooling air flows through the hollow portion of the fireproof closing member 3 in normal times (when no fire is generated).

通常時の冷却風の流れの妨げになりにくく、吸気口や排気口に確実に取り付けうる観点から、本実施形態のように、耐火閉塞部材3の全体または少なくとも一部が、吸気口や排気口やダクトの内周面に沿って配置されることが好ましい。 From the standpoint that the flow of the cooling air during normal operation is not hindered and can be reliably attached to the intake port or the exhaust port, the entire or at least a part of the refractory blocking member 3 is made into the intake port or the exhaust port as in this embodiment. It is preferable to arrange it along the inner peripheral surface of the duct.

耐火閉塞部材3は、後述する熱膨張性耐火樹脂材料により構成されている。そして、組電池1に火災が発生すると、耐火閉塞部材3は熱により膨張して吸気口22や排気口21を閉塞する。耐火閉塞部材3の具体的形状や寸法は、膨張による冷却風通路の閉塞が確実に行われるように定められる。本実施形態においては、耐火閉塞部材3全体が熱膨張性耐火樹脂材料で形成されている。なお、耐火閉塞部材は熱膨張性耐火樹脂材料以外の補強体などを含んで構成されていても良い。 The fireproof closing member 3 is made of a heat-expandable fireproof resin material described later. When a fire occurs in the assembled battery 1, the fireproof closing member 3 expands due to heat and closes the intake port 22 and the exhaust port 21. The specific shape and dimensions of the fireproof closing member 3 are determined so that the cooling air passage is reliably closed by expansion. In the present embodiment, the entire fireproof closing member 3 is formed of a thermally expandable fireproof resin material. In addition, the fireproof closing member may include a reinforcing body other than the thermally expandable fireproof resin material.

以下、耐火閉塞部材3を構成する熱膨張性耐火樹脂材料について説明する。熱膨張性耐火樹脂材料は、樹脂材料(基材)と膨張材料を主成分として混合もしくは混練された樹脂組成物である。熱膨張性耐火樹脂材料は、弾力性を有する樹脂材料であることが好ましい。熱膨張性耐火樹脂材料は、加熱されると膨張材料が膨張して、体積が増加する。また、膨張した熱膨張性耐火樹脂材料は、耐火性を有している。即ち、膨張した熱膨張性耐火樹脂材料は、火炎にさらされるなどしても所定時間は焼失しない程度の難燃性あるいは不燃性を有している。熱膨張性耐火樹脂材料は、加熱され膨張した後に炭化する材料であることが好ましい。 Hereinafter, the heat-expandable fireproof resin material constituting the fireproof closing member 3 will be described. The heat-expandable refractory resin material is a resin composition in which a resin material (base material) and an expansion material are mixed or kneaded as main components. The thermally expandable refractory resin material is preferably a resin material having elasticity. When the heat-expandable refractory resin material is heated, the expansion material expands and the volume increases. Further, the expanded thermally expandable refractory resin material has fire resistance. That is, the expanded thermally expandable refractory resin material has a flame retardance or nonflammability that does not burn for a predetermined time even if exposed to a flame. The heat-expandable refractory resin material is preferably a material that is carbonized after being heated and expanded.

熱膨張性耐火樹脂材料の基材となる樹脂材料としては、樹脂(特に熱可塑性樹脂)や、ゴムやエラストマー(特に熱可塑性エラストマー)が好ましく使用される。例えば、ブタジエンゴム、スチレンブタジエンゴム、アクリロニトリルブタジエンゴム、天然ゴム、イソプレンゴム、エチレンプロピレンゴム、ブチルゴム、アクリルゴム、ウレタンゴム、シリコーンゴム、フッ素ゴム、熱可塑性エラストマー(オレフィン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、アクリル系熱可塑性エラストマーなど、特にスチレン系熱可塑性エラストマー)、オレフィン系樹脂(α-オレフィン系コポリマー、エチレン系コポリマー等)、等が例示される。上記樹脂材料は弾力性のあるものであることが好ましい。ポリエチレンなどのオレフィン系樹脂は、加熱・燃焼時に有毒ガスを発生しないため、特に好ましい。上記樹脂材料は単独で、あるいは適宜混合して使用しても良い。 As a resin material which becomes a base material of the thermally expandable refractory resin material, a resin (particularly a thermoplastic resin), rubber or elastomer (particularly a thermoplastic elastomer) is preferably used. For example, butadiene rubber, styrene butadiene rubber, acrylonitrile butadiene rubber, natural rubber, isoprene rubber, ethylene propylene rubber, butyl rubber, acrylic rubber, urethane rubber, silicone rubber, fluorine rubber, thermoplastic elastomer (olefin-based thermoplastic elastomer, urethane-based heat) Examples thereof include plastic elastomers, acrylic thermoplastic elastomers, particularly styrene thermoplastic elastomers), olefin resins (α-olefin copolymers, ethylene copolymers, etc.), and the like. The resin material is preferably elastic. Olefin resins such as polyethylene are particularly preferred because they do not generate toxic gases during heating and combustion. You may use the said resin material individually or in mixture as appropriate.

さらに、上記樹脂材料に、他の樹脂、例えば、ポリエステル系樹脂、ポリカーボネイト系樹脂、ポリスチレン系樹脂、アクリル系樹脂、アクリロニトリルスチレンブタジエン系樹脂、ポリアミド系樹脂、エポキシ系樹脂、フェノール系樹脂などの樹脂材料を混合しても良い。また、これら樹脂材料を主体として、熱膨張性耐火樹脂材料の基材として使用することもできる。フェノール系樹脂は加熱により硬化・炭化するので、フェノール系樹脂を樹脂材料として混合すると、耐火閉塞部材3が加熱された際に容易に軟化・変形・脱落してしまうことが防止され、耐火閉塞部材3が当初の位置に保たれて、冷却風通路を効果的に閉塞することに有効である。また、樹脂材料は、液状成分を含まない樹脂であることが好ましい。 In addition to the above resin materials, other resin materials such as polyester resins, polycarbonate resins, polystyrene resins, acrylic resins, acrylonitrile styrene butadiene resins, polyamide resins, epoxy resins, phenol resins, etc. May be mixed. Moreover, it can also be used as a base material of a thermally expansible refractory resin material by making these resin materials into a main body. Since the phenolic resin is cured and carbonized by heating, when the phenolic resin is mixed as a resin material, it is prevented that the fireproof closing member 3 is easily softened, deformed or dropped when heated, and the fireproof closing member 3 is maintained at the initial position, and is effective in effectively closing the cooling air passage. The resin material is preferably a resin that does not contain a liquid component.

上記樹脂材料に混練される膨張材料としては、熱膨張性層状無機物や黒曜石などの無機系膨張材や、発泡性窒素化合物や発泡性マイクロカプセルなどの有機系膨張材といった加熱により膨張する膨張材料が使用できる。熱膨張性層状無機物としては、例えば、バーミキュライト、カリオン、マイカ、熱膨張性黒鉛が例示できる。無機系膨張材は不燃性若しくは難燃性を有するので、特に好ましい。 Examples of the expansion material kneaded with the resin material include expansion materials that expand by heating, such as inorganic expansion materials such as thermally expandable layered inorganic materials and obsidian, and organic expansion materials such as expandable nitrogen compounds and expandable microcapsules. Can be used. Examples of the thermally expandable layered inorganic material include vermiculite, carion, mica, and thermally expandable graphite. An inorganic expansion material is particularly preferable because it has nonflammability or flame retardancy.

中でも、熱膨張性黒鉛を膨張材料として使用するのが、樹脂組成物の膨張倍率を高くできるとともに膨張開始温度を制御しやすくなって、好ましい。熱膨張性黒鉛は、グラファイト粉末を無機酸と強酸化剤とで処理してグラファイト層間化合物を生成したもので、グラファイトの層状構造を維持した公知の結晶化合物である。後述するリン化合物と反応したりすることがないように、特に中和処理されたものが好ましく利用される。中和処理された熱膨張性黒鉛の市販品としては、Graf Guard(Ucar Carbon社製)を例示できる。 Among them, it is preferable to use thermally expandable graphite as the expansion material because the expansion ratio of the resin composition can be increased and the expansion start temperature can be easily controlled. Thermally expandable graphite is a known crystalline compound in which graphite powder is treated with an inorganic acid and a strong oxidizing agent to produce a graphite intercalation compound, and maintains a layered structure of graphite. In particular, a neutralized product is preferably used so as not to react with a phosphorus compound described later. Graf Guard (manufactured by Ucar Carbon) can be exemplified as a commercial product of the heat-expandable graphite that has been neutralized.

膨張材料の膨張開始温度は100℃以上270℃以下、より好ましくは120℃以上240℃以下、特に好ましくは140℃以上200℃以下である。膨張温度が高いと冷却風通路を閉塞するのが遅くなる。また、膨張開始温度が低いと、熱膨張性耐火樹脂材料の混練中に発泡したり、火災ではないときに膨張したりするおそれがある。なお、比較的低温(例えば220℃)で膨張開始する膨張材料と、比較的高温(例えば400℃)で膨張開始する膨張材料とを組み合わせて、配合しても良い。 The expansion start temperature of the expansion material is 100 ° C. or higher and 270 ° C. or lower, more preferably 120 ° C. or higher and 240 ° C. or lower, and particularly preferably 140 ° C. or higher and 200 ° C. or lower. When the expansion temperature is high, the cooling air passage is blocked more slowly. If the expansion start temperature is low, foaming may occur during the kneading of the thermally expandable refractory resin material, or expansion may occur when there is no fire. In addition, you may mix | blend combining the expansion | swelling material which starts expansion | swelling at comparatively low temperature (for example, 220 degreeC), and the expansion | swelling material which starts expansion | swelling at comparatively high temperature (for example, 400 degreeC).

膨張材料の好ましい膨張倍率は、体積膨張率で2.5倍〜400倍、更に好ましくは5倍〜150倍である。 A preferable expansion ratio of the expansion material is 2.5 to 400 times, more preferably 5 to 150 times in terms of volume expansion coefficient.

本実施形態の耐火閉塞部材3においては、熱可塑性エラストマーを樹脂材料のベース材料とし、膨張材料として熱膨張性黒鉛を配合して、これら材料を混練して熱膨張性耐火材料としている。
熱膨張性耐火樹脂材料には、その他、必要に応じて以下のものを適宜加えることができる。
In the fireproof closing member 3 of the present embodiment, a thermoplastic elastomer is used as a base material of a resin material, thermally expandable graphite is blended as an expandable material, and these materials are kneaded to form a thermally expandable fireproof material.
In addition to the heat-expandable refractory resin material, the following can be appropriately added as necessary.

赤リンやリン酸エステル、リン酸金属塩、ポリリン酸アンモニウム類などのリン化合物(リン系難燃剤)を加えると、熱膨張性耐火樹脂材料の難燃性を高め、耐火性能を向上させることができる。特にポリリン酸アンモニウムの添加が好適である。 Adding phosphorus compounds (phosphorous flame retardants) such as red phosphorus, phosphate esters, metal phosphates, and ammonium polyphosphates can increase the flame retardancy of thermally expandable fire-resistant resin materials and improve fire resistance. it can. Addition of ammonium polyphosphate is particularly preferable.

水酸化アルミニウム、水酸化マグネシウムなどの含水無機物を加えると、加熱時に脱水反応が起こり、生成した水の吸熱作用によって熱膨張性耐火樹脂材料の耐火性を向上させることができる。 When a hydrous inorganic substance such as aluminum hydroxide or magnesium hydroxide is added, a dehydration reaction occurs during heating, and the heat resistance of the thermally expandable refractory resin material can be improved by the endothermic action of the generated water.

また、バサルト繊維やガラス繊維などの無機系繊維や、アラミド繊維や炭素繊維などの有機系繊維を熱膨張性耐火樹脂材料にフィラーとして加える事もできる。繊維材料を熱膨張性耐火樹脂材料に加えることで、熱膨張性耐火樹脂材料が膨張する際の膨張速度や膨張倍率を調整することができる。繊維材料は、不燃性若しくは難燃性のものであることが好ましい。また繊維材料は、膨張材料の膨張開始温度よりも高い温度での耐熱性を有することが好ましい。 In addition, inorganic fibers such as basalt fibers and glass fibers, and organic fibers such as aramid fibers and carbon fibers can be added to the thermally expandable refractory resin material as a filler. By adding the fiber material to the thermally expandable refractory resin material, it is possible to adjust the expansion rate and expansion ratio when the thermally expandable refractory resin material expands. The fiber material is preferably nonflammable or flame retardant. The fiber material preferably has heat resistance at a temperature higher than the expansion start temperature of the expansion material.

熱膨張性耐火樹脂材料には、その他、熱安定剤や加工助剤、滑剤などを配合しても良い。 In addition to the heat-expandable refractory resin material, a heat stabilizer, a processing aid, a lubricant, and the like may be blended.

また、熱膨張性耐火樹脂材料に常温での粘着性を付与したい場合には、タッキファイアーなどの粘着性成分を添加すれば、耐火閉塞部材3の表面に粘着性を付与することもできる。添加するタッキファイアーやオリゴマーは、ベースとなる樹脂材料と相溶性の良い物を選択することが好ましい。 Moreover, when it is desired to impart adhesiveness at room temperature to the thermally expandable fireproof resin material, it is possible to impart adhesiveness to the surface of the fireproof blocking member 3 by adding an adhesive component such as a tackifier. It is preferable to select a tackifier or oligomer to be added that is compatible with the base resin material.

耐火閉塞部材3に適度な弾力性を与えたい場合には、熱膨張性耐火樹脂材料の弾性の程度を、JIS K 7171による曲げ弾性率で50MPa〜1000MPaとすることが好ましい。特に、後述する図8の実施形態のように、耐火閉塞部材の一部を、吸気口または排気口とダクト部材との間に介装する場合には、熱膨張性耐火樹脂材料の曲げ弾性率を100MPa〜500MPaとすることが特に好ましく、そのようにすれば、介装された耐火閉塞部材により、吸気口または排気口とダクト部材との接続を維持しやすくでき、接続する部材間のシールを行うこともできるようになる。 In order to give the fireproof blocking member 3 appropriate elasticity, it is preferable that the degree of elasticity of the heat-expandable fireproof resin material is 50 MPa to 1000 MPa as a flexural modulus according to JIS K 7171. In particular, when a part of the fire-resistant closing member is interposed between the intake port or the exhaust port and the duct member as in the embodiment of FIG. 8 described later, the bending elastic modulus of the thermally expandable fire-resistant resin material is used. Is preferably 100 MPa to 500 MPa, and by doing so, it is easy to maintain the connection between the intake port or the exhaust port and the duct member by the interposed fireproof blocking member, and the seal between the connecting members You can also do it.

本発明における熱膨張性耐火樹脂材料の加熱時の体積膨張率の好ましい範囲は3倍〜40倍であり、より好ましくは、5倍〜20倍である。膨張倍率が低いと、冷却風通路を閉塞するために多量の熱膨張性耐火樹脂材料が必要となるために不経済であると共に、通常時に冷却風通路がふさがり気味となって冷却風の流れ抵抗が大きくなってしまう。逆に、膨張倍率が高すぎると、膨張した耐火材料が散逸しやすくなり、かえって冷却風通路を閉塞しにくくなるおそれがある。 The preferable range of the volume expansion coefficient during heating of the heat-expandable refractory resin material in the present invention is 3 to 40 times, and more preferably 5 to 20 times. If the expansion ratio is low, a large amount of heat-expandable refractory resin material is required to close the cooling air passage, which is uneconomical. Will become bigger. On the other hand, if the expansion ratio is too high, the expanded refractory material is likely to dissipate, which may make it difficult to block the cooling air passage.

熱膨張性耐火樹脂材料の体積膨張率の調整は、膨張材料の配合割合や、膨張材料が膨張する温度での樹脂材料の粘度や、フィラー(特に繊維材料)の配合量を調整して行うことができる。特に、繊維材料を配合すると、繊維材料は膨張時の束縛性が高いため、膨張材料の配合量を減らすことなく膨張倍率を抑えることができ、火炎等の遮蔽効果に優れ膨張後の形状保持性も高い熱膨張性耐火樹脂材料が得やすくなって、好ましい。 The volume expansion coefficient of the heat-expandable refractory resin material should be adjusted by adjusting the blending ratio of the expanding material, the viscosity of the resin material at the temperature at which the expanding material expands, and the blending amount of the filler (particularly the fiber material). Can do. In particular, when a fiber material is blended, the fiber material is highly constrained at the time of expansion, so the expansion ratio can be suppressed without reducing the blending amount of the expansion material, and it has excellent shielding effects such as flame, and retains its shape after expansion. It is easy to obtain a highly heat-expandable refractory resin material, which is preferable.

調製・混練された上記熱膨張性耐火樹脂材料は、押し出し成形や射出成形やロール成形(カレンダー成形)、プレス成形、ブロー成形など、ベースとなる樹脂材料に適した成形方法を利用して、耐火閉塞部材3の形状に成形される。押し出し成形法によれば、直接チューブ状に熱膨張性耐火材料を押し出して、所定長さにカットして短筒状形態の耐火成形体3が形成できる。耐火閉塞部材3の形状が複雑である場合には、射出成形やプレス成形を利用することが好ましい。 The above heat-expandable refractory resin material prepared and kneaded is fire-resistant using molding methods suitable for the base resin material, such as extrusion molding, injection molding, roll molding (calender molding), press molding and blow molding. It is formed in the shape of the closing member 3. According to the extrusion molding method, the heat-expandable refractory material can be directly extruded into a tube shape and cut into a predetermined length to form the short tube-shaped refractory molded body 3. When the shape of the fireproof closing member 3 is complicated, it is preferable to use injection molding or press molding.

上記実施形態の電池冷却構造の、作用及び効果について説明する。耐火閉塞部材3は、通常時には、冷却風通路をふさいでいないので、所定量の冷却風を通すことができる。一方、組電池1に火災が発生した場合には、火災による熱や火炎によって、吸気口22や排気口21に設けられた耐火閉塞部材3が膨張し、冷却風通路を閉塞する。 The operation and effect of the battery cooling structure of the embodiment will be described. Since the fire-resistant closing member 3 normally does not block the cooling air passage, a predetermined amount of cooling air can be passed. On the other hand, when a fire occurs in the assembled battery 1, the fireproof blocking member 3 provided at the intake port 22 or the exhaust port 21 expands due to heat or flame due to the fire and closes the cooling air passage.

すると、高温のガスや火炎はもはや、吸気口22や排気口21よりも先の部分にはいかなくなるので、そのような場所にある部材の損傷や、火災の延焼を抑制できる。また、吸気口22や排気口21に設けられた耐火閉塞部材3が膨張し、冷却風通路を閉塞すれば、冷却風流れが止まるので、筐体内部にもはや新しい空気が供給されなくなり、筐体内部での可燃性物質の燃焼が抑制され、筐体内部における火災の拡大の抑制も期待できる。 Then, the hot gas and flame no longer go beyond the intake port 22 and the exhaust port 21, so that damage to members in such a place and the spread of fire can be suppressed. Further, if the fireproof closing member 3 provided at the intake port 22 or the exhaust port 21 expands and closes the cooling air passage, the cooling air flow stops, so that new air is no longer supplied inside the housing, and the housing Combustion of combustible substances inside is suppressed, and the expansion of fire inside the housing can also be expected.

なお、上記実施形態においては、吸気口22と排気口21の両方に耐火閉塞部材3が設けられた形態例を説明したが、必ずしも吸気口と排気口の両方に設けなければならないわけではなく、いずれか一方のみに設けてあっても、冷却風流れを止めることができれば、火災の拡大が抑制される効果が期待できる。 In the above-described embodiment, the embodiment in which the fireproof blocking member 3 is provided in both the intake port 22 and the exhaust port 21 has been described, but it is not necessarily provided in both the intake port and the exhaust port. Even if only one of them is provided, an effect of suppressing the expansion of the fire can be expected if the cooling air flow can be stopped.

耐火閉塞部材3を排気口21の側に設けることが、好ましい。冷却風による空冷式の電池冷却構造において、電池筐体2内部の空気は排気口21から筐体外部に排気されるので、耐火閉塞部材3を排気口21の側に設けておけば、筐体内部のどこか一部で電池が発火しても、その高温の燃焼ガスが排気口21に達した時点で、耐火閉塞部材3が膨張し始め、排気口を閉塞するので、火災のより初期の段階で、火災の被害拡大を抑制することができる。 It is preferable to provide the fireproof closing member 3 on the exhaust port 21 side. In the air cooling type battery cooling structure using cooling air, the air inside the battery case 2 is exhausted from the exhaust port 21 to the outside of the case. Therefore, if the fireproof closing member 3 is provided on the exhaust port 21 side, the case Even if the battery ignites somewhere inside, when the high-temperature combustion gas reaches the exhaust port 21, the fireproof closing member 3 starts to expand and closes the exhaust port. At the stage, the expansion of fire damage can be suppressed.

また、組電池が自動車に搭載されると共に、吸気口に接続される一連の吸気ダクトが車室(乗員室)内に連絡するよう設けられる場合には、耐火閉塞部材3が吸気口に配置されることが好ましい。そのようにされることによって、組電池に火災が発生しても、火災の煙や熱気が車室内に流入することを抑制できる。 In addition, when the assembled battery is mounted on an automobile and a series of intake ducts connected to the intake port are provided so as to communicate with the passenger compartment (occupant room), the fireproof closing member 3 is disposed at the intake port. It is preferable. By doing so, even if a fire occurs in the assembled battery, it is possible to suppress the smoke and hot air from flowing into the passenger compartment.

本発明は、上記実施形態に限定されるものではなく、種々の改変をして実施することができる。以下に本発明の他の実施形態について説明するが、以下の説明においては、上記実施形態と異なる部分を中心に説明し、同様である部分については(同じ番号をつけると共に)その詳細な説明を省略する。また、以下に示す実施形態は、その一部を互いに組み合わせて、あるいは、その一部を置き換えて実施できる。 The present invention is not limited to the above embodiment, and can be implemented with various modifications. Other embodiments of the present invention will be described below, but in the following description, the description will focus on parts different from the above-described embodiments, and the same parts (with the same numbers) will be described in detail. Omitted. Further, the embodiments described below can be implemented by combining some of them or replacing some of them.

図5、図6には耐火閉塞部材の他の実施形態の例を示す。これら実施形態の耐火閉塞部材は、耐火閉塞部材の全体が熱膨張性耐火材料で一体成形されている点では、上記第1実施形態の耐火閉塞部材と同様であるが、その形状が異なっている。 5 and 6 show examples of other embodiments of the fireproof closing member. The fireproof closure members of these embodiments are the same as the fireproof closure members of the first embodiment in that the entire fireproof closure members are integrally formed of a thermally expandable fireproof material, but the shapes thereof are different. .

図5に示す第2実施形態の耐火閉塞部材4においては、吸気口や排気口の内周面に沿って配置されるべき角筒状の筒部41に、筒部41の内側の冷却風通路を仕切るように格子状の間仕切り部42が一体化されている。間仕切り部42によって、耐火閉塞部材4の内側の冷却風通路が細く分割されるため、加熱されて膨張する際に、閉塞しやすくなる。 In the fireproof blocking member 4 of the second embodiment shown in FIG. 5, a cooling air passage inside the cylinder portion 41 is connected to a rectangular tube-shaped cylinder portion 41 to be disposed along the inner peripheral surface of the intake port or the exhaust port. A grid-like partition portion 42 is integrated so as to partition the two. The partition portion 42 divides the cooling air passage inside the fireproof closing member 4 into thin pieces, so that it is easily closed when heated and expanded.

また、本実施形態においては、筒部41の内側の代表寸法Hと比べて、耐火閉塞部材4の長さ(冷却風流れに沿う方向の長さ)Lが大きくなるようにされている。このように、耐火閉塞部材の内側に設けられた冷却風通路の幅方向の寸法(H)よりも、耐火閉塞部材の冷却風流れ方向に沿う長さ寸法(L)が長くされていると、耐火閉塞部材4が加熱されて膨張する際に、より確実に冷却風通路を閉塞することができる。 Further, in the present embodiment, the length (the length in the direction along the cooling air flow) L of the fireproof closing member 4 is made larger than the representative dimension H inside the cylindrical portion 41. Thus, when the length dimension (L) along the cooling air flow direction of the fireproof blocking member is longer than the dimension (H) in the width direction of the cooling wind passage provided inside the fireproof blocking member, When the fireproof closing member 4 is heated and expanded, the cooling air passage can be closed more reliably.

図6に示す第3実施形態の耐火閉塞部材8においては、吸気口や排気口の内周面に沿って配置されるべき角筒状の筒部81の内側を仕切るように、板状の間仕切り部82、82が所定の間隔dを隔てて平行に配置されて一体成形されている。
また、本実施形態においては、板状間仕切り部82,82が離間する距離dと比べて、耐火閉塞部材8の長さ(冷却風流れに沿う方向の長さ)Lが大きくなるようにされている。このように、耐火閉塞部材の内側に設けられた冷却風通路の幅方向の寸法(d)よりも、耐火閉塞部材の冷却風流れ方向に沿う長さ寸法(L)が長くされていると、耐火閉塞部材8が加熱されて膨張する際に、特に効果的に閉塞しやすくなる。なお、本実施形態のように冷却風通路が細長い断面形状を有する場合には、冷却風通路の幅方向の寸法は、通路断面形状の短い側の辺や径に相当する長さ(本実施形態で言えばd)を基準として、耐火閉塞部材の長さLが大きくなっていれば、上記効果が得られる。
In the fireproof closing member 8 of the third embodiment shown in FIG. 6, a plate-shaped partition is formed so as to partition the inside of the rectangular tube-shaped cylinder portion 81 that should be disposed along the inner peripheral surface of the intake port or the exhaust port. The parts 82 and 82 are arranged in parallel with a predetermined distance d and are integrally formed.
Further, in the present embodiment, the length (the length in the direction along the cooling air flow) L of the fireproof blocking member 8 is made larger than the distance d at which the plate-like partition portions 82 and 82 are separated. Yes. Thus, when the length dimension (L) along the cooling air flow direction of the fireproof blocking member is longer than the dimension (d) in the width direction of the cooling wind passage provided inside the fireproof blocking member, When the fireproof closing member 8 is heated and expanded, it is particularly easily blocked. When the cooling air passage has an elongated cross-sectional shape as in this embodiment, the dimension in the width direction of the cooling air passage is a length corresponding to the side or diameter on the short side of the passage cross-sectional shape (this embodiment In other words, the above-described effect can be obtained if the length L of the fireproof closing member is increased with reference to d).

図5、図6に示した耐火閉塞部材4,8は、押出成形を利用して、連続した筒状に一旦成形したものを、所定長さに切断して製造することができる。あるいは、これら耐火閉塞部材4,8を射出成形により形成することもできる。 The fire-resistant closing members 4 and 8 shown in FIG. 5 and FIG. 6 can be manufactured by using extrusion molding and once forming a continuous cylinder into a predetermined length. Or these fireproof closure members 4 and 8 can also be formed by injection molding.

耐火閉塞部材は、上記のような筒状の形状には限定されない。例えば、板状に成形した耐火閉塞部材を、吸気口や排気口の内周面の一部に沿って配置・固定するようにしても良い。例えば、平板状の耐火閉塞部材を、長方形断面の角筒状の吸気口の長辺に相当する面に取り付けるようにしても良い。 The fireproof closing member is not limited to the cylindrical shape as described above. For example, a fireproof blocking member formed into a plate shape may be arranged and fixed along a part of the inner peripheral surface of the intake port or the exhaust port. For example, a flat fireproof blocking member may be attached to a surface corresponding to the long side of a rectangular tube-shaped intake port having a rectangular cross section.

または、図7に示すように、金網などの支持部材に熱膨張性耐火樹脂材料を一体化させて、耐火閉塞部材を構成しても良い。図7に示した実施形態においては、格子状の金網61を支持部材として、金網を構成している金属線の表面に熱膨張性耐火樹脂材料62をコーティングするように一体化させて、耐火閉塞部材6が構成されている。図7では、金網61を太い実線で示し、熱膨張性耐火樹脂材料62がコーティングされた部分を細い波線で示している。耐火閉塞部材6は、支持部材である金網61が有していた隙間をまだ残しており、その隙間を通じて冷却風が流れうる。吸気口や排気口をさえぎるように、耐火閉塞部材6を取り付ければ、上記実施形態と同様の作用や効果を発揮できる。 Or as shown in FIG. 7, you may integrate a heat-expandable fireproof resin material with support members, such as a metal-mesh, and may comprise a fireproof closure member. In the embodiment shown in FIG. 7, the lattice-shaped wire mesh 61 is used as a support member, and the surface of the metal wire constituting the wire mesh is integrated so as to coat the heat-expandable refractory resin material 62, so A member 6 is configured. In FIG. 7, the wire mesh 61 is indicated by a thick solid line, and the portion coated with the heat-expandable fireproof resin material 62 is indicated by a thin wavy line. The fireproof closing member 6 still leaves the gap that the wire mesh 61 as the support member has, and the cooling air can flow through the gap. If the fireproof closing member 6 is attached so as to block the intake port and the exhaust port, the same operations and effects as the above embodiment can be exhibited.

特に、本実施形態では、吸気口や排気口の断面全体にわたって、均等に熱膨張性耐火樹脂材料を配置できるので、火災のより早期の段階で、冷却風通路を閉塞しやすい。 In particular, in this embodiment, since the heat-expandable refractory resin material can be disposed uniformly over the entire cross section of the intake port and the exhaust port, the cooling air passage can be easily blocked at an earlier stage of the fire.

また、本実施形態のように、金網61の片面側のみに熱膨張性耐火樹脂材料62を一体化する場合には、熱膨張性耐火樹脂材料が偏在する側が、筐体2の内側に向くように耐火閉塞部材6を配置することが好ましい。このようにすれば、熱膨張性耐火樹脂材料をより早いタイミングで膨張させることができる。あるいは、熱膨張性耐火樹脂材料が偏在する側が、冷却風流れの上流側を向くように、耐火閉塞部材6を配置することが好ましい。このようにすれば、膨張した熱膨張性耐火樹脂材料が多少もろいものであっても、下流側の金網に引っかかるようになって、冷却風通路の閉塞が効果的に行われうる。 Further, when the thermally expandable refractory resin material 62 is integrated only on one side of the wire mesh 61 as in the present embodiment, the side where the thermally expandable refractory resin material is unevenly distributed faces the inside of the housing 2. It is preferable to arrange the fire-resistant closing member 6 in the position. In this way, the thermally expandable refractory resin material can be expanded at an earlier timing. Or it is preferable to arrange | position the fireproof obstruction | occlusion member 6 so that the side where a thermally expansible fireproof resin material is unevenly distributed may face the upstream of a cooling wind flow. In this way, even if the expanded heat-expandable refractory resin material is somewhat brittle, it can be caught by the downstream metal mesh and the cooling air passage can be effectively blocked.

上記実施形態に示したように、耐火閉塞部材は、金属などの耐熱性の高い材料で構成された支持部材(補強体)を有するものであっても良い。支持部材は金網の他、金属板や熱硬化性樹脂部材などで構成しても良い。例えば、図5や図6に示した耐火閉塞部材4,8の間仕切り部などに、支持部材(補強体)を備えさせることも好ましい実施の形態である。 As shown in the above embodiment, the fireproof closing member may have a support member (reinforcing body) made of a material having high heat resistance such as metal. The support member may be formed of a metal plate, a thermosetting resin member, or the like in addition to the metal mesh. For example, it is also a preferred embodiment to provide a support member (reinforcing body) in the partition portion of the fireproof closing members 4 and 8 shown in FIGS.

図8には、さらに他の実施形態を示す。本実施形態における耐火閉塞部材7は全体が筒状に形成されている。そして、耐火閉塞部材7の一端側が、他端側よりも薄く形成された筒状の部分71となっている。本実施形態においては、吸気口22にダクト部材52が接続されている。ダクト部材52と吸気口22とは、互いに重なり合うように挿入されて接続されている。耐火閉塞部材7はダクト部材や吸気口の周面に沿うように配置されている。そして、耐火閉塞部材7の筒状の部分71は、吸気口22とダクト部材52との間に介装されている。 FIG. 8 shows still another embodiment. The fireproof closing member 7 in the present embodiment is entirely formed in a cylindrical shape. And the one end side of the fireproof closure member 7 is the cylindrical part 71 formed thinner than the other end side. In the present embodiment, a duct member 52 is connected to the intake port 22. The duct member 52 and the intake port 22 are inserted and connected so as to overlap each other. The fireproof blocking member 7 is disposed along the circumferential surface of the duct member or the intake port. The cylindrical portion 71 of the fireproof closing member 7 is interposed between the air inlet 22 and the duct member 52.

このように、耐火閉塞部材7に設けられた筒状の部分71が、吸気口22とダクト部材52との間に介装されていると、火災発生時に、筒状の部分71が膨張して接続部の隙間をふさぐように働き、吸気口とダクト部材の接続部分から火炎や高温の熱気が漏れ出すことが効果的に抑制される。 Thus, if the cylindrical part 71 provided in the fireproof closing member 7 is interposed between the intake port 22 and the duct member 52, the cylindrical part 71 expands when a fire occurs. It works so as to close the gap between the connecting portions, and the leakage of flames and hot air from the connecting portion between the intake port and the duct member is effectively suppressed.

本実施形態のように、吸気口22とダクト52が互いに重なり合うように嵌合する部分に、耐火閉塞部材7の一部71を挟み込むように介装させる場合には、熱膨張性耐火樹脂材料にゴム材料やエラストマー材料を含ませて弾力性に富む材料とすることが好ましい。 When interposing the part 71 of the fireproof closing member 7 in the part where the air inlet 22 and the duct 52 are fitted so as to overlap each other as in the present embodiment, the thermally expandable fireproof resin material is used. It is preferable that a rubber material or an elastomer material is included to make the material rich in elasticity.

介装される耐火閉塞部材7の一部71が弾力性に富むものであれば、ダクト52と吸気口22の接続が良好に維持され、両者の接続部分をシールすることもできる。また、シール性を高めるため、耐火閉塞部材の挟みこまれる部分71には、リップやビードを形成することが好ましい。 If the part 71 of the fireproof blocking member 7 to be interposed is rich in elasticity, the connection between the duct 52 and the air inlet 22 can be maintained well, and the connection portion of both can be sealed. Moreover, in order to improve a sealing performance, it is preferable to form a lip | rip and a bead in the part 71 where the fireproof closure member is inserted.

なお、図8に示した実施形態のように、ダクト等の接続部に耐火閉塞部材の一部を介装させる場合であっても、必ずしも耐火閉塞部材全体が弾力性に富むようにする必要はなく、介装される部分のみが弾力性に富む材料で形成されるように、耐火閉塞部材を2色成形により形成しても良い。 In addition, even if it is a case where a part of the fireproof closing member is interposed in the connection portion such as a duct as in the embodiment shown in FIG. 8, it is not always necessary to make the entire fireproof closing member rich in elasticity. The fire-resistant closing member may be formed by two-color molding so that only the interposed portion is formed of a material having high elasticity.

また、筒状の介装部分を有する耐火閉塞部材の他の形態の例としては、図8に示した耐火閉塞部材7の介装されていない部分を吸気口22の内側に折り返したように、吸気口や排気口の端部を覆い、かつ、吸気口や排気口の内側及び外側に筒状に熱膨張性耐火樹脂材料が配置されるような形態が例示できる。このような形態の耐火閉塞部材とすると、耐火閉塞部材を筐体2に取り付けるのが容易となって好ましい。 In addition, as an example of another form of the fireproof closing member having a cylindrical interposed portion, a portion where the fireproof closing member 7 illustrated in FIG. 8 is not interposed is folded inside the intake port 22. Examples include a configuration in which the end portions of the intake port and the exhaust port are covered and the thermally expandable refractory resin material is disposed in a cylindrical shape inside and outside the intake port and the exhaust port. If it is set as the fireproof closure member of such a form, it becomes easy to attach a fireproof closure member to the housing | casing 2, and is preferable.

また、電池筐体吸気口22側にフィルタ部材が取り付けられる場合には、フィルタ部材の枠部分を上記熱膨張性耐火樹脂材料で構成し、フィルタ部材の枠部分を耐火閉塞部材とすることもできる。 Moreover, when a filter member is attached to the battery housing inlet 22 side, the frame portion of the filter member can be made of the above-described thermally expandable fire-resistant resin material, and the frame portion of the filter member can be a fire-resistant closing member. .

本発明の電池冷却構造は、常温(特に−50℃〜100℃の温度領域)で運転される組電池の電池冷却構造に適用できる。組電池を構成する二次電池の種類としては、リチウムイオン二次電池、ニッケル水素二次電池、ニッケルカドミウム二次電池などが例示できる。 The battery cooling structure of the present invention can be applied to a battery cooling structure of an assembled battery operated at normal temperature (particularly in a temperature range of −50 ° C. to 100 ° C.). Examples of the secondary battery constituting the assembled battery include a lithium ion secondary battery, a nickel hydride secondary battery, and a nickel cadmium secondary battery.

組電池が使用される目的・用途も、自動車用に限定されるものではなく、例えば、風力発電装置や太陽電池発電装置などにおいて発電電力を平準化する目的で二次電池が使用される用途など、広い用途に使用される組電池に本発明は活用できる。 The purpose and application for which the assembled battery is used are not limited to those for automobiles. For example, a secondary battery is used for the purpose of leveling generated power in a wind power generator or a solar battery power generator. The present invention can be utilized for assembled batteries used in a wide range of applications.

本発明は、電気自動車やハイブリッド自動車、発電装置などに使用される大容量組電池の冷却に使用することができ、産業上の利用価値が高い。 INDUSTRIAL APPLICABILITY The present invention can be used for cooling large-capacity assembled batteries used in electric vehicles, hybrid vehicles, power generation devices, and the like, and has high industrial utility value.

1 組電池
11 単電池
2 筐体
21 排気口
22 吸気口
3 耐火閉塞部材
51,52 吸気ダクト
F 送風ファン
4,6,7,8 耐火閉塞部材
41、81 筒部
42、82 間仕切り部
61 金網
62 熱膨張性耐火樹脂材料
DESCRIPTION OF SYMBOLS 1 Assembly battery 11 Cell 2 Case 21 Exhaust port 22 Inlet port 3 Fireproof closing member 51,52 Intake duct F Blowing fan 4,6,7,8 Fireproof closing member 41,81 Cylindrical part 42,82 Partition part 61 Wire net 62 Thermally expandable refractory resin material

Claims (5)

複数の単電池で構成される組電池が筐体内部に収容され、筐体には冷却風を該筐体に導入するための吸気口と冷却風を排出するための排気口が設けられ、冷却風によって組電池を冷却する電池冷却構造であって、
単電池はリチウムイオン二次電池またはニッケル水素二次電池であり、
吸気口または排気口には、火災発生時の熱により膨張して吸気口または排気口を閉塞する耐火閉塞部材が配置されており、
耐火閉塞部材は、膨張開始温度が270℃以下の膨張材料を含む熱膨張性耐火樹脂材料によって構成されている電池冷却構造。
An assembled battery made up of a plurality of single cells is housed inside the housing, and the housing is provided with an intake port for introducing cooling air into the housing and an exhaust port for discharging cooling air. A battery cooling structure for cooling the battery pack by wind,
The cell is a lithium ion secondary battery or a nickel hydride secondary battery,
At the intake or exhaust port, there is a fire-resistant closing member that expands due to heat at the time of the fire and closes the intake or exhaust port,
The battery-cooling structure in which the fireproof closing member is made of a thermally expandable fireproof resin material including an expansion material having an expansion start temperature of 270 ° C. or lower.
吸気口または排気口にはダクト部材が接続されると共に、
耐火閉塞部材は吸気口または排気口の周面に沿うように配置される筒状の部分を有し、
耐火閉塞部材の前記筒状の部分が、吸気口または排気口とダクト部材との間に介装された請求項1に記載の電池冷却構造。
A duct member is connected to the intake or exhaust port,
The fireproof blocking member has a cylindrical portion arranged along the peripheral surface of the intake port or the exhaust port,
The battery cooling structure according to claim 1, wherein the cylindrical portion of the fireproof closing member is interposed between the intake port or the exhaust port and the duct member.
組電池が自動車に搭載される組電池であり、
吸気口には車室内に連絡するダクトが接続されると共に
耐火閉塞部材が吸気口に配置された請求項1または請求項2に記載の電池冷却構造。
The assembled battery is an assembled battery installed in an automobile,
The battery cooling structure according to claim 1 or 2, wherein a duct communicating with the passenger compartment is connected to the air intake and a fireproof closing member is disposed at the air intake.
耐火閉塞部材は、内部に冷却風が通流する冷却風通路が設けられた部材であり、
冷却風通路の幅方向の寸法よりも、耐火閉塞部材の冷却風流れ方向に沿う長さ寸法が長くされた請求項1ないし請求項3のいずれかに記載の電池冷却構造
The fireproof blocking member is a member provided with a cooling air passage through which cooling air flows.
The battery cooling structure according to any one of claims 1 to 3, wherein a length of the fireproof blocking member along a cooling airflow direction is longer than a widthwise dimension of the cooling air passage.
膨張材料が熱膨張性黒鉛を含む請求項1ないし請求項4のいずれかに記載の電池冷却構造。 The battery cooling structure according to any one of claims 1 to 4, wherein the expansion material contains thermally expandable graphite.
JP2012118317A 2012-05-24 2012-05-24 Battery cooling structure Expired - Fee Related JP5993209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012118317A JP5993209B2 (en) 2012-05-24 2012-05-24 Battery cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012118317A JP5993209B2 (en) 2012-05-24 2012-05-24 Battery cooling structure

Publications (2)

Publication Number Publication Date
JP2013246920A true JP2013246920A (en) 2013-12-09
JP5993209B2 JP5993209B2 (en) 2016-09-14

Family

ID=49846547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012118317A Expired - Fee Related JP5993209B2 (en) 2012-05-24 2012-05-24 Battery cooling structure

Country Status (1)

Country Link
JP (1) JP5993209B2 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016201333A (en) * 2015-04-14 2016-12-01 豊田合成株式会社 Battery pack
WO2017097958A1 (en) * 2015-12-09 2017-06-15 Jaguar Land Rover Limited Apparatus for providing a barrier between battery modules
JP2017526111A (en) * 2014-09-30 2017-09-07 グーグル インコーポレイテッド Battery module
JP2017528866A (en) * 2014-07-14 2017-09-28 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー Composition for suppressing combustion of lithium ion battery
JP2017182898A (en) * 2016-03-28 2017-10-05 積水化学工業株式会社 Battery
JP2017228495A (en) * 2016-06-24 2017-12-28 トヨタ自動車株式会社 Battery pack structure
JP2018037181A (en) * 2016-08-30 2018-03-08 トヨタ自動車株式会社 Battery module
JP2018537836A (en) * 2015-12-11 2018-12-20 ブルー・ソリューションズ・カナダ・インコーポレイテッド Batteries having electrochemical cells with variable impedance
JP2019029126A (en) * 2017-07-27 2019-02-21 トヨタ自動車株式会社 Power storage module
KR20190035580A (en) * 2014-02-03 2019-04-03 유알에스에이테크 리미티드 Thermal runaway retarding battery housing
JP2019061959A (en) * 2017-09-26 2019-04-18 積水化学工業株式会社 Conductivity variable member and safety system
JP2019089257A (en) * 2017-11-15 2019-06-13 タイガースポリマー株式会社 Laminate and battery pack using laminate
JP2019096410A (en) * 2017-11-20 2019-06-20 タイガースポリマー株式会社 Fireproof laminate and tubular laminate using the same, and battery isolation structure
CN110690530A (en) * 2019-10-14 2020-01-14 东软睿驰汽车技术(沈阳)有限公司 Safety device and power battery
KR20200110081A (en) * 2019-03-15 2020-09-23 주식회사 엘지화학 Battery module and battery pack including the same
CN112335097A (en) * 2019-03-06 2021-02-05 株式会社Lg化学 Battery module having structure capable of preventing air from flowing into module when thermal runaway occurs, and battery pack including the same
WO2021071138A1 (en) * 2019-10-10 2021-04-15 주식회사 엘지화학 Battery module including heat insulating member, and battery pack comprising same
WO2021172785A1 (en) * 2020-02-27 2021-09-02 주식회사 엘지에너지솔루션 Battery module, battery rack comprising same, and power storage device
US20220013758A1 (en) * 2020-07-10 2022-01-13 Hyundai Motor Company Vehicular battery pack and vehicle including the same
CN114175362A (en) * 2020-03-05 2022-03-11 株式会社Lg新能源 Battery module having structure capable of rapid cooling and ESS including the same
CN114424394A (en) * 2019-11-25 2022-04-29 株式会社Lg新能源 Battery module, battery pack, and vehicle
CN114464921A (en) * 2022-02-16 2022-05-10 中化国际(控股)股份有限公司 Battery cabinet air duct assembly and battery cabinet
WO2022149961A1 (en) * 2021-01-11 2022-07-14 주식회사 엘지에너지솔루션 Battery module and battery pack comprising same
WO2022164180A3 (en) * 2021-01-28 2022-09-22 주식회사 엘지에너지솔루션 Battery module having enhanced fire prevention capability
JP2022542931A (en) * 2019-11-07 2022-10-07 エルジー エナジー ソリューション リミテッド Battery modules, battery racks and power storage devices
JP2023505029A (en) * 2020-04-01 2023-02-08 エルジー エナジー ソリューション リミテッド Battery module including gas barrier structure
WO2023080566A1 (en) * 2021-11-04 2023-05-11 주식회사 엘지에너지솔루션 Battery module
US11799144B2 (en) 2020-09-01 2023-10-24 Hyundai Motor Company Apparatus for detecting thermal runaway of battery for electric vehicle
US11799138B2 (en) 2020-08-07 2023-10-24 Hyundai Motor Company Apparatus for detecting thermal runaway of battery for electric vehicle
CN117477110A (en) * 2023-12-26 2024-01-30 深圳市博硕科技股份有限公司 Heat insulation protection assembly for power battery
CN114175362B (en) * 2020-03-05 2024-06-11 株式会社Lg新能源 Battery module having structure capable of rapid cooling and energy storage system including the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102234223B1 (en) 2017-02-16 2021-03-31 주식회사 엘지화학 Secondary Battery with improved Stability having Heat Expandable Tape and Method thereof
KR102381693B1 (en) 2019-03-25 2022-03-31 주식회사 엘지에너지솔루션 Battery module, battery rack and energy storage system comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004156710A (en) * 2002-11-06 2004-06-03 Osaka Gas Co Ltd Heat-sensitive flow restricting member, anti-loosening member, fluid measuring device, and method for piping of fluid measuring device
JP2004306726A (en) * 2003-04-04 2004-11-04 Toyota Motor Corp Battery pack cooling structure
JP2007179873A (en) * 2005-12-28 2007-07-12 Showa Aircraft Ind Co Ltd Battery
WO2009028057A1 (en) * 2007-08-29 2009-03-05 Sekisui Chemical Co., Ltd. Fire-resistant piping material
JP2010279144A (en) * 2009-05-28 2010-12-09 Tigers Polymer Corp Thermally expansive fire-resistant material, fire-resistant molded item, and fireproofing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004156710A (en) * 2002-11-06 2004-06-03 Osaka Gas Co Ltd Heat-sensitive flow restricting member, anti-loosening member, fluid measuring device, and method for piping of fluid measuring device
JP2004306726A (en) * 2003-04-04 2004-11-04 Toyota Motor Corp Battery pack cooling structure
JP2007179873A (en) * 2005-12-28 2007-07-12 Showa Aircraft Ind Co Ltd Battery
WO2009028057A1 (en) * 2007-08-29 2009-03-05 Sekisui Chemical Co., Ltd. Fire-resistant piping material
JP2010279144A (en) * 2009-05-28 2010-12-09 Tigers Polymer Corp Thermally expansive fire-resistant material, fire-resistant molded item, and fireproofing method

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102662134B1 (en) * 2014-02-03 2024-04-29 유알에스에이테크 리미티드 Thermal runaway retarding battery housing
JP2019061958A (en) * 2014-02-03 2019-04-18 アーサテック リミテッド Thermal runaway delay battery housing
KR20190035580A (en) * 2014-02-03 2019-04-03 유알에스에이테크 리미티드 Thermal runaway retarding battery housing
JP2017528866A (en) * 2014-07-14 2017-09-28 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー Composition for suppressing combustion of lithium ion battery
JP2017526111A (en) * 2014-09-30 2017-09-07 グーグル インコーポレイテッド Battery module
JP2016201333A (en) * 2015-04-14 2016-12-01 豊田合成株式会社 Battery pack
WO2017097958A1 (en) * 2015-12-09 2017-06-15 Jaguar Land Rover Limited Apparatus for providing a barrier between battery modules
JP2018537836A (en) * 2015-12-11 2018-12-20 ブルー・ソリューションズ・カナダ・インコーポレイテッド Batteries having electrochemical cells with variable impedance
JP2017182898A (en) * 2016-03-28 2017-10-05 積水化学工業株式会社 Battery
CN107546347A (en) * 2016-06-24 2018-01-05 丰田自动车株式会社 Battery bag constructs
CN107546347B (en) * 2016-06-24 2020-09-22 丰田自动车株式会社 Battery pack structure
JP2017228495A (en) * 2016-06-24 2017-12-28 トヨタ自動車株式会社 Battery pack structure
JP2018037181A (en) * 2016-08-30 2018-03-08 トヨタ自動車株式会社 Battery module
JP2019029126A (en) * 2017-07-27 2019-02-21 トヨタ自動車株式会社 Power storage module
JP2019061959A (en) * 2017-09-26 2019-04-18 積水化学工業株式会社 Conductivity variable member and safety system
JP2019089257A (en) * 2017-11-15 2019-06-13 タイガースポリマー株式会社 Laminate and battery pack using laminate
JP2019096410A (en) * 2017-11-20 2019-06-20 タイガースポリマー株式会社 Fireproof laminate and tubular laminate using the same, and battery isolation structure
JP6991839B2 (en) 2017-11-20 2022-01-13 タイガースポリマー株式会社 Refractory laminate, tubular laminate using it, and battery isolation structure
JP2021523528A (en) * 2019-03-06 2021-09-02 エルジー・ケム・リミテッド A battery module having a structure that can prevent the inflow of air into the module when a thermal runaway phenomenon occurs, and a battery pack containing the battery module.
EP3836296A4 (en) * 2019-03-06 2021-11-10 LG Chem, Ltd. Battery module having structure capable of preventing inflow of air into module when thermal runaway occurs and battery pack including same
JP7105919B2 (en) 2019-03-06 2022-07-25 エルジー エナジー ソリューション リミテッド A battery module and a battery pack including the same having a structure capable of preventing air from flowing into the module when a thermal runaway phenomenon occurs
CN112335097A (en) * 2019-03-06 2021-02-05 株式会社Lg化学 Battery module having structure capable of preventing air from flowing into module when thermal runaway occurs, and battery pack including the same
JP2022507742A (en) * 2019-03-15 2022-01-18 エルジー エナジー ソリューション リミテッド Battery module and battery pack containing it
KR20200110081A (en) * 2019-03-15 2020-09-23 주식회사 엘지화학 Battery module and battery pack including the same
CN113785434A (en) * 2019-03-15 2021-12-10 株式会社Lg新能源 Battery module and battery pack including the same
EP3890056A4 (en) * 2019-03-15 2022-01-05 Lg Energy Solution, Ltd. Battery module and battery pack comprising same
WO2020189965A1 (en) * 2019-03-15 2020-09-24 주식회사 엘지화학 Battery module and battery pack comprising same
US20220029222A1 (en) * 2019-03-15 2022-01-27 Lg Energy Solution, Ltd. Battery module and battery pack including the same
JP7237408B2 (en) 2019-03-15 2023-03-13 エルジー エナジー ソリューション リミテッド Battery module and battery pack containing same
KR102414037B1 (en) * 2019-03-15 2022-06-27 주식회사 엘지에너지솔루션 Battery module and battery pack including the same
EP3979396A4 (en) * 2019-10-10 2024-06-05 Lg Energy Solution Ltd Battery module including heat insulating member, and battery pack comprising same
WO2021071138A1 (en) * 2019-10-10 2021-04-15 주식회사 엘지화학 Battery module including heat insulating member, and battery pack comprising same
JP2022542124A (en) * 2019-10-10 2022-09-29 エルジー エナジー ソリューション リミテッド Battery module including heat insulating member and battery pack including the same
CN110690530A (en) * 2019-10-14 2020-01-14 东软睿驰汽车技术(沈阳)有限公司 Safety device and power battery
JP7339426B2 (en) 2019-11-07 2023-09-05 エルジー エナジー ソリューション リミテッド Battery modules, battery racks and power storage devices
JP2022542931A (en) * 2019-11-07 2022-10-07 エルジー エナジー ソリューション リミテッド Battery modules, battery racks and power storage devices
JP7366236B2 (en) 2019-11-25 2023-10-20 エルジー エナジー ソリューション リミテッド Battery modules, battery packs and automobiles
CN114424394A (en) * 2019-11-25 2022-04-29 株式会社Lg新能源 Battery module, battery pack, and vehicle
EP4027404A4 (en) * 2019-11-25 2023-01-25 Lg Energy Solution, Ltd. Battery module, battery pack, and vehicle
JP2022544967A (en) * 2019-11-25 2022-10-24 エルジー エナジー ソリューション リミテッド Battery modules, battery packs and automobiles
WO2021172785A1 (en) * 2020-02-27 2021-09-02 주식회사 엘지에너지솔루션 Battery module, battery rack comprising same, and power storage device
JP7210782B2 (en) 2020-03-05 2023-01-23 エルジー エナジー ソリューション リミテッド BATTERY MODULE HAVING QUICK COOLABLE STRUCTURE AND ENERGY STORAGE SYSTEM INCLUDING THE SAME
CN114175362B (en) * 2020-03-05 2024-06-11 株式会社Lg新能源 Battery module having structure capable of rapid cooling and energy storage system including the same
CN114175362A (en) * 2020-03-05 2022-03-11 株式会社Lg新能源 Battery module having structure capable of rapid cooling and ESS including the same
JP2022536132A (en) * 2020-03-05 2022-08-12 エルジー エナジー ソリューション リミテッド BATTERY MODULE HAVING QUICK COOLABLE STRUCTURE AND ENERGY STORAGE SYSTEM INCLUDING THE SAME
JP2023505029A (en) * 2020-04-01 2023-02-08 エルジー エナジー ソリューション リミテッド Battery module including gas barrier structure
JP7317233B2 (en) 2020-04-01 2023-07-28 エルジー エナジー ソリューション リミテッド Battery module including gas barrier structure
US20220013758A1 (en) * 2020-07-10 2022-01-13 Hyundai Motor Company Vehicular battery pack and vehicle including the same
US11799138B2 (en) 2020-08-07 2023-10-24 Hyundai Motor Company Apparatus for detecting thermal runaway of battery for electric vehicle
US11799144B2 (en) 2020-09-01 2023-10-24 Hyundai Motor Company Apparatus for detecting thermal runaway of battery for electric vehicle
WO2022149961A1 (en) * 2021-01-11 2022-07-14 주식회사 엘지에너지솔루션 Battery module and battery pack comprising same
WO2022164180A3 (en) * 2021-01-28 2022-09-22 주식회사 엘지에너지솔루션 Battery module having enhanced fire prevention capability
WO2023080566A1 (en) * 2021-11-04 2023-05-11 주식회사 엘지에너지솔루션 Battery module
CN114464921A (en) * 2022-02-16 2022-05-10 中化国际(控股)股份有限公司 Battery cabinet air duct assembly and battery cabinet
CN117477110A (en) * 2023-12-26 2024-01-30 深圳市博硕科技股份有限公司 Heat insulation protection assembly for power battery
CN117477110B (en) * 2023-12-26 2024-04-02 深圳市博硕科技股份有限公司 Heat insulation protection assembly for power battery

Also Published As

Publication number Publication date
JP5993209B2 (en) 2016-09-14

Similar Documents

Publication Publication Date Title
JP5993209B2 (en) Battery cooling structure
JP7410635B2 (en) Heat-expandable fire-resistant resin composition, heat-expandable fire-resistant sheet, and battery cell equipped with the heat-expandable fire-resistant sheet
CN106663766B (en) Battery module
JP7168323B2 (en) Heat-expandable fire-resistant sheet and use of the heat-expandable fire-resistant sheet in battery
JP2018098074A (en) Battery pack
JP7045537B2 (en) Battery module, battery rack containing it and power storage device including this battery rack
KR101875960B1 (en) Composites for High radiant heat and thermal management and a fabrication process thereof
CN104919623A (en) Accumulator provided with fire-retardant properties for a handheld power tool, and method for producing same
JP7446661B2 (en) Battery pack containing fire pressure means
CN104247121A (en) Fuel cell device for vehicle
JP7252347B2 (en) Battery modules, battery racks containing same and power storage devices
CN213124560U (en) Battery package liquid cooling board, battery package and electric motor car
WO2021100813A1 (en) Thermally expandable fireproof material for battery pack, fireproof sheet for battery pack, and on-vehicle battery pack
CN102959762A (en) Thermal decoupling of battery cells in the event of a fault
CN103403915A (en) Housing for receiving a flat electrochemical cell
JP2008012028A (en) Structure of fire prevention compartment penetrating part
JP4908907B2 (en) Fireproof compartment penetration structure
CN112490579A (en) Battery box
TW202320390A (en) Devices, systems, and methods for controlling vent gases and ejecta from thermal runaway events in energy storage systems
CN214153119U (en) Battery box
EP3968442A1 (en) Battery module, battery rack comprising same, and power storage device
KR102254205B1 (en) Battery pack for electric vehicle
CN217641638U (en) Battery cabinet and battery energy storage system
CN219553799U (en) Battery compartment and vehicle
JP2019143139A (en) Fire-resistant resin composition, fire-resistant sheet, and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160819

R150 Certificate of patent or registration of utility model

Ref document number: 5993209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees