JP2013246037A - Optical measuring apparatus and measurement light control method - Google Patents
Optical measuring apparatus and measurement light control method Download PDFInfo
- Publication number
- JP2013246037A JP2013246037A JP2012119782A JP2012119782A JP2013246037A JP 2013246037 A JP2013246037 A JP 2013246037A JP 2012119782 A JP2012119782 A JP 2012119782A JP 2012119782 A JP2012119782 A JP 2012119782A JP 2013246037 A JP2013246037 A JP 2013246037A
- Authority
- JP
- Japan
- Prior art keywords
- light
- measurement
- modulation control
- optical
- detection value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
本発明は、計測対象物の光学的性質を計測する光計測装置等に関する。 The present invention relates to an optical measurement device that measures an optical property of a measurement object.
物質を透過した光を測定することで、その物質に直接触れることなく、物質の成分を知ることができる。例えば、旋光角を計測すると、物質の濃度が推定できる。旋光とは、例えばグルコースのような光学活性物質を直線偏光が通過すると、その偏光面が回転する性質のことである。この旋光性を利用した技術として、例えば特許文献1には、直線偏光がサンプルセルを通過した通過光を直交分離し、その直交分離された偏光成分それぞれを2つの受光素子で受光し、その両受光素子の出力レベルの差を用いて旋光角を測定する技術が開示されている。
By measuring the light transmitted through the substance, it is possible to know the components of the substance without directly touching the substance. For example, when the optical rotation angle is measured, the concentration of the substance can be estimated. Optical rotation refers to the property of rotating the plane of polarization when linearly polarized light passes through an optically active substance such as glucose. As a technique using this optical rotatory power, for example, in
上述の技術では、受光素子として、光電変換によって光量に応じた電流を検出値として出力するフォトダイオード等の半導体素子が用いられるが、この半導体素子が有する温度特性に起因する測定精度の低下という問題がある。つまり、半導体素子には、温度が上昇すると、電気伝導性が増加して素子内を流れる電流が増加するという特性がある。これにより、物質に照射する計測光の強度が一定であっても、受光素子における受光時間が長いほど、温度上昇によって出力値が増加するため、計測誤差が大きくなる。特に、グルコースの旋光測定など、微量の計測光の変化を測定する光測定においては、許容できない誤差となる。 In the above-described technique, a semiconductor element such as a photodiode that outputs a current corresponding to the amount of light as a detection value by photoelectric conversion is used as the light receiving element. However, there is a problem of a decrease in measurement accuracy due to temperature characteristics of the semiconductor element. There is. That is, the semiconductor element has a characteristic that, when the temperature rises, the electrical conductivity increases and the current flowing through the element increases. As a result, even if the intensity of the measurement light applied to the substance is constant, the longer the light receiving time in the light receiving element, the larger the output value due to the temperature rise, resulting in a larger measurement error. In particular, in the optical measurement that measures a change in a very small amount of measurement light such as measurement of optical rotation of glucose, an unacceptable error occurs.
本発明は、上記事情に鑑みてなされたものであり、その目的とするところは、計測対象物の光学的特性を計測する光計測において、受光素子である半導体素子の温度特性に起因する出力利の誤差を抑制することである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an output gain due to temperature characteristics of a semiconductor element which is a light receiving element in optical measurement for measuring optical characteristics of a measurement object. Is to suppress the error.
上記課題を解決するための第1の形態は、計測光の光路中に配置した計測対象物を通過した通過光に基づいて、当該計測対象物の光学的性質を計測する光計測装置であって、前記光路中の光を透過光と分割光とに分割する分割部と、前記分割光を受光する光検出部と、前記光検出部の検出値に基づいて、前記計測光のパルス幅変調制御を行う光変調制御部と、を備えた光計測装置である。 The 1st form for solving the above-mentioned subject is an optical measuring device which measures the optical property of the measurement object based on the passage light which passed the measurement object arranged in the optical path of measurement light, , A splitting unit that splits light in the optical path into transmitted light and split light, a light detection unit that receives the split light, and pulse width modulation control of the measurement light based on a detection value of the light detection unit And an optical modulation control unit that performs the above.
また、第2の形態は、計測光の光路中に配置した計測対象物を通過した通過光に基づいて、当該計測対象物の光学的性質を計測する光計測装置であって、前記通過光を受光する光検出部と、前記光検出部の検出値に基づいて、前記計測光のパルス幅変調制御を行う光変調制御部と、を備えた光計測装置である。 The second form is an optical measurement device that measures the optical properties of the measurement object based on the light passing through the measurement object arranged in the optical path of the measurement light. An optical measurement device comprising: a light detection unit that receives light; and a light modulation control unit that performs pulse width modulation control of the measurement light based on a detection value of the light detection unit.
また、他の形態として、計測光の光路中に配置した計測対象物を通過した通過光に基づいて、当該計測対象物の光学的性質を計測する光計測装置における計測光制御方法であって、前記光路中の光を分割した分割光、或いは、前記通過光を受光する光検出部の検出値に基づいて、前記計測光をパルス幅変調制御することを特徴とする計測光制御方法を構成しても良い。 Further, as another form, a measurement light control method in an optical measurement device that measures the optical properties of the measurement object based on the passing light that has passed through the measurement object arranged in the optical path of the measurement light, A measurement light control method is provided, wherein the measurement light is subjected to pulse width modulation control based on a divided light obtained by dividing the light in the optical path or a detection value of a light detection unit that receives the passing light. May be.
この第1の形態等によれば、計測光の光路中に配置した計測対象物を通過した通過光に基づいて当該計測対象物の光学的性質を計測する光計測装置において、光路中の光を分割した分割光、或いは、通過光を受光する光検出部の検出値に基づいて、計測光のパルス幅変調が行われる。計測光のパルス幅変調を行うことで、光検出部における受光が間欠的となるため、光検出部の受光による温度上昇を抑制し、半導体素子の温度特性による計測誤差を抑制することができる。また、パルス幅変調を光検出部の検出値に基づいて行うことで、光検出部の現在の温度に相当する値をフィードバックした適切なパルス幅変調を実現することができる。 According to the first aspect or the like, in the optical measurement device that measures the optical property of the measurement object based on the light passing through the measurement object arranged in the optical path of the measurement light, the light in the optical path is The pulse width modulation of the measurement light is performed based on the divided light or the detection value of the light detection unit that receives the passing light. By performing pulse width modulation of the measurement light, light reception in the light detection unit becomes intermittent, so that temperature rise due to light reception by the light detection unit can be suppressed, and measurement errors due to temperature characteristics of the semiconductor element can be suppressed. Further, by performing pulse width modulation based on the detection value of the light detection unit, it is possible to realize appropriate pulse width modulation by feeding back a value corresponding to the current temperature of the light detection unit.
また、第3の形態として、第1又は第2の形態の光計測装置であって、前記光変調制御部は、前記検出値の変化度合に基づいて、デューティ比を変更するパルス幅変調制御を行う、光計測装置を構成しても良い。 Further, as a third form, the optical measurement device according to the first or second form, wherein the light modulation control unit performs pulse width modulation control for changing a duty ratio based on a change degree of the detection value. An optical measurement device may be configured.
この第3の形態によれば、光検出部の検出値の変化度合いに基づいて、デューティ比を変更するパルス幅変調制御が行われる。デューティ比を変更することで、光検出部の受光時間を可変することができる。 According to the third embodiment, the pulse width modulation control for changing the duty ratio is performed based on the degree of change in the detection value of the light detection unit. By changing the duty ratio, the light receiving time of the light detection unit can be varied.
また、第4の形態として、第1〜第3の何れかの形態の光計測装置であって、前記光変調制御部は、前記検出値が増加傾向の場合にはデューティ比を小さく、減少傾向の場合にはデューティ比を大きくするパルス幅変調制御を行う、光計測装置を構成しても良い。 Further, as a fourth mode, the optical measurement device according to any one of the first to third modes, wherein the light modulation control unit decreases the duty ratio when the detection value tends to increase, and tends to decrease. In this case, an optical measurement device that performs pulse width modulation control to increase the duty ratio may be configured.
この第4の形態によれば、検出値が増加傾向の場合にはデューティ比を小さくし、減少傾向の場合にはデューティ比を大きくするパルス幅変調が行われる。受光による光エネルギーの一部が熱に変換されることから、受光時間の増加に伴って光検出部の温度が上昇する。このため、光検出部の検出値が増加傾向の場合には、デューティ比を小さくする計測光のパルス幅変調を行うことで、受光時間を短くして温度上昇を抑制することができる。逆に、検出値が減少傾向の場合には、デューティ比を大きくするパルス幅変調を行うことで、受光時間を長くして温度低下を抑制することができる。このように、検出値が増加傾向であるか減少傾向であるかに応じて、デューティ比を小さく/大きくするパルス幅変調を行うことで、光受光部の温度変化を抑制して一定に保ち、温度特性による計測誤差を抑制することができる。 According to the fourth embodiment, the pulse width modulation is performed so that the duty ratio is reduced when the detected value tends to increase, and the duty ratio is increased when the detected value tends to decrease. Since a part of the light energy due to the light reception is converted into heat, the temperature of the light detection unit rises as the light reception time increases. For this reason, when the detection value of the light detection unit tends to increase, by performing pulse width modulation of the measurement light to reduce the duty ratio, the light reception time can be shortened and the temperature rise can be suppressed. Conversely, when the detected value tends to decrease, by performing pulse width modulation that increases the duty ratio, it is possible to lengthen the light receiving time and suppress the temperature drop. Thus, by performing pulse width modulation to reduce / increase the duty ratio depending on whether the detection value is increasing or decreasing, the temperature change of the light receiving unit is suppressed and kept constant, Measurement errors due to temperature characteristics can be suppressed.
また、第5の形態として、第1〜第4の何れかの形態の光計測装置であって、前記光変調制御部は、過去所定時間分の前記検出値に基づいてデューティ比を変更するパルス幅変調制御を行う、光計測装置を構成しても良い。 Further, as a fifth mode, the optical measurement device according to any one of the first to fourth modes, wherein the light modulation control unit changes a duty ratio based on the detection value for a predetermined past time. You may comprise the optical measuring device which performs width modulation control.
この第5の形態によれば、過去所定時間分の検出値に基づいて、デューティ比を変更するパルス幅変調が行われる。 According to the fifth embodiment, the pulse width modulation for changing the duty ratio is performed based on the detection values for the past predetermined time.
また、第6の形態として、第1〜第5の何れかの形態の光計測装置であって、前記光変調制御部は、前記光計測装置が計測動作を開始して後の前記検出値が所定条件を満たした場合に前記パルス幅変調制御を開始する、光計測装置を構成しても良い。 Further, as a sixth mode, the optical measurement device according to any one of the first to fifth modes, wherein the light modulation control unit is configured such that the detected value after the optical measurement device starts a measurement operation is You may comprise the optical measuring device which starts the said pulse width modulation control when predetermined conditions are satisfy | filled.
この第6の形態によれば、光計測装置が計測動作を開始して後、検出値が所定条件を満たした場合に、パルス幅変調制御が開始される。計測動作の開始直後は動作が不安定なために計測光に対するパルス幅変調制御を行わず、例えば、所定条件として、検出値が安定したとみなせる値に達した場合に、パルス幅変調制御を開始する。 According to the sixth embodiment, after the optical measuring device starts the measurement operation, the pulse width modulation control is started when the detected value satisfies the predetermined condition. Immediately after the start of the measurement operation, the operation is unstable, so pulse width modulation control is not performed on the measurement light. For example, when the detection value reaches a value that can be considered stable as a predetermined condition, pulse width modulation control is started. To do.
また、第7の形態として、第1の形態の光計測装置であって、前記通過光を受光する通過光受光部と、前記パルス幅変調制御によって前記計測光が無い期間の前記通過光受光部の検出値を用いて、前記通過光受光部の検出値を補正し、前記計測対象物の光学的性質を判定する判定部と、を更に備えた光計測装置を構成しても良い。 Further, as a seventh form, the optical measurement device according to the first form, wherein the passing light receiving part receives the passing light, and the passing light receiving part in the period without the measuring light by the pulse width modulation control An optical measurement device may further be provided that includes a determination unit that corrects the detection value of the passing light receiving unit using the detected value to determine the optical property of the measurement object.
この第7の形態によれば、パルス幅変調制御によって計測光が無い期間の、計測対象物を通過した通過光を受光する通過光受光部の検出値を用いて、当該通過光受光部の検出値を補正し、計測対象物の光学的性質が判定される。パルス幅変調によって計測値が無い期間では、通過光受光部の検出値は「ゼロ」となるはずである。このため、パルス幅変調によって計測値が無い期間の通過光受光部の検出値に基づいて、当該通過光受光部の検出値を補正することができる。 According to the seventh aspect, the detection of the passing light receiving unit is performed using the detection value of the passing light receiving unit that receives the passing light that has passed through the measurement object during the period when there is no measurement light by the pulse width modulation control. The optical property of the measurement object is determined by correcting the value. In a period when there is no measurement value due to pulse width modulation, the detection value of the passing light receiving portion should be “zero”. For this reason, the detection value of the passage light receiving unit can be corrected based on the detection value of the passage light receiving unit during a period when there is no measurement value by pulse width modulation.
以下、図面を参照して本発明の実施形態を説明する。但し、本発明の適用可能な実施形態がこれに限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the applicable embodiment of the present invention is not limited to this.
[構成]
図1は、本実施形態における光計測装置1の構成図である。この光計測装置1は、計測対象物200の光学的性質を計測する装置である。計測対象物200は、光学活性物質を含有する固体や液体等の任意の試料とすることが可能である。光計測装置1は、この計測対象物200を通過した通過光を受光して、当該計測対象物200の光学的性質である旋光角を計測する。
[Constitution]
FIG. 1 is a configuration diagram of an
図1に示すように、光計測装置1は、光源10と、光変調装置12と、コリメートレンズ14と、偏光子16と、ビームスプリッタ18と、光変調用光検出器20と、偏光ビームスプリッタ22と、計測用光検出器24,26と、減算器28,30と、差動増幅器32と、加算増幅器34と、制御装置100とを備えて構成され、ビームスプリッタ18と偏光ビームスプリッタ22との間に、計測対象物200が置かれる。
As shown in FIG. 1, the
光源10は、計測光を生成し出力する。例えば、半導体レーザ(レーザダイオード)を有して構成され、所定波長(例えば、650nm)の位相の揃った光であるレーザ光を、ハーフミラーである端面から出射する。
The
光変調装置12は、制御装置100から入力される変調制御信号(パルス信号)に従って開閉が駆動されるシャッター機構を有して構成され、光源10からの出射光に対するパルス幅変調を行ってパルス光に変換する。
The
コリメートレンズ14は、光変調装置12からの出射光を平行光に変換する。偏光子16は、例えば、偏光プリズムなどの偏光用光学素子を有して構成され、コリメートレンズ14から出射される平行光を直線偏光に変換する。
The collimating
ビームスプリッタ18は、コリメートレンズ14から出射される直線偏光を、透過光と分割光とに分割する。
The
光変調用光検出器20は、ビームスプリッタ18からの出射光のうち、一方の分割光を受光する。例えば、フォトダイオード等の光検出器を有して構成され、光電変換によって受光した分割光の光量に比例した電流を検出値として出力する。
The
偏光ビームスプリッタ22は、ビームスプリッタ18からの出射光のうち、他方の透過光が計測対象物200を通過した通過光を、互いに90度異なる偏光成分に直交分離する。
The
計測用光検出器24,26は、それぞれ、偏光ビームスプリッタ22によって直交分離された光を受光する。例えば、フォトダイオード等の光検出器を有して構成され、偏光ビームスプリッタ22によって直交分離された互いに直交する偏光成分(P成分及びS成分)を検出し、光電変換を行うことで、受光した光量に比例した電流を検出値として出力する。なお、光変調用光検出器20と、計測用光検出器24,26とは、同一規格の光検出器を用いて構成されることとする。
The
減算器28,30は、それぞれ、計測用光検出器24,26による検出値に対して、制御装置100から入力される補正値を減算して出力する。差動増幅器32は、減算器28,30それぞれからの出力値の差を増幅して出力する。加算増幅器34は、減算器28,30それぞれからの出力値の和を増幅して出力する。
The
[制御装置]
図2は、制御装置100の機能構成図である。図2によれば、制御装置100は、機能的には、処理部110と、操作部122と、表示部124と、音出力部126と、通信部128と、記憶部130とを備えて構成される。
[Control device]
FIG. 2 is a functional configuration diagram of the
処理部110は、例えばCPU等の演算装置で実現され、記憶部130に記憶されたプログラムやデータ等の各種プログラムに従って、制御装置100の各部を統括的に制御する。本実施形態では、処理部110は、旋光角算出部112と、光変調制御部114とを有している。
The
旋光角算出部112は、光変調制御部114によって生成される変調制御信号がHレベルの期間における差動増幅器32及び加算増幅器34の出力値をもとに、計測対象物200の旋光角を算出する。
The optical rotation
光変調制御部114は、光変調用光検出器20の検出値をもとに、光源10から出射される計測光をパルス幅変調制御するための変調制御信号を生成する。具体的には、変調制御信号がHレベルの期間(受光期間)T1における光変調用光検出器20の検出値の変化(変動)に基づいて、変調制御信号のデューティ比を変更するフィードバック制御を行う。
The light
図3は、変調制御信号と、光変調用光検出器20の検出値との一例を示す波形図である。図3において、上に変調制御信号、下に光変調用光検出器20の検出値を示している。
FIG. 3 is a waveform diagram showing an example of the modulation control signal and the detection value of the
変調制御信号は、パルス信号であり、Hレベルの受光期間T1と、Lレベルの非受光期間T2とを、所定の周期Tで繰り返す。従って、変調制御信号のデューティ比は「T1/T2」となる。 The modulation control signal is a pulse signal, and repeats an H level light receiving period T1 and an L level non-light receiving period T2 at a predetermined period T. Therefore, the duty ratio of the modulation control signal is “T1 / T2”.
受光期間T1において、光源10からの出射光(計測光)は、光変調装置12を通過して計測対象物200に照射され、受光期間T2においては、光源10からの出射光(計測光)は、光変調装置12にて遮断されるため、光変調用光検出器20及び計測用光検出器24,26では受光されない。
In the light receiving period T1, the emitted light (measurement light) from the
先ず、受光期間T1における光変調用光検出器20の検出値を、所定の時間間隔Δt(<T)で取り込む。次いで、これらのm個の検出値d1〜dmの平均値eを算出し、これを、1パルス分の検出平均値eとする。
First, the detection value of the
続いて、図4に示すように、連続する複数のパルスそれぞれについて、同様に、検出平均値eを算出する。そして、これらの連続するnパルス分の検出平均値e1〜enの変化度合いfを算出する。変化度合いfの算出方法としては、例えば、検出平均値e1〜enそれぞれに対する時間微分処理を行ったり、或いは、n個の検出平均値に対する最小二乗法を行って回帰直線(近似直線)を算出し、この一次関数の傾きを変化度合いfとする。 Subsequently, as shown in FIG. 4, the detection average value e is similarly calculated for each of a plurality of continuous pulses. Then, the degree of change f of the detection average values e1 to en for these consecutive n pulses is calculated. As a method of calculating the degree of change f, for example, a regression line (approximate line) is calculated by performing a time differentiation process on each of the detected average values e1 to en, or by performing a least square method on n detected average values. The slope of this linear function is defined as the degree of change f.
そして、この変化度合いfの正負(符号)、及び、絶対値に応じて、変調制御信号のデューティ比を変更する。具体的には、変化度合いfが、ゼロを中心とした所定範囲ならば、デューティ比の変更を行わない。一方、変化度合いが所定範囲外ならば、その正負及び絶対値に応じて、デューティ比を変更する。すなわち、変化度合いfが正値ならば、温度が上昇しているとみなして、変化度合いfの絶対値に応じた値だけ、デューティ比を小さくするように変更する。一方、変化度合いfが負値ならば、温度が低下しているとみなして、変化度合いの絶対値に応じた値だけ、デューティ比を大きくするように変更する。 Then, the duty ratio of the modulation control signal is changed according to the sign (sign) and the absolute value of the change degree f. Specifically, if the change degree f is within a predetermined range centered on zero, the duty ratio is not changed. On the other hand, if the degree of change is outside the predetermined range, the duty ratio is changed according to the positive / negative and absolute values. That is, if the change degree f is a positive value, it is considered that the temperature is rising, and the duty ratio is changed by a value corresponding to the absolute value of the change degree f. On the other hand, if the change degree f is a negative value, it is assumed that the temperature is decreasing, and the duty ratio is changed to be increased by a value corresponding to the absolute value of the change degree.
なお、変調制御信号の周期Tは一定とし、受光期間T1を可変することで、デューティ比を偏光する。また、デューティ比には下限値(受光期間T1の下限値ともいえる)が定められており、この下限値を下回らないように変更される。 The period T of the modulation control signal is constant, and the duty ratio is polarized by changing the light receiving period T1. In addition, a lower limit value (which can be said to be a lower limit value of the light receiving period T1) is set for the duty ratio, and is changed so as not to fall below this lower limit value.
このデューティ比の制御は、次の理由による。光源10の出力が安定しているとき、光変調用光検出器20が受光する分割光の光量は一定であるため、光変調用光検出器20の検出値は一定となるはずである。つまり、光変調用光検出器20の検出値の変動は、当該光検出器の温度変動に起因するとみなせる。半導体素子は温度が上昇すると電気伝導性が大きくなるため、光変調用光検出器20の検出値が増加し、逆に、温度が低下すると電気伝導性が小さくなるため、検出値は減少する。このため、光変調用光検出器20の検出値の変化度合いfの正負、及び、絶対値に応じて、この変化度合いfが「ゼロ」になるように変調制御信号のデューティ比を変更することで、温度変動による検出値の変動を抑制する。
The duty ratio is controlled for the following reason. When the output of the
光変調用光検出器20と、計測用光検出器24,26とは、同一規格の光掲出器(フォトダイオード)で構成される。このため、両者は同一の特性を有するとみなし、光変調用光検出器20の検出値に基づいて変調制御信号のデューティ比を変更することで、計測用光検出器24,26における、受光に起因する温度変動による検出値の変動を抑制することができる。
The light
また、光変調制御部114は、変調制御信号がLレベルである非受光期間T2における光変調用光検出器20の検出値に応じて、計測用光検出器24,26の検出値に対する補正値を算出する。変調制御信号の非受光期間T2では、計測光は光変調装置12によって遮断されて光変調用光検出器20では受光されないが、フォトダイオード等の光検出器では、受光していない状態でも出力値はゼロとならない。この出力値は暗電流と呼ばれ、温度等によって変動する。つまり、受光期間T1における検出値にもこの暗電流は含まれており、旋光角の計測誤差の原因となっている。そこで、非受光期間T2における光変調用光検出器20の検出値をもとに、暗電流に相当する補正値を決定し、これを減算器28,30に入力することで、計測用光検出器24,26の検出値を補正して計測誤差を抑制する。
In addition, the light
操作部122は、例えばボタンスイッチやタッチパネル等の入力装置で実現され、なされた操作に応じた操作信号を処理部110に出力する。表示部124は、例えばLCD等の表示装置で実現され、処理部110から入力される表示信号に基づく各種表示を行う。音出力部126は、例えばスピーカ等の音出力装置で実現され、処理部110から入力される音信号に基づき、例えば動作確認用のビープ音などの各種音出力を行う。通信部128は、外部装置との間で有線通信又は無線通信を行うための通信装置であり、処理部110の制御のもと、外部装置との通信を行う。
The
記憶部130は、例えばROMやフラッシュROM、RAM、ハードディスク等の記憶装置で実現され、処理部110が制御装置100と統括的に制御するためのシステムプログラムや、各種機能を実現するための各種プログラムやデータ等を記憶するとともに、処理部110の作業領域として用いられ、処理部110が各種プログラムに従って実行した演算結果等が一時的に格納される。本実施形態では、記憶部130には、光変調制御プログラム132と、検出値データ134と、検出平均値データ136と、デューディ比データ138と、補正値データ140とが記憶される。
The
[処理の流れ]
図5は、変調制御処理の流れを説明するフローチャートである。この処理は、光変調制御部114が、光変調制御プログラム132を実行することで実現される処理である。
[Process flow]
FIG. 5 is a flowchart for explaining the flow of the modulation control process. This process is realized by the light
先ず、光計測装置1の電源投入直後は、光源10の出射光に対するパルス幅変調制御は行わず、変調制御信号としてHレベルの信号を出力する。
First, immediately after the
そして、旋光角算出部112による旋光角の算出(計測動作)が開始され、光変調用光検出器20の検出値が、この計測動作が安定したとみなす安定条件を満たす値となったならば(ステップA1:YES)、変調制御信号のデューティ比を「50%」に初期設定して、光源10の出射光に対するパルス変調制御を開始する。(ステップA3)。
Then, calculation (measurement operation) of the optical rotation angle by the optical rotation
次いで、変調制御信号がHレベルの期間T1において(ステップA5:YES)、光変調用光検出器20の検出値を、所定時間Δtの間隔で取り込む(ステップA7)。
Next, in the period T1 when the modulation control signal is at the H level (step A5: YES), the detection value of the
そして、変調制御信号がLレベルに変化すると(ステップA9:YES)、今回のパルスを含む連続するnパルス分の検出値の変化度合いfを算出する(ステップA11)。すなわち、取り込んだm個の検出値d(d1〜dm)の平均値eを算出し、次いで、今回のパルスを含む過去の連続するnパルス分の検出平均値e(e1〜en)の変化度合いを算出する。続いて、算出した変化度合いfに応じて、変調制御信号のデューティ比を変更する(ステップA13)。 When the modulation control signal changes to the L level (step A9: YES), the detection value change degree f for the consecutive n pulses including the current pulse is calculated (step A11). That is, the average value e of the m detected values d (d1 to dm) taken in is calculated, and then the degree of change in the detection average value e (e1 to en) for the past consecutive n pulses including the current pulse. Is calculated. Subsequently, the duty ratio of the modulation control signal is changed according to the calculated change degree f (step A13).
また、光変調用光検出器20の検出値を暗電流とみなして、補正値を設定・更新する(ステップA15)。
Further, the detection value of the
その後、電源遮断等によって処理を終了するか否かを判断し、終了しないならば(ステップA17:NO)、ステップA5に戻り、同様の処理を繰り返す。処理を終了するならば(ステップA17:YES)、本処理を終了する。 Thereafter, it is determined whether or not the process is to be terminated due to power-off or the like. If the process is not terminated (step A17: NO), the process returns to step A5 and the same process is repeated. If the process ends (step A17: YES), this process ends.
[作用効果]
このように、本実施形態の光計測装置1では、変調制御信号に従って、光源10からの出射光(計測光)に対するパルス幅変調制御が行われてパルス光に変換される。また、計測光をビームスプリッタ18によって分割した分割光が光変調用光検出器20にて受光され、変調制御信号がHレベルの受光期間T1における、光変調用光検出器20の検出値の変化度合いfの正負、及び、絶対値に応じて、変調制御信号のデューティ比が変更される。これにより、計測光の受光による計測用光検出器24,26の温度上昇に起因する計測誤差を抑制することができる。
[Function and effect]
As described above, in the
[変形例]
なお、本発明の適用可能な実施形態は、上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能なのは勿論である。
[Modification]
It should be noted that embodiments to which the present invention can be applied are not limited to the above-described embodiments, and can be appropriately changed without departing from the spirit of the present invention.
(A)
例えば、上述の実施形態では、光変調用光検出器20の検出値を用いて、光源10の出射光(計測光)に対するパルス幅変調を行うことにしたが、計測用光検出器24,26の検出値を用いることにしても良い。具体的には、計測用光検出器24,26どちらか一方の検出値、或いは、両方の検出値を用いて、同様に、検出値の変化度合いを算出し、変調制御信号のデューティ比を変更する。
(A)
For example, in the above-described embodiment, pulse width modulation is performed on the emitted light (measurement light) of the
1 光計測装置、10 光源、12 光変調装置、14 コリメートレンズ、16 偏光子、18 ビームスプリッタ、20 光変調用光検出器、22 偏光ビームスプリッタ、24,26 計測用光検出器、28,30 減算器、32 差動増幅器、34 加算増幅器、100 制御装置、110 処理部、112 旋光角算出部、114 光変調制御部、122 操作部、124 表示部、126 音出力部、128 通信部、130 記憶部、132 光変調制御プログラム、134 検出値データ、136 検出平均値データ、138 デューティ比データ、140 補正値データ、200 計測対象物
DESCRIPTION OF
Claims (8)
前記光路中の光を透過光と分割光とに分割する分割部と、
前記分割光を受光する光検出部と、
前記光検出部の検出値に基づいて、前記計測光のパルス幅変調制御を行う光変調制御部と、
を備えた光計測装置。 An optical measurement device that measures the optical properties of the measurement object based on the passing light that has passed through the measurement object arranged in the optical path of the measurement light,
A splitting unit that splits light in the optical path into transmitted light and split light;
A light detector that receives the split light; and
A light modulation control unit that performs pulse width modulation control of the measurement light based on a detection value of the light detection unit;
Optical measuring device with
前記通過光を受光する光検出部と、
前記光検出部の検出値に基づいて、前記計測光のパルス幅変調制御を行う光変調制御部と、
を備えた光計測装置。 An optical measurement device that measures the optical properties of the measurement object based on the passing light that has passed through the measurement object arranged in the optical path of the measurement light,
A light detector for receiving the passing light;
A light modulation control unit that performs pulse width modulation control of the measurement light based on a detection value of the light detection unit;
Optical measuring device with
請求項1又は2に記載の光計測装置。 The light modulation control unit performs pulse width modulation control for changing a duty ratio based on the degree of change in the detection value.
The optical measuring device according to claim 1 or 2.
請求項1〜3の何れか一項に記載の光計測装置。 The light modulation control unit performs pulse width modulation control to decrease the duty ratio when the detection value tends to increase and increase the duty ratio when the detection value tends to decrease.
The optical measuring device as described in any one of Claims 1-3.
請求項1〜4の何れか一項に記載の光計測装置。 The light modulation control unit performs pulse width modulation control for changing a duty ratio based on the detection value for a predetermined time in the past.
The optical measuring device as described in any one of Claims 1-4.
請求項1〜5の何れか一項に記載の光計測装置。 The light modulation control unit starts the pulse width modulation control when the detection value after the optical measurement device starts a measurement operation and satisfies a predetermined condition.
The optical measuring device as described in any one of Claims 1-5.
前記パルス幅変調制御によって前記計測光が無い期間の前記通過光受光部の検出値を用いて、前記通過光受光部の検出値を補正し、前記計測対象物の光学的性質を判定する判定部と、
を更に備えた請求項1に記載の光計測装置。 A passing light receiving portion for receiving the passing light;
A determination unit that corrects the detection value of the passing light receiving unit and detects the optical property of the measurement object using the detection value of the passing light receiving unit during a period in which there is no measurement light by the pulse width modulation control. When,
The optical measurement device according to claim 1, further comprising:
前記光路中の光を分割した分割光、或いは、前記通過光を受光する光検出部の検出値に基づいて、前記計測光をパルス幅変調制御することを特徴とする計測光制御方法。 A measurement light control method in an optical measurement device that measures the optical properties of the measurement object based on the passing light that has passed through the measurement object arranged in the optical path of the measurement light,
A measurement light control method, wherein the measurement light is subjected to pulse width modulation control based on a divided light obtained by dividing the light in the optical path or a detection value of a light detection unit that receives the passing light.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012119782A JP6111534B2 (en) | 2012-05-25 | 2012-05-25 | Optical measuring device and control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012119782A JP6111534B2 (en) | 2012-05-25 | 2012-05-25 | Optical measuring device and control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013246037A true JP2013246037A (en) | 2013-12-09 |
JP6111534B2 JP6111534B2 (en) | 2017-04-12 |
Family
ID=49845934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012119782A Expired - Fee Related JP6111534B2 (en) | 2012-05-25 | 2012-05-25 | Optical measuring device and control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6111534B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018183252A (en) * | 2017-04-24 | 2018-11-22 | 富士ゼロックス株式会社 | Optical measurement apparatus for eyeball and optical measurement apparatus |
CN114062260A (en) * | 2020-08-04 | 2022-02-18 | 恩德莱斯和豪瑟尔分析仪表两合公司 | Optical sensor, method and use of a sensor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5267384A (en) * | 1975-12-01 | 1977-06-03 | Citizen Watch Co Ltd | Reflectance and transmissivity meter |
JPS63158431A (en) * | 1986-12-22 | 1988-07-01 | Shimadzu Corp | Spectrophotometer |
JPH11147186A (en) * | 1997-11-13 | 1999-06-02 | Nippon Laser:Kk | Texture recording device |
JP2003161688A (en) * | 2001-11-26 | 2003-06-06 | Kurita Water Ind Ltd | Probe for detecting states of particles and aggregation monitoring apparatus |
-
2012
- 2012-05-25 JP JP2012119782A patent/JP6111534B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5267384A (en) * | 1975-12-01 | 1977-06-03 | Citizen Watch Co Ltd | Reflectance and transmissivity meter |
JPS63158431A (en) * | 1986-12-22 | 1988-07-01 | Shimadzu Corp | Spectrophotometer |
JPH11147186A (en) * | 1997-11-13 | 1999-06-02 | Nippon Laser:Kk | Texture recording device |
JP2003161688A (en) * | 2001-11-26 | 2003-06-06 | Kurita Water Ind Ltd | Probe for detecting states of particles and aggregation monitoring apparatus |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018183252A (en) * | 2017-04-24 | 2018-11-22 | 富士ゼロックス株式会社 | Optical measurement apparatus for eyeball and optical measurement apparatus |
CN114062260A (en) * | 2020-08-04 | 2022-02-18 | 恩德莱斯和豪瑟尔分析仪表两合公司 | Optical sensor, method and use of a sensor |
Also Published As
Publication number | Publication date |
---|---|
JP6111534B2 (en) | 2017-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090251684A1 (en) | Optical transmission module, wavelength monitor, and wavelength drift detection method | |
US9541449B2 (en) | Method for correcting for dark current variation in TEC cooled photodiodes | |
JP2009177140A5 (en) | ||
US9222810B1 (en) | In situ calibration of a light source in a sensor device | |
US9068825B2 (en) | Optical measurement device and optical measurement method | |
US20170359119A1 (en) | Optical receivers | |
JP6111534B2 (en) | Optical measuring device and control method | |
JP2009031285A5 (en) | ||
JP5811942B2 (en) | Gas concentration measuring device | |
JP6367649B2 (en) | measuring device | |
JP5359832B2 (en) | Gas analyzer | |
JP2009014661A (en) | Gas concentration measurement device | |
CN114062286B (en) | Gas analysis system and gas analysis method | |
JP5061981B2 (en) | Optical pulse tester and optical power stabilization method for optical pulse tester | |
JP5650635B2 (en) | Optical transmission module, wavelength monitor, and wavelength shift detection method | |
JP2014002101A (en) | Concentration measurement apparatus and concentration measurement method | |
JP5359831B2 (en) | Device for measuring moisture in gas | |
WO2017122659A1 (en) | Gas detecting device and gas detecting method | |
JP5962327B2 (en) | Concentration measuring device and concentration measuring method | |
JP2012225730A (en) | Gas concentration measuring apparatus | |
JP7326698B2 (en) | Photodetector, correction coefficient calculation device, and correction coefficient calculation method | |
JP2009147084A (en) | Optical output control circuit and method of monitoring optical output | |
Korpusenko et al. | Double laser radiometry for study of detector linearity | |
Mu et al. | Measurement of frequency stability in tunable lasers by using an FP interferometer | |
JP6303329B2 (en) | Optical device drive circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150519 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160405 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160606 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161004 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170227 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6111534 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |