WO2017122659A1 - Gas detecting device and gas detecting method - Google Patents

Gas detecting device and gas detecting method Download PDF

Info

Publication number
WO2017122659A1
WO2017122659A1 PCT/JP2017/000579 JP2017000579W WO2017122659A1 WO 2017122659 A1 WO2017122659 A1 WO 2017122659A1 JP 2017000579 W JP2017000579 W JP 2017000579W WO 2017122659 A1 WO2017122659 A1 WO 2017122659A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
phase difference
light
unit
detected
Prior art date
Application number
PCT/JP2017/000579
Other languages
French (fr)
Japanese (ja)
Inventor
将史 影山
義憲 井手
亮太 石川
久一郎 今出
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017561124A priority Critical patent/JPWO2017122659A1/en
Publication of WO2017122659A1 publication Critical patent/WO2017122659A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers

Definitions

  • the present invention relates to a gas detection device and a gas detection method that can be used to calculate the concentration of a gas to be detected.
  • each detected gas has its own light absorption spectrum.
  • the amount of light attenuation is proportional to the concentration of the detection gas.
  • a gas detection device using this phenomenon is described in Patent Document 1 and the like.
  • the gas detection device of Patent Document 1 generates FM modulated light having a center frequency fc and frequency-modulated by a frequency fm by a light source unit, and irradiates the gas to be detected.
  • the gas detector receives light transmitted through the gas to be detected by the light receiving unit.
  • the light absorption spectrum of the gas is approximated by a quadratic function that is substantially line symmetric with respect to the frequency fc.
  • the output signal of the light receiving unit includes not only the component of the modulation frequency fm but also, for example, a second-order (2 ⁇ fm) harmonic component.
  • the gas detection device obtains the gas concentration using a signal processing circuit based on the fundamental wave component and the second harmonic component.
  • optical path noise (a harmonic component of a predetermined order) due to etalon fringe may be superimposed on the FM modulated light on the optical path between the light source unit and the light receiving unit.
  • the optical path noise may be misidentified as a harmonic component of a predetermined order due to absorption in the gas to be detected, and the concentration may be detected.
  • an object of the present invention is to provide a gas detection device and a gas detection method capable of accurately discriminating harmonic components and optical path noise caused by absorption in a gas to be detected.
  • One aspect of the present invention is FM modulated light having a frequency of an absorption line of a gas to be detected as a center frequency, a light source unit that emits FM modulated light that is frequency-modulated at a predetermined frequency, and the FM modulated light is
  • the first light receiving unit that outputs a signal based on the first return light absorbed by the detection gas, and the phase difference between the fundamental wave component and the harmonic component contained in the output signal of the first light receiving unit is a first phase difference.
  • a first phase difference detection unit for detecting as a gas detection device.
  • FM modulated light having a center frequency at the frequency of the absorption line of the gas to be detected, the first step of emitting FM modulated light frequency-modulated at a predetermined frequency, and the FM modulated light
  • the first light receiving step for outputting a signal based on the first return light absorbed by the detected gas, and the phase difference between the fundamental wave component and the harmonic component included in the output signal of the first light receiving step are ranked first.
  • a first phase difference detecting step for detecting the phase difference.
  • FIG. 1 It is a figure which shows the structure of the gas detection apparatus which concerns on 1st embodiment. It is a figure used for description of the optical path noise resulting from an etalon fringe etc. It is a functional block diagram of the control part of FIG. It is a flowchart which shows operation
  • the gas detection device 1 has an appearance such as a portable video camera, a notebook PC, a smartphone, or a tablet terminal.
  • the concentration of a gas (hereinafter referred to as a gas to be detected) G to be detected in A) is obtained.
  • the gas detection device 1 includes a first light source unit 11, a first drive unit 12, a first light receiving unit 13, a first phase difference detection unit 14, a first derivation unit 15, The control part 16, the display apparatus 17, and the alerting
  • the first light source unit 11 includes a semiconductor laser such as a DFB (Distributed Feedback) laser.
  • the first drive unit 12 injects current into the semiconductor laser to emit light under the control of the control unit 16.
  • the semiconductor laser generates and emits FM modulated light Lfm.
  • the FM modulated light Lfm has a predetermined center frequency fc and is frequency-modulated with a predetermined modulation frequency fm.
  • the FM modulated light Lfm may be continuous light or pulsed light.
  • the modulation frequency fm is appropriately set to an appropriate value (for example, 10 kHz, 50 kHz, 100 kHz).
  • the center frequency fc is the frequency of the absorption line in the light absorption spectrum of the gas to be detected, and is determined by the type of the gas to be detected (see Table 1 below). In Table 1, the wavelength corresponding to the center frequency fc is shown for convenience. For example, if the gas to be detected is methane, the center frequency fc is set to a frequency corresponding to the wavelength of 1.654 ⁇ m of the R (3) line, for example.
  • the FM modulated light Lfm generated by the first light source unit 11 is emitted toward the monitoring area A.
  • the FM modulated light Lfm is absorbed by the detection gas G and attenuates according to the concentration of the detection gas G. Further, since the detected gas G has a unique light absorption spectrum, a harmonic component of a predetermined order is generated in the FM modulated light Lfm (for example, when the detected gas G is methane, a second-order harmonic component).
  • Such FM modulated light Lfm is incident on the first light receiving unit 13 after being scattered (reflected) by an object other than the gas G to be detected. In the present embodiment, the light incident on the first light receiving unit 13 is referred to as first return light Lr1.
  • an object O other than the gas to be detected G may exist on the optical path between the first light source unit 11 and the first light receiving unit 13 as shown in FIG.
  • the object O is glass, an optical component, or the like that can exist on the optical path.
  • optical path noise Ln (a harmonic component of a predetermined order) is generated due to interference (etalon fringe, etc.) at the interface with the outside.
  • the FM modulated light Lfm is indicated by a broken line
  • the optical path noise Ln is indicated by an alternate long and short dash line.
  • the conventional gas detection device In the conventional gas detection device, a harmonic component of a predetermined order generated by absorption in the detection gas G is superimposed on the first return light Lr1, or the optical path noise Ln is superimposed on the first return light Lr1. I did not judge whether or not. Therefore, the conventional gas detection device sometimes miscalculates the optical path noise Ln as a harmonic component of a predetermined order generated in the detected gas G and calculates the concentration of the detected gas G.
  • the first light receiving unit 13 is, for example, an InGaAs photodiode.
  • the first light receiving unit 13 performs photoelectric conversion when the first return light Lr1 is incident, and generates and outputs a first electric signal Se1 correlated with the light amount.
  • the output signal Se1 of the first light receiving unit 13 is branched into two, one being input to the first phase difference detecting unit 14 and the other being input to the first deriving unit 15.
  • the first phase difference detection unit 14 performs Fourier transform (specifically, FFT (Fast Fourier Transform)) on the input signal Se1, and converts the signal Se1 to the phase of the fundamental wave component included in the input signal Se1.
  • a phase difference ⁇ 1 of a harmonic component (for example, second harmonic) of a predetermined order included is obtained.
  • the first phase difference detection unit 14 outputs the obtained phase difference ⁇ 1 to the control unit 16.
  • the first deriving unit 15 obtains a value Vd that correlates with the concentration of the detected gas G based on the input signal Se1 by a so-called 2f detection method. Since the 2f detection method is well known, detailed description thereof will be omitted, but for details, see, for example, Patent Document 1.
  • control unit 16 includes an input / output interface unit (hereinafter referred to as an input / output IF unit) 161, a CPU 162 as a typical example of a computer device, a nonvolatile memory 163, a main memory 164, It has.
  • an input / output interface unit hereinafter referred to as an input / output IF unit
  • CPU 162 as a typical example of a computer device
  • nonvolatile memory 163
  • main memory 164 main memory
  • the input / output IF unit 161 transmits various signals and various data to the peripheral components 12, 17, and 18, and receives various data from the peripheral components 14 and 15.
  • the CPU 162 executes the program P stored in advance in the non-volatile memory 163 by using the main memory 164 as a work area, so that the determination unit 165, the concentration calculation unit 166, the display control unit 167, and the notification control unit 168 are performed. Function. These functional blocks 165 to 168 will be described in detail later.
  • the display device 17 is a liquid crystal display, for example, and displays an image indicating the concentration of the gas to be detected G, the gas to be detected G not being detected, and the like.
  • the notification device 18 is a speaker, for example, and outputs a sound indicating that the detected gas G has not been detected or that the return light has not been absorbed by the detected gas G.
  • the CPU 162 instructs the first drive unit 12 to supply an injection current to the semiconductor laser of the first light source unit 11.
  • FM modulated light Lfm is emitted from the first light source unit 11 toward the monitoring region A.
  • step S02 Part of the FM modulated light Lfm is incident on the first light receiving unit 13 as the first return light Lr1 by being absorbed by the detection gas G or being scattered by the other object O.
  • the first light receiving unit 13 generates the first electric signal Se1 based on the first return light Lr1, and outputs the first electric signal Se1 to the first phase difference detection unit 14 and the first derivation unit 15.
  • step S03 the first phase difference detection unit 14 obtains the phase difference ⁇ 1 based on the output signal Se1 of the first light receiving unit 13 and outputs it to the control unit 16 as described above.
  • the fundamental wave The phase difference ⁇ 1 of the harmonic component with respect to the component can be obtained in advance by experiments or the like.
  • the phase difference ⁇ 1 obtained in advance by experiments is described in advance in the program P as the reference value Vref.
  • the CPU 162 functions as the determination unit 165, and determines whether the reference value Vref described in advance and the phase difference ⁇ 1 input from the first phase difference detection unit 14 are the same or within an allowable range.
  • the CPU 162 as the determination unit 165 considers that a harmonic component of a predetermined order due to absorption in the detected gas G is superimposed on the first return light Lr1 in step S05, and the first The derivation unit 15 is instructed to obtain and return the correlation value Vd.
  • step S06 the first deriving unit 15 obtains the correlation value Vd with the concentration of the detected gas G as described above in response to the instruction of the determining unit 165, and returns it to the CPU 162 as the concentration calculating unit 166.
  • step S07 the concentration calculation unit 166 multiplies the received correlation value Vd by a predetermined proportional multiplier ⁇ to obtain the concentration of the detected gas G, and passes it to the CPU 162 as the display control unit 167.
  • step S08 the display control unit 167 generates image data Id indicating the concentration of the gas G to be detected, and then transfers the image data Id to the display device 17.
  • the display device 17 displays the concentration of the detected gas G according to the received image data Id.
  • step S04 If a negative determination is made in step S04, the CPU 162 as the determination unit 165 regards that the optical path noise Ln is superimposed on the first return light Lr1 in step S09, and correlates with the first deriving unit 15. Instructs not to obtain the value Vd. In addition, the determination unit 165 instructs the notification control unit 168 to generate the audio data Is.
  • step S010 the notification control unit 168 generates audio data Is indicating that the gas to be detected G has not been detected or that the optical path noise Ln is superimposed on the first return light Lr1, and the notification device 18 Forward to.
  • the notification device 18 notifies the user that the detected gas G has not been detected or that the optical path noise Ln is superimposed on the first return light Lr1 by voice output according to the received voice data Is.
  • the determination unit 165 receives the first light received by the first light receiving unit 13 based on the phase difference ⁇ 1 generated by the first phase difference detection unit 14. It is determined whether or not a harmonic component of a predetermined order due to the detected gas G is superimposed on the return light Lr1. If the determination unit 165 makes an affirmative determination, the concentration calculation unit 166 calculates the concentration of the detected gas G based on the correlation value Vd obtained by the first derivation unit 15. On the other hand, if the determination unit 165 makes a negative determination, the concentration calculation unit 166 does not calculate the concentration of the detected gas G.
  • the first phase difference detection unit 14 and the determination unit 165 are provided in the gas detection device 1, so that what is superimposed on the first return light Lr 1 is caused by the detected gas G. It is possible to accurately identify the harmonic component of the predetermined order or the optical path noise Ln. In addition to the above, the possibility of erroneous detection of the concentration of the gas G to be detected can be reduced.
  • the first light source unit 11 has been described as generating the FM modulated light Lfm by the direct modulation method. However, the first light source unit 11 may generate the FM modulated light Lfm by the external modulation method. I do not care. In this case, the first light source unit 11 includes, for example, a semiconductor laser and an external modulator.
  • the user is notified by voice that the gas to be detected G has not been detected or that the optical path noise Ln is superimposed on the first return light Lr1.
  • the present invention is not limited to this, and the user may be notified by displaying them on the display device 17. In this case, the display device 17 becomes the notification device 18.
  • the gas detection device 1 ⁇ / b> A includes a deflection / transmission unit 21, a storage unit 22, a second light receiving unit 23, and a second phase difference detection unit 24 compared to the gas detection device 1 of FIG. Furthermore, it differs in the point provided. Other than that, there is no structural difference between the gas detectors 1 and 1A. Therefore, in FIG. 5, the same reference numerals are assigned to the components corresponding to the configuration of FIG.
  • the deflection / transmission unit 21 is a half mirror, for example, and is disposed on the optical path of the FM modulated light Lfm from the first light source unit 11 and in the immediate vicinity of the first light source unit 11. More specifically, the first light source unit 11 and the deflecting / transmitting unit 21 are disposed close to each other so that the gas G to be detected and the other object O do not exist.
  • the deflecting / transmitting unit 21 arranged as described above deflects a part of the FM modulated light Lfm emitted from the first light source unit 11 toward the accommodating unit 22 and also monitors the remainder of the FM modulated light Lfm as a monitoring region. It penetrates toward A.
  • the accommodating part 22 is a so-called sample gas cell, and is a container that accommodates the same type of gas as the gas G to be detected as the reference gas Gref.
  • the accommodating part 22 has an infrared transmitting incident side window part and an emitting side window part so that the FM modulated light Lfm from the deflecting / transmitting part 21 transmits the reference gas Gref.
  • the FM modulated light Lfm from the deflecting / transmitting unit 21 is incident from the incident side window portion and is absorbed by the internal reference gas Gref, and then is emitted from the emission side window portion to the second light receiving unit 23 at the subsequent stage. It is emitted toward.
  • the light incident on the second light receiving unit 23 is referred to as second return light Lr2.
  • the second light receiving unit 23 is, for example, a Si photodiode.
  • the second light receiving unit 23 performs photoelectric conversion when the second return light Lr2 is incident, and generates and outputs a second electric signal Se2 correlated with the light amount.
  • the output signal Se ⁇ b> 2 from the second light receiving unit 23 is input to the second phase difference detection unit 24.
  • the second phase difference detection unit 24 performs Fourier transform (specifically, FFT) on the input signal Se2, and has a predetermined order included in the signal Se2 with respect to the phase of the fundamental wave component included in the input signal Se2.
  • a phase difference hereinafter referred to as a second phase difference
  • ⁇ 2 of a harmonic component for example, a second harmonic
  • the second phase difference detection unit 24 outputs the obtained second phase difference ⁇ 2 to the control unit 16.
  • the CPU 162 emits the FM modulated light Lfm from the first light source unit 11 in the same manner as in step S01 of FIG. 4.
  • the FM modulated light Lfm is bifurcated by the deflection / transmission unit 21, one is deflected toward the accommodation unit 22, and the other is transmitted toward the monitoring region A.
  • the other of the FM modulated light Lfm is incident on the first light receiving unit 13 as the first return light Lr1 by being absorbed by the gas G to be detected or scattered by the other object O.
  • the first light receiving unit 13 generates the first electric signal Se1 based on the first return light Lr1, and outputs the first electric signal Se1 to the first phase difference detecting unit 14 and the first deriving unit 15.
  • step S ⁇ b> 13 the second light receiving unit 23 generates the second electric signal Se ⁇ b> 2 based on the second return light Lr ⁇ b> 2 and outputs it to the second phase difference detection unit 24.
  • the phase difference detection units 14 and 24 obtain the phase differences ⁇ 1 and ⁇ 2 based on the output signals Se1 and Se2 of the light receiving units 13 and 23 and output them to the control unit 16 as described above.
  • step S16 the CPU 162 functions as the determination unit 165 and determines whether or not both phase differences ⁇ 1 and ⁇ 2 are the same or within an allowable range.
  • the CPU 162 displays the concentration of the detected gas G on the display device 17 in steps S17 to S110 in the same procedure as in S05 to S08 of FIG.
  • step S16 the CPU 162 notifies the user that the detected gas G has not been detected in the notification device 18 in the same manner as in steps S09 and S010 in S111 and S112. To do.
  • the determination unit 165 is based on the phase differences ⁇ 1 and ⁇ 2 generated by the phase difference detection units 14 and 24, as in the first embodiment. It is determined whether or not a harmonic component of a predetermined order due to the detected gas G is superimposed on the first return light Lr1 received by the first light receiving unit 13. Therefore, the effect described in the first to third columns can also be achieved by the gas detection device 1A according to the present embodiment.
  • the gas detection device and the gas detection method according to the present invention can reduce erroneous detection of the detected gas concentration and are useful for a gas monitor device and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

This gas detecting device is provided with: a light source unit that emits FM modulated light which is frequency modulated using a prescribed frequency and in which the absorption line frequency of a gas being detected is set as a central frequency; a first light receiving unit which outputs a signal on the basis of first returned light obtained as a result of absorption of the FM modulated light by the gas being detected; and a first phase difference detecting unit which detects as a first phase difference a phase difference between a fundamental wave component and a harmonic component contained in the output signal from the first light receiving unit.

Description

ガス検知装置およびガス検知方法Gas detection device and gas detection method
 本発明は、被検出ガスの濃度算出に使用可能なガス検知装置およびガス検知方法に関する。 The present invention relates to a gas detection device and a gas detection method that can be used to calculate the concentration of a gas to be detected.
 周知の通り、被検出ガスにはそれぞれ固有の光吸収スペクトルが存在する。その吸収線の周波数を中心周波数fcとして有する光が被検出ガスを通過すると、光減衰量は被検出ガスの濃度に比例する。この現象を利用したガス検知装置が特許文献1等に記載されている。特許文献1のガス検知装置は、光源部により、中心周波数fcを有し周波数fmで周波数変調されたFM変調光を生成し被検出ガスに照射する。また、ガス検知装置は、受光部により、被検出ガスを透過した光を受光する。ガスの光吸収スペクトルは、周波数fcを基準として略線対称な二次関数で近似される。従って、受光部の出力信号には、変調周波数fmの成分だけでなく、例えば二次(2×fm)の高調波成分も含まれる。ガス検知装置は、基本波成分および二次の高調波成分に基づきガス濃度を信号処理回路にて求める。 As is well known, each detected gas has its own light absorption spectrum. When light having the frequency of the absorption line as the center frequency fc passes through the detection gas, the amount of light attenuation is proportional to the concentration of the detection gas. A gas detection device using this phenomenon is described in Patent Document 1 and the like. The gas detection device of Patent Document 1 generates FM modulated light having a center frequency fc and frequency-modulated by a frequency fm by a light source unit, and irradiates the gas to be detected. The gas detector receives light transmitted through the gas to be detected by the light receiving unit. The light absorption spectrum of the gas is approximated by a quadratic function that is substantially line symmetric with respect to the frequency fc. Accordingly, the output signal of the light receiving unit includes not only the component of the modulation frequency fm but also, for example, a second-order (2 × fm) harmonic component. The gas detection device obtains the gas concentration using a signal processing circuit based on the fundamental wave component and the second harmonic component.
特開平7-151681号公報Japanese Patent Laid-Open No. 7-151681
 しかしながら、従来のガス検知装置では、光源部および受光部の間の光路上で、エタロンフリンジ等による光路雑音(所定次数の高調波成分)がFM変調光に重畳されることがある。従来のガス検知装置では、この光路雑音を、被検出ガスでの吸収に起因する所定次数の高調波成分と誤認して濃度検知することがあった。 However, in the conventional gas detection device, optical path noise (a harmonic component of a predetermined order) due to etalon fringe may be superimposed on the FM modulated light on the optical path between the light source unit and the light receiving unit. In the conventional gas detection device, the optical path noise may be misidentified as a harmonic component of a predetermined order due to absorption in the gas to be detected, and the concentration may be detected.
 それゆえに、本発明の目的は、被検出ガスでの吸収に起因する高調波成分と光路雑音とを正確に識別可能なガス検知装置およびガス検知方法を提供することである。 Therefore, an object of the present invention is to provide a gas detection device and a gas detection method capable of accurately discriminating harmonic components and optical path noise caused by absorption in a gas to be detected.
 本発明の一形態は、被検出ガスの吸収線の周波数を中心周波数とするFM変調光であって、所定周波数で周波数変調されたFM変調光を出射する光源部と、前記FM変調光が前記被検出ガスで吸収された第一戻り光に基づき信号を出力する第一受光部と、前記第一受光部の出力信号に含まれる基本波成分と高調波成分との位相差を第一位相差として検出する第一位相差検出部と、を備えたガス検知装置に向けられる。 One aspect of the present invention is FM modulated light having a frequency of an absorption line of a gas to be detected as a center frequency, a light source unit that emits FM modulated light that is frequency-modulated at a predetermined frequency, and the FM modulated light is The first light receiving unit that outputs a signal based on the first return light absorbed by the detection gas, and the phase difference between the fundamental wave component and the harmonic component contained in the output signal of the first light receiving unit is a first phase difference. And a first phase difference detection unit for detecting as a gas detection device.
 また、他の形態は、被検出ガスの吸収線の周波数を中心周波数とするFM変調光であって、所定周波数で周波数変調されたFM変調光を出射する第一ステップと、前記FM変調光が前記被検出ガスで吸収された第一戻り光に基づき信号を出力する第一受光ステップと、前記第一受光ステップの出力信号に含まれる基本波成分と高調波成分との位相差を第一位相差として検出する第一位相差検出ステップと、を備えたガス検知方法に向けられる。 In another form, FM modulated light having a center frequency at the frequency of the absorption line of the gas to be detected, the first step of emitting FM modulated light frequency-modulated at a predetermined frequency, and the FM modulated light The first light receiving step for outputting a signal based on the first return light absorbed by the detected gas, and the phase difference between the fundamental wave component and the harmonic component included in the output signal of the first light receiving step are ranked first. And a first phase difference detecting step for detecting the phase difference.
 上記各形態によれば、被検出ガスと雑音とを正確に識別可能なガス検知装置およびガス検知方法を提供することが出来る。 According to each of the above embodiments, it is possible to provide a gas detection device and a gas detection method capable of accurately identifying a gas to be detected and noise.
第一実施形態に係るガス検知装置の構成を示す図である。It is a figure which shows the structure of the gas detection apparatus which concerns on 1st embodiment. エタロンフリンジ等に起因する光路雑音の説明に使用される図である。It is a figure used for description of the optical path noise resulting from an etalon fringe etc. 図1の制御部の機能ブロック図である。It is a functional block diagram of the control part of FIG. 図1のガス検知装置の動作を示すフロー図であって、第一施形態に係るガス検知方法を示すフロー図である。It is a flowchart which shows operation | movement of the gas detection apparatus of FIG. 1, Comprising: It is a flowchart which shows the gas detection method which concerns on 1st embodiment. 第二実施形態に係るガス検知装置の構成を示す図である。It is a figure which shows the structure of the gas detection apparatus which concerns on 2nd embodiment. 図5のガス検知装置の動作を示すフロー図であって、第二実施形態に係るガス検知方法を示すフロー図である。It is a flowchart which shows operation | movement of the gas detection apparatus of FIG. 5, Comprising: It is a flowchart which shows the gas detection method which concerns on 2nd embodiment.
≪1.第一実施形態≫
 以下、上記図面を参照して、本発明の第一実施形態に係るガス検知装置1およびガス検知方法を詳説する。
<< 1. First embodiment >>
Hereinafter, the gas detection device 1 and the gas detection method according to the first embodiment of the present invention will be described in detail with reference to the drawings.
≪1-1.ガス検知装置1の構成≫
 図1において、ガス検知装置1は、例えばポータブルビデオカメラ、ノート型PC、スマートフォンまたはタブレット端末のような外観をしており、所謂2f検波法により、例えばガス漏れを監視すべき領域(以下、監視領域という)Aにて検出されるべきガス(以下、被検出ガスという)Gの濃度を求める。
<< 1-1. Configuration of Gas Detector 1 >>
In FIG. 1, the gas detection device 1 has an appearance such as a portable video camera, a notebook PC, a smartphone, or a tablet terminal. The concentration of a gas (hereinafter referred to as a gas to be detected) G to be detected in A) is obtained.
 ガス検知装置1は、図1に示すように、第一光源部11と、第一駆動部12と、第一受光部13と、第一位相差検出部14と、第一導出部15と、制御部16と、表示装置17と、報知装置18と、を備えている。 As shown in FIG. 1, the gas detection device 1 includes a first light source unit 11, a first drive unit 12, a first light receiving unit 13, a first phase difference detection unit 14, a first derivation unit 15, The control part 16, the display apparatus 17, and the alerting | reporting apparatus 18 are provided.
 第一光源部11は、DFB(Distributed Feedback)レーザ等の半導体レーザを含む。第一駆動部12は、制御部16の制御下で、半導体レーザに電流を注入して発光させる。これにより、第一光源部11において、半導体レーザは、FM変調光Lfmを生成し出射する。FM変調光Lfmは、所定の中心周波数fcを有し、所定の変調周波数fmで周波数変調されている。なお、FM変調光Lfmは連続光でもパルス光でも構わない。変調周波数fmは適宜適切な値(例えば、10kHz,50kHz,100kHz)に設定される。中心周波数fcは、被検出ガスの光吸収スペクトルにおける吸収線の周波数であり、被検出ガスの種類により定まる(下表1を参照)。なお、下表1では、便宜上、中心周波数fcに相当する波長が示されている。例えば、被検出ガスがメタンであれば、中心周波数fcは、例えばR(3)線の波長1.654μmに相当する周波数に設定される。 The first light source unit 11 includes a semiconductor laser such as a DFB (Distributed Feedback) laser. The first drive unit 12 injects current into the semiconductor laser to emit light under the control of the control unit 16. Thus, in the first light source unit 11, the semiconductor laser generates and emits FM modulated light Lfm. The FM modulated light Lfm has a predetermined center frequency fc and is frequency-modulated with a predetermined modulation frequency fm. The FM modulated light Lfm may be continuous light or pulsed light. The modulation frequency fm is appropriately set to an appropriate value (for example, 10 kHz, 50 kHz, 100 kHz). The center frequency fc is the frequency of the absorption line in the light absorption spectrum of the gas to be detected, and is determined by the type of the gas to be detected (see Table 1 below). In Table 1, the wavelength corresponding to the center frequency fc is shown for convenience. For example, if the gas to be detected is methane, the center frequency fc is set to a frequency corresponding to the wavelength of 1.654 μm of the R (3) line, for example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 第一光源部11で生成されたFM変調光Lfmは、監視領域Aに向けて出射される。監視領域Aに被検出ガスGが存在する場合、FM変調光Lfmは、被検出ガスGで吸収されて被検出ガスGの濃度に応じて減衰する。また、被検出ガスGは固有の光吸収スペクトルを持つため、FM変調光Lfmには所定次数の高調波成分(被検出ガスGがメタンの場合、例えば二次の高調波成分)が生じる。このようなFM変調光Lfmは、被検出ガスG以外の他の物体での散乱(反射)等を経て、第一受光部13に入射される。本実施形態では、第一受光部13への入射光を第一戻り光Lr1という。 The FM modulated light Lfm generated by the first light source unit 11 is emitted toward the monitoring area A. When the detection gas G exists in the monitoring region A, the FM modulated light Lfm is absorbed by the detection gas G and attenuates according to the concentration of the detection gas G. Further, since the detected gas G has a unique light absorption spectrum, a harmonic component of a predetermined order is generated in the FM modulated light Lfm (for example, when the detected gas G is methane, a second-order harmonic component). Such FM modulated light Lfm is incident on the first light receiving unit 13 after being scattered (reflected) by an object other than the gas G to be detected. In the present embodiment, the light incident on the first light receiving unit 13 is referred to as first return light Lr1.
 ところで、第一光源部11と第一受光部13との間の光路上には、図2に示すように、被検出ガスG以外の物体Oが存在することがある。物体Oは、光路上に存在しうるガラスや光学部品等である。このような物体Oに第一光源部11からのFM変調光Lfmが入射されると、外部との界面での干渉(エタロンフリンジ等)により光路雑音Ln(所定次数の高調波成分)が生じることがある。なお、図2の楕円内には、破線によりFM変調光Lfmを示し、一点鎖線により光路雑音Lnを示している。 Incidentally, an object O other than the gas to be detected G may exist on the optical path between the first light source unit 11 and the first light receiving unit 13 as shown in FIG. The object O is glass, an optical component, or the like that can exist on the optical path. When FM modulated light Lfm from the first light source unit 11 is incident on such an object O, optical path noise Ln (a harmonic component of a predetermined order) is generated due to interference (etalon fringe, etc.) at the interface with the outside. There is. In the ellipse in FIG. 2, the FM modulated light Lfm is indicated by a broken line, and the optical path noise Ln is indicated by an alternate long and short dash line.
 従来のガス検知装置は、被検出ガスGでの吸収により生じた所定次数の高調波成分が第一戻り光Lr1に重畳されているのか、それとも、光路雑音Lnが第一戻り光Lr1に重畳されているのかを判断していなかった。それゆえ、従来のガス検知装置は、この光路雑音Lnを被検出ガスGで生じた所定次数の高調波成分と誤認して、被検出ガスGの濃度算出をすることがあった。 In the conventional gas detection device, a harmonic component of a predetermined order generated by absorption in the detection gas G is superimposed on the first return light Lr1, or the optical path noise Ln is superimposed on the first return light Lr1. I did not judge whether or not. Therefore, the conventional gas detection device sometimes miscalculates the optical path noise Ln as a harmonic component of a predetermined order generated in the detected gas G and calculates the concentration of the detected gas G.
 ここで、再度図1を参照する。被検出ガスがメタンの場合には、第一受光部13は、例えばInGaAsフォトダイオードである。このような第一受光部13は、第一戻り光Lr1が入射されると光電変換を行って、その光量に相関する第一電気信号Se1を生成し出力する。第一受光部13の出力信号Se1は二分岐され、一方は第一位相差検出部14に、他方は第一導出部15に入力される。 Here, refer to FIG. 1 again. When the gas to be detected is methane, the first light receiving unit 13 is, for example, an InGaAs photodiode. The first light receiving unit 13 performs photoelectric conversion when the first return light Lr1 is incident, and generates and outputs a first electric signal Se1 correlated with the light amount. The output signal Se1 of the first light receiving unit 13 is branched into two, one being input to the first phase difference detecting unit 14 and the other being input to the first deriving unit 15.
 第一位相差検出部14は、入力信号Se1に対してフーリエ変換(具体的にはFFT(Fast Fourier Transform))を行って、入力信号Se1に含まれる基本波成分の位相に対する、同信号Se1に含まれる所定次数の高調波成分(例えば二次高調波)の位相の差Δφ1を求める。第一位相差検出部14は、求めた位相差Δφ1を制御部16に出力する。 The first phase difference detection unit 14 performs Fourier transform (specifically, FFT (Fast Fourier Transform)) on the input signal Se1, and converts the signal Se1 to the phase of the fundamental wave component included in the input signal Se1. A phase difference Δφ1 of a harmonic component (for example, second harmonic) of a predetermined order included is obtained. The first phase difference detection unit 14 outputs the obtained phase difference Δφ1 to the control unit 16.
 第一導出部15は、所謂2f検波法により、入力信号Se1に基づき、被検出ガスGの濃度に相関する値Vdを求める。なお、2f検波法は周知であるため、その詳細な説明を省略するが、詳細に関しては例えば特許文献1を参照されたい。 The first deriving unit 15 obtains a value Vd that correlates with the concentration of the detected gas G based on the input signal Se1 by a so-called 2f detection method. Since the 2f detection method is well known, detailed description thereof will be omitted, but for details, see, for example, Patent Document 1.
 制御部16は、図3に示すように、入出力インタフェイス部(以下、入出力IF部という)161と、コンピュータ装置の典型例としてのCPU162と、不揮発性メモリ163と、メインメモリ164と、を備えている。 As shown in FIG. 3, the control unit 16 includes an input / output interface unit (hereinafter referred to as an input / output IF unit) 161, a CPU 162 as a typical example of a computer device, a nonvolatile memory 163, a main memory 164, It has.
 入出力IF部161は、周辺の各構成12,17,18に対し各種信号や各種データを送信したり、周辺の各構成14,15から各種データを受け取ったりする。 The input / output IF unit 161 transmits various signals and various data to the peripheral components 12, 17, and 18, and receives various data from the peripheral components 14 and 15.
 CPU162は、不揮発性メモリ163に予め格納されているプログラムPを、メインメモリ164を作業領域として用いて実行することで、判断部165、濃度算出部166、表示制御部167および報知制御部168として機能する。これら機能ブロック165~168については後で詳説する。 The CPU 162 executes the program P stored in advance in the non-volatile memory 163 by using the main memory 164 as a work area, so that the determination unit 165, the concentration calculation unit 166, the display control unit 167, and the notification control unit 168 are performed. Function. These functional blocks 165 to 168 will be described in detail later.
 表示装置17は、例えば液晶ディスプレイであって、被検出ガスGの濃度や、被検出ガスGを検出できなかったこと等を示す画像を表示する。 The display device 17 is a liquid crystal display, for example, and displays an image indicating the concentration of the gas to be detected G, the gas to be detected G not being detected, and the like.
 報知装置18は、例えばスピーカであって、被検出ガスGを検出しなかったこと、または、戻り光には被検出ガスGでの吸収が生じていないこと、を示す音声を出力する。 The notification device 18 is a speaker, for example, and outputs a sound indicating that the detected gas G has not been detected or that the return light has not been absorbed by the detected gas G.
≪1-2.ガス検知装置1の動作≫
 次に、図4等を参照して、ガス検知装置1の動作について詳説する。
<< 1-2. Operation of Gas Detector 1 >>
Next, with reference to FIG. 4 etc., operation | movement of the gas detection apparatus 1 is explained in full detail.
 図4のステップS01において、CPU162は、第一光源部11の半導体レーザに注入電流を供給するように第一駆動部12に対し指示を行う。その結果、第一光源部11からはFM変調光Lfmが監視領域Aに向けて出射される。 4, the CPU 162 instructs the first drive unit 12 to supply an injection current to the semiconductor laser of the first light source unit 11. As a result, FM modulated light Lfm is emitted from the first light source unit 11 toward the monitoring region A.
 FM変調光Lfmの一部は、被検出ガスGで吸収されたり、それ以外の物体Oで散乱したりする等して、第一戻り光Lr1として第一受光部13に入射される。ステップS02において、第一受光部13は、前述したとおり、第一戻り光Lr1に基づき第一電気信号Se1を生成して、第一位相差検出部14および第一導出部15に出力する。 Part of the FM modulated light Lfm is incident on the first light receiving unit 13 as the first return light Lr1 by being absorbed by the detection gas G or being scattered by the other object O. In step S02, as described above, the first light receiving unit 13 generates the first electric signal Se1 based on the first return light Lr1, and outputs the first electric signal Se1 to the first phase difference detection unit 14 and the first derivation unit 15.
 ステップS03において、第一位相差検出部14は、前述したとおり、第一受光部13の出力信号Se1に基づき位相差Δφ1を求めて制御部16に出力する。 In step S03, the first phase difference detection unit 14 obtains the phase difference Δφ1 based on the output signal Se1 of the first light receiving unit 13 and outputs it to the control unit 16 as described above.
 ここで、被検出ガスGの光吸収スペクトルは既知であることから、被検出ガスGでの吸収によりFM変調光Lfmに所定次数(例えば二次)の高調波成分が生じている場合、基本波成分に対するこの高調波成分の位相差Δφ1は実験等で予め求めることが出来る。実験により予め求めておいた位相差Δφ1が基準値VrefとしてプログラムPに予め記述されている。CPU162は、ステップS04において、判断部165として機能し、予め記述された基準値Vrefと、第一位相差検出部14から入力された位相差Δφ1が同じか許容範囲内か否かを判断する。 Here, since the light absorption spectrum of the gas to be detected G is known, when a harmonic component of a predetermined order (for example, second order) is generated in the FM modulated light Lfm due to absorption by the gas to be detected G, the fundamental wave The phase difference Δφ1 of the harmonic component with respect to the component can be obtained in advance by experiments or the like. The phase difference Δφ1 obtained in advance by experiments is described in advance in the program P as the reference value Vref. In step S04, the CPU 162 functions as the determination unit 165, and determines whether the reference value Vref described in advance and the phase difference Δφ1 input from the first phase difference detection unit 14 are the same or within an allowable range.
 肯定判断を行った場合、判断部165としてのCPU162は、ステップS05において、第一戻り光Lr1に被検出ガスGでの吸収による所定次数の高調波成分が重畳されているとみなして、第一導出部15に相関値Vdを求めて返すように指示する。 If an affirmative determination is made, the CPU 162 as the determination unit 165 considers that a harmonic component of a predetermined order due to absorption in the detected gas G is superimposed on the first return light Lr1 in step S05, and the first The derivation unit 15 is instructed to obtain and return the correlation value Vd.
 ステップS06において、第一導出部15は、判断部165の指示に応答して、前述したとおり、被検出ガスGの濃度との相関値Vdを求めて、濃度算出部166としてのCPU162に返す。 In step S06, the first deriving unit 15 obtains the correlation value Vd with the concentration of the detected gas G as described above in response to the instruction of the determining unit 165, and returns it to the CPU 162 as the concentration calculating unit 166.
 ステップS07において、濃度算出部166は、受け取った相関値Vdに対し、予め定められた比例乗数αを乗算して、被検出ガスGの濃度を求めて、表示制御部167としてのCPU162に渡す。 In step S07, the concentration calculation unit 166 multiplies the received correlation value Vd by a predetermined proportional multiplier α to obtain the concentration of the detected gas G, and passes it to the CPU 162 as the display control unit 167.
 ステップS08において、表示制御部167は、被検出ガスGの濃度を示す画像データIdを生成した後、表示装置17に転送する。表示装置17は、受信した画像データIdに従って被検出ガスGの濃度を表示する。 In step S08, the display control unit 167 generates image data Id indicating the concentration of the gas G to be detected, and then transfers the image data Id to the display device 17. The display device 17 displays the concentration of the detected gas G according to the received image data Id.
 また、もしステップS04において否定判断を行った場合、判断部165としてのCPU162は、ステップS09において、第一戻り光Lr1に光路雑音Lnが重畳されているとみなして、第一導出部15に相関値Vdを求めないように指示する。これに加えて、判断部165は、音声データIsを生成するように報知制御部168に指示する。 If a negative determination is made in step S04, the CPU 162 as the determination unit 165 regards that the optical path noise Ln is superimposed on the first return light Lr1 in step S09, and correlates with the first deriving unit 15. Instructs not to obtain the value Vd. In addition, the determination unit 165 instructs the notification control unit 168 to generate the audio data Is.
 ステップS010において、報知制御部168は、被検出ガスGを検出しなかったこと、または第一戻り光Lr1に光路雑音Lnが重畳されていることを示す音声データIsを生成して、報知装置18に転送する。報知装置18は、受信した音声データIsに従って、被検出ガスGを検出しなかったこと、または第一戻り光Lr1に光路雑音Lnが重畳されていることを音声出力することでユーザに報知する。 In step S010, the notification control unit 168 generates audio data Is indicating that the gas to be detected G has not been detected or that the optical path noise Ln is superimposed on the first return light Lr1, and the notification device 18 Forward to. The notification device 18 notifies the user that the detected gas G has not been detected or that the optical path noise Ln is superimposed on the first return light Lr1 by voice output according to the received voice data Is.
≪1-3.効果≫
 以上説明した通り、本実施形態に係るガス検知装置1によれば、第一位相差検出部14で生成された位相差Δφ1に基づき、判断部165は、第一受光部13で受信した第一戻り光Lr1に被検出ガスGに起因する所定次数の高調波成分が重畳されているか否かを判断する。判断部165が肯定判断を行うと、第一導出部15で求めた相関値Vdに基づき、濃度算出部166は被検出ガスGの濃度を算出する。それに対し、判断部165が否定判断を行うと、濃度算出部166は被検出ガスGの濃度を算出しない。このように、本実施形態によれば、第一位相差検出部14および判断部165をガス検知装置1に設けたことにより、第一戻り光Lr1に重畳されたものが被検出ガスGに起因する所定次数の高調波成分か光路雑音Lnかを正確に識別可能となる。上記に加え、被検出ガスGの濃度を誤検出する可能性も低減させることが可能となる。
<< 1-3. Effect >>
As described above, according to the gas detection device 1 according to the present embodiment, the determination unit 165 receives the first light received by the first light receiving unit 13 based on the phase difference Δφ1 generated by the first phase difference detection unit 14. It is determined whether or not a harmonic component of a predetermined order due to the detected gas G is superimposed on the return light Lr1. If the determination unit 165 makes an affirmative determination, the concentration calculation unit 166 calculates the concentration of the detected gas G based on the correlation value Vd obtained by the first derivation unit 15. On the other hand, if the determination unit 165 makes a negative determination, the concentration calculation unit 166 does not calculate the concentration of the detected gas G. As described above, according to the present embodiment, the first phase difference detection unit 14 and the determination unit 165 are provided in the gas detection device 1, so that what is superimposed on the first return light Lr 1 is caused by the detected gas G. It is possible to accurately identify the harmonic component of the predetermined order or the optical path noise Ln. In addition to the above, the possibility of erroneous detection of the concentration of the gas G to be detected can be reduced.
≪1-4.付記≫
 なお、上記実施形態では、第一光源部11は、直接変調方式でFM変調光Lfmを生成するとして説明したが、第一光源部11は、外部変調方式によりFM変調光Lfmを生成しても構わない。この場合、第一光源部11は、例えば半導体レーザと外部変調器とを含む。
<< 1-4. Appendix >>
In the above embodiment, the first light source unit 11 has been described as generating the FM modulated light Lfm by the direct modulation method. However, the first light source unit 11 may generate the FM modulated light Lfm by the external modulation method. I do not care. In this case, the first light source unit 11 includes, for example, a semiconductor laser and an external modulator.
 また、上記実施形態では、被検出ガスGを検出しなかったこと、または第一戻り光Lr1に光路雑音Lnが重畳されていることは音声によりユーザに報知されていた。しかし、これに限らず、これらを表示装置17に表示することでユーザに通知されても構わない。この場合、表示装置17が報知装置18となる。 In the above embodiment, the user is notified by voice that the gas to be detected G has not been detected or that the optical path noise Ln is superimposed on the first return light Lr1. However, the present invention is not limited to this, and the user may be notified by displaying them on the display device 17. In this case, the display device 17 becomes the notification device 18.
≪2.第二実施形態≫
 次に、図5以降を参照して、第二実施形態に係るガス検知装置1Aおよびガス検知方法を詳説する。
≪2. Second embodiment >>
Next, with reference to FIG. 5 and subsequent figures, the gas detector 1A and the gas detection method according to the second embodiment will be described in detail.
≪2-1.ガス検知装置1Aの構成≫
 図5において、ガス検知装置1Aは、図1のガス検知装置1と比較すると、偏向/透過部21と、収容部22と、第二受光部23と、第二位相差検出部24と、をさらに備える点で相違する。それ以外に、両ガス検知装置1,1Aの間に構成面での相違点は無い。それ故、図5において、図1の構成に相当するものには同一参照符号を付け、それぞれの説明を省略する。
<< 2-1. Configuration of Gas Detector 1A >>
In FIG. 5, the gas detection device 1 </ b> A includes a deflection / transmission unit 21, a storage unit 22, a second light receiving unit 23, and a second phase difference detection unit 24 compared to the gas detection device 1 of FIG. Furthermore, it differs in the point provided. Other than that, there is no structural difference between the gas detectors 1 and 1A. Therefore, in FIG. 5, the same reference numerals are assigned to the components corresponding to the configuration of FIG.
 偏向/透過部21は、例えばハーフミラーであって、第一光源部11からのFM変調光Lfmの光路上であって第一光源部11の直ぐ近くに配置される。より詳細には、第一光源部11と偏向/透過部21との間に、被検出ガスGやそれ以外の物体Oが存在しないように、両者は近接配置される。 The deflection / transmission unit 21 is a half mirror, for example, and is disposed on the optical path of the FM modulated light Lfm from the first light source unit 11 and in the immediate vicinity of the first light source unit 11. More specifically, the first light source unit 11 and the deflecting / transmitting unit 21 are disposed close to each other so that the gas G to be detected and the other object O do not exist.
 以上のように配置された偏向/透過部21は、第一光源部11から出射されたFM変調光Lfmの一部を収容部22に向けて偏向するとともに、FM変調光Lfmの残りを監視領域Aに向けて透過する。 The deflecting / transmitting unit 21 arranged as described above deflects a part of the FM modulated light Lfm emitted from the first light source unit 11 toward the accommodating unit 22 and also monitors the remainder of the FM modulated light Lfm as a monitoring region. It penetrates toward A.
 収容部22は、所謂サンプルガスセルであって、被検出ガスGと同種のガスを基準ガスGrefとして収容する容器である。上記偏向/透過部21からのFM変調光Lfmが基準ガスGrefを透過するように、収容部22は、赤外透過性の入射側窓部と出射側窓部とを有する。 The accommodating part 22 is a so-called sample gas cell, and is a container that accommodates the same type of gas as the gas G to be detected as the reference gas Gref. The accommodating part 22 has an infrared transmitting incident side window part and an emitting side window part so that the FM modulated light Lfm from the deflecting / transmitting part 21 transmits the reference gas Gref.
 以上の収容部22において、偏向/透過部21からのFM変調光Lfmは入射側窓部から入射され、内部の基準ガスGrefで吸収されつつ出射側窓部から、後段の第二受光部23に向けて出射される。本実施形態では、第二受光部23への入射光を第二戻り光Lr2という。 In the storage unit 22 described above, the FM modulated light Lfm from the deflecting / transmitting unit 21 is incident from the incident side window portion and is absorbed by the internal reference gas Gref, and then is emitted from the emission side window portion to the second light receiving unit 23 at the subsequent stage. It is emitted toward. In the present embodiment, the light incident on the second light receiving unit 23 is referred to as second return light Lr2.
 第二受光部23は、例えばSiフォトダイオードである。このような第二受光部23は、第二戻り光Lr2が入射されると光電変換を行って、その光量に相関する第二電気信号Se2を生成し出力する。第二受光部23の出力信号Se2は第二位相差検出部24に入力される。 The second light receiving unit 23 is, for example, a Si photodiode. The second light receiving unit 23 performs photoelectric conversion when the second return light Lr2 is incident, and generates and outputs a second electric signal Se2 correlated with the light amount. The output signal Se <b> 2 from the second light receiving unit 23 is input to the second phase difference detection unit 24.
 第二位相差検出部24は、入力信号Se2に対してフーリエ変換(具体的にはFFT)を行って、入力信号Se2に含まれる基本波成分の位相に対する、同信号Se2に含まれる所定次数の高調波成分(例えば二次高調波)の位相の差(以下、第二位相差という)Δφ2を求める。第二位相差検出部24は、求めた第二位相差Δφ2を制御部16に出力する。 The second phase difference detection unit 24 performs Fourier transform (specifically, FFT) on the input signal Se2, and has a predetermined order included in the signal Se2 with respect to the phase of the fundamental wave component included in the input signal Se2. A phase difference (hereinafter referred to as a second phase difference) Δφ2 of a harmonic component (for example, a second harmonic) is obtained. The second phase difference detection unit 24 outputs the obtained second phase difference Δφ2 to the control unit 16.
≪2-2.ガス検知装置1Aの動作≫
 次に、図6等を参照して、ガス検知装置1Aの動作について説明する。
<< 2-2. Operation of Gas Detector 1A >>
Next, with reference to FIG. 6 etc., operation | movement of 1 A of gas detection apparatuses is demonstrated.
 図6のステップS11において、CPU162は、図4のステップS01と同様にして、第一光源部11からFM変調光Lfmを出射させる。このFM変調光Lfmは、偏向/透過部21にて二分岐され、一方は収容部22に向けて偏向され、他方は監視領域Aに向けて透過される。 6, the CPU 162 emits the FM modulated light Lfm from the first light source unit 11 in the same manner as in step S01 of FIG. 4. The FM modulated light Lfm is bifurcated by the deflection / transmission unit 21, one is deflected toward the accommodation unit 22, and the other is transmitted toward the monitoring region A.
 FM変調光Lfmの他方は、被検出ガスGで吸収されたり、それ以外の物体Oで散乱したりする等して、第一戻り光Lr1として第一受光部13に入射される。ステップS12において、第一受光部13は、前述したとおり、第一戻り光Lr1に基づき第一電気信号Se1を生成して、第一位相差検出部14および第一導出部15に出力する。 The other of the FM modulated light Lfm is incident on the first light receiving unit 13 as the first return light Lr1 by being absorbed by the gas G to be detected or scattered by the other object O. In step S12, as described above, the first light receiving unit 13 generates the first electric signal Se1 based on the first return light Lr1, and outputs the first electric signal Se1 to the first phase difference detecting unit 14 and the first deriving unit 15.
 上記に対し、FM変調光Lfmの一方は、収容部22に収容された基準ガスGrefを透過して、第二戻り光Lr2として第二受光部23に入射される。ステップS13において、第二受光部23は、前述したとおり、第二戻り光Lr2に基づき第二電気信号Se2を生成して、第二位相差検出部24に出力する。 In contrast, one of the FM modulated light Lfm passes through the reference gas Gref stored in the storage unit 22 and is incident on the second light receiving unit 23 as the second return light Lr2. In step S <b> 13, as described above, the second light receiving unit 23 generates the second electric signal Se <b> 2 based on the second return light Lr <b> 2 and outputs it to the second phase difference detection unit 24.
 ステップS14,S15において、位相差検出部14,24は、前述の通り、受光部13,23の出力信号Se1,Se2に基づき位相差Δφ1,Δφ2を求め、制御部16にそれぞれ出力する。 In steps S14 and S15, the phase difference detection units 14 and 24 obtain the phase differences Δφ1 and Δφ2 based on the output signals Se1 and Se2 of the light receiving units 13 and 23 and output them to the control unit 16 as described above.
 ここで、監視領域AにおいてFM変調光Lfmが被検出ガスGで吸収されていれば、被検出ガスGと基準ガスGrefとは同種であることから、被検出ガスGでも基準ガスGrefでもFM変調光Lfmには同様の高調波成分が生じる。従って、位相差Δφ1は、Δφ2は同じか許容範囲内にある。CPU162は、ステップS16において、判断部165として機能し、両位相差Δφ1,Δφ2が同じか許容範囲内か否かを判断する。 Here, if the FM modulated light Lfm is absorbed by the gas to be detected G in the monitoring region A, the gas to be detected G and the reference gas Gref are of the same type, and therefore FM modulation is performed for both the gas to be detected G and the reference gas Gref. A similar harmonic component is generated in the light Lfm. Therefore, the phase difference Δφ1 is the same as Δφ2 or within an allowable range. In step S16, the CPU 162 functions as the determination unit 165 and determines whether or not both phase differences Δφ1 and Δφ2 are the same or within an allowable range.
 肯定判断を行った場合、CPU162は、ステップS17~S110において、図4のS05~S08と同様の手順で、表示装置17に被検出ガスGの濃度を表示させる。 When an affirmative determination is made, the CPU 162 displays the concentration of the detected gas G on the display device 17 in steps S17 to S110 in the same procedure as in S05 to S08 of FIG.
 また、もしステップS16で否定判断を行った場合、CPU162は、S111,S112において、ステップS09,S010と同様にして、報知装置18に、被検出ガスGを検出しなかったこと等をユーザに報知する。 Further, if a negative determination is made in step S16, the CPU 162 notifies the user that the detected gas G has not been detected in the notification device 18 in the same manner as in steps S09 and S010 in S111 and S112. To do.
≪2-3.効果≫
 以上説明した通り、本実施形態に係るガス検知装置1Aによれば、両位相差検出部14,24で生成された位相差Δφ1,Δφ2に基づき、判断部165は、第一実施形態と同様、第一受光部13で受信した第一戻り光Lr1に被検出ガスGに起因する所定次数の高調波成分が重畳されているか否かを判断する。よって、第1-3欄で述べた効果を、本実施形態に係るガス検知装置1Aも奏することが出来る。
<< 2-3. Effect >>
As described above, according to the gas detection device 1A according to the present embodiment, the determination unit 165 is based on the phase differences Δφ1 and Δφ2 generated by the phase difference detection units 14 and 24, as in the first embodiment. It is determined whether or not a harmonic component of a predetermined order due to the detected gas G is superimposed on the first return light Lr1 received by the first light receiving unit 13. Therefore, the effect described in the first to third columns can also be achieved by the gas detection device 1A according to the present embodiment.
≪2-4.付記≫
 なお、第1-4欄で記載した事項は、本実施形態でも適用可能である。
<< 2-4. Appendix >>
Note that the items described in columns 1-4 can be applied to this embodiment.
 2016年1月15日出願の特願2016-006064の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 The disclosure of the specification, drawings and abstract contained in the Japanese application of Japanese Patent Application No. 2016-006064 filed on Jan. 15, 2016 is incorporated herein by reference.
 本発明に係るガス検知装置およびガス検知方法は、被検出ガス濃度の誤検出を低減可能であり、ガスモニタ装置等に有用である。 The gas detection device and the gas detection method according to the present invention can reduce erroneous detection of the detected gas concentration and are useful for a gas monitor device and the like.
 1,1A ガス検知装置
 11 第一光源部
 13 第一受光部
 14 第一位相差検出部
 15 第一導出部
 16 制御部
 165 判断部
 166 濃度算出部
 17 表示装置
 18 報知装置
 21 偏向/透過部
 22 収容部
 23 第二受光部
 24 第二位相検出部
DESCRIPTION OF SYMBOLS 1,1A Gas detection apparatus 11 1st light source part 13 1st light-receiving part 14 1st phase difference detection part 15 1st derivation | leading-out part 16 Control part 165 Judgment part 166 Concentration calculation part 17 Display apparatus 18 Notification apparatus 21 Deflection / transmission part 22 Housing part 23 Second light receiving part 24 Second phase detecting part

Claims (8)

  1.  被検出ガスの吸収線の周波数を中心周波数とするFM変調光であって、所定周波数で周波数変調されたFM変調光を出射する光源部と、
     前記FM変調光が前記被検出ガスで吸収された第一戻り光に基づき信号を出力する第一受光部と、
     前記第一受光部の出力信号に含まれる基本波成分と高調波成分との位相差を第一位相差として検出する第一位相差検出部と、
     を備えたガス検知装置。
    A light source section that emits FM modulated light having a frequency centered on the frequency of the absorption line of the gas to be detected and modulated at a predetermined frequency;
    A first light-receiving unit that outputs a signal based on the first return light in which the FM modulated light is absorbed by the detection gas;
    A first phase difference detection unit that detects a phase difference between a fundamental wave component and a harmonic component contained in the output signal of the first light receiving unit as a first phase difference;
    Gas detector equipped with.
  2.  前記第一位相差を用いて、前記第一戻り光に前記被検出ガスでの吸収に起因する高調波成分が重畳されているか否かを判断する判断部をさらに備え、
     前記判断部は前記第一位相差を所定の基準値と比較することにより、前記第一戻り光に前記被検出ガスでの吸収に起因する高調波成分が重畳されているか否かを判断する、請求項1に記載のガス検知装置。
    Using the first phase difference, further comprising a determination unit that determines whether or not a harmonic component resulting from absorption in the detected gas is superimposed on the first return light;
    The determination unit determines whether or not a harmonic component resulting from absorption in the detected gas is superimposed on the first return light by comparing the first phase difference with a predetermined reference value. The gas detection device according to claim 1.
  3.  前記被検出ガスと同種の基準ガスを収容する収容部と、
     前記光源部から出射されたFM変調光の一部を前記基準ガスに向けて偏向するとともに、残りのFM変調光を前記基準ガス以外に向けて出射する偏向/透過部と、
     前記基準ガスで吸収された第二戻り光に基づき信号を出力する第二受光部と、
     前記第二受光部の出力信号に含まれる基本波成分と高調波成分との位相差を第二位相差として検出する第二位相差検出部と、
     前記第一位相差を用いて、前記第一戻り光に前記被検出ガスでの吸収に起因する高調波成分が重畳されているか否かを判断する判断部と、をさらに備え、
     前記判断部は、前記第一位相差に加え前記第二位相差をさらに用いて、前記第一戻り光に前記被検出ガスでの吸収に起因する高調波成分が重畳されているか否かを判断する、請求項1に記載のガス検知装置。
    An accommodating portion for accommodating a reference gas of the same type as the detected gas;
    A deflection / transmission unit that deflects a part of the FM modulated light emitted from the light source unit toward the reference gas and emits the remaining FM modulated light toward other than the reference gas;
    A second light receiving unit that outputs a signal based on the second return light absorbed by the reference gas;
    A second phase difference detection unit that detects a phase difference between a fundamental wave component and a harmonic component contained in the output signal of the second light receiving unit as a second phase difference;
    A determination unit that determines whether or not a harmonic component resulting from absorption in the detected gas is superimposed on the first return light using the first phase difference; and
    The determination unit further uses the second phase difference in addition to the first phase difference to determine whether or not a harmonic component resulting from absorption in the detected gas is superimposed on the first return light. The gas detection device according to claim 1.
  4.  前記第一受光部の出力信号に基づき、前記被検出ガスの濃度に相関する値を求める第一導出部と、
     前記判断部が肯定判断をすると、前記第一導出部が求めた値に基づき、前記被検出ガスの濃度を求める濃度算出部と、をさらに備える請求項2または3に記載のガス検知装置。
    A first deriving unit for obtaining a value correlated with the concentration of the detected gas based on the output signal of the first light receiving unit;
    The gas detection device according to claim 2, further comprising: a concentration calculation unit that calculates a concentration of the detection target gas based on a value obtained by the first deriving unit when the determination unit makes an affirmative determination.
  5.  前記判断部が否定判断をすると、前記被検出ガスを検出しなかったこと、または、前記戻り光において前記被検出ガスで吸収が生じていないこと、を報知する報知手段をさらに備える、請求項2~4のいずれかに記載のガス検知装置。 3. The information processing apparatus according to claim 2, further comprising notification means for notifying that the gas to be detected has not been detected or that no absorption has occurred in the gas to be detected in the return light when the determination unit makes a negative determination. 5. The gas detection device according to any one of 4 to 4.
  6.  前記第一位相差検出部は、前記第一受光部の出力信号をフーリエ変換することで前記位相差を検出する、請求項1または2に記載のガス検知装置。 The gas detection device according to claim 1 or 2, wherein the first phase difference detection unit detects the phase difference by performing a Fourier transform on an output signal of the first light receiving unit.
  7.  前記第一位相差検出部および前記第二位相差検出部は、前記第一受光部および前記第二受光部の出力信号をフーリエ変換することで前記位相差を検出する、請求項3に記載のガス検知装置。 The said 1st phase difference detection part and said 2nd phase difference detection part detect the said phase difference by Fourier-transforming the output signal of a said 1st light-receiving part and a said 2nd light-receiving part. Gas detector.
  8.  被検出ガスの吸収線の周波数を中心周波数とするFM変調光であって、所定周波数で周波数変調されたFM変調光を出射する第一ステップと、
     前記FM変調光が前記被検出ガスで吸収された第一戻り光に基づき信号を出力する第一受光ステップと、
     前記第一受光ステップの出力信号に含まれる基本波成分と高調波成分との位相差を第一位相差として検出する第一位相差検出ステップと、を備えたガス検知方法。
    A first step of emitting FM modulated light having a frequency centered on the frequency of the absorption line of the gas to be detected and modulated at a predetermined frequency;
    A first light receiving step for outputting a signal based on the first return light absorbed by the gas to be detected, the FM modulated light;
    A gas detection method comprising: a first phase difference detection step of detecting a phase difference between a fundamental wave component and a harmonic component contained in an output signal of the first light receiving step as a first phase difference.
PCT/JP2017/000579 2016-01-15 2017-01-11 Gas detecting device and gas detecting method WO2017122659A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017561124A JPWO2017122659A1 (en) 2016-01-15 2017-01-11 Gas detection device and gas detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016006064 2016-01-15
JP2016-006064 2016-01-15

Publications (1)

Publication Number Publication Date
WO2017122659A1 true WO2017122659A1 (en) 2017-07-20

Family

ID=59311276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000579 WO2017122659A1 (en) 2016-01-15 2017-01-11 Gas detecting device and gas detecting method

Country Status (2)

Country Link
JP (1) JPWO2017122659A1 (en)
WO (1) WO2017122659A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113281299A (en) * 2021-03-26 2021-08-20 安徽波汇智能科技有限公司 Gas detection method using higher harmonics

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158485A (en) * 1986-12-23 1988-07-01 Toshiba Corp Phase detector
JPH07151681A (en) * 1993-11-30 1995-06-16 Anritsu Corp Gas density measuring apparatus
JPH1183665A (en) * 1997-09-05 1999-03-26 Mitsubishi Heavy Ind Ltd Steam detector
US20070131882A1 (en) * 2004-03-09 2007-06-14 Richman Lee P Gas detection
JP2009192245A (en) * 2008-02-12 2009-08-27 Fuji Electric Systems Co Ltd Instrument for measuring gas concentration, and method of measuring gas concentration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158485A (en) * 1986-12-23 1988-07-01 Toshiba Corp Phase detector
JPH07151681A (en) * 1993-11-30 1995-06-16 Anritsu Corp Gas density measuring apparatus
JPH1183665A (en) * 1997-09-05 1999-03-26 Mitsubishi Heavy Ind Ltd Steam detector
US20070131882A1 (en) * 2004-03-09 2007-06-14 Richman Lee P Gas detection
JP2009192245A (en) * 2008-02-12 2009-08-27 Fuji Electric Systems Co Ltd Instrument for measuring gas concentration, and method of measuring gas concentration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113281299A (en) * 2021-03-26 2021-08-20 安徽波汇智能科技有限公司 Gas detection method using higher harmonics

Also Published As

Publication number Publication date
JPWO2017122659A1 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
US11599224B2 (en) Self-mixing interference based sensors for characterizing touch input
US11243686B2 (en) Self-mixing interference based sensors for characterizing user input
US10451738B2 (en) Laser processing device and laser processing system
CN108061722B (en) Detection device and detection method for carbon monoxide concentration
EP2982965A1 (en) Optical system for generating beam of reference light and method for splitting beam of light to generate beam of reference light
US10880007B1 (en) Simultaneous distributed temperature and vibration sensing using multimode optical fiber
KR20120103659A (en) Fluorescence measurement device and fluorescence measurement method
WO2017122659A1 (en) Gas detecting device and gas detecting method
EP3505888A1 (en) Raman spectrum detection apparatus and method based on power of reflected light
US20130120759A1 (en) Apparatus for measuring a distance
US20130006578A1 (en) Device and Method for Detecting Light Reflection and Electronic Device Using the Same
KR20190100622A (en) crude oil detection apparatus
KR20190042359A (en) Apparatus for detecting leakage gas, Method thereof, and Storage medium having the same
US20180303429A1 (en) Blood flow analyzer, blood flow analysis method, and program
JPWO2016047701A1 (en) Concentration measurement cell
JP7259813B2 (en) Gas analysis system and gas analysis method
TWI479119B (en) Optical measuring device and optical measuring method
US10365324B2 (en) Analysis system and analysis method
JP6111534B2 (en) Optical measuring device and control method
US20200408730A1 (en) Concentration measurement method and concentration measurement device
JP2016154607A (en) Constituent concentration measuring apparatus and measuring method
JP2015052585A (en) Distance measuring device and distance measuring method
US11885742B2 (en) Receiver, detection system, and detection method
JP2013181968A (en) Optical instrument
WO2023080217A1 (en) Measurement device and measurement method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738413

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017561124

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17738413

Country of ref document: EP

Kind code of ref document: A1