JPS63158485A - Phase detector - Google Patents

Phase detector

Info

Publication number
JPS63158485A
JPS63158485A JP30520886A JP30520886A JPS63158485A JP S63158485 A JPS63158485 A JP S63158485A JP 30520886 A JP30520886 A JP 30520886A JP 30520886 A JP30520886 A JP 30520886A JP S63158485 A JPS63158485 A JP S63158485A
Authority
JP
Japan
Prior art keywords
detection signal
phase difference
signal
phase
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30520886A
Other languages
Japanese (ja)
Inventor
Yukio Sai
行雄 佐井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30520886A priority Critical patent/JPS63158485A/en
Publication of JPS63158485A publication Critical patent/JPS63158485A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a phase error, by averaging the phase difference of a detection signal received without being passed through a delay circuit to the original detection signal and the phase difference of a detection signal received through a 1/2 wavelength delay circuit to the original detection signal. CONSTITUTION:The original detection signal (a radio wave or sonic wave) from a signal generating part 1 is projected to an object 5 to be measured through a wave guide 2. The detection signal reflected from, transmitted through or scattered by the object 5 is received by a receiving part 7 through a wave guide 6. A receiving signal is inputted to a phase measuring part 8 and the phase difference between said signal and the original detection signal is measured. An arithmetic control part 9 operates a change-over part 3 and projects the original detection signal to the object 5 through a 1/2 wavelength delay wire 4. The phase difference at this time is also measured by the measuring part 8 and subjected to arithmetic mean along with the phase difference not passed through the delay wire 4. Whereupon, the phase error due to a leakage signal 20 is negated and measuring accuracy is enhanced. This apparatus is utilized in an ultrasonic range finder.

Description

【発明の詳細な説明】 し発明の目的1 (産業上の利用分野) この発明は、例えば音波等の検出信号が被測定対象を経
たときの遅延時間を、発信される検出信号との位相差と
して検出し、この位相差から距離等の物理ωを計測する
位相検出装置に関する。
[Detailed Description of the Invention] Objective 1 of the Invention (Industrial Application Field) This invention aims to calculate the delay time when a detection signal such as a sound wave passes through an object to be measured by determining the phase difference between the detection signal and the transmitted detection signal. The present invention relates to a phase detection device that detects a phase difference and measures a physical distance such as ω from this phase difference.

(従来の技術) 検出信号が被測定対象を経たときの遅延時間を、発信さ
れる検出信号との位相差として検出し、この位相差から
被測定対象の特定の物理量を計測する装置としては、例
えば音波を利用した距離、伝搬媒体の温度また湿度等の
所要物理量を測定する装2がある。
(Prior Art) As a device that detects the delay time when a detection signal passes through an object to be measured as a phase difference with the transmitted detection signal, and measures a specific physical quantity of the object to be measured from this phase difference, For example, there is a device 2 that uses sound waves to measure required physical quantities such as distance, temperature and humidity of a propagation medium.

このような測定装置は、上記とほぼ同様の原理で、検出
信号として例えばマイクロウェーブ等の′Fi磁波を用
いたもの、光波を利用したものも知られている。
Such measuring devices are based on substantially the same principle as described above, and devices using, for example, 'Fi magnetic waves such as microwaves as detection signals, and devices using light waves are also known.

マイクロウェーブまたは光波を利用する場合は、キャリ
アの位相検出が難しくなる場合があるので、例えば強度
変調または周波数変調等の変調を施した信号を検出信号
として用いる場合が多い。
When using microwaves or light waves, it may be difficult to detect the phase of the carrier, so a signal that has been modulated, such as intensity modulation or frequency modulation, is often used as the detection signal.

超Δ波を利用する場合も、被測定対象等によっては、変
調信号を検出信号として用いる場合がある。
Even when ultra-Δ waves are used, a modulated signal may be used as a detection signal depending on the object to be measured.

(発明が解決しようとする問題点) ところで上記のような位相検出装置において、検出信号
の発信側と受信側との間に電気的なカップリングが生じ
た場合、または検出信号である音波、電磁波、または光
波等の波動に何らかの原因で反射散乱が生じた場合等に
、被測定対象を経た検出信号以外の信号が、受信側に混
入してしまう場合があり、このような場合に受信される
検出信号に位相誤差が生じて、計測精度が低下してしま
うという問題点があった。
(Problems to be Solved by the Invention) However, in the above-mentioned phase detection device, if electrical coupling occurs between the detection signal sending side and the receiving side, or if the detection signal, such as a sound wave or an electromagnetic wave, , or when reflection and scattering occurs for some reason in waves such as light waves, signals other than the detection signal that have passed through the object to be measured may be mixed into the receiving side. There is a problem in that a phase error occurs in the detection signal, resulting in a decrease in measurement accuracy.

そしてこのようなりロストーク(漏洩信号)等によって
生じる位相誤差は、第3図(A>に示すように、受信さ
れる検出信号SとクロストークEとの合成が合成信号C
のベクトルを形成することから、第3図(B)に示すよ
うに、被測定物理量の変化に対して周期的に生じ、且つ
その周期は、検出信号の1波長にほぼ等しいと考えられ
ている。
The phase error caused by such losstalk (leakage signal), etc. is caused by the combination of the received detection signal S and crosstalk E, as shown in FIG.
Therefore, as shown in Figure 3 (B), it occurs periodically in response to changes in the physical quantity to be measured, and the period is thought to be approximately equal to one wavelength of the detection signal. .

この発明は上記事情に基づいてなされたもので、位相誤
差を顕著に低減させて計測精度を向上させることのでき
る位相検出装置を提供することを目的とする。
The present invention has been made based on the above circumstances, and an object of the present invention is to provide a phase detection device that can significantly reduce phase errors and improve measurement accuracy.

[発明の構成コ (問題点を解決するための手段) この発明は上記問題点を解決するために、発信される検
出信号と被測定対象を経た検出信号との位相差を検出し
、該位相差から当該被測定対象の特定の物理量を計測す
る装置であって、検出信号を被測定対象に発信する信号
発生部と、該信号発生部から発信される検出信号の波長
の2分の1波長に相当する遅延特性を有する遅延手段と
、被測定対象を経た前記検出信号を受信する受信部と、
前記信号発生部で発生する検出信号と前記遅延手段を介
さずに前記受信部で受信された検出信号との第1の位相
差および前記信号発生部で発生する検出信号と前記遅延
手段を介して前記受信部で受信された検出信号との第2
の位相差をそれぞれ検出する位相計測部と、前記第1の
位相差および第2の位相差を相加平均し、該相加平均し
た位相差を計測用の位相差とする演算手段とを有するこ
とを要旨とする。
[Configuration of the Invention (Means for Solving the Problems) In order to solve the above problems, the present invention detects the phase difference between the transmitted detection signal and the detection signal that has passed through the object to be measured, and A device that measures a specific physical quantity of the target to be measured from the phase difference, and includes a signal generator that transmits a detection signal to the target, and a wavelength that is half the wavelength of the detection signal transmitted from the signal generator. a delay means having a delay characteristic corresponding to the above, and a receiving section that receives the detection signal that has passed through the object to be measured;
a first phase difference between the detection signal generated in the signal generation section and the detection signal received by the reception section without going through the delay means; a second detection signal received by the receiving section;
and a calculation means for arithmetic averaging the first phase difference and the second phase difference, and using the arithmetic averaged phase difference as a phase difference for measurement. The gist is that.

(作用) クロストークによって検出信号に生じる位相誤差は、検
出信号の1波長にほぼ等しい周期で周期的に発生する。
(Function) A phase error caused in the detection signal due to crosstalk occurs periodically at a period approximately equal to one wavelength of the detection signal.

このような周期で位相誤差が生じている検出信号を、当
該検出信号の波長の172波長に相当する遅延特性を有
する遅延手段を通過させると、検出信号に生じる位相誤
差は1/2波長(180’)遅延される。
When a detection signal with a phase error occurring at such a period passes through a delay means having a delay characteristic corresponding to 172 wavelengths of the detection signal, the phase error occurring in the detection signal will be 1/2 wavelength (180 ') will be delayed.

したがって信号発生部で発生する原検出信号と遅延手段
を介さずに受信部で受信された検出信号との第1の位相
差および原検出信号と遅延手段を介して受信部で受信さ
れた検出信号との第2の位相差を位相計測部でそれぞれ
検出し、この第1の位相差および第2の位相差の相加平
均をとると検出信号に生じている位相誤差が打潤されて
顕著に低減し、高精麿の計測がなされる。
Therefore, the first phase difference between the original detection signal generated in the signal generation section and the detection signal received at the reception section without going through the delay means, and the first phase difference between the original detection signal and the detection signal received at the reception section through the delay means. When the second phase difference between the first phase difference and the second phase difference is detected by the phase measuring section and the arithmetic average of the first phase difference and the second phase difference is taken, the phase error occurring in the detection signal is penetrated and becomes noticeable. It is reduced, and a high-precision measurement is made.

(実施例) 以下この発明の実施例を第1図および第2図に曇づいて
説明する。
(Example) Examples of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は全体構成を示すブロック図、第2図は相4加平
均による位相誤差の補償作用を説明するための波形図で
ある。
FIG. 1 is a block diagram showing the overall configuration, and FIG. 2 is a waveform diagram for explaining the phase error compensation effect by the quadratic average.

まず構成を説明すると、第1図中、1は信号発生部であ
り、音波、マイクロウェーブ等の電磁波、または光波の
何れかの発生装置で構成されている。
First, the configuration will be described. In FIG. 1, numeral 1 denotes a signal generating section, which is composed of a generator of either electromagnetic waves such as acoustic waves or microwaves, or light waves.

また信号発生部1には、所要の場合には、これらの信号
に強度変調または周波数変調を施すための変調器も籠え
られている。
The signal generator 1 also includes a modulator for subjecting these signals to intensity modulation or frequency modulation, if necessary.

信号発生部1からは、音波、マイクロウェーブ等のN!
1波、または光波の何れかの信号、またはこれの変調信
号の何れかからなる信号が検出信号として発信される。
From the signal generator 1, N! of sound waves, microwaves, etc.
A signal consisting of either a single wave, a light wave signal, or a modulated signal thereof is transmitted as a detection signal.

信号発生部1は、発信側導波路2を介して切換部3にお
ける切換接点Cに接続されている。導波路2は、マイク
ロウェーブの場合は導波管、光波の場合は光ファイバ等
が用いられる。
The signal generating section 1 is connected to a switching contact C in a switching section 3 via a transmitting waveguide 2 . As the waveguide 2, a waveguide is used for microwaves, and an optical fiber is used for light waves.

切換部3における固定接点aには遅延線(遅延手段)4
が接続され、遅延114の他端と他の固定接点すとが共
通接続され、その共通接続点が発信側導波路2を介して
被測定媒体(被測定対象)5に通じている。
A delay line (delay means) 4 is connected to the fixed contact a in the switching section 3.
is connected, and the other end of the delay 114 and another fixed contact are commonly connected, and the common connection point communicates with the medium to be measured (object to be measured) 5 via the transmitting waveguide 2 .

切換部3は、後述の演算制御部からの制御信号により切
換制御される。
The switching unit 3 is switched and controlled by a control signal from a calculation control unit, which will be described later.

また、遅延[14は、検出信号の波長の1/2波長に相
当する遅延特性を有するもので、導波路を所要の長さに
設定することにより実現される。
Further, the delay [14] has a delay characteristic corresponding to 1/2 wavelength of the detection signal, and is realized by setting the waveguide to a required length.

6は、受信側導波路であり、発信側導波路2から被測定
媒体5に投射された検出信号は、被測定媒体5で反射、
または透過、散乱等をしたのち受信側導波路6に導かれ
る。
6 is a receiving waveguide, and the detection signal projected from the transmitting waveguide 2 onto the medium 5 to be measured is reflected by the medium 5 to be measured;
Or, after being transmitted, scattered, etc., it is guided to the receiving side waveguide 6.

受信側導波路6は、被測定媒体5を経た検出信号を受信
する受信部7に接続されている。検出信号が音波、また
は光波等の場合、受信信号は、受信部7で電気信号に変
換される。
The receiving waveguide 6 is connected to a receiving section 7 that receives the detection signal that has passed through the medium 5 to be measured. When the detection signal is a sound wave, a light wave, or the like, the received signal is converted into an electric signal by the receiving section 7.

8は1位相計測部であり、位相計測部8には、信号発生
部1で発生する検出信号および受信部7で受信された検
出信号が入力されている。位相計測部8では、信号発生
部1で発生する検出信号と遅延線4を介さずに受信部7
で受信された原検出信号との第1の位相差および信号発
生部1で発生する原検出信号と遅延線4を介して受信部
7で受信された検出信号との第2の位相差がそれぞれ検
出される。
Reference numeral 8 denotes a 1-phase measuring section, and the detection signal generated by the signal generating section 1 and the detection signal received by the receiving section 7 are input to the phase measuring section 8 . In the phase measuring section 8, the detection signal generated in the signal generating section 1 and the receiving section 7 without going through the delay line 4 are connected to each other.
The first phase difference between the original detection signal received at the signal generating section 1 and the second phase difference between the original detection signal generated at the signal generating section 1 and the detection signal received at the receiving section 7 via the delay line 4 are respectively Detected.

9は演算制御部(演算手段)であり、演算制御部9は、
受信部7で検出した位相差データ等の一時記憶機能も備
えており、この演算制御部9で上記の第1の位相差およ
び第2の位相差の相加平均等の演算処理がなされる。
9 is a calculation control unit (calculation means), and the calculation control unit 9 is
It also has a temporary storage function for phase difference data etc. detected by the receiving section 7, and this arithmetic control section 9 performs arithmetic processing such as an arithmetic mean of the above-mentioned first phase difference and second phase difference.

また演算制御部9から制御信号!!11が切換部3に通
じている。
Also, a control signal from the calculation control unit 9! ! 11 communicates with the switching section 3.

次に第2図を用いて作用を説明する。Next, the operation will be explained using FIG. 2.

演算制御部9からの制御信号により、切換部3が、まず
固定接点す側に切換えられ、信号発生部1で発生する原
検出信号と遅延1!i14を介さずに受信部7で受信さ
れた検出信号との第1の位相差が位相計測部8で検出さ
れる。検出された第1の位相差信号は、演算制御部9に
一時記憶される。
In response to a control signal from the arithmetic control section 9, the switching section 3 is first switched to the fixed contact side, and the original detection signal generated in the signal generating section 1 and the delay 1! The first phase difference with the detection signal received by the receiving unit 7 without passing through i14 is detected by the phase measuring unit 8. The detected first phase difference signal is temporarily stored in the calculation control section 9.

クロストーク等が生じていると、この第1の位相差信号
中には、検出信号の1波長にほぼ等しい周期で周期的に
発生する位相誤差が含まれている。
When crosstalk or the like occurs, the first phase difference signal includes a phase error that occurs periodically at a period approximately equal to one wavelength of the detection signal.

次いで演算制御部9からの制御信号により、切換部3が
、固定接点a側に切換えられ、信号発生部1で発生する
原検出信号と遅延線4を介して受信部7で受信された検
出信号との第2の位相差が位相計1111部8で検出さ
れる。
Next, the switching unit 3 is switched to the fixed contact a side by a control signal from the calculation control unit 9, and the original detection signal generated in the signal generation unit 1 and the detection signal received by the reception unit 7 via the delay line 4 are A second phase difference between the two is detected by the phase meter 1111 section 8.

遅延線4は、検出信号の波長の1/2波長に相当する遅
延特性を有しているので、検出された第2の位相差信号
中には、先に検出された第1の位相差信号中に含まれて
いる位相誤差に対し、1/2波艮(180°)だけ遅延
された位相誤差が含まれる。
Since the delay line 4 has a delay characteristic corresponding to 1/2 wavelength of the detection signal, the detected second phase difference signal includes the previously detected first phase difference signal. A phase error delayed by 1/2 wave (180°) is included with respect to the phase error contained therein.

第2の位相差信号は、演q制御部9に送られ、第1の位
相差と第2の位相差との相加平均の演算がなされる。こ
の結果、検出信号中に生じている位相誤差が打消されて
、位相誤差の除去された1シ相差により、被測定対象の
物理量が粘度よく計測される。
The second phase difference signal is sent to the arithmetic and q control section 9, and the arithmetic mean of the first phase difference and the second phase difference is calculated. As a result, the phase error occurring in the detection signal is canceled out, and the physical quantity of the object to be measured can be measured with good viscosity based on the phase difference from which the phase error has been removed.

次に、上記の位相誤差の除去作用を、数式を用いてさら
に説明する。  ゛ クロストーク等による位相誤差は、前述のように導波路
2.6および被測定媒体5を含めた仝長しの変化に対し
、検出信号の1波長λにほぼ等しい周期性を示す(第2
図中(イ))。したがって1/2彼長ごとに位相誤差は
ゼロとなる。
Next, the above phase error removal effect will be further explained using a mathematical formula. ``Phase errors due to crosstalk, etc. exhibit periodicity approximately equal to one wavelength λ of the detection signal (second
In the figure (a)). Therefore, the phase error becomes zero for every 1/2 length.

そこで、この位相誤差Δφ1を Δφ、−ΣAn −s i n2 (n+1 ) πL
/λn=0 ・・・(1) と表記する。
Therefore, this phase error Δφ1 is expressed as Δφ, −ΣAn −s i n2 (n+1) πL
/λn=0 (1) It is written as follows.

一方、遅延II4は、検出信号の波長の1/2波長に相
当する遅延特性を右しているので、遅延線4を通過した
検出信号中の位相誤差Δφ2はΔφ2=Σ(−1)n+
l△n−5in2n=Q ・(n+1)πL/λ ・・・(2) となり(第2図中(ロ))、演算制御部9で相加平均を
とった後の誤差ΔφCは ΔψC=ΣA2  m+ 1・S i  n4  (m
+ 1 )m=0 ・πL/λ ・・・(3) 上記(3)式中には、基本周期の誤差成分を含むAo1
△2、A4・・の項が含まれないので、誤差ΔφCは、
第2図中(ハ)の波形で示すように顕著に低減される。
On the other hand, since the delay II4 has a delay characteristic corresponding to 1/2 wavelength of the detection signal, the phase error Δφ2 in the detection signal passing through the delay line 4 is Δφ2=Σ(-1)n+
l△n-5in2n=Q ・(n+1)πL/λ (2) ((b) in Fig. 2), and the error ΔφC after taking the arithmetic mean in the arithmetic control unit 9 is ΔψC=ΣA2 m+ 1・S i n4 (m
+ 1) m=0 ・πL/λ...(3) In the above equation (3), Ao1 including the error component of the fundamental period.
Since the terms △2, A4, etc. are not included, the error ΔφC is
As shown by the waveform (c) in FIG. 2, it is significantly reduced.

このように周期的に発生する位相誤差が補償されて、精
度のよい物理量計測が行なわれる。
In this way, the periodically occurring phase error is compensated, and accurate physical quantity measurement is performed.

なお、被計測位相に対し一定量の位相誤差は、オフセッ
ト調整により容易に取除くことができるので1、物理m
の計測上、重要な誤差要因とはならない。
Note that a certain amount of phase error with respect to the measured phase can be easily removed by offset adjustment.
It is not an important error factor in the measurement.

[発明の効果〕 以J:、説明したように、この発明によれば、検出信号
の波長の1/2波長に相当する遅延特性を有する遅延手
段を設け、信号発生部で発生する原検出信号と上記の遅
延手段を介さずに受信部で受信された検出信号との第1
の位相差および原検出信号と上記の遅延手段を介して受
信部で受信された検出信号との第2の位相差が、位相計
測部でそれぞれ検出され、演算手段により、この第1の
位相差および第2の位相差の相加平均がとられるので、
クロストーク等により検出信号に生じる周期的な位相誤
差が打消され、計測精度が顕著に向上するという利点が
ある。
[Effects of the Invention] As described above, according to the present invention, a delay means having a delay characteristic corresponding to 1/2 wavelength of the detection signal is provided, and the original detection signal generated in the signal generation section is and the detection signal received by the receiving section without going through the above-mentioned delay means.
The phase difference between the original detection signal and the detection signal received by the reception section via the delay means is detected by the phase measurement section, and the calculation means calculates the first phase difference. and the arithmetic mean of the second phase difference is taken, so
This has the advantage that periodic phase errors caused in the detection signal due to crosstalk and the like are canceled out, and measurement accuracy is significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の係る位相検出装置の実施例を示すブ
ロック図、第2図は同上実施例による位相誤差の補償作
用を説明するための波形図、第3図はクロストークによ
って発生する位相誤差の波形等を示す図である。 1:信号発生部、 2.6:導波路、 3:切換部、 4:遅延線、 5:被測定媒体(被測定対象)、 7:受信部、 8:位相計測部、 9:演算制御部(演算手段)。 代理人  弁理士  則 近  憲 佑代理人  弁理
士  三 俣  弘 文算1 図
FIG. 1 is a block diagram showing an embodiment of the phase detection device according to the present invention, FIG. 2 is a waveform diagram for explaining the phase error compensation effect according to the same embodiment, and FIG. 3 is a phase diagram showing the phase error caused by crosstalk. FIG. 3 is a diagram showing waveforms of errors, etc. 1: Signal generation section, 2.6: Waveguide, 3: Switching section, 4: Delay line, 5: Medium to be measured (object to be measured), 7: Receiving section, 8: Phase measurement section, 9: Arithmetic control section (calculating means). Agent Patent Attorney Noriyuki Chika Agent Patent Attorney Hiroshi Mitsumata Bunsan 1 Figure

Claims (2)

【特許請求の範囲】[Claims] (1)発信される検出信号と被測定対象を経た検出信号
との位相差を検出し、該位相差から当該被測定対象の特
定の物理量を計測する装置であって、検出信号を被測定
対象に発信する信号発生部と、 該信号発生部から発信される検出信号の波長の2分の1
波長に相当する遅延特性を有する遅延手段と、 被測定対象を経た前記検出信号を受信する受信部と、 前記信号発生部で発生する検出信号と前記遅延手段を介
さずに前記受信部で受信された検出信号との第1の位相
差および前記信号発生部で発生する検出信号と前記遅延
手段を介して前記受信部で受信された検出信号との第2
の位相差をそれぞれ検出する位相計測部と、 前記第1の位相差および第2の位相差を相加平均し、該
相加平均した位相差を計測用の位相差とする演算手段と
を有することを特徴とする位相検出装置。
(1) A device that detects a phase difference between an emitted detection signal and a detection signal that has passed through an object to be measured, and measures a specific physical quantity of the object to be measured from the phase difference, a signal generator that transmits a signal to
a delay means having a delay characteristic corresponding to the wavelength; a receiving section that receives the detection signal that has passed through the object to be measured; and a second phase difference between the detection signal generated in the signal generating section and the detection signal received by the receiving section via the delay means.
and a calculation means for arithmetic averaging the first phase difference and the second phase difference and using the arithmetic averaged phase difference as a phase difference for measurement. A phase detection device characterized by:
(2)前記信号発生部で発生する検出信号は、音波、電
磁波、または光波の何れかの信号、または該信号の変調
信号の何れかからなるものであることを特徴とする特許
請求の範囲第1項記載の位相検出装置。
(2) The detection signal generated by the signal generating section is composed of a sound wave, an electromagnetic wave, a light wave, or a modulation signal of the signal. Phase detection device according to item 1.
JP30520886A 1986-12-23 1986-12-23 Phase detector Pending JPS63158485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30520886A JPS63158485A (en) 1986-12-23 1986-12-23 Phase detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30520886A JPS63158485A (en) 1986-12-23 1986-12-23 Phase detector

Publications (1)

Publication Number Publication Date
JPS63158485A true JPS63158485A (en) 1988-07-01

Family

ID=17942353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30520886A Pending JPS63158485A (en) 1986-12-23 1986-12-23 Phase detector

Country Status (1)

Country Link
JP (1) JPS63158485A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122659A1 (en) * 2016-01-15 2017-07-20 コニカミノルタ株式会社 Gas detecting device and gas detecting method
CN107237381A (en) * 2016-03-22 2017-10-10 Toto株式会社 Sanitary equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543490A (en) * 1977-06-03 1979-01-11 Aga Ab Method of balance removing internal jam in distance measuring device and means for executing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543490A (en) * 1977-06-03 1979-01-11 Aga Ab Method of balance removing internal jam in distance measuring device and means for executing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122659A1 (en) * 2016-01-15 2017-07-20 コニカミノルタ株式会社 Gas detecting device and gas detecting method
CN107237381A (en) * 2016-03-22 2017-10-10 Toto株式会社 Sanitary equipment
CN107237381B (en) * 2016-03-22 2021-03-02 Toto株式会社 Sanitary equipment

Similar Documents

Publication Publication Date Title
US8670662B2 (en) Evaluating the position of an optical fiber disturbance
JP2002538418A (en) Laser displacement measuring device
JP2000515979A (en) Optical fiber device and method for precision current sensing
US5227715A (en) Apparatus for measuring electromagnetic field intensity using dual polarized light beams
US6285182B1 (en) Electro-optic voltage sensor
GB2170907A (en) Improvements relating to distance measuring devices
EP0168182A2 (en) Optical measurement apparatus
CA1309488C (en) Fiber optic sensor
JPS63158485A (en) Phase detector
US6285493B1 (en) Electro-acoustic-optical apparatus and method of calibrating same
JPH0569192B2 (en)
US5044744A (en) Method and apparatus for distance measurement using electromagnetic waves
JPH0452586A (en) Distance measuring apparatus
JPS63118624A (en) Optical fiber measuring device and method
US6034522A (en) Fibre optic transducer incorporating an extraneous factor compensation referencing system
CN113258998B (en) Optical link delay rapid measuring device based on optical mixing and delay quantization
SU466468A1 (en) Device for measuring the complex reflection coefficient
JPS6321584A (en) Microwave radar level measuring apparatus
JPH06289129A (en) Distance measuring device
SU1695140A1 (en) Device for measuring substance level
JPS62177467A (en) Microwave distance measuring instrument
SU1083136A1 (en) Uhf transistor parameter measuring method
JPS59159043A (en) Method for measuring polarization dispersion of single mode optical fiber
SU715941A1 (en) Device for contact-free determining of vibration parameters
JPH0477641A (en) Temperature measuring method using optical fiber