JP5359832B2 - Gas analyzer - Google Patents

Gas analyzer Download PDF

Info

Publication number
JP5359832B2
JP5359832B2 JP2009276449A JP2009276449A JP5359832B2 JP 5359832 B2 JP5359832 B2 JP 5359832B2 JP 2009276449 A JP2009276449 A JP 2009276449A JP 2009276449 A JP2009276449 A JP 2009276449A JP 5359832 B2 JP5359832 B2 JP 5359832B2
Authority
JP
Japan
Prior art keywords
concentration
gas
measurement
signal
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009276449A
Other languages
Japanese (ja)
Other versions
JP2011117869A (en
Inventor
文章 大寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2009276449A priority Critical patent/JP5359832B2/en
Publication of JP2011117869A publication Critical patent/JP2011117869A/en
Application granted granted Critical
Publication of JP5359832B2 publication Critical patent/JP5359832B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To extend a measurement concentration range in a gas analysis device for measuring a concentration in a particular gas within a gas to be measured by using an absorption of laser light. <P>SOLUTION: When the concentration in the particular gas is relatively high, a control unit 28 sets a modulation amplitude for frequency-modulating the laser light in a modulation amplitude controlling voltage generation unit 33 to 0 and controls a switch 26 so as to select an output from a second ADC 25. A calculation unit 27 calculates a volume concentration of a water molecule by implementing a calculation processing according to a direct absorption detection method. When the concentration in the particular gas is relatively low, the modulation amplitude is set to A other than 0. The switch 26 is controlled so as to select an output from a first ADC 24 for digitalizing a synchronization detection signal. The calculation unit 27 calculates the volume concentration of the water molecule by implementing a calculation processing according to a harmonic synchronization detection method. The concentration calculated by one of the methods is determined, and compared with a threshold. When it determines that correct results can not be obtained, a measurement is continuously implemented as the methods are switched. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、レーザ光に対する吸収を利用して測定対象ガス中の特定ガスの濃度を測定するガス分析装置に関する。   The present invention relates to a gas analyzer that measures the concentration of a specific gas in a measurement target gas by utilizing absorption of laser light.

近年、気体中の特定ガスの濃度を測定する方法として、波長可変レーザ光に対する吸収を利用したレーザ吸収分光法が提案されている(例えば特許文献1参照)。この方法は、測定対象ガスが導入されたサンプルセルに所定波長のレーザ光を照射し、透過したレーザ光を解析し、ガス中の特定ガスの吸収の程度から該ガス濃度を導出するものである。この装置は、測定対象ガスにセンサである受光部が接触しない、非接触型であるため、サンプルの場を乱すことなく測定が可能である、応答時間がきわめて短い、といった利点を有している。   In recent years, as a method for measuring the concentration of a specific gas in a gas, laser absorption spectroscopy using absorption with respect to a wavelength tunable laser beam has been proposed (see, for example, Patent Document 1). In this method, a sample cell into which a measurement target gas is introduced is irradiated with laser light of a predetermined wavelength, the transmitted laser light is analyzed, and the gas concentration is derived from the degree of absorption of a specific gas in the gas. . This device has the advantage that measurement is possible without disturbing the field of the sample and the response time is extremely short because the light receiving unit that is a sensor does not come into contact with the gas to be measured. .

上述したようなレーザ光による赤外吸収分光法の中でも、特に、2次高調波等を用いた高調波検出(Harmonic Detection)によるスペクトル分光法(以下、「高調波同期検出法」という)が、とりわけ高感度の検出手法として知られている(例えば非特許文献1参照)。この非特許文献1に基づく検出方法の理論を簡単に説明する。ここでは窒素ガス中の微量の水蒸気濃度を測定する場合を例に挙げる。   Among infrared absorption spectroscopy using laser light as described above, in particular, spectrum spectroscopy by harmonic detection (Harmonic Detection) using second harmonics (hereinafter referred to as “harmonic synchronous detection method”), In particular, it is known as a highly sensitive detection method (see, for example, Non-Patent Document 1). The theory of the detection method based on this non-patent document 1 will be briefly described. Here, a case where a trace amount of water vapor concentration in nitrogen gas is measured is taken as an example.

試料ガスが大気圧である場合、吸光特性の形状はローレンツプロファイルにより表され、検出されるレーザ光受光強度と水蒸気濃度との関係は次の(1)式で示される。

Figure 0005359832
ここで、I0(ν)は周波数νにおける入射光強度、I(ν)は周波数νにおける透過光強度である。また、cは水分子の体積濃度、Lは測定対象ガスを通過する光路の長さ、Sは所定の吸収特性の線強度、である。さらに、γLは吸収特性の半値幅であり、サンプルガスの種類と温度、及び圧力により決まる。ν0は周波数変調の中心周波数である。 When the sample gas is at atmospheric pressure, the shape of the light absorption characteristic is represented by a Lorentz profile, and the relationship between the detected laser beam received intensity and the water vapor concentration is expressed by the following equation (1).
Figure 0005359832
Here, I 0 (ν) is the incident light intensity at the frequency ν, and I (ν) is the transmitted light intensity at the frequency ν. Further, c is the volume concentration of water molecules, L is the length of the optical path that passes through the measurement target gas, and S is the line intensity of a predetermined absorption characteristic. Further, γ L is the half width of the absorption characteristic, and is determined by the type, temperature, and pressure of the sample gas. ν 0 is the center frequency of frequency modulation.

中心周波数ν0の吸収強度I(ν0)は次の(2)式で表される。

Figure 0005359832
The absorption intensity I (ν 0 ) at the center frequency ν 0 is expressed by the following equation (2).
Figure 0005359832

一方、きわめて低い全圧領域(測定対象ガスの全圧が1[Torr]よりも高真空領域)の下での水分子による赤外吸収においては、吸収特性幅は上述したローレンツプロファイルの拡がりに比べて数分の1から数十分の1程度に狭くなる。この全圧領域において、吸収特性幅は主にドップラ効果により決まる。吸収特性の形状はガウス線形で表され、検出されるレーザ光受光強度と水蒸気濃度との関係は次の(3)式で示される。

Figure 0005359832
On the other hand, in the infrared absorption by water molecules under a very low total pressure region (total pressure of the gas to be measured is higher than 1 [Torr]), the absorption characteristic width is larger than the above-mentioned Lorentz profile spread. It is narrowed to a fraction of a few to a few tenths. In this total pressure region, the absorption characteristic width is mainly determined by the Doppler effect. The shape of the absorption characteristic is expressed by a Gaussian line, and the relationship between the detected light intensity of the laser beam and the water vapor concentration is expressed by the following equation (3).
Figure 0005359832

この(3)式においてγEDがドップラ幅と呼ばれるものであり、吸収周波数の中心周波数、分子量、及び温度、に依存する。この場合、中心周波数ν0の吸収強度I(ν0)は次の(4)式で表される。

Figure 0005359832
高真空状態で室温約25℃の条件の下では、一般的な近赤外半導体レーザを利用可能な、比較的強い吸収がみられる領域に存在する吸収スペクトルの場合、γEDはほぼ0.01[cm-1]に等しくなる。一方、1気圧の空気又は窒素のマトリックス内の水分子においては、γの一般的な値は0.1[cm-1]である。 In this equation (3), γ ED is called the Doppler width and depends on the center frequency, molecular weight, and temperature of the absorption frequency. In this case, the absorption intensity I (ν 0 ) at the center frequency ν 0 is expressed by the following equation (4).
Figure 0005359832
Under conditions of high vacuum and room temperature of about 25 ° C., in the case of an absorption spectrum that exists in a region where a relatively near absorption is observed, in which a general near infrared semiconductor laser can be used, γ ED is approximately 0.01. equal to [cm -1 ]. On the other hand, for water molecules in a 1 atm air or nitrogen matrix, a typical value of γ is 0.1 [cm −1 ].

高調波検出を行うためには、測定対象ガスへ照射する光の周波数を変調させる必要がある。いま、周波数変調のための正弦波信号の変調振幅をa、周波数をωとすると、時間tにおける光の周波数は次の(5)式で規定される。

Figure 0005359832
In order to perform harmonic detection, it is necessary to modulate the frequency of light applied to the measurement target gas. Now, assuming that the modulation amplitude of a sine wave signal for frequency modulation is a and the frequency is ω, the frequency of light at time t is defined by the following equation (5).
Figure 0005359832

2次高調波検出(Second Harmonic Detection)では、2倍の周波数2ωに対応した信号成分が抽出される。1気圧である空気又は窒素中の水分子について、中心周波数ν0での2次高調波検出信号は次の(6)式によって規定される。

Figure 0005359832
In the second harmonic detection, a signal component corresponding to the double frequency 2ω is extracted. For water molecules in air or nitrogen at 1 atm, the second harmonic detection signal at the center frequency ν 0 is defined by the following equation (6).
Figure 0005359832

同様に、真空雰囲気中の水分子について、中心周波数ν0での2次高調波検出信号は次の(7)式によって規定される。

Figure 0005359832
これら関係式は非特許文献2で提案されており、該文献では、上記(6)式及び(7)式においてa/γ(又はa/γED)=2.2になるような変調振幅aを選択したときに、最も感度の高い信号signal(ν0)が得られることが証明されている。 Similarly, for the water molecules in the vacuum atmosphere, the second harmonic detection signal at the center frequency ν 0 is defined by the following equation (7).
Figure 0005359832
These relational expressions are proposed in Non-Patent Document 2, in which the modulation amplitude a is such that a / γ (or a / γ ED ) = 2.2 in the above equations (6) and (7). It has been proved that the most sensitive signal signal (ν 0 ) can be obtained when is selected.

上述した高調波同期検出法は高感度であるという利点がある反面、感度のダイナミックレンジが狭いという問題がある。即ち、測定対象ガスが低濃度である場合には正確な検出結果が得られるものの、測定対象ガスが高濃度になると信号強度が飽和してしまい、正確な結果を得られなくなる。そのため、測定対象ガス中の特定ガスの濃度を連続的に測定する場合に、その特定ガスの濃度の変化量が大きいと測定レンジを外れてしまうおそれがある。   The above harmonic synchronous detection method has an advantage of high sensitivity, but has a problem that the dynamic range of sensitivity is narrow. That is, an accurate detection result can be obtained when the measurement target gas has a low concentration, but if the measurement target gas has a high concentration, the signal intensity is saturated and an accurate result cannot be obtained. For this reason, when the concentration of the specific gas in the measurement target gas is continuously measured, if the amount of change in the concentration of the specific gas is large, the measurement range may be out of range.

特開平5−99845号公報Japanese Patent Laid-Open No. 5-99845 特開平11−83665号公報Japanese Patent Laid-Open No. 11-83665

ウエブスター(C.R.Webster)、「インフラレッド・レーザ・アブソープション:セオリー・アンド・アプリケイションズ・イン・レーザ・リモート・ケミカル・アナリシス(Infrared Laser Absorption : Theory and Applications in Laser Remote Chemical Analysis)」、ウィレイ(Wiley)、New York(ニュー・ヨーク)、1988Webster, “Infrared Laser Absorption: Theory and Applications in Laser Remote Chemical Analysis,” “Infrared Laser Absorption: Theory and Applications in Laser Remote Chemical Analysis”, Wiley, New York, 1988 ウィルソン(G.V.H.Wilson)、「モジュレイション・ブロードニング・オブ・エヌエムアール・アンド・イーエスアール・ライン・シェイプス(Modulation Broadening of NMR and ESR Line Shapes)」、ジャーナル・アプライド・フィジックス(J. Appl. Phys.)、Vol.34、 No.11、pp.3276(1963)Wilson (GVHWilson), “Modulation Broadening of NMR and ESR Line Shapes”, Journal Applied Physics (J. Appl. Phys. ), Vol.34, No.11, pp.3276 (1963)

本発明は上記課題に鑑みて成されたものであり、その目的とするところは、測定対象ガス中の特定ガスの濃度を広いダイナミックレンジで測定することができる、レーザ吸収法を利用したガス分析装置を提供することにある。   The present invention has been made in view of the above problems, and its object is to perform gas analysis using a laser absorption method that can measure the concentration of a specific gas in a measurement target gas in a wide dynamic range. To provide an apparatus.

上記課題を解決するために成された本発明は、測定対象ガスが導入されるサンプルセルと、該サンプルセルの外側に配置されたレーザ照射部及び受光部と、を具備し、前記レーザ照射部から出射したレーザ光をサンプルセル内の測定対象ガスに通過させた後に受光部により検出し、その検出信号に基づいて測定対象ガスに含まれる特定ガスの濃度を算出するガス分析装置において、
a)前記レーザ照射部から出射されるレーザ光を、周波数fで変調させた状態と無変調の状態とで切り替える変調切替手段と、
b)前記変調切替手段により変調有りが設定された状態の下で、前記受光部による検出信号を周波数の整数倍の周波数で同期検出し、その検出結果に基づいて特定ガスの濃度を算出する第1の測定手段と、
c)前記変調切替手段により無変調が設定された状態の下で、前記受光部による検出信号を同期検出せずに直接検出し、その検出結果に基づいて特定ガスの濃度を算出する第2の測定手段と、
d)変調有り又は無しのいずれかの状態で第1又は第2の測定手段により得られた濃度を判定し、その判定結果に基づいて、前記特定ガスの濃度が相対的に低い場合に第1の測定手段による濃度測定を行い、前記特定ガスの濃度が相対的に高い場合に第2の測定手段による濃度測定を行うように、前記変調切替手段、及び第1並びに第2の測定手段を制御する制御手段と、
を備えることを特徴としている。
The present invention made to solve the above problems comprises a sample cell into which a gas to be measured is introduced, a laser irradiation unit and a light receiving unit arranged outside the sample cell, and the laser irradiation unit In the gas analyzer for detecting the laser beam emitted from the gas to be measured in the sample cell and then detecting it by the light receiving unit, and calculating the concentration of the specific gas contained in the gas to be measured based on the detection signal,
a) modulation switching means for switching the laser light emitted from the laser irradiation unit between a state modulated with a frequency f and an unmodulated state;
b) In a state in which modulation is set by the modulation switching means, the detection signal from the light receiving unit is synchronously detected at a frequency that is an integral multiple of the frequency, and the concentration of the specific gas is calculated based on the detection result. 1 measuring means;
c) a second state in which the detection signal from the light receiving unit is directly detected without synchronous detection under the state where no modulation is set by the modulation switching means, and the concentration of the specific gas is calculated based on the detection result; Measuring means;
d) Determine the concentration obtained by the first or second measuring means in the presence or absence of modulation, and based on the determination result , the first gas when the concentration of the specific gas is relatively low The modulation switching unit and the first and second measurement units are controlled so that the concentration measurement is performed by the second measurement unit when the concentration of the specific gas is relatively high. Control means to
It is characterized by having.

本発明に係るガス分析装置において、変調切替手段により変調有りが設定された状態の下で第1の測定手段により実行される濃度測定は、上述した高調波同期検出法に基づくものである。これに対し、変調切替手段により無変調が設定された状態の下で第2の測定手段により実行される濃度測定は、特定ガスによる所定波長の光の直接的な吸収現象を利用したものである。高調波同期検出法は高感度である反面、濃度が高い場合に信号飽和が生じる。一方、直接吸収を利用した検出法は、感度が相対的に低いが、高濃度であっても信号飽和が生じない。本発明に係るガス分析装置は、上記2つの検出法を特定ガスの濃度に応じて適宜に切り替えることで、両検出法のデメリットを補い、測定濃度範囲を拡大するようにしている。   In the gas analyzer according to the present invention, the concentration measurement performed by the first measuring unit under the condition that the modulation is set by the modulation switching unit is based on the harmonic synchronous detection method described above. On the other hand, the concentration measurement performed by the second measuring unit under the state in which no modulation is set by the modulation switching unit utilizes the direct absorption phenomenon of light of a predetermined wavelength by a specific gas. . While the harmonic synchronous detection method is highly sensitive, signal saturation occurs when the concentration is high. On the other hand, the detection method using direct absorption has relatively low sensitivity, but signal saturation does not occur even at high concentrations. In the gas analyzer according to the present invention, the two detection methods are appropriately switched according to the concentration of the specific gas, thereby compensating for the disadvantages of both detection methods and expanding the measurement concentration range.

記制御手段による濃度の判定基準、つまり閾値は、特定ガスの種類に応じて予め実験的に定めておけばよい。
Criterion, i.e. the threshold concentration due to the prior SL control means may be determined in advance experimentally according to the type of the specific gas.

これにより、測定対象ガス中の特定ガスの濃度を連続的に測定する際に、その濃度が大きく変動した場合であっても、その濃度変動に応じてより適切な検出法が逐次選択される。したがって、正確な濃度値を連続的に監視することができる。   As a result, when the concentration of the specific gas in the measurement target gas is continuously measured, even if the concentration fluctuates greatly, a more appropriate detection method is sequentially selected according to the concentration variation. Therefore, an accurate density value can be continuously monitored.

なお、本発明において測定対象である特定ガスの種類は特に問わないが、濃度変化が大きいものに有効であることから、例えば測定対象ガス中の水分の濃度測定などに有用である。   In the present invention, the type of the specific gas that is the measurement target is not particularly limited, but is effective for measuring a concentration of water in the measurement target gas because it is effective for a gas having a large concentration change.

本発明に係るガス分析装置によれば、測定対象ガス中の特定ガスの濃度を広いダイナミックレンジで且つリアルタイムで測定することができる。これにより、例えば測定対象ガス中の水分濃度を連続的に測定するような場合に、その水分濃度が大きく変化しても正確な測定結果を迅速にユーザに知らせることができる。   The gas analyzer according to the present invention can measure the concentration of the specific gas in the measurement target gas in a wide dynamic range and in real time. Thereby, for example, when the moisture concentration in the measurement target gas is continuously measured, even if the moisture concentration greatly changes, it is possible to promptly notify the user of an accurate measurement result.

また、通常、高調波同期検出法において濃度を算出するためには、予め濃度が既知の標準ガスを用いた校正が必要であるが、本発明に係るガス分析装置では、特定ガスが高濃度である場合に直接吸収スペクトルを測定することになるので、その結果を標準的なデータベース(代表的にはHITRAN)に照らすことで校正を行うことが可能となる。したがって、標準ガスを用いた校正が不要になり、測定作業が省力化できるという付随的な効果も得られる。   In addition, in order to calculate the concentration in the harmonic synchronous detection method, calibration using a standard gas whose concentration is known in advance is necessary. However, in the gas analyzer according to the present invention, a specific gas has a high concentration. In some cases, the absorption spectrum is directly measured, and calibration can be performed by checking the result against a standard database (typically HITRAN). Therefore, calibration using the standard gas is not necessary, and an additional effect that the measurement work can be saved can be obtained.

本発明の一実施例である水分測定装置の測定光学系の概略構成図。The schematic block diagram of the measurement optical system of the moisture measuring apparatus which is one Example of this invention. 本実施例の水分測定装置の信号処理系及び制御系の概略構成図。The schematic block diagram of the signal processing system and control system of the moisture measuring apparatus of a present Example. 本実施例の水分測定装置における測定シーケンスのフローチャート。The flowchart of the measurement sequence in the moisture measuring apparatus of a present Example. 本実施例の水分測定装置における他の測定シーケンスのフローチャート。The flowchart of the other measurement sequence in the moisture measuring apparatus of a present Example. 高調波同期検出法及び直接吸収検出法で得られる信号波形の一例を示す図。The figure which shows an example of the signal waveform obtained by the harmonic synchronous detection method and the direct absorption detection method. 本発明の別の実施例である信号処理系及び制御系の概略構成図。The schematic block diagram of the signal processing system which is another Example of this invention, and a control system.

本発明に係るガス分析装置の一実施例について、添付の図面を参照して説明する。この実施例の装置は、測定対象ガス中の水分の濃度を測定する水分測定装置である。図1は本実施例による水分測定装置の測定光学系の概略構成図、図2はその水分測定装置における信号処理系及び制御系の概略構成図である。   An embodiment of a gas analyzer according to the present invention will be described with reference to the accompanying drawings. The apparatus of this embodiment is a moisture measuring apparatus that measures the concentration of moisture in the measurement target gas. FIG. 1 is a schematic configuration diagram of a measurement optical system of a moisture measuring device according to the present embodiment, and FIG. 2 is a schematic configuration diagram of a signal processing system and a control system in the moisture measuring device.

本実施例の水分測定装置は、測定対象ガスが上から下向きに流通するガス流路2の途中に、略水平方向にサンプルセル1を備える。サンプルセル1の左右の開口端には、対向して反射鏡3、4を備える。一方の反射鏡3には光のみが通過可能な透明窓5が設けられ、その透明窓5を挟んでサンプルセル1の外側には、略密閉構造で略大気圧雰囲気である光学チャンバ6が設置されている。この光学チャンバ6内には、レーザ照射部としての波長可変レーザ装置7と、受光部としての光検出部8とが収納されている。波長可変レーザ装置7としては例えばDFB(Distributed Feedback)型レーザで近赤外領域〜中赤外領域の波長のものを用いることができるが、これ以外でもよい。光検出部8は、フォトダイオード等の光電変換素子と、その光電変換素子で得られる電流信号を電圧信号に変換するI/V変換アンプと、を含む。なお、光学チャンバ6内の水分(妨害水分)は除湿剤やパージガスなどにより除去されており、その濃度は無視できる程度に小さいものとする。   The moisture measuring apparatus of the present embodiment includes a sample cell 1 in a substantially horizontal direction in the middle of a gas flow path 2 through which a measurement target gas flows downward. Reflecting mirrors 3 and 4 are provided at the left and right opening ends of the sample cell 1 to face each other. One reflecting mirror 3 is provided with a transparent window 5 through which only light can pass, and an optical chamber 6 having a substantially sealed structure and a substantially atmospheric pressure is installed outside the sample cell 1 across the transparent window 5. Has been. In the optical chamber 6, a wavelength tunable laser device 7 as a laser irradiation unit and a light detection unit 8 as a light receiving unit are accommodated. As the wavelength tunable laser device 7, for example, a DFB (Distributed Feedback) type laser having a wavelength in the near-infrared region to the mid-infrared region can be used. The light detection unit 8 includes a photoelectric conversion element such as a photodiode, and an I / V conversion amplifier that converts a current signal obtained by the photoelectric conversion element into a voltage signal. The moisture (interfering moisture) in the optical chamber 6 is removed by a dehumidifying agent, a purge gas, or the like, and its concentration is assumed to be negligibly small.

レーザ制御部10による制御の下に波長可変レーザ装置7から出射したレーザ光L1は、透明窓5を通過してサンプルセル1内に入り、反射鏡3、4の間で反射を繰り返す。図1に記載した光路例では、レーザ光はガス流路2を横切って反射鏡3、4の間を2往復するが、さらに往復回数を増やす光学系としてもよい。ガス流路2を通過する際に、レーザ光は測定対象ガス中の各種成分による吸収を受ける。そうして吸収を受けた後のレーザ光L2が透明窓5を通って光学チャンバ6内に戻り、光検出部8に到達して検出され電気信号として取り出され信号処理部11に入力される。なお、図1の例では、サンプルセル1へのレーザ光の入射用と出射用とで透明窓5が兼用されているが、別々に透明窓を設ける構成としてもよい。   The laser beam L1 emitted from the wavelength tunable laser device 7 under the control of the laser control unit 10 passes through the transparent window 5 and enters the sample cell 1, and is repeatedly reflected between the reflecting mirrors 3 and 4. In the example of the optical path shown in FIG. 1, the laser light travels back and forth between the reflecting mirrors 3 and 4 across the gas flow path 2, but an optical system that further increases the number of reciprocations may be used. When passing through the gas flow path 2, the laser light is absorbed by various components in the measurement target gas. The laser beam L2 after being absorbed in this way returns to the optical chamber 6 through the transparent window 5, reaches the light detection unit 8, is detected, is taken out as an electric signal, and is input to the signal processing unit 11. In the example of FIG. 1, the transparent window 5 is also used for the incidence and emission of the laser beam to the sample cell 1, but a configuration in which a transparent window is separately provided may be employed.

図2に示すように、光検出部8で得られた電圧信号はアンプ21で増幅された後に、同期検出器22と第2アナログ/デジタル変換器(ADC)25とに入力される。同期検出器22には、後述する2fクロック生成部31で生成された周波数2fのクロック信号が参照信号として入力されており、同期検出器22は、アンプ21を通して入力された検出信号から参照信号の位相及び周波数に同期した信号を抽出する。この同期検出信号はローパスフィルタ(LPF)23により高周波成分が除去され、第1アナログ/デジタル変換器(ADC)24によりデジタル信号に変換される。この第1ADC24の出力と同期検出器22を介さない第2ADC25の出力とは、切替部26により選択されて演算部27に入力される。   As shown in FIG. 2, the voltage signal obtained by the light detection unit 8 is amplified by the amplifier 21 and then input to the synchronization detector 22 and the second analog / digital converter (ADC) 25. A clock signal having a frequency of 2f generated by a 2f clock generation unit 31 (to be described later) is input to the synchronization detector 22 as a reference signal. The synchronization detector 22 receives a reference signal from the detection signal input through the amplifier 21. A signal synchronized with the phase and frequency is extracted. A high-frequency component is removed from the synchronization detection signal by a low-pass filter (LPF) 23 and converted into a digital signal by a first analog / digital converter (ADC) 24. The output of the first ADC 24 and the output of the second ADC 25 not via the synchronization detector 22 are selected by the switching unit 26 and input to the arithmetic unit 27.

2fクロック生成部31、分周器32、変調振幅制御用電圧発生部33、乗算器34、及びバンドパスフィルタ(BPF)35は、任意の変調振幅の設定が可能な周波数fの正弦波発生器30を構成する。即ち、制御部28の制御の下に、2fクロック生成部31は周波数2fのクロック信号を生成し、分周器32はこのクロック信号を1/2に分周することで周波数がfでデューティ比が50%であるクロック信号を生成する。変調振幅制御用電圧発生部33は制御部28から与えられるデジタルデータをアナログ値に変換するデジタル/アナログ変換器を含み、変調振幅に応じた直流電圧を出力する。この直流電圧と周波数fのクロック信号とが乗算器34で乗算される。乗算後のクロック信号は周波数がfで、直流電圧により決まる振幅を有する。BPF35は中心周波数がfである所定の通過帯域を有し、中心周波数が周波数fである矩形波状のクロック信号を中心周波数がfである正弦波信号に変換する。この正弦波信号が周波数変調のための変調信号である。なお、このような構成ではなく、デジタル/アナログ変換器による変換により、直接、周波数がfである正弦波を生成するようにしてもよい。   The 2f clock generation unit 31, the frequency divider 32, the modulation amplitude control voltage generation unit 33, the multiplier 34, and the band pass filter (BPF) 35 are sine wave generators having a frequency f capable of setting an arbitrary modulation amplitude. 30 is configured. In other words, under the control of the control unit 28, the 2f clock generation unit 31 generates a clock signal having a frequency 2f, and the frequency divider 32 divides this clock signal by ½, so that the frequency is f and the duty ratio. Produces a clock signal with 50%. The modulation amplitude control voltage generator 33 includes a digital / analog converter that converts the digital data supplied from the controller 28 into an analog value, and outputs a DC voltage corresponding to the modulation amplitude. The DC voltage and the clock signal having the frequency f are multiplied by the multiplier 34. The clock signal after multiplication has a frequency f and an amplitude determined by a DC voltage. The BPF 35 has a predetermined passband having a center frequency f, and converts a rectangular wave clock signal having a center frequency f into a sine wave signal having a center frequency f. This sine wave signal is a modulation signal for frequency modulation. Instead of such a configuration, a sine wave having a frequency f may be directly generated by conversion by a digital / analog converter.

LD波長走査用電圧発生部37はデジタル/アナログ変換器を含み、制御部28から出力される、水分子の吸収スペクトル付近の所定の波長領域に亘るスイープを行うためのデジタルデータをスイープ電圧に変換して出力する。上述したBPF35からの正弦波信号は移相器36において検出信号と同期するように位相がシフトされた後に、加算器38により上記スイープ電圧に加算される。このスイープ電圧に正弦波信号が重畳された電圧が電圧/電流変換器(V/I)39により電流信号に変換され、波長可変レーザ装置7に駆動電流として供給される。波長可変レーザ装置7は時間経過に伴って波長が変化し、且つ所定の変調振幅で周波数変調が施されたレーザ光L1を出射する。   The LD wavelength scanning voltage generation unit 37 includes a digital / analog converter, and converts digital data output from the control unit 28 for sweeping over a predetermined wavelength region near the absorption spectrum of water molecules into a sweep voltage. And output. The phase of the sine wave signal from the BPF 35 described above is shifted by the phase shifter 36 so as to be synchronized with the detection signal, and then added to the sweep voltage by the adder 38. A voltage obtained by superimposing a sine wave signal on the sweep voltage is converted into a current signal by a voltage / current converter (V / I) 39 and supplied to the wavelength tunable laser device 7 as a drive current. The wavelength tunable laser device 7 emits laser light L1 whose wavelength changes with time and is frequency-modulated with a predetermined modulation amplitude.

本実施例の水分測定装置では、制御部28は、正弦波発生器30による正弦波信号の振幅を0でない所定の値(この値をAとする)と0とのいずれかに切り替えるようなデジタルデータを変調振幅制御用電圧発生部33に出力するとともに、正弦波信号の振幅をAにするときには第1ADC24の出力を選択し、正弦波信号の振幅を0にするときには第2ADC25の出力を選択するように切替部26を制御し、さらに演算部27における処理アルゴリズムを切り替える。即ち、正弦波信号の振幅をAに設定する際には、高調波同期検出法に基づいて濃度の計算を実行し、正弦波信号の振幅を0に設定する際には、直接吸収によるスペクトル検出(以下「直接吸収検出法」という)に基づいて濃度の計算を実行する。   In the moisture measuring apparatus of the present embodiment, the control unit 28 is a digital unit that switches the amplitude of the sine wave signal by the sine wave generator 30 to a predetermined value other than 0 (this value is A) or 0. The data is output to the modulation amplitude control voltage generator 33, and when the amplitude of the sine wave signal is set to A, the output of the first ADC 24 is selected, and when the amplitude of the sine wave signal is set to 0, the output of the second ADC 25 is selected. Thus, the switching unit 26 is controlled, and the processing algorithm in the calculation unit 27 is switched. That is, when the amplitude of the sine wave signal is set to A, the concentration is calculated based on the harmonic synchronous detection method, and when the amplitude of the sine wave signal is set to 0, spectrum detection by direct absorption is performed. (Hereinafter referred to as “direct absorption detection method”), the concentration is calculated.

図5(a)及び(b)は、計算(シミュレーション)により求めた、高調波同期検出法及び直接吸収検出法で得られる信号波形の一例であり、横軸は周波数偏差ν−ν0、縦軸は信号強度である。 FIGS. 5A and 5B are examples of signal waveforms obtained by calculation (simulation) and obtained by the harmonic synchronous detection method and the direct absorption detection method. The horizontal axis represents the frequency deviation ν−ν 0 and the vertical axis. The axis is signal strength.

図5(a)に示した2f同期検出信号では、周波数偏差ゼロ、つまり中心周波数ν0における信号強度が水分子による吸収の強さを示している。但し、実際の装置で得られる同期検出信号は、図5(a)に示した正方向ピークと負方向ピークとが加算されたものとなり、それらを演算上で分離することは困難である。そのため、信号波形のピーク・トゥ・ピークの信号強度SIGが、前述の(6)式、(7)式の左辺中のsignal(ν0)と比例関係となる。その比例関係を定義する比例定数Bを予め求めておくことにより、得られた同期検出信号の信号強度から水分子の体積濃度cを算出することができる。 In the 2f synchronization detection signal shown in FIG. 5A, the frequency deviation is zero, that is, the signal intensity at the center frequency ν 0 indicates the strength of absorption by water molecules. However, the synchronization detection signal obtained by an actual apparatus is obtained by adding the positive direction peak and the negative direction peak shown in FIG. 5A, and it is difficult to separate them in calculation. Therefore, the peak-to-peak signal intensity SIG of the signal waveform is proportional to the signal (ν 0 ) in the left side of the above-described equations (6) and (7). By obtaining in advance a proportionality constant B that defines the proportional relationship, the volume concentration c of water molecules can be calculated from the signal intensity of the obtained synchronous detection signal.

一方、図5(b)に示した直接吸収検出法による信号では、周波数偏差ゼロ、つまり中心周波数ν0付近において水分子による吸収で信号強度が低下するピークが観測される。吸収がないと仮定されるときの信号強度I00)と吸収ピークでの信号強度I(ν0)とを、前述した(2)式又は(4)式に適用することで水分子の体積濃度cを算出することができる。 On the other hand, in the signal obtained by the direct absorption detection method shown in FIG. 5B, a peak at which the signal intensity decreases due to absorption by water molecules is observed near zero frequency deviation, that is, around the center frequency ν 0 . The signal strength when the assumed absorption is no I 0 ([nu 0) and the signal intensity at the absorption peak I ([nu 0), water molecules by applying the aforementioned (2) or (4) Can be calculated.

上記比例定数Bは、同期検波で使用する周波数2fの信号(2fクロック生成部31の出力信号)が完全な正弦波であれば、理論的に1である。一方、この2f信号が正弦波でなく矩形波であっても、次のような方法で比例定数Bを求めることができる。即ち、まず、高調波同期検出法及び直接吸収検出法のいずれもが適用できるような比較的濃度の高い水分(特定ガス)を測定対象として選んだ上で、直接吸収検出法により水分子の体積濃度cを算出する。そして、高調波同期検出法により信号強度を求め、この信号強度に基づく水分子の体積濃度が上記の直接吸収検出法による体積濃度cに一致するように比例定数Bを決定する。もちろん、直接吸収検出法ではなく別方法で水分子の体積濃度を求めることができたり、或いは水分子の体積濃度が既知であるガスを入手できたりする場合には、高調波同期検出法により求まる水分子の体積濃度がその既知の体積濃度に一致するように比例定数Bを決定すればよい。   The proportional constant B is theoretically 1 if the signal of the frequency 2f used in the synchronous detection (the output signal of the 2f clock generation unit 31) is a perfect sine wave. On the other hand, even if the 2f signal is not a sine wave but a rectangular wave, the proportionality constant B can be obtained by the following method. That is, first, a relatively high concentration of moisture (specific gas) that can be applied to both the harmonic synchronous detection method and the direct absorption detection method is selected as a measurement target, and then the volume of water molecules is determined by the direct absorption detection method. The density c is calculated. Then, the signal intensity is obtained by the harmonic synchronous detection method, and the proportionality constant B is determined so that the volume concentration of water molecules based on the signal intensity matches the volume concentration c by the direct absorption detection method. Of course, when the volume concentration of water molecules can be obtained by another method instead of the direct absorption detection method, or when a gas having a known volume concentration of water molecules can be obtained, it can be obtained by the harmonic synchronous detection method. The proportionality constant B may be determined so that the volume concentration of the water molecule matches the known volume concentration.

一般に、高調波同期検出法は直接吸収検出法と比べて高感度な検出方法であり、微量検出には非常に有用であるが、測定対象となるガス濃度が大きく変化するような条件の下での測定には必ずしも適さない。例えば、ここで測定対象としている水分のほか、酸素など大気中に存在するガスを真空中でも測定する場合、測定濃度の範囲は1000倍以上にも及び、高調波同期検出法による測定濃度範囲を超えてしまう。本実施例の水分測定装置はこうした広い測定濃度範囲に亘る水分の体積濃度を正確に且つ迅速に連続測定するために、図3に示すようなシーケンスで測定を実行する。   In general, the harmonic synchronous detection method is a highly sensitive detection method compared to the direct absorption detection method and is very useful for detection of trace amounts, but under conditions where the gas concentration to be measured changes greatly. It is not necessarily suitable for the measurement. For example, in the case of measuring the gas present in the atmosphere, such as oxygen, in addition to the moisture to be measured here even in a vacuum, the measured concentration range is more than 1000 times, exceeding the measured concentration range by the harmonic synchronous detection method. End up. The moisture measuring apparatus according to the present embodiment performs measurement in the sequence as shown in FIG. 3 in order to continuously and accurately measure the volume concentration of moisture over such a wide measurement concentration range.

測定開始が指示されると、制御部28は変調振幅を0に設定して測定を開始する(ステップS1)。すると、正弦波発生器30による正弦波信号の振幅は0になり、電圧/電流変換器39には、水分子の吸収スペクトル付近の所定の波長領域に亘るスイープ電圧が印加され、これに応じた駆動電流が波長可変レーザ装置7に供給される。また制御部28は第2ADC25の出力を選択するように切替部26を切り替える。演算部27は波長走査に対応した検出信号(図5(b)に示すような形状の信号)をデジタル化したデータを受け取り、上述したような直接吸収検出法による処理アルゴリズムを用いて水分子の体積濃度Caを算出する(ステップS2)。この結果を受けた制御部28はその体積濃度Caが予め設定された閾値α以下であるか否かを判定し(ステップS3)、閾値αよりも大きければ直接吸収検出法が適していると判断し、体積濃度Caを結果として採用した上で(ステップS4)ステップS2へと戻る。   When the start of measurement is instructed, the control unit 28 sets the modulation amplitude to 0 and starts measurement (step S1). Then, the amplitude of the sine wave signal by the sine wave generator 30 becomes 0, and the voltage / current converter 39 is applied with a sweep voltage over a predetermined wavelength region in the vicinity of the absorption spectrum of water molecules. A drive current is supplied to the wavelength tunable laser device 7. The control unit 28 switches the switching unit 26 so as to select the output of the second ADC 25. The arithmetic unit 27 receives data obtained by digitizing a detection signal corresponding to wavelength scanning (a signal having a shape as shown in FIG. 5B), and uses a processing algorithm based on the direct absorption detection method as described above to detect water molecules. The volume concentration Ca is calculated (step S2). Upon receiving this result, the control unit 28 determines whether or not the volume concentration Ca is equal to or less than a preset threshold value α (step S3). If the volume concentration Ca is greater than the threshold value α, it is determined that the direct absorption detection method is suitable. Then, after adopting the volume concentration Ca as a result (step S4), the process returns to step S2.

これに対し、体積濃度Caが閾値α以下である場合には直接吸収検出法では感度が不足していると判断し、体積濃度Caを結果として採用せずに、制御部28は変調振幅をA[cm-1]に設定するデータを変調振幅制御用電圧発生部33に送る(ステップS5)。また制御部28は、第1ADC24の出力を選択するように切替部26を切り替える。即ち、直接吸収検出法から高調波同期検出法への切り替えを行う。これにより、周波数がfで変調振幅がAである正弦波信号が正弦波発生器30から出力され、水分子の吸収スペクトル付近の所定の波長領域に亘るスイープ電圧に変調信号が重畳された電圧が電圧/電流変換器39に印加され、これに応じた駆動電流が波長可変レーザ装置7に供給される。演算部27は波長走査に対応した高調波同期検出信号(図5(a)に示すような形状の信号)をデジタル化したデータを受け取り、上述したような高調波同期検出法による処理アルゴリズムを用いて水分子の体積濃度Cbを算出する(ステップS6)。 On the other hand, when the volume concentration Ca is equal to or less than the threshold value α, the direct absorption detection method determines that the sensitivity is insufficient, and the control unit 28 sets the modulation amplitude to A without adopting the volume concentration Ca as a result. Data set in [cm −1 ] is sent to the modulation amplitude control voltage generator 33 (step S5). The control unit 28 switches the switching unit 26 so as to select the output of the first ADC 24. That is, switching from the direct absorption detection method to the harmonic synchronous detection method is performed. As a result, a sine wave signal having a frequency f and a modulation amplitude A is output from the sine wave generator 30, and a voltage obtained by superimposing the modulation signal on a sweep voltage over a predetermined wavelength region near the absorption spectrum of water molecules is obtained. A voltage / current converter 39 is applied, and a drive current corresponding to the voltage / current converter 39 is supplied to the wavelength tunable laser device 7. The computing unit 27 receives data obtained by digitizing a harmonic synchronization detection signal (a signal having a shape as shown in FIG. 5A) corresponding to wavelength scanning, and uses a processing algorithm based on the harmonic synchronization detection method as described above. Then, the volume concentration Cb of water molecules is calculated (step S6).

この結果を受けた制御部28はその体積濃度Cbが予め設定された閾値β以上であるか否かを判定し(ステップS7)、閾値βよりも小さければ高調波同期検出法が適していると判断し、体積濃度Cbを結果として採用した上で(ステップS8)ステップS6へと戻る。これに対し、体積濃度Cbが閾値β以上である場合には高調波同期検出法では濃度が高過ぎて信号飽和が生じると判断し、体積濃度Cbを結果として採用せずにステップS1に戻る。この場合には、高調波同期検出法から直接吸収検出法への切り替えがなされる。   Upon receiving this result, the control unit 28 determines whether or not the volume concentration Cb is equal to or higher than a preset threshold value β (step S7). If the volume concentration Cb is smaller than the threshold value β, the harmonic synchronization detection method is suitable. After determining and adopting the volume concentration Cb as a result (step S8), the process returns to step S6. On the other hand, if the volume concentration Cb is equal to or greater than the threshold value β, the harmonic synchronization detection method determines that the concentration is too high and signal saturation occurs, and returns to step S1 without adopting the volume concentration Cb as a result. In this case, switching from the harmonic synchronous detection method to the direct absorption detection method is performed.

閾値α及び閾値βは、高調波同期検出法による検出信号と直接吸収検出法による検出信号のS/N、高調波同期検出法による信号飽和レベルなどに応じて、予め適宜に決められる。これにより、測定対象ガス中の水分子の体積濃度を連続的に測定する際に、その途中で濃度が大きく変化した場合でも、高調波同期検出法と直接吸収検出法とのいずれか適切な方法に速やかに切り替えられ、正確な濃度を得ることができる。   The threshold value α and the threshold value β are appropriately determined in advance according to the S / N of the detection signal by the harmonic synchronous detection method and the detection signal by the direct absorption detection method, the signal saturation level by the harmonic synchronous detection method, and the like. As a result, when continuously measuring the volume concentration of water molecules in the gas to be measured, even if the concentration changes greatly during the measurement, either the harmonic synchronous detection method or the direct absorption detection method is appropriate. It is possible to quickly switch to the correct concentration.

なお、図3に示したシーケンスは図4に示すシーケンスのように変更しても構わない。即ち、このシーケンスは上記のシーケンスとは逆に、測定開始が指示されると、まず高調波同期検出法による濃度測定を実施し(ステップS11、S12)、その濃度Cbが予め設定された閾値γよりも小さければ(ステップS13でNO)濃度Cbを採用して(ステップS14)高調波同期検出法を継続する。これに対し、濃度Cbが予め設定された閾値γ以上であれば(ステップS13でYES)、直接吸収検出法へ切り替えて濃度測定を実施する(ステップS15、S16)。その濃度Caが予め設定された閾値ε以下であれば(ステップS17でYES)ステップS11へと戻り、閾値εよりも大きければ濃度Caを採用して(ステップS18)直接吸収検出法を継続する。   Note that the sequence shown in FIG. 3 may be changed like the sequence shown in FIG. That is, in this sequence, contrary to the above sequence, when measurement start is instructed, first, concentration measurement by the harmonic synchronous detection method is performed (steps S11 and S12), and the concentration Cb is set to a preset threshold value γ. If not (NO in step S13), the concentration Cb is adopted (step S14) and the harmonic synchronous detection method is continued. On the other hand, if the concentration Cb is greater than or equal to the preset threshold value γ (YES in step S13), the concentration measurement is performed by switching to the direct absorption detection method (steps S15 and S16). If the concentration Ca is less than or equal to the preset threshold value ε (YES in step S17), the process returns to step S11. If the concentration Ca is greater than the threshold value ε, the concentration Ca is adopted (step S18) and the direct absorption detection method is continued.

上記実施例による水分測定装置では、同期検出信号をデジタル化する第1ADC24と同期検出しない元の検出信号をデジタル化する第2ADC25とを併設していたが、このADCを共用する構成としてもよい。即ち、図6に示すブロック構成図のように、切替部41をADC42の前段に設け、同期検出器22及びLPF23を経た同期検出信号と同期検出を行わない検出信号とを切替部41で選択して共通化したADC42に導入し、デジタル化するようにしてもよい。この構成でも基本的な動作は上述した実施例と何ら変わらない。   In the moisture measuring apparatus according to the above embodiment, the first ADC 24 that digitizes the synchronous detection signal and the second ADC 25 that digitizes the original detection signal that is not synchronously detected are provided together. However, the ADC may be shared. That is, as shown in the block diagram of FIG. 6, the switching unit 41 is provided in the preceding stage of the ADC 42, and the switching unit 41 selects the synchronization detection signal that has passed through the synchronization detector 22 and the LPF 23 and the detection signal that does not perform synchronization detection. It may be introduced into a common ADC 42 and digitized. Even in this configuration, the basic operation is the same as that of the above-described embodiment.

また、上記実施例は本発明に係るガス分析装置を測定対象ガス中の水分濃度の測定に適用したものであるが、本発明は水分以外の任意のガス濃度の測定に適用することができる。もちろん、特定ガスの種類に応じて、上述した変調振幅A、閾値α、β、γ、εなどの値は適宜に変更する必要がある。   Moreover, although the said Example applies the gas analyzer which concerns on this invention to the measurement of the moisture concentration in measurement object gas, this invention is applicable to the measurement of arbitrary gas concentrations other than a water | moisture content. Of course, the values of the modulation amplitude A, the threshold values α, β, γ, ε and the like described above need to be appropriately changed according to the type of the specific gas.

また上記実施例は本発明の一例であり、上記記載以外の点において本発明の趣旨の範囲で適宜に変形や修正、追加などを行っても、本願特許請求の範囲に包含されることは明らかである。   Further, the above embodiment is an example of the present invention, and it is obvious that any modifications, corrections, additions, etc. as appropriate within the scope of the present invention other than the above description are included in the scope of the claims of the present application. It is.

1…サンプルセル
2…ガス流路
3、4…反射鏡
5…透明窓
6…光学チャンバ
7…波長可変レーザ装置
8…光検出部
10…レーザ制御部
11…信号処理部
21…アンプ
22…同期検出器
23…ローパスフィルタ(LPF)
24、25、42…アナログ/デジタル変換器(ADC)
26、41…切替部
27…演算部
28…制御部
30…正弦波発生器
31…2fクロック生成部
32…分周器
33…変調振幅制御用電圧発生部
34…乗算器
35…バンドパスフィルタ(BPF)
36…移相器
37…LD波長走査用電圧発生部
38…加算器
39…電圧/電流変換器(V/I)
DESCRIPTION OF SYMBOLS 1 ... Sample cell 2 ... Gas flow path 3, 4 ... Reflector 5 ... Transparent window 6 ... Optical chamber 7 ... Wavelength variable laser apparatus 8 ... Light detection part 10 ... Laser control part 11 ... Signal processing part 21 ... Amplifier 22 ... Synchronization Detector 23 ... Low-pass filter (LPF)
24, 25, 42 ... Analog / digital converter (ADC)
26, 41 ... switching unit 27 ... arithmetic unit 28 ... control unit 30 ... sine wave generator 31 ... 2f clock generation unit 32 ... frequency divider 33 ... voltage generator 34 for modulation amplitude control ... multiplier 35 ... band pass filter ( BPF)
36 ... Phase shifter 37 ... LD wavelength scanning voltage generator 38 ... Adder 39 ... Voltage / current converter (V / I)

Claims (2)

測定対象ガスが導入されるサンプルセルと、該サンプルセルの外側に配置されたレーザ照射部及び受光部と、を具備し、前記レーザ照射部から出射したレーザ光をサンプルセル内の測定対象ガスに通過させた後に受光部により検出し、その検出信号に基づいて測定対象ガスに含まれる特定ガスの濃度を算出するガス分析装置において、
a)前記レーザ照射部から出射されるレーザ光を、周波数fで変調させた状態と無変調の状態とで切り替える変調切替手段と、
b)前記変調切替手段により変調有りが設定された状態の下で、前記受光部による検出信号を周波数の整数倍の周波数で同期検出し、その検出結果に基づいて特定ガスの濃度を算出する第1の測定手段と、
c)前記変調切替手段により無変調が設定された状態の下で、前記受光部による検出信号を同期検出せずに直接検出し、その検出結果に基づいて特定ガスの濃度を算出する第2の測定手段と、
d)変調有り又は無しのいずれかの状態で第1又は第2の測定手段により得られた濃度を判定し、その判定結果に基づいて、前記特定ガスの濃度が相対的に低い場合に第1の測定手段による濃度測定を行い、前記特定ガスの濃度が相対的に高い場合に第2の測定手段による濃度測定を行うように、前記変調切替手段、及び第1並びに第2の測定手段を制御する制御手段と、
を備えることを特徴とするガス分析装置。
A sample cell into which a measurement target gas is introduced, and a laser irradiation unit and a light receiving unit arranged outside the sample cell, and the laser beam emitted from the laser irradiation unit is used as the measurement target gas in the sample cell In the gas analyzer that detects by the light receiving unit after passing and calculates the concentration of the specific gas contained in the measurement target gas based on the detection signal,
a) modulation switching means for switching the laser light emitted from the laser irradiation unit between a state modulated with a frequency f and an unmodulated state;
b) In a state in which modulation is set by the modulation switching means, the detection signal from the light receiving unit is synchronously detected at a frequency that is an integral multiple of the frequency, and the concentration of the specific gas is calculated based on the detection result. 1 measuring means;
c) a second state in which the detection signal from the light receiving unit is directly detected without synchronous detection under the state where no modulation is set by the modulation switching means, and the concentration of the specific gas is calculated based on the detection result; Measuring means;
d) Determine the concentration obtained by the first or second measuring means in the presence or absence of modulation, and based on the determination result , the first gas when the concentration of the specific gas is relatively low The modulation switching unit and the first and second measurement units are controlled so that the concentration measurement is performed by the second measurement unit when the concentration of the specific gas is relatively high. Control means to
A gas analyzer comprising:
請求項1に記載のガス分析装置であって、
前記特定ガスは測定対象ガス中の水分であることを特徴とするガス分析装置。
The gas analyzer according to claim 1 ,
The gas analyzer according to claim 1, wherein the specific gas is moisture in the measurement target gas.
JP2009276449A 2009-12-04 2009-12-04 Gas analyzer Active JP5359832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009276449A JP5359832B2 (en) 2009-12-04 2009-12-04 Gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009276449A JP5359832B2 (en) 2009-12-04 2009-12-04 Gas analyzer

Publications (2)

Publication Number Publication Date
JP2011117869A JP2011117869A (en) 2011-06-16
JP5359832B2 true JP5359832B2 (en) 2013-12-04

Family

ID=44283373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009276449A Active JP5359832B2 (en) 2009-12-04 2009-12-04 Gas analyzer

Country Status (1)

Country Link
JP (1) JP5359832B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6150156B2 (en) * 2012-12-27 2017-06-21 パナソニックIpマネジメント株式会社 Calorie calculation device
JP6045352B2 (en) 2013-01-10 2016-12-14 アズビル株式会社 Dryness distribution measuring device and dryness distribution measuring method
JP2015040820A (en) * 2013-08-23 2015-03-02 株式会社島津製作所 Gas analyzing apparatus
CN108333143B (en) * 2018-02-06 2020-08-04 山东省科学院海洋仪器仪表研究所 Water vapor concentration measurement correction method based on tunable laser absorption spectrum

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3197241B2 (en) * 1997-09-05 2001-08-13 三菱重工業株式会社 Water vapor detector
JPH11337483A (en) * 1998-05-28 1999-12-10 Mitsubishi Heavy Ind Ltd Apparatus and method for measuring exhaust gas of running vehicle
JP4976924B2 (en) * 2007-05-31 2012-07-18 独立行政法人石油天然ガス・金属鉱物資源機構 Optical gas detection method and optical gas detection device
JP5045480B2 (en) * 2008-02-12 2012-10-10 富士電機株式会社 Gas concentration measuring device and gas concentration measuring method
JP5163360B2 (en) * 2008-08-21 2013-03-13 富士電機株式会社 Laser gas analyzer and gas concentration measuring method

Also Published As

Publication number Publication date
JP2011117869A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
JP5163508B2 (en) Gas concentration measuring device
JP6513762B2 (en) Analyzer, program for analyzer and analysis method
WO2014109126A1 (en) Laser-type gas analyzer
US8891085B2 (en) Gas analyzer
US9459209B2 (en) Gas analysis device
JP2013050403A (en) Gas analyzer
JPWO2014106940A1 (en) Gas absorption spectroscopy apparatus and gas absorption spectroscopy method
JP2007040995A (en) Gas detection method and gas detector
JP5347983B2 (en) Gas analyzer
JP5359832B2 (en) Gas analyzer
JP5527278B2 (en) Gas analyzer
US11030423B2 (en) Analysis device, program for an analysis device and analysis method
JP5170034B2 (en) Gas analyzer
JP5370248B2 (en) Gas analyzer
JP5163360B2 (en) Laser gas analyzer and gas concentration measuring method
JP2013088135A (en) Laser gas analyzer
JP5971389B2 (en) Laser gas analyzer
US20170045446A1 (en) Method of determining the concentration of a gas component and spectrometer therefor
JP5359831B2 (en) Device for measuring moisture in gas
JP6201551B2 (en) Gas analyzer
JP6269438B2 (en) Laser type analyzer
JP6881081B2 (en) Analytical device, absorption characteristic calculation circuit, and analysis method
US20170115219A1 (en) Gas analyzing apparatus
Disselkamp et al. Signal-to-noise enhancement techniques for quantum cascade absorption spectrometers employing optimal filtering and other approaches
JP2015040820A (en) Gas analyzing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R151 Written notification of patent or utility model registration

Ref document number: 5359832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151