JP2013050403A - Gas analyzer - Google Patents

Gas analyzer Download PDF

Info

Publication number
JP2013050403A
JP2013050403A JP2011189084A JP2011189084A JP2013050403A JP 2013050403 A JP2013050403 A JP 2013050403A JP 2011189084 A JP2011189084 A JP 2011189084A JP 2011189084 A JP2011189084 A JP 2011189084A JP 2013050403 A JP2013050403 A JP 2013050403A
Authority
JP
Japan
Prior art keywords
absorption
gas
concentration
absorption line
gas analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011189084A
Other languages
Japanese (ja)
Other versions
JP2013050403A5 (en
Inventor
Fumiaki Odera
文章 大寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2011189084A priority Critical patent/JP2013050403A/en
Publication of JP2013050403A publication Critical patent/JP2013050403A/en
Publication of JP2013050403A5 publication Critical patent/JP2013050403A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a gas analyzer by a TDLAS system capable of widening a measurable range of concentration measurement of a target gas.SOLUTION: In a gas analyzer according to the present invention, in a case where an absorption line currently used is determined not to be suitable for concentration measurement of a target gas by an absorption line determining section 82, one piece of information of another absorption line is selected from a plurality of absorption lines stored in an information storage section 81. In the information storage section 81, setting values of a driving current and a control temperature of an LD1 corresponding to each of the plurality of absorption lines are stored. A controller 2 controls an LD driving section 3 and an LD temperature controlling section 5 on the basis of the setting values and starts next measurement. On other hand, in a case where the absorption line currently used is determined to be suitable for the concentration measurement, a concentration calculating section 83 calculates concentration on the basis of individual measuring values of transmission light intensity, a gas temperature and pressure corresponding to the absorption line while referring to information of absorption line strength and an absorption characteristics function corresponding to the absorption line stored in the information storage section 81.

Description

本発明は、レーザ光に対する吸収を利用して被測定ガス中の特定成分の濃度を測定するガス分析装置に関する。   The present invention relates to a gas analyzer that measures the concentration of a specific component in a gas to be measured using absorption of laser light.

気体(被測定ガス)中の目的ガスの濃度を測定する方法の1つとして、ガス分子が特定波長の光のみを吸収することを利用した吸収分光法がある。吸収分光法は、被測定ガスに非接触で目的成分ガス(目的ガス)の濃度を測定することができることを特長の1つとしている。   One method for measuring the concentration of a target gas in a gas (a gas to be measured) is absorption spectroscopy that utilizes the fact that gas molecules absorb only light of a specific wavelength. One of the features of absorption spectroscopy is that the concentration of the target component gas (target gas) can be measured without contacting the gas to be measured.

近年、吸収分光法の中でも、半導体レーザダイオードを光源に用い、目的ガスの持つ所定の吸収線(吸収スペクトル)を対象にレーザ光の波長を走査するTDLAS(Tunable Diode Laser Absorption Spectroscopy)法が確立されている。TDLAS法では、光源の単色性が高いため、目的ガスのみの光吸収を選択的に受けるようにすることができる。その結果、他のガス成分の影響を受けにくい。また、レーザダイオードは高速点灯、高速変調駆動が容易に行えるため、応答性に優れるといった利点も有している。   In recent years, among the absorption spectroscopy methods, the TDLAS (Tunable Diode Laser Absorption Spectroscopy) method has been established, which uses a semiconductor laser diode as a light source and scans the wavelength of the laser beam for a predetermined absorption line (absorption spectrum) of the target gas. ing. In the TDLAS method, since the monochromaticity of the light source is high, it is possible to selectively receive light absorption of only the target gas. As a result, it is hardly affected by other gas components. In addition, since the laser diode can easily perform high-speed lighting and high-speed modulation driving, it has an advantage of excellent responsiveness.

以下、TDLAS法の理論について簡単に説明する。レーザ光の周波数をν、周波数νにおける被測定ガスへのレーザ光の入射光強度I0(ν)、周波数νにおけるレーザ光の透過光強度をI(ν)、目的ガスの分子数密度をc、被測定ガスを通過する光路長をL、目的ガスの吸収線の線強度(吸収線強度)をS、該吸収線のプロファイル関数(吸収特性関数)をK(ν)とすると、ランベルト・ベール(Lambert-Beer)の法則より、次の(1)式が成り立つ。

Figure 2013050403
Hereinafter, the theory of the TDLAS method will be briefly described. The laser light frequency is ν, the incident light intensity I 0 (ν) of the laser light to the measurement gas at the frequency ν, the transmitted light intensity of the laser light at the frequency ν is I (ν), and the molecular number density of the target gas is c Lambert Bale, where L is the optical path length through the gas to be measured, S is the line intensity (absorption line intensity) of the absorption line of the target gas, and K (ν) is the profile function (absorption characteristic function) of the absorption line From the (Lambert-Beer) law, the following equation (1) holds.
Figure 2013050403

TDLAS法には、光強度を周波数νに亘って測定して積分する方法と、吸収線の中心周波数ν0における光強度を測定する方法と、がある。ここでは後者の方法についてのみ説明する。中心周波数ν0では、(1)式は次の(2)式によって表される。

Figure 2013050403
The TDLAS method includes a method of measuring and integrating the light intensity over the frequency ν, and a method of measuring the light intensity at the center frequency ν 0 of the absorption line. Only the latter method will be described here. At the center frequency ν 0 , the expression (1) is expressed by the following expression (2).
Figure 2013050403

吸収線強度Sは一般に、標準状態における吸収線強度Srefに対し、温度Tに関する補正項を乗じたもので近似される。この吸収線強度Srefの値は、吸収線のデータベースとして提供されているHITRANから容易に知ることができる。また、光路長Lは既知である。したがって、吸収特性関数K(ν0)さえ正確に決定することができれば、(2)式から目的ガスの濃度を算出することができる。
吸収特性関数K(ν)は被測定ガスの圧力に応じて3種類の関数のいずれかとなることが知られている。
The absorption line intensity S is generally approximated by multiplying the absorption line intensity S ref in the standard state by a correction term related to the temperature T. The value of the absorption line strength S ref can be easily known from HITRAN provided as a database of absorption lines. Further, the optical path length L is known. Accordingly, if even the absorption characteristic function K (ν 0 ) can be accurately determined, the concentration of the target gas can be calculated from the equation (2).
It is known that the absorption characteristic function K (ν) is one of three types of functions depending on the pressure of the gas to be measured.

[1]被測定ガスが大気圧である場合
この場合、吸収特性関数K(ν)は次の(3)式のようなローレンツ(Lorentz)関数で表される。

Figure 2013050403
ここで、γLは大気圧における吸収スペクトルの半値半幅であり、被測定ガスの種類、温度、及び圧力に依存する。
特に中心周波数ν0においては次の(4)式となる。
Figure 2013050403
[1] When the gas to be measured is atmospheric pressure In this case, the absorption characteristic function K (ν) is represented by a Lorentz function as shown in the following equation (3).
Figure 2013050403
Here, γ L is the half-width of the absorption spectrum at atmospheric pressure, and depends on the type of gas to be measured, temperature, and pressure.
Especially at the center frequency ν 0 , the following equation (4) is obtained.
Figure 2013050403

[2]被測定ガスの全圧が1Torrよりも高真空領域である場合
この場合、吸収特性関数K(ν)は次の(5)式のようなガウス関数となる。

Figure 2013050403
上式のγEDはドップラ幅と呼ばれ、次の(6)式で表される。
Figure 2013050403
ここで、kBはボルツマン定数、Tはガス温度、Mは目的ガスの分子量である。(6)式より、ドップラ幅γEDは、吸収線の中心周波数、分子量、及び温度に依存しており、1Torrよりも高真空領域では、吸収特性関数K(ν)は被測定ガスの圧力による影響を受けないことが分かる。
(5)式の吸収特性関数K(ν)は特に中心周波数ν0においては次の(7)式となる。
Figure 2013050403
[2] When the total pressure of the gas to be measured is in a vacuum region higher than 1 Torr In this case, the absorption characteristic function K (ν) is a Gaussian function as shown in the following equation (5).
Figure 2013050403
Γ ED in the above equation is called the Doppler width and is expressed by the following equation (6).
Figure 2013050403
Here, k B is the Boltzmann constant, T is the gas temperature, and M is the molecular weight of the target gas. From equation (6), the Doppler width γ ED depends on the center frequency, molecular weight, and temperature of the absorption line, and in the vacuum region higher than 1 Torr, the absorption characteristic function K (ν) depends on the pressure of the gas to be measured. It turns out that it is not influenced.
The absorption characteristic function K (ν) in the equation (5) becomes the following equation (7) particularly at the center frequency ν 0 .
Figure 2013050403

[3]大気圧と1Torrとの間の中間圧力の場合
この場合、吸収特性関数K(ν)はフォークト(Voigt)関数と呼ばれ、上記ローレンツ関数とガウス関数との畳み込み関数で表されるものとなる。
[3] In the case of an intermediate pressure between atmospheric pressure and 1 Torr In this case, the absorption characteristic function K (ν) is called a Vogt function, and is expressed by a convolution function of the Lorentz function and the Gauss function. It becomes.

上記は入射光強度I0(ν)と透過光強度I(ν)を直接的に測定することにより濃度を算出する方法(以下、「直接吸収分光法」という)であるが、濃度が非常に低い場合に有効な方法として、レーザ変調波の整数倍の周波数で検出する分光法(以下「波長変調分光法」という)が知られている(例えば非特許文献1参照)。波長変調分光を行う場合、被測定ガスへ照射する光の周波数を、次の(8)式に示すように変調させる。

Figure 2013050403
ここで、tは時間、aは周波数変調のための正弦波信号の変調振幅、ωは周波数である。 The above is a method for calculating the concentration by directly measuring the incident light intensity I 0 (ν) and the transmitted light intensity I (ν) (hereinafter referred to as “direct absorption spectroscopy”). As a method effective when the frequency is low, spectroscopy (hereinafter referred to as “wavelength modulation spectroscopy”) that detects at a frequency that is an integral multiple of the laser modulation wave is known (see, for example, Non-Patent Document 1). When performing wavelength modulation spectroscopy, the frequency of light irradiated to the gas to be measured is modulated as shown in the following equation (8).
Figure 2013050403
Here, t is time, a is the modulation amplitude of a sine wave signal for frequency modulation, and ω is frequency.

2次高調波同期検出では、(8)式によって周波数変調されたレーザ光の2倍の周波数2ωに対応した信号成分が抽出される。周波数νにおける2次高調波検出信号signal(ν)は次の(9)式によって規定される。

Figure 2013050403
ここで、constは比例定数であり、検出器及び同期検出回路の感度によって変化する。比例定数constは、上記の直接吸収分光法など別の手段で予め既知となった濃度のガスを測定することにより決定される。 In the second harmonic synchronization detection, a signal component corresponding to a frequency 2ω that is twice the frequency of the laser light frequency-modulated by the equation (8) is extracted. The second harmonic detection signal signal (ν) at the frequency ν is defined by the following equation (9).
Figure 2013050403
Here, const is a proportionality constant and changes depending on the sensitivity of the detector and the synchronization detection circuit. The proportionality constant const is determined by measuring a gas having a known concentration in advance by another means such as the direct absorption spectroscopy described above.

特開平5−99845号公報Japanese Patent Laid-Open No. 5-99845

ウエブスター(C. R. Webster)、「インフラレッド・レーザ・アブソープション:セオリー・アンド・アプリケイションズ・イン・レーザ・リモート・ケミカル・アナリシス(Infrared Laser Absorption : Theory and Applications in Laser Remote Chemical Analysis)」、ウィレイ(Wiley)、ニュー・ヨーク(New York)、1988Webster, “Infrared Laser Absorption: Theory and Applications in Laser Remote Chemical Analysis”, “Infrared Laser Absorption: Theory and Applications in Laser Remote Chemical Analysis” Wiley, New York, 1988

TDLAS法によるガス濃度測定は、例えば半導体処理ガス中において有害とされる水分のモニタリングや、煙道中の一酸化炭素、二酸化窒素などのモニタリングなどに利用される。TDLAS法では被測定ガスに非接触で目的ガスの濃度を算出することができるため、既存の半導体製造装置の排気ラインや煙道などに対しても最小限の変更を施すだけでインライン測定が可能となる。しかしながら、その反面、光路長を自由に設定することができない場合がある。このような場合、例えば光路長が長すぎると、レーザ光が目的成分ガスによる吸収を受けすぎて大幅に減衰してしまい、測定精度が低下してしまったり、測定自体が不可能になってしまったりすることがある。   The gas concentration measurement by the TDLAS method is used, for example, for monitoring water that is harmful in the semiconductor processing gas, monitoring carbon monoxide, nitrogen dioxide, etc. in the flue. The TDLAS method can calculate the concentration of the target gas without contacting the gas to be measured, so in-line measurement is possible with minimal changes to the exhaust lines and flues of existing semiconductor manufacturing equipment. It becomes. However, on the other hand, the optical path length may not be set freely. In such a case, for example, if the optical path length is too long, the laser beam is excessively absorbed by the target component gas and attenuated significantly, resulting in a decrease in measurement accuracy and the measurement itself being impossible. May be frustrated.

また、半導体製造装置などでは、被測定ガスの圧力が大気圧付近から急激に且つ大きく減じるような状況の下で目的ガスの濃度測定を行うことがある。このような場合、被測定ガスの急激な圧力変化に伴って目的ガスの濃度が大きく変化し、透過光強度が大きく変化することによりレーザ光受光部の検出可能範囲を超えてしまうことがある。   Further, in a semiconductor manufacturing apparatus or the like, the concentration of the target gas may be measured under a situation where the pressure of the gas to be measured is suddenly and greatly reduced from near atmospheric pressure. In such a case, the concentration of the target gas may change greatly with a sudden change in pressure of the gas to be measured, and the transmitted light intensity may change greatly, thereby exceeding the detectable range of the laser light receiving unit.

本発明が解決しようとする課題は、目的ガスの濃度測定の測定可能範囲を広くすることのできるTDLAS法によるガス分析装置を提供することである。   The problem to be solved by the present invention is to provide a gas analyzer using the TDLAS method, which can widen the measurable range of concentration measurement of the target gas.

上記課題を解決するために成された本発明は、
被測定ガスにレーザ光を照射するレーザ照射部と、前記被測定ガス中を通過したレーザ光を受光する受光部と、を備え、前記受光部で受光したレーザ光の強度から、前記被測定ガスに含まれる目的ガスの濃度を算出するガス分析装置において、
前記目的ガスの複数の吸収線に関する情報と、該複数の吸収線の各々における受光強度から該目的ガスの濃度を算出するための情報と、を記憶する情報記憶手段と、
前記レーザ照射部の発振波長を前記各吸収線に関する情報に基づき設定する発振波長調整手段と、
前記受光部で受光したレーザ光強度と前記各濃度算出情報とに基づいて、前記目的ガスの濃度を算出する濃度算出手段と、
を有することを特徴とする。
The present invention made to solve the above problems
A laser irradiation unit that irradiates the gas to be measured with a laser beam; and a light receiving unit that receives the laser beam that has passed through the gas to be measured. From the intensity of the laser beam received by the light receiving unit, In the gas analyzer that calculates the concentration of the target gas contained in
Information storage means for storing information relating to a plurality of absorption lines of the target gas, and information for calculating the concentration of the target gas from the received light intensity in each of the plurality of absorption lines;
An oscillation wavelength adjusting means for setting an oscillation wavelength of the laser irradiation unit based on information on each absorption line;
Concentration calculating means for calculating the concentration of the target gas based on the intensity of the laser beam received by the light receiving unit and each concentration calculation information;
It is characterized by having.

従来のTDLAS法によるガス分析装置では、所定の目的ガスの濃度を測定する際、該目的ガスの1つの吸収線のみを対象としていた。これに対し、本発明に係るガス分析装置は、対象とする吸収線を複数にしたことを特徴とする。これによって次のような効果が生じる。   In the conventional gas analyzer using the TDLAS method, when measuring the concentration of a predetermined target gas, only one absorption line of the target gas is targeted. On the other hand, the gas analyzer according to the present invention is characterized in that a plurality of absorption lines are used. This produces the following effects.

同じ目的ガスであっても、吸収線が異なると吸収係数が変化する。すなわち、目的ガスによるレーザ光の吸収量(減衰量)は吸収線毎に異なる。従って、例えば受光部で受光した光の透過率が著しく小さい(すなわち光の吸収率が著しく大きい)場合は吸収係数の小さい吸収線にレーザ発振波長を切り替えて測定を行い、逆に透過率が著しく大きい(すなわち光の吸収率が著しく小さい)場合は吸収係数の大きい吸収線にレーザ発振波長を合わせて測定を行えば、適正な透過率で濃度測定を行うことが可能となる。同様に、ガス分析装置を設置する場所によって光路長を大きく取らざるを得ない場合は、吸収係数の小さい吸収線に切り替え、また光路長を小さく取らざるを得ない場合は吸収係数の大きい吸収線に切り替えることによって、様々な使用条件に対応することが可能となる。   Even for the same target gas, the absorption coefficient changes if the absorption line is different. That is, the absorption amount (attenuation amount) of the laser beam by the target gas differs for each absorption line. Therefore, for example, when the transmittance of light received by the light receiving unit is extremely small (that is, the light absorption rate is extremely large), the laser oscillation wavelength is switched to an absorption line having a small absorption coefficient, and the transmittance is conspicuous. If it is large (that is, the light absorptivity is remarkably small), the concentration measurement can be performed with an appropriate transmittance by measuring the laser oscillation wavelength with an absorption line having a large absorption coefficient. Similarly, if the optical path length must be increased depending on where the gas analyzer is installed, switch to an absorption line with a small absorption coefficient, and if the optical path length must be reduced, an absorption line with a large absorption coefficient. By switching to, it becomes possible to cope with various use conditions.

なお、濃度を算出するためには吸収線強度及び吸収特性関数が必要となる。これらは吸収線毎に異なるため、各々の吸収線に対応して情報記憶手段に記憶され、濃度を算出する際に利用される。前記濃度算出情報としては、吸収線強度及び吸収特性関数そのものでなく、これらを算出するためのパラメータ(例えばγLやγED、Srefなど)であっても良い。 In order to calculate the concentration, the absorption line intensity and the absorption characteristic function are required. Since these differ for each absorption line, they are stored in the information storage means corresponding to each absorption line and used when calculating the concentration. The concentration calculation information may be parameters (for example, γ L , γ ED , S ref, etc.) for calculating these, instead of the absorption line intensity and the absorption characteristic function itself.

前記発振波長調整手段は、前記レーザ照射部に流すレーザ駆動電流と該レーザ照射部の温度のいずれか一方又は両方の制御によって、前記レーザ照射部の発振波長を調整することができる。   The oscillation wavelength adjusting means can adjust the oscillation wavelength of the laser irradiation unit by controlling either one or both of a laser driving current flowing through the laser irradiation unit and a temperature of the laser irradiation unit.

本発明に係るガス分析装置では、目的ガスの濃度を測定する際、複数の吸収線の中から測定に適した吸収線を選択して測定を行うことができる。これにより、1台のガス分析装置で様々な使用条件に対応することができる。また、従来よりも測定可能な濃度範囲を広げ、かつ高精度に測定することが可能となる。   In the gas analyzer according to the present invention, when measuring the concentration of the target gas, it is possible to perform measurement by selecting an absorption line suitable for measurement from a plurality of absorption lines. Thereby, it is possible to cope with various use conditions with one gas analyzer. Further, it is possible to widen the measurable concentration range as compared with the conventional method and measure with high accuracy.

本発明に係るガス分析装置の一実施例である水分測定装置の概略ブロック図。1 is a schematic block diagram of a moisture measuring apparatus that is an embodiment of a gas analyzer according to the present invention. 直接吸収分光法で得られる信号波形の一例を示す図。The figure which shows an example of the signal waveform obtained by a direct absorption spectroscopy. 1.3μm帯におけるレーザ光の波長と水蒸気透過率の関係を示すグラフ。The graph which shows the relationship between the wavelength of a laser beam and a water vapor transmission rate in a 1.3 micrometer band. レーザ光の波長を1.3686μm又は1.3692μmとしたときの、水分濃度と透過率の関係を示すグラフ。The graph which shows the relationship between a water concentration and the transmittance | permeability when the wavelength of a laser beam is 1.3686 micrometers or 1.3692 micrometers. レーザ光の波長を1.3686μm又は1.3692μmとしたときの、水分濃度と透過率の関係を示すグラフ。The graph which shows the relationship between a water concentration and the transmittance | permeability when the wavelength of a laser beam is 1.3686 micrometers or 1.3692 micrometers.

本発明に係るガス分析装置の一実施例である水分測定装置について、添付図面を参照して説明する。図1は本実施例による水分測定装置の概略ブロック図である。なお、この実施例の装置は、直接吸収分光法により被測定ガス中の水分(水蒸気)の濃度を測定するものであるが、特定波長でレーザ光を吸収するガスであれば、他のガス濃度の測定も可能である。   A moisture measuring apparatus which is an embodiment of a gas analyzer according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic block diagram of a moisture measuring apparatus according to this embodiment. The apparatus of this embodiment measures the concentration of water (water vapor) in the gas to be measured by direct absorption spectroscopy. However, other gas concentrations can be used as long as the gas absorbs laser light at a specific wavelength. It is also possible to measure.

本実施例の水分測定装置において、半導体レーザダイオード(LD)1は、制御部2の制御の下にLD駆動部3から供給される駆動電流に応じて、所定の波長範囲で波長が走査されるレーザ光を測定セル4に照射する。LD1としては例えばDFB(Distributed Feedback)型レーザで、水分子が吸収線をもつ1.3μm帯の波長のものを使用することができるが、これ以外でも、水分子の吸収線が存在する波長で発振するような波長可変レーザであれば使用することができる。もちろん、水ではなく別の目的ガスの濃度を測定する場合には、その目的ガスの吸収スペクトルが存在する波長で発振するような波長可変レーザを用いればよい。LD1はまた、制御部2の制御の下にLD温調部5により一定の温度に温調される。   In the moisture measuring apparatus of the present embodiment, the semiconductor laser diode (LD) 1 is scanned in wavelength within a predetermined wavelength range according to the drive current supplied from the LD drive unit 3 under the control of the control unit 2. The measurement cell 4 is irradiated with laser light. For example, a DFB (Distributed Feedback) type laser with a wavelength of 1.3 μm in which water molecules have absorption lines can be used as LD1, but other than this, oscillation occurs at a wavelength at which absorption lines of water molecules exist. Any tunable laser can be used. Of course, when measuring the concentration of another target gas instead of water, a wavelength tunable laser that oscillates at a wavelength where the absorption spectrum of the target gas exists may be used. The LD 1 is also temperature-controlled by the LD temperature adjusting unit 5 under the control of the control unit 2.

測定セル4には被測定ガスが連続的に導入されており、LD1から照射されたレーザ光は測定セル4を通過する間に被測定ガスに含まれる成分による吸収を受ける。そうして吸収を受けた後のレーザ光がフォトダイオード(PD)6に到達し、PD6は受光強度に応じた測定信号を出力する。PD6から出力された測定信号は第一A/D変換器7によりデジタル値に変換され、透過光強度I(ν)としてデータ処理部8に入力される。   The measurement gas is continuously introduced into the measurement cell 4, and the laser light emitted from the LD 1 is absorbed by the components contained in the measurement gas while passing through the measurement cell 4. Thus, the laser beam after receiving the absorption reaches the photodiode (PD) 6, and the PD 6 outputs a measurement signal corresponding to the received light intensity. The measurement signal output from the PD 6 is converted into a digital value by the first A / D converter 7 and input to the data processing unit 8 as transmitted light intensity I (ν).

(2)式により水分量を算出する場合、対象とする吸収線の中心周波数ν0における透過光強度I(ν0)の他に、中心周波数ν0における入射光強度I00)も必要となる。入射光強度I00)については、次の方法により求めることができる。 When calculating the amount of water by the equation (2), in addition to the transmitted light intensity I (ν 0 ) at the center frequency ν 0 of the target absorption line, the incident light intensity I 00 ) at the center frequency ν 0 is also calculated. Necessary. The incident light intensity I 00 ) can be obtained by the following method.

図2は透過光強度I(ν)の信号波形の一例であり、横軸は周波数偏差ν−ν0、縦軸は信号強度である。この図に示すように、周波数偏差ゼロ、すなわち中心周波数ν0付近において吸収スペクトルが観測される。入射光強度I0(ν)は目的ガスによる吸収がないときの信号強度であるから、非吸収領域において測定した透過光強度I(ν)から近似曲線を描き、中心周波数ν0における該近似曲線の値を求めることにより、入射光強度I00)を得ることができる。 FIG. 2 shows an example of a signal waveform of transmitted light intensity I (ν), where the horizontal axis represents frequency deviation ν−ν 0 and the vertical axis represents signal intensity. As shown in this figure, an absorption spectrum is observed at a frequency deviation of zero, that is, near the center frequency ν 0 . Since the incident light intensity I 0 (ν) is the signal intensity when there is no absorption by the target gas, an approximate curve is drawn from the transmitted light intensity I (ν) measured in the non-absorption region, and the approximate curve at the center frequency ν 0 . Is obtained, the incident light intensity I 00 ) can be obtained.

なお、入射光強度I00)は、目的ガス(本実施例では水分)が存在しない状態で予め測定しておいた透過光強度を利用することもできる。 As the incident light intensity I 00 ), the transmitted light intensity measured in advance in the absence of the target gas (moisture in this embodiment) can also be used.

測定セル4内には温度センサ9及び圧力センサ10が配設されており、被測定ガスのガス温度Tと圧力(全圧)Pが測定される。温度センサ9及び圧力センサ10から出力された測定信号は、それぞれ第二A/D変換器11及び第三A/D変換器12によりデジタル値に変換されたうえで、データ処理部8に入力される。
なお、被測定ガスのガス温度が既知である場合には、温度センサ9及び第二A/D変換器11を図1の構成から省くことができる。同様に、被測定ガスの圧力が既知である場合には、圧力センサ10及び第三A/D変換器12を図1の構成から省くことができる。
A temperature sensor 9 and a pressure sensor 10 are disposed in the measurement cell 4, and the gas temperature T and pressure (total pressure) P of the gas to be measured are measured. The measurement signals output from the temperature sensor 9 and the pressure sensor 10 are converted into digital values by the second A / D converter 11 and the third A / D converter 12, respectively, and then input to the data processing unit 8. The
When the gas temperature of the gas to be measured is known, the temperature sensor 9 and the second A / D converter 11 can be omitted from the configuration of FIG. Similarly, when the pressure of the gas to be measured is known, the pressure sensor 10 and the third A / D converter 12 can be omitted from the configuration of FIG.

データ処理部8は、情報記憶部81、吸収線判定部82、濃度算出部83を含む。上記のように、本発明は目的ガスの濃度測定に用いる吸収線を複数にしたことを特徴とする。情報記憶部81には、水分子の濃度測定に用いる様々な情報が、各々の吸収線に対応して記憶されている。ここで、濃度測定に用いる情報とは、例えば制御部2がLD駆動部3及びLD温調部5を制御するための設定値や、吸収線判定部82における判定条件、濃度算出部83の濃度算出に用いる吸収線強度や吸収特性関数、などである。   The data processing unit 8 includes an information storage unit 81, an absorption line determination unit 82, and a concentration calculation unit 83. As described above, the present invention is characterized in that a plurality of absorption lines are used for measuring the concentration of the target gas. In the information storage unit 81, various information used for measuring the concentration of water molecules is stored corresponding to each absorption line. Here, the information used for the concentration measurement is, for example, a set value for the control unit 2 to control the LD driving unit 3 and the LD temperature adjusting unit 5, a determination condition in the absorption line determination unit 82, and a concentration in the concentration calculation unit 83. Absorption line intensity and absorption characteristic function used for calculation.

吸収線判定部82は今回の測定において対象とした水分子の吸収線が測定に適していたか否かを判定するためのものである。吸収線判定部82でその吸収線が適していないと判定された場合、情報記憶部81に保持されている複数の吸収線の情報の中から、今回対象とした吸収線とは別の吸収線の情報を1つ選択する。情報記憶部81には、各々の吸収線に対応するLD1の駆動電流及び温調温度の設定値が保持されている。この設定値は制御部2に送られ、制御部2は該設定値に基づいてLD駆動部3とLD温調部5を制御し、次の測定を開始する。
吸収線判定部82において、対象とした吸収線が測定に適していると判定された場合、濃度算出部83において水分濃度の算出を行う。濃度算出部83は、情報記憶部81に保持されている、その吸収線に対応する吸収線強度及び吸収特性関数の情報を参照しつつ、透過光強度、ガス温度、圧力の各測定値に基づいて濃度を算出する。その結果は出力部13に送られ、モニタ等に該結果が出力される。
The absorption line determination unit 82 is for determining whether or not the absorption lines of water molecules targeted in the current measurement are suitable for the measurement. If the absorption line determination unit 82 determines that the absorption line is not suitable, the absorption line different from the absorption line targeted this time is selected from the information of the plurality of absorption lines held in the information storage unit 81. Select one piece of information. The information storage unit 81 holds setting values of the drive current and temperature control temperature of the LD 1 corresponding to each absorption line. This set value is sent to the control unit 2, and the control unit 2 controls the LD driving unit 3 and the LD temperature adjusting unit 5 based on the set value, and starts the next measurement.
When the absorption line determination unit 82 determines that the target absorption line is suitable for measurement, the concentration calculation unit 83 calculates the water concentration. The concentration calculation unit 83 refers to the measured values of transmitted light intensity, gas temperature, and pressure while referring to the information of the absorption line intensity and the absorption characteristic function corresponding to the absorption line held in the information storage unit 81. To calculate the concentration. The result is sent to the output unit 13, and the result is output to a monitor or the like.

本実施例の水分測定装置の測定動作について、具体例を挙げて説明する。   The measurement operation of the moisture measuring device of the present embodiment will be described with a specific example.

図3は、1.3μm帯において吸収係数が大きい1.3686μm付近の吸収帯を示している。一般的なDFB型レーザの特性では、半導体素子を10℃変化させると、発振波長は1nm程度変化する。従って、中心波長が1.3686μmである吸収線を濃度測定に使用する場合、他の吸収線として実用的な候補となるのは、±5nm以内の吸収係数が相対的に小さい吸収線であり、とりわけ図2に示す中心波長が1.3682μm、1.3689μm、1.3692μmである吸収線を好適に用いることができる。もちろん、これら以外の吸収線を用いても構わない。   FIG. 3 shows an absorption band near 1.3686 μm, which has a large absorption coefficient in the 1.3 μm band. In general DFB-type laser characteristics, when the semiconductor element is changed by 10 ° C., the oscillation wavelength changes by about 1 nm. Therefore, when an absorption line having a center wavelength of 1.3686 μm is used for concentration measurement, a practical candidate as another absorption line is an absorption line having a relatively small absorption coefficient within ± 5 nm, Absorption lines having center wavelengths of 1.3682 μm, 1.3689 μm, and 1.3692 μm shown in FIG. 2 can be preferably used. Of course, other absorption lines may be used.

以下の具体例では、濃度測定に用いる吸収線として中心波長がλ1=1.3686μm、λ2=1.3692μmのものを用いることにする。 In the following specific examples, the absorption lines used for concentration measurement are those having a center wavelength of λ 1 = 1.3686 μm and λ 2 = 1.3692 μm.

図4及び図5は、光路長Lを1000cm、ガス温度Tを300Kとし、レーザ光の波長を1.3686μm、1.3692μmとしたときの、水分濃度と透過率(透過光強度/入射光強度)の関係を示したものである。なお、図4は相対的に低濃度でppmオーダでの変化を、図5は大気中に自然に存在する水蒸気レベルで、10000ppm(1%)前後での変化を、それぞれ示している。これらの図から、吸収係数の大きい1.3686μmの波長では、L=1000cmの場合、ppmオーダ以下の微量水分測定には適しているものの、%オーダではレーザ光が吸収されすぎてしまい、殆どPD6まで届かないことが分かる。一方の1.3692μmの波長では、ppmオーダの水分量変化に対しては透過率の変化が少ないものの、%オーダまで透過率が変化し続けるため、1000cmの光路長で大気レベルの水蒸気量を測定しなければならないような環境では、こちらの波長の吸収線を使用する方が、広範囲且つ高精度に測定することができる。   4 and 5 show the water concentration and transmittance (transmitted light intensity / incident light intensity) when the optical path length L is 1000 cm, the gas temperature T is 300 K, and the wavelength of the laser light is 1.3686 μm and 1.3692 μm. It shows the relationship. FIG. 4 shows a change in ppm order at a relatively low concentration, and FIG. 5 shows a change in water vapor level naturally present in the atmosphere at around 10,000 ppm (1%). From these figures, at a wavelength of 1.3686 μm where the absorption coefficient is large, L = 1000 cm, it is suitable for measuring trace moisture below the ppm order, but the laser light is absorbed too much at the% order, and almost up to PD6. I understand that it does not reach. On the other hand, at a wavelength of 1.3692 μm, although the change in transmittance is small with respect to a change in moisture content on the order of ppm, the transmittance continues to change up to the% order. In such an environment, it is possible to perform measurement over a wide range and with high accuracy by using an absorption line of this wavelength.

次に、測定に使用する吸収線の選択と、各吸収線に対する濃度の算出について説明する。例えば、当初、低濃度水分状態で中心波長λ1=1.3686μm(中心周波数ν1)の吸収線を対象として濃度測定を行っていたとする。ここで、

Figure 2013050403
を吸収線判定部82の判定条件とし、この判定条件が満たされていれば、中心波長λ1=1.3686μmの吸収線の選択が適切であるとして、次の式から水分濃度(水分子数密度)cを算出する。
Figure 2013050403
上式のS1及びK1はν1を中心周波数とする吸収線に対応する吸収線強度と吸収特性関数であり、情報記憶部81に格納された情報と、ガス温度の測定値Tと、圧力の測定値Pとに基づいて算出される。 Next, selection of an absorption line used for measurement and calculation of concentration for each absorption line will be described. For example, assume that concentration measurement is initially performed for an absorption line having a center wavelength λ 1 = 1.3686 μm (center frequency ν 1 ) in a low-concentration moisture state. here,
Figure 2013050403
Is determined as the determination condition of the absorption line determination unit 82. If this determination condition is satisfied, it is determined that the absorption line having the center wavelength λ 1 = 1.3686 μm is appropriate, and the moisture concentration (water molecule number density) is ) Calculate c.
Figure 2013050403
S 1 and K 1 in the above equation are the absorption line intensity and the absorption characteristic function corresponding to the absorption line having ν 1 as the center frequency, the information stored in the information storage unit 81, the measured value T of the gas temperature, Calculated based on the measured pressure value P.

一方、水分濃度が上昇して(10)式の条件が満たされなくなった場合、この吸収線では水分濃度が高過ぎると判断し、λ2=1.3692μm(中心周波数ν2)の吸収線を対象とした測定に切り替える。この際、駆動電流の設定は変えず、LD温調部5の温調温度の設定を6℃程度上昇させると、上記のようにLD1の発振波長が変化し、λ2=1.3692μmの吸収線を対象とした測定を行うことができる。
なお、LD温調部5の温調温度の設定ではなく、駆動電流の設定によって吸収線の切り替えを行っても良い。また、両方の設定を変更することにより、吸収線の切り替えを行っても良い。
On the other hand, if the moisture concentration rises and the condition of equation (10) is not satisfied, it is judged that the moisture concentration is too high for this absorption line, and the absorption line of λ 2 = 1.3692 μm (center frequency ν 2 ) is targeted. Switch to the measurement. At this time, if the setting of the drive current is not changed, and the temperature adjustment temperature setting of the LD temperature adjustment unit 5 is increased by about 6 ° C., the oscillation wavelength of the LD 1 changes as described above, and the absorption line of λ 2 = 1.3692 μm. Can be measured.
Note that the absorption line may be switched not by setting the temperature control temperature of the LD temperature control unit 5 but by setting the drive current. Further, the absorption line may be switched by changing both settings.

一方、λ2=1.3692μmの吸収線を対象とした測定を行う場合、吸収線判定部82は、

Figure 2013050403
を判定条件として用いる。この判定条件が満たされていれば、中心波長λ2=1.3692μmの吸収線の選択が適切であるとして、次の式から水分濃度(水分子数密度)cを算出する。
Figure 2013050403
ここで、S2及びK2はν2を中心周波数とする吸収線に対応する吸収線強度と吸収特性関数であり、情報記憶部81に格納された情報と、ガス温度の測定値Tと、圧力の測定値Pとに基づいて算出される。 On the other hand, when performing the measurement for the absorption line of λ 2 = 1.3692 μm, the absorption line determination unit 82
Figure 2013050403
Is used as a determination condition. If this determination condition is satisfied, the moisture concentration (water molecule number density) c is calculated from the following equation, assuming that the selection of the absorption line with the center wavelength λ 2 = 1.3692 μm is appropriate.
Figure 2013050403
Here, S 2 and K 2 are the absorption line intensity and the absorption characteristic function corresponding to the absorption line having ν 2 as the center frequency, the information stored in the information storage unit 81, the measured value T of the gas temperature, Calculated based on the measured pressure value P.

水分濃度が低下して(12)式の条件が満たされなくなった場合、この吸収線では水分濃度が低過ぎると判断し、LD温調部5の温調温度の設定を6℃程度低下させて、λ1=1.3686μmの吸収線を対象とした測定に切り替える。 If the moisture concentration decreases and the condition of equation (12) is not satisfied, it is determined that the moisture concentration is too low for this absorption line, and the temperature adjustment temperature setting of the LD temperature adjustment unit 5 is reduced by about 6 ° C. , Switch to measurement for the absorption line of λ 1 = 1.3686 μm.

以上、本発明に係るガス分析装置の一実施例を示したが、本発明の趣旨の範囲で適宜に変形や修正、追加などを行っても、本願特許請求の範囲に包含されることは明らかである。   Although one embodiment of the gas analyzer according to the present invention has been described above, it is obvious that modifications, corrections, additions, etc. as appropriate within the scope of the present invention are included in the scope of the claims of the present application. It is.

例えば、上記実施例では吸収線判定部82における判定により自動で測定に適した吸収線が選択されたが、装置が出力部に選択可能な吸収線を示し、分析者が自らその中から1つを選択する構成とすることもできる。   For example, in the above embodiment, an absorption line suitable for measurement is automatically selected by the determination in the absorption line determination unit 82, but the apparatus shows an absorption line that can be selected for the output unit, and the analyst himself selects one of them. It can also be set as the structure which selects.

1…半導体レーザダイオード(LD)
2…制御部
3…LD駆動部
4…測定セル
5…LD温調部
6…フォトダイオード(PD)
7…第一A/D変換器
8…データ処理部
81…情報記憶部
82…吸収線判定部
83…濃度算出部
9…温度センサ
10…圧力センサ
11…第二A/D変換器
12…第三A/D変換器
13…出力部
1 ... Semiconductor laser diode (LD)
2 ... Control unit 3 ... LD drive unit 4 ... Measurement cell 5 ... LD temperature control unit 6 ... Photodiode (PD)
7 ... 1st A / D converter 8 ... Data processing part 81 ... Information storage part 82 ... Absorption line determination part 83 ... Concentration calculation part 9 ... Temperature sensor 10 ... Pressure sensor 11 ... Second A / D converter 12 ... 1st Three A / D converters 13 ... output section

Claims (6)

被測定ガスにレーザ光を照射するレーザ照射部と、前記被測定ガス中を通過したレーザ光を受光する受光部と、を備え、前記受光部で受光したレーザ光の強度から、前記被測定ガスに含まれる目的ガスの濃度を算出するガス分析装置において、
前記目的ガスの複数の吸収線に関する情報と、該複数の吸収線の各々における受光強度から該目的ガスの濃度を算出するための情報と、を記憶する情報記憶手段と、
前記レーザ照射部の発振波長を前記各吸収線に関する情報に基づき設定する発振波長調整手段と、
前記受光部で受光したレーザ光強度と前記各濃度算出情報とに基づいて、前記目的ガスの濃度を算出する濃度算出手段と、
を有することを特徴とするガス分析装置。
A laser irradiation unit that irradiates the gas to be measured with a laser beam; and a light receiving unit that receives the laser beam that has passed through the gas to be measured. From the intensity of the laser beam received by the light receiving unit, In the gas analyzer that calculates the concentration of the target gas contained in
Information storage means for storing information relating to a plurality of absorption lines of the target gas, and information for calculating the concentration of the target gas from the received light intensity in each of the plurality of absorption lines;
An oscillation wavelength adjusting means for setting an oscillation wavelength of the laser irradiation unit based on information on each absorption line;
Concentration calculating means for calculating the concentration of the target gas based on the intensity of the laser beam received by the light receiving unit and each concentration calculation information;
A gas analyzer characterized by comprising:
前記発振波長調整手段が、前記レーザ照射部に流すレーザ駆動電流と該レーザ照射部の温度のいずれか一方又は両方の制御により、前記レーザ照射部の発振波長を調整することを特徴とする請求項1に記載のガス分析装置。   The oscillation wavelength adjusting unit adjusts an oscillation wavelength of the laser irradiation unit by controlling either one or both of a laser driving current passed through the laser irradiation unit and a temperature of the laser irradiation unit. The gas analyzer according to 1. 前記受光部で受光した光の透過率又は吸収率に基づき、前記複数の吸収線の中からその目的ガスの測定に適した吸収線が自動で選択されることを特徴とする請求項1又は2に記載のガス分析装置。   The absorption line suitable for measuring the target gas is automatically selected from the plurality of absorption lines based on the transmittance or absorption rate of light received by the light receiving unit. The gas analyzer described in 1. 前記目的ガスが水分であることを特徴とする請求項1〜3に記載のガス分析装置。   The gas analyzer according to claim 1, wherein the target gas is moisture. 前記水分の濃度測定に使用する複数の吸収線のうち、一つが中心波長1.3686μmの吸収線であり、それ以外の吸収線が1.3636μmから1.3736μmの間にあることを特徴とする請求項4に記載のガス分析装置。   5. The absorption line having a center wavelength of 1.3686 [mu] m among the plurality of absorption lines used for measuring the moisture concentration, and the other absorption line is between 1.3636 [mu] m and 1.3736 [mu] m. The gas analyzer described in 1. 前記水分の濃度測定に使用する複数の吸収線のうち、一つが中心波長1.3686μmの吸収線であり、それ以外が中心波長1.3636μm、1.3689μm、1.3692μmの吸収線のいずれか一つ又は複数であることを特徴とする請求項4に記載のガス分析装置。   Among the plurality of absorption lines used for measuring the moisture concentration, one is an absorption line having a center wavelength of 1.3686 μm, and the other is any one or more of absorption lines having center wavelengths of 1.3636 μm, 1.3689 μm, and 1.3692 μm The gas analyzer according to claim 4, wherein
JP2011189084A 2011-08-31 2011-08-31 Gas analyzer Pending JP2013050403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011189084A JP2013050403A (en) 2011-08-31 2011-08-31 Gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011189084A JP2013050403A (en) 2011-08-31 2011-08-31 Gas analyzer

Publications (2)

Publication Number Publication Date
JP2013050403A true JP2013050403A (en) 2013-03-14
JP2013050403A5 JP2013050403A5 (en) 2013-12-12

Family

ID=48012544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011189084A Pending JP2013050403A (en) 2011-08-31 2011-08-31 Gas analyzer

Country Status (1)

Country Link
JP (1) JP2013050403A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103926200A (en) * 2014-04-25 2014-07-16 西北核技术研究所 CARS (coherent anti-stokes Raman scattering) and TDLAS (tunable diode laser absorption spectroscopy) collinear temperature measurement device
JP2015114259A (en) * 2013-12-13 2015-06-22 三菱日立パワーシステムズ株式会社 Gas analysis method and gas analyzer
JP2015114258A (en) * 2013-12-13 2015-06-22 三菱日立パワーシステムズ株式会社 Gas analysis method and gas analyzer
JP2017166978A (en) * 2016-03-16 2017-09-21 株式会社島津製作所 Flow cell and gas analyzer having flow cell
KR20170126981A (en) * 2015-03-31 2017-11-20 니폰 덴신 덴와 가부시끼가이샤 SO3 analysis method and analyzer
KR20170127501A (en) * 2015-03-31 2017-11-21 니폰 덴신 덴와 가부시끼가이샤 N2O analyzer and analysis method
CN109425590A (en) * 2017-08-30 2019-03-05 韩国生产技术研究院 Multiple gases measure TDLAS alignment simultaneously
WO2019045138A1 (en) * 2017-08-30 2019-03-07 한국생산기술연구원 Alignment system for tdlas for simultaneously measuring multicomponent gas
WO2019045137A1 (en) * 2017-08-30 2019-03-07 한국생산기술연구원 System for precisely measuring fine dust precursors
CN110057779A (en) * 2019-04-28 2019-07-26 西北核技术研究所 Method and apparatus based on temperature self-compensation TDLAS technology measurement gas concentration
WO2019181031A1 (en) * 2018-03-20 2019-09-26 株式会社島津製作所 Gas analysis device
WO2020085236A1 (en) * 2018-10-26 2020-04-30 株式会社フジキン Concentration measurement device
WO2020230775A1 (en) * 2019-05-15 2020-11-19 株式会社堀場製作所 Sample analyzing apparatus
CN117451671A (en) * 2023-12-22 2024-01-26 四川泓宝润业工程技术有限公司 Method and device for inverting gas concentration, storage medium and electronic equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933430A (en) * 1995-04-21 1997-02-07 L'air Liquide Method and device for analyzing minute amount of impurity ingas sample with diode laser
JPH09203707A (en) * 1995-10-10 1997-08-05 L'air Liquide Room flowout object monitoring system, semiconductor processing system with adsorptive spectrometry, and its usage
JP2005345146A (en) * 2004-05-31 2005-12-15 Tdk Corp Measuring instrument of concentration of carbon dioxide, method for measuring concentration of carbon dioxide and combustion device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933430A (en) * 1995-04-21 1997-02-07 L'air Liquide Method and device for analyzing minute amount of impurity ingas sample with diode laser
JPH09203707A (en) * 1995-10-10 1997-08-05 L'air Liquide Room flowout object monitoring system, semiconductor processing system with adsorptive spectrometry, and its usage
JP2005345146A (en) * 2004-05-31 2005-12-15 Tdk Corp Measuring instrument of concentration of carbon dioxide, method for measuring concentration of carbon dioxide and combustion device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014006684; ZONDLO,M.A. 他: '"Vertical cavity laser hygrometer for the National Science, Foundation Gulfstream-V aircraft"' JOURNAL OF GEOPHYSICAL RESEARCH Volume 115, Issue D20, 20101029, Article D20309, 14 Pages *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015114259A (en) * 2013-12-13 2015-06-22 三菱日立パワーシステムズ株式会社 Gas analysis method and gas analyzer
JP2015114258A (en) * 2013-12-13 2015-06-22 三菱日立パワーシステムズ株式会社 Gas analysis method and gas analyzer
CN103926200B (en) * 2014-04-25 2016-03-30 西北核技术研究所 A kind of temperature measuring equipment of CARS and TDLAS conllinear
CN103926200A (en) * 2014-04-25 2014-07-16 西北核技术研究所 CARS (coherent anti-stokes Raman scattering) and TDLAS (tunable diode laser absorption spectroscopy) collinear temperature measurement device
KR102001751B1 (en) * 2015-03-31 2019-07-18 니폰 덴신 덴와 가부시끼가이샤 SO3 analysis method and analyzer
KR20170126981A (en) * 2015-03-31 2017-11-20 니폰 덴신 덴와 가부시끼가이샤 SO3 analysis method and analyzer
KR20170127501A (en) * 2015-03-31 2017-11-21 니폰 덴신 덴와 가부시끼가이샤 N2O analyzer and analysis method
KR102021217B1 (en) * 2015-03-31 2019-09-11 니폰 덴신 덴와 가부시끼가이샤 N₂O Analysis Device and Analysis Method
JP2017166978A (en) * 2016-03-16 2017-09-21 株式会社島津製作所 Flow cell and gas analyzer having flow cell
CN109425590A (en) * 2017-08-30 2019-03-05 韩国生产技术研究院 Multiple gases measure TDLAS alignment simultaneously
KR102029875B1 (en) * 2017-08-30 2019-10-08 한국생산기술연구원 Alignment System for TDLAS of Simultaneous Measurement of Multicomponent Gas
KR20190023856A (en) * 2017-08-30 2019-03-08 한국생산기술연구원 Alignment System for TDLAS of Simultaneous Measurement of Multicomponent Gas
CN109729722A (en) * 2017-08-30 2019-05-07 韩国生产技术研究院 The precision measurement system of micronic dust precursor
KR101992335B1 (en) * 2017-08-30 2019-06-26 한국생산기술연구원 Precision Measurement System for Precursor Materials of Fine Particle
WO2019045137A1 (en) * 2017-08-30 2019-03-07 한국생산기술연구원 System for precisely measuring fine dust precursors
CN109425590B (en) * 2017-08-30 2021-06-11 韩国生产技术研究院 TDLAS alignment system for simultaneously measuring multiple gases
WO2019045138A1 (en) * 2017-08-30 2019-03-07 한국생산기술연구원 Alignment system for tdlas for simultaneously measuring multicomponent gas
KR20190023853A (en) * 2017-08-30 2019-03-08 한국생산기술연구원 Precision Measurement System for Precursor Materials of Fine Particle
WO2019181031A1 (en) * 2018-03-20 2019-09-26 株式会社島津製作所 Gas analysis device
WO2020085236A1 (en) * 2018-10-26 2020-04-30 株式会社フジキン Concentration measurement device
KR20210048542A (en) * 2018-10-26 2021-05-03 가부시키가이샤 후지킨 Concentration measuring device
CN112805551A (en) * 2018-10-26 2021-05-14 株式会社富士金 Concentration measuring device
TWI734226B (en) * 2018-10-26 2021-07-21 日商富士金股份有限公司 The method of measuring the concentration of NO₂ and the method of measuring the concentration of TiCl₄
JPWO2020085236A1 (en) * 2018-10-26 2021-09-16 株式会社フジキン Concentration measuring device
KR102498481B1 (en) * 2018-10-26 2023-02-10 가부시키가이샤 후지킨 concentration measuring device
US11686671B2 (en) 2018-10-26 2023-06-27 Fujikin Incorporated Concentration measurement device
CN110057779A (en) * 2019-04-28 2019-07-26 西北核技术研究所 Method and apparatus based on temperature self-compensation TDLAS technology measurement gas concentration
WO2020230775A1 (en) * 2019-05-15 2020-11-19 株式会社堀場製作所 Sample analyzing apparatus
CN117451671A (en) * 2023-12-22 2024-01-26 四川泓宝润业工程技术有限公司 Method and device for inverting gas concentration, storage medium and electronic equipment

Similar Documents

Publication Publication Date Title
JP2013050403A (en) Gas analyzer
KR101580606B1 (en) Method for the laser spectroscopy of gases
US9546902B2 (en) Method and system for correcting incident light fluctuations in absorption spectroscopy
JP5907442B2 (en) Laser gas analyzer
EP3485254B1 (en) Photothermal interferometry apparatus and method
US7499169B2 (en) Fuel cell and product of combustion humidity sensor
JP6271139B2 (en) thermometer
US10337988B2 (en) Device for measuring moisture in a gas
JP2013117517A (en) Laser type gas analyzer
JP5347983B2 (en) Gas analyzer
KR101767177B1 (en) A measuring method for combustion gas
CN103969200B (en) For the method measuring gas composition concentration in measuring gas
US8891085B2 (en) Gas analyzer
US9459209B2 (en) Gas analysis device
US9007592B2 (en) Gas analyzer
JP5794167B2 (en) Gas analyzer
JP5359832B2 (en) Gas analyzer
JP5423496B2 (en) Laser gas analyzer
US5742399A (en) Method for stabilizing the wavelength in a laser spectrometer system
JP2017101950A (en) Laser gas analyzer
JP2011043461A (en) Gas analyzer
JP2016070687A (en) Concentration measurement device
US11467037B2 (en) Rapid temperature measurement by wavelength modulation spectroscopy
JP5370248B2 (en) Gas analyzer
WO2008011140A2 (en) Humidity sensor for fuel cells and combustion exhaust streams

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131024

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140624