JP2013245802A - Dynamic damper - Google Patents

Dynamic damper Download PDF

Info

Publication number
JP2013245802A
JP2013245802A JP2012121774A JP2012121774A JP2013245802A JP 2013245802 A JP2013245802 A JP 2013245802A JP 2012121774 A JP2012121774 A JP 2012121774A JP 2012121774 A JP2012121774 A JP 2012121774A JP 2013245802 A JP2013245802 A JP 2013245802A
Authority
JP
Japan
Prior art keywords
spring
elastic body
dynamic damper
elastic
spring portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012121774A
Other languages
Japanese (ja)
Other versions
JP5886135B2 (en
Inventor
Masahiro Ikeda
政弘 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2012121774A priority Critical patent/JP5886135B2/en
Publication of JP2013245802A publication Critical patent/JP2013245802A/en
Application granted granted Critical
Publication of JP5886135B2 publication Critical patent/JP5886135B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a dynamic damper which changes a resonance frequency of a spring-mass resonance system in accordance with an increase in the number of revolutions and damps vibration over a wide range of the number of revolutions as a result, and also does not need to secure a space for moving a mass body in a radial direction.SOLUTION: A damper is mounted inside hollow shaft and includes a mounting and a plurality of elastic body springs and mass bodies on the circumference. The elastic body spring has an axial sectional shape which is inclined obliquely to a direction which is orthogonal to a center axial line of the damper. A rotary mass body which is rotated radially by a centrifugal force is assembled to the elastic body spring. When the rotary mass body is rotated radially by the centrifugal force, the elastic body spring is elastically deformed and the obliquely inclined shape of the elastic body spring rises toward the orthogonal direction. Thus, a spring constant becomes high by increasing a compression spring component of the elastic body spring.

Description

本発明は、振動減衰技術に係るダイナミックダンパーに関する。本発明のダイナミックダンパーは例えば、自動車等車両における中空状のプロペラシャフトの内側に装着され、その動的吸振作用によって、プロペラシャフトに発生する曲げ振動などを減衰させる。   The present invention relates to a dynamic damper according to a vibration damping technique. The dynamic damper according to the present invention is mounted, for example, inside a hollow propeller shaft in a vehicle such as an automobile, and attenuates bending vibration generated in the propeller shaft by the dynamic vibration absorbing action.

従来から図4に示すように、中空軸51の内側に装着されるダイナミックダンパー52であって、中空軸51の内周側に取り付けられる取付部53と、取付部53の内周側に設けられた弾性体54と、弾性体54の内周側に設けられた質量体55とを有するダイナミックダンパー52が知られている(特許文献1参照)。   Conventionally, as shown in FIG. 4, the dynamic damper 52 is mounted on the inner side of the hollow shaft 51, and is provided on the inner peripheral side of the mounting portion 53. There is known a dynamic damper 52 having an elastic body 54 and a mass body 55 provided on the inner peripheral side of the elastic body 54 (see Patent Document 1).

上記ダイナミックダンパー52においては、弾性体54をバネ、質量体55をマスとするバネ−マスよりなる共振系が設定され、図5に示すようにこのバネ−マス共振系の共振周波数を中空軸51に発生する曲げ振動の共振周波数fと一致させることにより曲げ振動を低減させることが可能とされるが、共振周波数から外れる領域f,fでは反対に振動レベルが悪化(増大)する問題がある。 In the dynamic damper 52, a resonance system composed of a spring-mass having an elastic body 54 as a spring and a mass body 55 as a mass is set, and the resonance frequency of the spring-mass resonance system is set to a hollow shaft 51 as shown in FIG. It is possible to reduce the bending vibration by making it coincide with the resonance frequency f 0 of the bending vibration occurring in the region, but in the regions f 1 and f 2 deviating from the resonance frequency, the vibration level is worsened (increased). There is.

上記問題に対し図6に示すように、環状の質量体55を円周上分割し、遠心力による質量体55の径方向移動により弾性体54のバネ定数を変化させ、これにより回転数(周波数)の増大に応じてバネ−マス共振系の共振振動数を変化させる構造のものが開発されているが、この構造では質量体55を径方向に移動させるためのスペースが必要とされるため、この分、その外周側に配置される弾性体54を自由に設計できるスペースが減少するという問題がある(特許文献2参照)。   To solve the above problem, as shown in FIG. 6, the annular mass body 55 is divided on the circumference, and the spring constant of the elastic body 54 is changed by the radial movement of the mass body 55 due to the centrifugal force. ) Has been developed to change the resonance frequency of the spring-mass resonance system in response to an increase in the above), but this structure requires a space for moving the mass body 55 in the radial direction. Accordingly, there is a problem that a space for freely designing the elastic body 54 disposed on the outer peripheral side is reduced (see Patent Document 2).

特開2003−314615号公報(図5)Japanese Patent Laying-Open No. 2003-314615 (FIG. 5) 特開平6−94075号公報JP-A-6-94075

本発明は以上の点に鑑みて、回転数(周波数)の増大に応じてバネ−マス共振系の共振振動数を変化させることができ、もって広い回転数領域で振動を減衰させることができるとともに、質量体を径方向に移動させるためのスペースを確保する必要もないダイナミックダンパーを提供することを目的とする。   In view of the above points, the present invention can change the resonance frequency of the spring-mass resonance system in accordance with the increase in the number of rotations (frequency), and thereby can attenuate the vibration in a wide rotation number region. Another object of the present invention is to provide a dynamic damper that does not require a space for moving the mass body in the radial direction.

上記目的を達成するため、本発明の請求項1によるダイナミックダンパーは、中空軸の内側に装着されるダイナミックダンパーであって、前記中空軸の内周側に取り付けられる取付部と、前記取付部の内周側に設けられた円周上複数の弾性体バネ部と、前記弾性体バネ部の内周側に設けられた質量体とを有するダイナミックダンパーにおいて、前記弾性体バネ部は、当該ダイナミックダンパーの中心軸線に直交する方向に対し斜めに傾斜した形状の軸方向断面形状を備え、前記弾性体バネ部に、遠心力により径方向に回転挙動する回転質量体が組み付けられ、前記回転質量体が遠心力により径方向に回転挙動したときに前記弾性体バネ部が弾性変形して前記弾性体バネ部の斜めに傾斜した形状が前記直交する方向へ向けて立ち上げられることにより前記弾性体バネ部の圧縮バネ成分が増大しバネ定数が高くなることを特徴とする。   In order to achieve the above object, a dynamic damper according to claim 1 of the present invention is a dynamic damper mounted on the inner side of a hollow shaft, the mounting portion being mounted on the inner peripheral side of the hollow shaft, In a dynamic damper having a plurality of circumferentially provided elastic spring portions provided on an inner peripheral side and a mass body provided on an inner peripheral side of the elastic spring portion, the elastic spring portion includes the dynamic damper. A rotating mass body having an axial cross-sectional shape inclined obliquely with respect to a direction perpendicular to the central axis of the rotating body, and a rotating mass body that rotates in a radial direction by centrifugal force is assembled to the elastic body spring portion. The elastic spring portion is elastically deformed when it is rotated in the radial direction by centrifugal force, and the slanted shape of the elastic spring portion is raised in the orthogonal direction. Wherein the more the compression spring component of the elastic body spring portion is increased at increased spring constant.

また、本発明の請求項2によるダイナミックダンパーは、上記した請求項1記載のダイナミックダンパーにおいて、前記弾性体バネ部の斜めに傾斜した形状は、底辺に対し上辺が軸方向一方に変位した平行四辺形ないし略平行四辺形状であり、前記回転質量体は、前記弾性体バネ部に埋設された被埋設部の軸方向一方の端部に錘部を設けたものであることを特徴とする。   The dynamic damper according to a second aspect of the present invention is the dynamic damper according to the first aspect, wherein the shape of the elastic spring portion inclined is a parallel four side whose upper side is displaced in one axial direction with respect to the bottom side. The rotating mass body has a weight portion provided at one end in the axial direction of the embedded portion embedded in the elastic body spring portion.

また、本発明の請求項3によるダイナミックダンパーは、上記した請求項2記載のダイナミックダンパーにおいて、前記錘部は、前記弾性体バネ部と一体の弾性体被覆部によって被覆されていることを特徴とする。   The dynamic damper according to claim 3 of the present invention is the dynamic damper according to claim 2, wherein the weight portion is covered with an elastic body covering portion integrated with the elastic body spring portion. To do.

上記構成を備える本発明のダイナミックダンパーにおいて、取付部および質量体間に配置される円周上複数の弾性体バネ部はそれぞれ、当該ダイナミックダンパーの中心軸線に直交する方向に対し斜めに傾斜した形状の軸方向断面形状を備え、すなわち当該ダイナミックダンパーの中心軸線に直交する方向に対し傾斜角が設定されている。またこの弾性体バネ部には、遠心力により径方向に回転挙動する回転質量体が組み付けられている。   In the dynamic damper of the present invention having the above-described configuration, each of the plurality of elastic spring portions on the circumference arranged between the mounting portion and the mass body is inclined with respect to a direction orthogonal to the central axis of the dynamic damper. That is, an inclination angle is set with respect to a direction perpendicular to the central axis of the dynamic damper. In addition, a rotating mass body that rotates in the radial direction by centrifugal force is assembled to the elastic spring portion.

初期状態における弾性体バネ部のバネ成分Kは、上記傾斜角の設定により圧縮バネ成分Kcと、せん断バネ成分Ksとに分けられる。回転数の増加に伴い遠心力により回転質量体が弾性体バネ部内で回転挙動すると上記傾斜角が減少して垂直(軸直角)に近くなるため、KcがKc’、KsがKs’となり、これらはそれぞれ、Kc<Kc’、Ks>Ks’の関係となる。そして元来、圧縮・せん断バネの関係はKc>Ksであることから、K<K’(K’は弾性変形状態における弾性体バネ部のバネ成分)となり、回転数の増加に伴いバネ定数が高くなる作用が得られ、結果としてバネ−マス共振系の共振周波数が回転数とともに上昇する。したがって当初、共振周波数から外れる領域であっても共振周波数が上昇するために、この当初外れる領域の振動を減衰させることが可能とされる。   The spring component K of the elastic body spring portion in the initial state is divided into a compression spring component Kc and a shear spring component Ks depending on the setting of the inclination angle. When the rotating mass body rotates in the elastic body spring portion due to centrifugal force as the number of rotations increases, the inclination angle decreases and becomes close to vertical (right angle to the axis), so that Kc becomes Kc ′ and Ks becomes Ks ′. Respectively have a relationship of Kc <Kc ′, Ks> Ks ′. Originally, since the relationship between the compression and shear springs is Kc> Ks, K <K ′ (K ′ is the spring component of the elastic spring portion in the elastically deformed state), and the spring constant increases with the increase in the rotational speed. As a result, a higher action is obtained, and as a result, the resonance frequency of the spring-mass resonance system increases with the rotational speed. Accordingly, since the resonance frequency rises even in a region that deviates from the resonance frequency at the beginning, it is possible to attenuate the vibration in the region deviating from the initial.

弾性体バネ部の斜めに傾斜した形状は典型的には、底辺に対し上辺が軸方向一方に変位した平行四辺形ないし略平行四辺形状であり、回転数の増加に伴い遠心力により回転質量体が弾性体バネ部内で回転挙動するとこの平行四辺形の左右側辺の傾斜角が減少して垂直(軸直角)に近くなるため、平行四辺形が長方形に近付くかたちに弾性変形する。そしてこのように弾性体バネ部を弾性変形させるため、回転質量体としては、弾性体バネ部に埋設された被埋設部の軸方向一方の端部に錘部を設けたものとする。   The slanted shape of the elastic spring part is typically a parallelogram or a substantially parallelogram in which the upper side is displaced in one axial direction with respect to the base, and the rotating mass body by centrifugal force as the number of rotations increases. Rotating behavior within the elastic body spring portion decreases the inclination angle of the left and right sides of the parallelogram and approaches the vertical (right angle to the axis), so that the parallelogram is elastically deformed to approach a rectangle. In order to elastically deform the elastic body spring portion in this way, the rotating mass body is provided with a weight portion at one end in the axial direction of the embedded portion embedded in the elastic body spring portion.

すなわち、遠心力が作用すると、回転質量体の軸方向一方の端部に設けられた錘部が径方向外方へ向けて変位する。したがって回転質量体は、軸方向一方の端部が径方向外方へ向けて変位するとともに反対側の軸方向他方の端部が径方向内方へ向けて変位するように回転挙動する。これに対し平行四辺形は、底辺に対し上辺が軸方向一方に変位した形状であるため、回転質量体が上記方向に回転挙動すると、平行四辺形が長方形に近付くかたちに弾性変形する。   That is, when the centrifugal force is applied, the weight portion provided at one end portion in the axial direction of the rotating mass body is displaced outward in the radial direction. Therefore, the rotating mass body behaves so that one end portion in the axial direction is displaced outward in the radial direction and the other end portion in the opposite axial direction is displaced inward in the radial direction. On the other hand, the parallelogram is a shape in which the upper side is displaced in one axial direction with respect to the bottom side. Therefore, when the rotating mass body rotates in the above direction, the parallelogram is elastically deformed in the form of approaching a rectangle.

回転質量体の軸方向一方の端部に設けられた錘部が弾性体バネ部から軸方向一方へ突出している場合、この錘部の径方向外方には間隔をあけて取付部が配置され、径方向内方には間隔をあけて質量体が配置されることがある。取付部は中空軸の内周面に取り付けられている。したがってこのような場合、錘部は、取付部および質量体の径方向変位を一定量までに規制する径方向ストッパーとしても機能する。したがって取付部および質量体が大きく径方向変位して弾性体バネ部を過度に圧縮するのを抑制することが可能とされ、これにより弾性体バネ部のバネとしての寿命を延ばすことが可能とされる。   When the weight portion provided at one end of the rotating mass body in the axial direction protrudes from the elastic body spring portion in the axial direction, a mounting portion is disposed at an interval outward in the radial direction of the weight portion. In some cases, mass bodies are arranged at intervals inward in the radial direction. The attachment portion is attached to the inner peripheral surface of the hollow shaft. Therefore, in such a case, the weight portion also functions as a radial stopper that restricts the radial displacement of the attachment portion and the mass body to a certain amount. Accordingly, it is possible to prevent the elastic spring portion from being excessively compressed due to a large radial displacement of the mounting portion and the mass body, thereby extending the life of the elastic spring portion as a spring. The

また、このとき、錘部を、弾性体バネ部と一体の弾性体被覆部によって被覆しておくことにより、錘部が取付部に直接接触して取付部を傷付けるのを抑制することが可能とされる。錘部を含む回転質量体は一般に、所定の質量を確保するため、金属等剛材製の部品とされる。   Further, at this time, by covering the weight portion with the elastic body covering portion integral with the elastic body spring portion, it is possible to suppress the weight portion from directly contacting the mounting portion and damaging the mounting portion. Is done. The rotating mass body including the weight portion is generally a part made of a rigid material such as metal in order to secure a predetermined mass.

本発明は、以下の効果を奏する。   The present invention has the following effects.

すなわち、本発明においては上記したように、回転数の増加に伴い遠心力により回転質量体が弾性体バネ部内で回転挙動すると弾性体バネ部の傾斜角が減少して垂直に近くなるため、バネ定数が高くなり、バネ−マス共振系の共振周波数が回転数とともに上昇する。したがって当初、共振周波数から外れる領域であっても共振周波数が上昇するため、この当初外れる領域の振動を減衰させることが可能とされる。また質量体は、上記従来技術のように円周上分割されておらず、遠心力が作用しても径方向に移動せず、よって移動のためのスペースを必要としない。回転質量体は弾性体バネ部の径方向高さ内に設置されるものである。したがってこれらのことから本願発明によれば所期の目的どおり、回転数(周波数)の増大に応じてバネ−マス共振系の共振振動数を変化させることができ、もって広い回転数領域で振動を減衰させることができるとともに、質量体を径方向に移動させるためのスペースを確保する必要もないダイナミックダンパーを提供することができる。また、回転質量体の錘部を弾性体バネ部と一体の弾性体被覆部によって被覆することにより、錘部が取付部に直接接触して取付部を傷付けるのを抑制することができる。   That is, in the present invention, as described above, if the rotating mass body behaves in the elastic spring portion due to centrifugal force as the number of rotations increases, the inclination angle of the elastic spring portion decreases and becomes nearly vertical. The constant increases, and the resonance frequency of the spring-mass resonance system increases with the rotational speed. Therefore, since the resonance frequency rises even in a region that deviates from the resonance frequency at the beginning, it is possible to attenuate the vibration in the region deviating from the initial. Further, the mass body is not divided on the circumference like the above-described prior art, and does not move in the radial direction even when centrifugal force is applied, and therefore, no space for movement is required. The rotating mass body is installed within the radial height of the elastic spring portion. Therefore, according to the present invention, the resonance frequency of the spring-mass resonance system can be changed in accordance with the increase in the number of rotations (frequency) according to the intended purpose. It is possible to provide a dynamic damper that can be damped and does not require a space for moving the mass body in the radial direction. Further, by covering the weight portion of the rotating mass body with the elastic body covering portion integral with the elastic spring portion, it is possible to suppress the weight portion from directly contacting the mounting portion and damaging the mounting portion.

本発明の実施例に係るダイナミックダンパーの一部切り欠きした斜視図1 is a partially cutaway perspective view of a dynamic damper according to an embodiment of the present invention. 同ダイナミックダンパーの半裁断面図であって、(A)は同ダイナミックダンパーの初期状態を示す半裁断面図、(B)は同ダイナミックダンパーの作動状態を示す半裁断面図FIG. 2A is a half cut sectional view of the dynamic damper, wherein FIG. 2A is a half cut sectional view showing an initial state of the dynamic damper, and FIG. 2B is a half cut sectional view showing an operating state of the dynamic damper. 本発明の他の実施例に係るダイナミックダンパーの半裁断面図Sectional sectional view of a dynamic damper according to another embodiment of the present invention 従来例に係るダイナミックダンパーの断面図Sectional view of a dynamic damper according to a conventional example 周波数と振動レベルとの関係を示すグラフ図A graph showing the relationship between frequency and vibration level 他の従来例に係るダイナミックダンパーの断面図Sectional view of a dynamic damper according to another conventional example

本発明には、以下の実施形態が含まれる。
(1)円周上に分割設置された弾性体バネ部と質量体とからなるダイナミックダンパーにおいて、弾性体バネ部をプロペラシャフト長手方向断面に傾斜させ、中間に遠心力によりバネ部内で径方向に回転挙動し得る遠心質量体を持つことを特徴とするダイナミックダンパー。
(2)前記遠心質量体を弾性体バネ部と同一部材からなる被覆部で被覆したことを特徴とするダイナミックダンパー。
The present invention includes the following embodiments.
(1) In a dynamic damper composed of an elastic body spring part and a mass body divided and installed on the circumference, the elastic body spring part is inclined in the longitudinal section of the propeller shaft, and in the radial direction in the spring part by centrifugal force in the middle. A dynamic damper characterized by having a centrifugal mass that can rotate.
(2) The dynamic damper, wherein the centrifugal mass body is covered with a covering portion made of the same member as the elastic spring portion.

つぎに本発明の実施例を図面にしたがって説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図1および図2は、本発明の実施例に係るダイナミックダンパー11を示している。図2(A)は、同ダイナミックダンパー11の初期状態(同ダイナミックダンパー11に遠心力が作用していない状態)を示し、図2(B)は同ダイナミックダンパー11の作動状態(同ダイナミックダンパー11に遠心力が作用している状態)を示している。   1 and 2 show a dynamic damper 11 according to an embodiment of the present invention. 2A shows an initial state of the dynamic damper 11 (a state where centrifugal force is not acting on the dynamic damper 11), and FIG. 2B shows an operating state of the dynamic damper 11 (the dynamic damper 11). Shows a state in which centrifugal force is acting.

図2(A)に示すように当該実施例に係るダイナミックダンパー11は、中空軸(例えば自動車等車両における中空状のプロペラシャフト)51の内側(内周側)に装着され、その動的吸振作用によって、中空軸51に発生する曲げ振動などを減衰させる。曲げ振動は、中空軸51の中心軸線0に対し直交ないし略直交する方向(軸直角方向)の振動である。   As shown in FIG. 2A, the dynamic damper 11 according to this embodiment is mounted on the inner side (inner peripheral side) 51 of a hollow shaft (for example, a hollow propeller shaft in a vehicle such as an automobile), and its dynamic vibration absorbing action. Thus, the bending vibration generated in the hollow shaft 51 is attenuated. The bending vibration is vibration in a direction orthogonal to or substantially orthogonal to the central axis 0 of the hollow shaft 51 (axis perpendicular direction).

また、当該実施例に係るダイナミックダンパー11は、中空軸51の内周面に取り付けられた取付部12と、取付部12の内周側に設けられた円周上複数の弾性体バネ部16と、弾性体バネ部16の内周側に設けられた質量体17とを有している。   The dynamic damper 11 according to the embodiment includes an attachment portion 12 attached to the inner peripheral surface of the hollow shaft 51, and a plurality of elastic spring portions 16 on the circumference provided on the inner periphery side of the attachment portion 12. And a mass body 17 provided on the inner peripheral side of the elastic body spring portion 16.

このうち、取付部12は、金属等剛材よりなる環状の取付用補強部材(固定用補強部材)13を有し、この取付用補強部材13の外周面にゴム状弾性体よりなる弾性体取付部(弾性体固定部)14が全周に亙って被着(加硫接着)されている。取付部12は、所定の嵌合代をもって中空軸51の内周面に嵌合(固定)されている。   Of these, the mounting portion 12 has an annular mounting reinforcing member (fixing reinforcing member) 13 made of a rigid material such as metal, and an elastic body mounting made of a rubber-like elastic body on the outer peripheral surface of the mounting reinforcing member 13. A portion (elastic body fixing portion) 14 is adhered (vulcanized and bonded) over the entire circumference. The attachment portion 12 is fitted (fixed) to the inner peripheral surface of the hollow shaft 51 with a predetermined fitting allowance.

質量体17は、金属等剛材によって円柱状に成形され、円柱の中心軸線0を中空軸51ないし当該ダイナミックダンパー11の中心軸線0と合致するように配置されている。質量体17は所定の質量を備えている。   The mass body 17 is formed into a cylindrical shape by a rigid material such as a metal, and is arranged so that the central axis 0 of the cylinder coincides with the central axis 0 of the hollow shaft 51 or the dynamic damper 11. The mass body 17 has a predetermined mass.

弾性体バネ部16は、上記したように円周上に複数が配置され(例えば円周上3等配)、それぞれゴム状弾性体よりなり、取付用補強部材13の内周面および質量体17の外周面にそれぞれ被着した環状の弾性体連結部15,18を介して取付用補強部材13および質量体17に連結されている。弾性体バネ部16および弾性体連結部15,18は一体成形されており、これらに加え上記弾性体取付部14も一体成形されたものであっても良い。弾性体バネ部16は所定のバネ定数を備えている。   As described above, a plurality of elastic body spring parts 16 are arranged on the circumference (for example, three on the circumference), each made of a rubber-like elastic body, and the inner circumferential surface of the mounting reinforcing member 13 and the mass body 17. Are connected to the reinforcing member for mounting 13 and the mass body 17 via annular elastic body connecting portions 15 and 18 respectively attached to the outer peripheral surface of each of them. The elastic body spring portion 16 and the elastic body connecting portions 15 and 18 are integrally formed, and in addition to these, the elastic body attaching portion 14 may be integrally formed. The elastic body spring portion 16 has a predetermined spring constant.

弾性体バネ部16は、これを軸方向から見ると径方向に延びるように形成されているが、その軸方向断面形状は図2(A)に示すように、当該ダイナミックダンパー11の中心軸線0に直交する方向(径方向)に対し斜めに傾斜した形状とされ、すなわち当該ダイナミックダンパー11の中心軸線0に直交する方向に対し軸方向一方(図では右方)へ向けての傾斜角θが設定されている。斜めに傾斜した形状は具体的には、底辺16aに対し上辺16bが軸方向一方に変位した平行四辺形ないし略平行四辺形状とされている。   The elastic body spring portion 16 is formed so as to extend in the radial direction when viewed from the axial direction, and the axial cross-sectional shape thereof is the center axis 0 of the dynamic damper 11 as shown in FIG. In other words, the inclination angle θ toward the one axial direction (to the right in the figure) with respect to the direction perpendicular to the central axis 0 of the dynamic damper 11 is inclined. Is set. Specifically, the inclined shape is a parallelogram or a substantially parallelogram in which the upper side 16b is displaced in one axial direction with respect to the base 16a.

また、この弾性体バネ部16にそれぞれ、遠心力を受けて径方向に回転挙動する回転質量体(遠心質量体)21が組み付けられている。   Each elastic spring portion 16 is assembled with a rotating mass body (centrifugal mass body) 21 that receives a centrifugal force and rotates in the radial direction.

すなわちこの回転質量体21は、金属等剛材によって平面状に形成された被埋設部22の軸方向一方の端部22aに錘部23を一体成形したものであって、被埋設部22を弾性体バネ部16に埋設することにより弾性体バネ部16に組み付けられている。被埋設部22は平面長方形状を呈する平板状とされ、その一辺部が全幅に亙ってロール状に丸められることにより所定の重さを備える錘部23が形成されている。   That is, this rotating mass body 21 is formed by integrally forming a weight portion 23 at one end 22a in the axial direction of the embedded portion 22 formed in a planar shape by a rigid material such as metal, and the embedded portion 22 is elastically formed. By being embedded in the body spring portion 16, the elastic body spring portion 16 is assembled. The embedded portion 22 is a flat plate having a planar rectangular shape, and a weight portion 23 having a predetermined weight is formed by rolling one side of the embedded portion into a roll shape over the entire width.

被埋設部22の軸方向一方の端部22aは弾性体バネ部16から軸方向一方へ突出しており、被埋設部22の軸方向他方(図では左方)の端部22bは弾性体バネ部16から軸方向他方へ突出している。したがって被埋設部22の軸方向長さは弾性体バネ部16の軸方向長さよりも少々大きく設定されており、また被埋設部22の円周方向幅も弾性体バネ部16の円周方向幅よりも少々大きく設定されている。したがって被埋設部22は弾性体バネ部16を径方向に分断しているので、弾性体バネ部16は被埋設部22によって、その外周側に配置された外周側バネ部16Aと、内周側に配置された内周側バネ部16Bとに分割され、それぞれが被埋設部22に被着されている。尚、被埋設部22に貫通穴(図示せず)を設けることにより両バネ部16A,16Bは一体成形されたものであっても良い。   One end portion 22a in the axial direction of the embedded portion 22 protrudes from the elastic spring portion 16 in one axial direction, and the other end portion 22b in the axial direction (left side in the figure) of the embedded portion 22 is an elastic spring portion. 16 protrudes from the other side in the axial direction. Accordingly, the axial length of the embedded portion 22 is set slightly larger than the axial length of the elastic spring portion 16, and the circumferential width of the embedded portion 22 is also the circumferential width of the elastic spring portion 16. It is set a little larger than. Therefore, since the embedded portion 22 divides the elastic spring portion 16 in the radial direction, the elastic spring portion 16 is separated from the outer peripheral side spring portion 16A disposed on the outer peripheral side by the embedded portion 22 and the inner peripheral side. And the inner peripheral side spring portion 16 </ b> B disposed on the embedded portion 22. The spring portions 16A and 16B may be integrally formed by providing a through hole (not shown) in the embedded portion 22.

また図2(A)に示したように、回転質量体21はその回転前の初期状態において、被埋設部22の軸方向一方の端部22aが軸方向他方の端部22bよりも径方向内方へ変位するように配置されており、すなわち回転質量体21は当該ダイナミックダンパー11の中心軸線0に対し斜めに傾斜した向きに配置されている。この斜めに傾斜した向きは、上記弾性体バネ部16における斜めに傾斜した形状に対し直交する向きであっても良い。   As shown in FIG. 2A, in the initial state before the rotation of the rotating mass body 21, one end portion 22a in the axial direction of the embedded portion 22 is more radially inward than the other end portion 22b in the axial direction. In other words, the rotating mass body 21 is disposed in an obliquely inclined direction with respect to the central axis 0 of the dynamic damper 11. The obliquely inclined direction may be a direction orthogonal to the obliquely inclined shape of the elastic body spring portion 16.

上記構成を備えるダイナミックダンパー11においては、弾性体バネ部16を所定のバネ定数を備えるバネ、質量体17を所定の質量を備えるマスとするバネ−マスよりなる共振系が設定され、このバネ−マス共振系の共振周波数を中空軸51に発生する曲げ振動の共振周波数と一致させることにより曲げ振動を低減させることが可能とされるが、中空軸51の回転に伴って当該ダイナミックダンパー1に遠心力が作用してこれが増大すると、回転質量体21の軸方向一方の端部に設けられた錘部23が矢印Xをもって示すように、径方向外方へ向けて変位する。したがって回転質量体21は図2(A)から(B)へ示すように、軸方向一方の端部が径方向外方へ向けて変位(矢印X)するとともに反対側の軸方向他方の端部が径方向内方へ向けて変位(矢印Y)するように径方向に回転挙動する。これに対し上記弾性体バネ部16の軸方向断面形状である平行四辺形は、底辺16aに対し上辺16bが軸方向一方に変位した形状であるため、回転質量体21が上記方向に回転挙動すると、傾斜角θが小さくなり、平行四辺形が長方形に近付くかたちに弾性変形する。したがって弾性体バネ部16における径方向の圧縮バネ成分が増大し、バネ定数が高められるため、結果としてバネ−マス共振系の共振周波数が回転数とともに上昇する。したがって当初、共振周波数から外れる領域であっても共振周波数が上昇するため、この当初外れる領域の振動を減衰させることが可能とされている。   In the dynamic damper 11 having the above-described configuration, a resonance system including a spring-mass in which the elastic body spring portion 16 is a spring having a predetermined spring constant and the mass body 17 is a mass having a predetermined mass is set. It is possible to reduce the bending vibration by matching the resonance frequency of the mass resonance system with the resonance frequency of the bending vibration generated in the hollow shaft 51, but the dynamic damper 1 is centrifuged as the hollow shaft 51 rotates. When the force is applied and increases, the weight portion 23 provided at one end portion in the axial direction of the rotating mass body 21 is displaced outward in the radial direction as indicated by an arrow X. Therefore, as shown in FIGS. 2A to 2B, the rotary mass body 21 has one end in the axial direction displaced radially outward (arrow X) and the other end in the opposite axial direction. Behaves in the radial direction so as to be displaced radially inward (arrow Y). On the other hand, the parallelogram which is the axial cross-sectional shape of the elastic body spring portion 16 is a shape in which the upper side 16b is displaced in one axial direction with respect to the base 16a. The inclination angle θ is reduced, and the parallelogram is elastically deformed in the form of a rectangle. Therefore, the radial compression spring component in the elastic body spring portion 16 is increased and the spring constant is increased. As a result, the resonance frequency of the spring-mass resonance system increases with the rotational speed. Therefore, since the resonance frequency rises even in a region that deviates from the resonance frequency at the beginning, it is possible to attenuate the vibration in the region deviating from the initial.

また、質量体17は、上記従来技術のように円周上分割されておらず、遠心力が作用しても径方向に移動せず、移動のためのスペースを必要としない。回転質量体21は、弾性体バネ部16の径方向高さ内に設置されるものである。   Moreover, the mass body 17 is not divided on the circumference like the said prior art, and even if a centrifugal force acts, it does not move to radial direction, and the space for movement is not required. The rotating mass body 21 is installed within the radial height of the elastic body spring portion 16.

したがってこれらのことから、回転数(周波数)の増大に応じてバネ−マス共振系の共振振動数を変化させることができ、もって広い回転数領域で振動を減衰させることができるとともに、質量体17を径方向に移動させるためのスペースを確保する必要もないダイナミックダンパー11を提供することができる。   Therefore, the resonance frequency of the spring-mass resonance system can be changed according to the increase in the rotation speed (frequency), and the vibration can be damped in a wide rotation speed region. Thus, it is possible to provide the dynamic damper 11 that does not need to secure a space for moving the shaft in the radial direction.

また、上記構成のダイナミックダンパー11においては、回転質量体21の軸方向一方の端部に設けられた錘部23が弾性体バネ部16から軸方向一方へ突出し、この錘部23の径方向外方に間隔をあけて取付部12の弾性体連結部15が配置されるとともに径方向内方に間隔をあけて質量体17の弾性体連結部18が配置されているため、錘部23が、取付部12および質量体17の径方向変位を一定量までに規制する径方向ストッパーとして機能する。したがって取付部12および質量体17が大きく径方向変位して弾性体バネ部16を過度に圧縮するのを抑制することが可能とされ、これにより弾性体バネ部16のバネとしての寿命を延ばすことが可能とされている。   Further, in the dynamic damper 11 having the above-described configuration, the weight portion 23 provided at one end portion in the axial direction of the rotating mass body 21 protrudes from the elastic body spring portion 16 in the axial direction, and the weight portion 23 is radially outside. Since the elastic body connecting portion 15 of the mounting portion 12 is arranged with a gap in the direction and the elastic body connecting portion 18 of the mass body 17 is arranged with a gap inward in the radial direction, the weight portion 23 is It functions as a radial stopper that regulates the radial displacement of the mounting portion 12 and the mass body 17 to a certain amount. Therefore, it is possible to suppress the attachment portion 12 and the mass body 17 from being greatly displaced in the radial direction and excessively compressing the elastic spring portion 16, thereby extending the life of the elastic spring portion 16 as a spring. Is possible.

尚、この場合、金属等剛材よりなる錘部23が弾性体連結部15,18に接触してこれを傷付ける虞がある場合には、図3に示すように錘部23を、弾性体バネ部16と一体の弾性体被覆部24によって被覆することが考えられ、これによれば錘部23が弾性体連結部15,18に直接接触して弾性体連結部15,18を傷付けるのを抑制することが可能とされる。図示する例では、錘部23のみならず、被埋設部22の軸方向他方の端部22bも弾性体バネ部16と一体の弾性体被覆部25によって被覆されている。   In this case, when there is a possibility that the weight portion 23 made of a rigid material such as a metal may come into contact with the elastic body connecting portions 15 and 18 and damage the elastic body connecting portions 15 and 18, the weight portion 23 is connected to the elastic spring as shown in FIG. It is conceivable to cover with the elastic body covering portion 24 integral with the portion 16, thereby suppressing the weight portion 23 from directly contacting the elastic body connecting portions 15 and 18 and damaging the elastic body connecting portions 15 and 18. It is possible to do. In the illustrated example, not only the weight portion 23 but also the other end portion 22 b in the axial direction of the embedded portion 22 is covered with an elastic body covering portion 25 integrated with the elastic body spring portion 16.

11 ダイナミックダンパー
12 取付部
13 取付用補強部材
14 弾性体取付部
15,18 弾性体連結部
16 弾性体バネ部
16a 底辺
16b 上辺
16A 外周側バネ部
16B 内周側バネ部
17 質量体
21 回転質量体
22 被埋設部
22a 軸方向一方の端部
22b 軸方向他方の端部
23 錘部
24,25 弾性体被覆部
51 中空軸
0 中心軸線
θ 傾斜角
DESCRIPTION OF SYMBOLS 11 Dynamic damper 12 Mounting part 13 Mounting reinforcement member 14 Elastic body mounting part 15,18 Elastic body connection part 16 Elastic body spring part 16a Bottom 16b Upper side 16A Outer peripheral side spring part 16B Inner peripheral side spring part 17 Mass body 21 Rotating mass body 22 Embedded portion 22a One end portion in the axial direction 22b The other end portion in the axial direction 23 Weight portion 24, 25 Elastic body covering portion 51 Hollow shaft 0 Center axis θ Inclination angle

Claims (3)

中空軸の内側に装着されるダイナミックダンパーであって、前記中空軸の内周側に取り付けられる取付部と、前記取付部の内周側に設けられた円周上複数の弾性体バネ部と、前記弾性体バネ部の内周側に設けられた質量体とを有するダイナミックダンパーにおいて、
前記弾性体バネ部は、当該ダイナミックダンパーの中心軸線に直交する方向に対し斜めに傾斜した形状の軸方向断面形状を備え、
前記弾性体バネ部に、遠心力により径方向に回転挙動する回転質量体が組み付けられ、
前記回転質量体が遠心力により径方向に回転挙動したときに前記弾性体バネ部が弾性変形して前記弾性体バネ部の斜めに傾斜した形状が前記直交する方向へ向けて立ち上げられることにより前記弾性体バネ部の圧縮バネ成分が増大しバネ定数が高くなることを特徴とするダイナミックダンパー。
A dynamic damper mounted on the inner side of the hollow shaft, the mounting portion mounted on the inner peripheral side of the hollow shaft, and a plurality of elastic spring portions on the circumference provided on the inner peripheral side of the mounting portion; In the dynamic damper having a mass body provided on the inner peripheral side of the elastic body spring portion,
The elastic body spring portion has an axial cross-sectional shape that is obliquely inclined with respect to a direction orthogonal to the central axis of the dynamic damper,
A rotating mass body that rotates in a radial direction by centrifugal force is assembled to the elastic spring portion,
When the rotating mass body behaves in a radial direction due to centrifugal force, the elastic spring portion is elastically deformed, and the obliquely inclined shape of the elastic spring portion is raised in the orthogonal direction. A dynamic damper, wherein a compression spring component of the elastic body spring portion is increased and a spring constant is increased.
請求項1記載のダイナミックダンパーにおいて、
前記弾性体バネ部の斜めに傾斜した形状は、底辺に対し上辺が軸方向一方に変位した平行四辺形ないし略平行四辺形状であり、
前記回転質量体は、前記弾性体バネ部に埋設された被埋設部の軸方向一方の端部に錘部を設けたものであることを特徴とするダイナミックダンパー。
The dynamic damper according to claim 1,
The slanted shape of the elastic spring portion is a parallelogram or a substantially parallelogram in which the upper side is displaced in one axial direction with respect to the base.
The dynamic damper according to claim 1, wherein the rotating mass body is provided with a weight portion at one end in the axial direction of the embedded portion embedded in the elastic body spring portion.
請求項2記載のダイナミックダンパーにおいて、
前記錘部は、前記弾性体バネ部と一体の弾性体被覆部によって被覆されていることを特徴とするダイナミックダンパー。
The dynamic damper according to claim 2,
The dynamic damper, wherein the weight portion is covered with an elastic body covering portion integral with the elastic body spring portion.
JP2012121774A 2012-05-29 2012-05-29 Dynamic damper Expired - Fee Related JP5886135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012121774A JP5886135B2 (en) 2012-05-29 2012-05-29 Dynamic damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012121774A JP5886135B2 (en) 2012-05-29 2012-05-29 Dynamic damper

Publications (2)

Publication Number Publication Date
JP2013245802A true JP2013245802A (en) 2013-12-09
JP5886135B2 JP5886135B2 (en) 2016-03-16

Family

ID=49845734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012121774A Expired - Fee Related JP5886135B2 (en) 2012-05-29 2012-05-29 Dynamic damper

Country Status (1)

Country Link
JP (1) JP5886135B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055602A (en) * 2012-09-11 2014-03-27 Nok Corp Dynamic damper for hollow shaft

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365037U (en) * 1989-10-31 1991-06-25
JPH03130937U (en) * 1990-04-16 1991-12-27
JPH04105236U (en) * 1991-02-15 1992-09-10 東海ゴム工業株式会社 dynamic damper
JP2008115914A (en) * 2006-11-01 2008-05-22 Toyota Motor Corp Dynamic damper

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365037U (en) * 1989-10-31 1991-06-25
JPH03130937U (en) * 1990-04-16 1991-12-27
JPH04105236U (en) * 1991-02-15 1992-09-10 東海ゴム工業株式会社 dynamic damper
JP2008115914A (en) * 2006-11-01 2008-05-22 Toyota Motor Corp Dynamic damper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055602A (en) * 2012-09-11 2014-03-27 Nok Corp Dynamic damper for hollow shaft

Also Published As

Publication number Publication date
JP5886135B2 (en) 2016-03-16

Similar Documents

Publication Publication Date Title
JPH05256337A (en) Speed-adaptive torsional vibration damper
KR101366107B1 (en) Flexible coupling with hydraulic vibration damper
US9879742B2 (en) Vibration damper
KR102502553B1 (en) Vibration absorbers for drive trains
US10240658B2 (en) Torsional vibration damping device
JP6711386B2 (en) Housing device for blower motor and vehicle air conditioner
JP6740087B2 (en) Anti-vibration device
JP5886135B2 (en) Dynamic damper
JP2009243503A (en) Strut mount
JP6936051B2 (en) Dynamic damper
US20190186590A1 (en) Damper device
JP5522061B2 (en) Dynamic damper
JP7152326B2 (en) Dynamic vibration absorber
JP7329372B2 (en) dynamic damper
JPH0231626Y2 (en)
JP7453127B2 (en) torsional damper
JP7051661B2 (en) Dynamic damper
JP6605936B2 (en) Pulley noise reduction device
KR101906008B1 (en) Dual mass dynamic damper
JP7183024B2 (en) anti-vibration bush
JP7401206B2 (en) dynamic damper
JP7249768B2 (en) Dynamic vibration absorber
JP2006090530A (en) Vibration control device for rotary shaft
JP7110829B2 (en) dynamic damper
JP6797074B2 (en) Anti-vibration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160210

R150 Certificate of patent or registration of utility model

Ref document number: 5886135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees