JP2014055602A - Dynamic damper for hollow shaft - Google Patents

Dynamic damper for hollow shaft Download PDF

Info

Publication number
JP2014055602A
JP2014055602A JP2012199384A JP2012199384A JP2014055602A JP 2014055602 A JP2014055602 A JP 2014055602A JP 2012199384 A JP2012199384 A JP 2012199384A JP 2012199384 A JP2012199384 A JP 2012199384A JP 2014055602 A JP2014055602 A JP 2014055602A
Authority
JP
Japan
Prior art keywords
hollow shaft
inner peripheral
dynamic damper
elastic body
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012199384A
Other languages
Japanese (ja)
Other versions
JP5944282B2 (en
Inventor
Kunihisa Tago
邦久 田子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2012199384A priority Critical patent/JP5944282B2/en
Publication of JP2014055602A publication Critical patent/JP2014055602A/en
Application granted granted Critical
Publication of JP5944282B2 publication Critical patent/JP5944282B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a dynamic damper 1 that is attached to an inner peripheral surface 2a of a hollow shaft 2 such as a propeller shaft, the dynamic damper 1 showing superior versatility with respect to a change in an inner diameter size of the hollow shaft 2.SOLUTION: The dynamic damper 1 comprises: a mass body 11 loosely inserted into an inner periphery of a hollow shaft 2 being a vibration reduction object; an elastic body 12 which is made of rubber elastic material, is connected to both axial-direction ends of the mass body 11 and fitted to an inner peripheral surface 2a of the hollow shaft 2; and a spring 13 biasing the elastic body 12 from its inner peripheral side toward its diameter. As a result, a desired fitting force of the elastic body 12 against the inner peripheral surface 2a of the hollow shaft 2 is assured by the spring 13 and follow-up ability of the elastic body 12 to a change in diameter size of the inner peripheral surface 2a of the hollow shaft 2 is compensated.

Description

本発明は、例えば自動車のプロペラシャフト等、中空軸の内周空間に取り付けられて、この中空軸に発生する振動や騒音を抑制するダイナミックダンパに関する。   The present invention relates to a dynamic damper that is attached to an inner circumferential space of a hollow shaft, such as a propeller shaft of an automobile, and suppresses vibration and noise generated in the hollow shaft.

自動車のエンジンからトランスミッションを介して出力される駆動力を後輪に伝達するプロペラシャフトの内周空間に取り付けられて、このプロペラシャフトに発生する振動や騒音を抑制するダイナミックダンパの典型的な従来技術が、下記の特許文献1〜4に開示されている。   Typical conventional technology of a dynamic damper that is installed in the inner space of the propeller shaft that transmits the driving force output from the engine of the automobile via the transmission to the rear wheels and suppresses vibration and noise generated in the propeller shaft Are disclosed in Patent Documents 1 to 4 below.

このうち特許文献1に開示されたダイナミックダンパは、図7に示すように、プロペラシャフト100の内周にゴム材料又はゴム状弾性を有する合成樹脂材料からなる弾性層104を介して圧入されるアウターリング101と、その内周に配置した金属製の質量体102との間に、ゴム材料又はゴム状弾性を有する合成樹脂材料からなる弾性体103を介在させ、この弾性体103に円周方向等間隔で形成した複数の弾性支持部103aによって、アウターリング101に質量体102を弾性的に連結したものである。   Among these, the dynamic damper disclosed in Patent Document 1 is an outer press-fitted into the inner periphery of the propeller shaft 100 via an elastic layer 104 made of a rubber material or a synthetic resin material having rubber-like elasticity, as shown in FIG. An elastic body 103 made of a rubber material or a synthetic resin material having rubber-like elasticity is interposed between the ring 101 and a metal mass body 102 arranged on the inner periphery thereof, and the elastic body 103 has a circumferential direction or the like. The mass body 102 is elastically connected to the outer ring 101 by a plurality of elastic support portions 103a formed at intervals.

また、特許文献2に開示されたダイナミックダンパは、図8に示すように、プロペラシャフト200の内周に遊挿される金属製の質量体202の軸方向両側に、プロペラシャフト200の内周面に嵌着される筒状の弾性体201を一体成形したものであって、弾性体201が軸直角方向の入力振動に対して剪断ばねとなるため、ばね定数を低くして、低周波領域での優れた動的吸振特性を確保することができる。   Further, as shown in FIG. 8, the dynamic damper disclosed in Patent Document 2 is arranged on both sides in the axial direction of the metal mass body 202 inserted loosely on the inner periphery of the propeller shaft 200, and on the inner peripheral surface of the propeller shaft 200. The cylindrical elastic body 201 to be fitted is integrally formed, and since the elastic body 201 becomes a shear spring with respect to the input vibration in the direction perpendicular to the axis, the spring constant is lowered to reduce the low frequency region. Excellent dynamic vibration absorption characteristics can be ensured.

また、特許文献3に開示されたダイナミックダンパは、図9に示すように、プロペラシャフト300の内周に遊挿される金属製の質量体302の軸方向両側に、固定金具303の圧入によってプロペラシャフト300の内周面に嵌着される筒状の弾性体301を一体成形したもので、図8に示すダイナミックダンパと同様、弾性体301が軸直角方向の入力振動に対して剪断ばねとなるものである。   Further, as shown in FIG. 9, the dynamic damper disclosed in Patent Document 3 includes a propeller shaft by press-fitting fixing metal fittings 303 on both sides in the axial direction of a metal mass body 302 that is loosely inserted into the inner periphery of the propeller shaft 300. A cylindrical elastic body 301 that is fitted to the inner peripheral surface of 300 is integrally formed. Like the dynamic damper shown in FIG. 8, the elastic body 301 becomes a shear spring against input vibration in the direction perpendicular to the axis. It is.

さらに、特許文献4に開示されたダイナミックダンパも同様であって、図10に示すように、プロペラシャフト400の内周に遊挿される金属製の質量体402の軸方向両側に、プロペラシャフト400の内周面に嵌着される環状の弾性体401を一体成形したものであり、弾性体401が軸直角方向の入力振動に対して剪断ばねとなるものである。   Further, the dynamic damper disclosed in Patent Document 4 is the same, and as shown in FIG. 10, the propeller shaft 400 is provided on both sides in the axial direction of the metal mass body 402 that is loosely inserted into the inner periphery of the propeller shaft 400. An annular elastic body 401 fitted on the inner peripheral surface is integrally formed, and the elastic body 401 serves as a shear spring against input vibration in the direction perpendicular to the axis.

特開平9−53686号公報JP-A-9-53686 特開2007−177830号公報JP 2007-177830 A 特開平5−149386号公報JP-A-5-149386 特開2003−294025号公報JP 2003-294025 A

しかしながら、図7〜図10(特許文献1〜4)のダイナミックダンパは、いずれもプロペラシャフトの内周面に対する所要の嵌合力や固有振動数を確保するため、弾性体がプロペラシャフトの内周面に圧入嵌着される構造となっており、このため、プロペラシャフトの内径寸法の変更に対して弾性体が追従できず、プロペラシャフトの内周面に対する嵌合力が大きく変化してしまうため、プロペラシャフトの内径寸法に合わせた弾性体の径寸法などの変更が必要になっていた。   However, in any of the dynamic dampers shown in FIGS. 7 to 10 (Patent Documents 1 to 4), the elastic body is the inner peripheral surface of the propeller shaft in order to ensure the required fitting force and natural frequency with respect to the inner peripheral surface of the propeller shaft. For this reason, the elastic body cannot follow the change in the inner diameter of the propeller shaft, and the fitting force with respect to the inner peripheral surface of the propeller shaft greatly changes. It has been necessary to change the diameter of the elastic body according to the inner diameter of the shaft.

本発明は、以上のような点に鑑みてなされたもので、その技術的課題は、プロペラシャフトなどの中空軸の内周面に取り付けられるダイナミックダンパにおいて、中空軸の内径寸法の変更などに対する汎用性に優れたダイナミックダンパを提供することにある。   The present invention has been made in view of the above points, and its technical problem is that the dynamic damper attached to the inner peripheral surface of a hollow shaft such as a propeller shaft can be used for various purposes such as changing the inner diameter of the hollow shaft. It is to provide a dynamic damper having excellent properties.

上述した技術的課題を有効に解決するための手段として、請求項1の発明に係る中空軸用ダイナミックダンパは、振動低減対象の中空軸の内周に遊挿される質量体と、この質量体の軸方向両側に結合されると共に前記中空軸の内周面に嵌着されるゴム状弾性材料からなる弾性体と、前記弾性体をその内周側から径方向へ向けて付勢するばねを備えるものである。なお、ここでいうゴム状弾性材料は、ゴム材料又はゴム状弾性を有する合成樹脂材料のことである。   As a means for effectively solving the technical problem described above, a hollow shaft dynamic damper according to the invention of claim 1 includes a mass body loosely inserted on an inner periphery of a hollow shaft to be reduced in vibration, An elastic body made of a rubber-like elastic material that is coupled to both axial sides and is fitted to the inner peripheral surface of the hollow shaft, and a spring that biases the elastic body in the radial direction from the inner peripheral side thereof. Is. The rubber-like elastic material here is a rubber material or a synthetic resin material having rubber-like elasticity.

請求項1の構成を備える中空軸用ダイナミックダンパによれば、弾性体が質量体の軸方向両側に結合されると共に中空軸の内周面に嵌着されることによって、径方向に対して剪断ばねとなるので、径方向への自由度が高くなる。そしてこの弾性体は、その内周側に配置されたばねで径方向外側へ向けて付勢されることによって中空軸の内周面に対する所要の嵌合力が確保され、中空軸の内周面の径寸法の変更に対する弾性体の追随性がばねの付勢力によって補償される。   According to the hollow shaft dynamic damper having the configuration of claim 1, the elastic body is coupled to both sides in the axial direction of the mass body and fitted to the inner peripheral surface of the hollow shaft, thereby shearing in the radial direction. Since it becomes a spring, the freedom degree to a radial direction becomes high. The elastic body is biased toward the radially outer side by a spring disposed on the inner peripheral side thereof, so that a required fitting force to the inner peripheral surface of the hollow shaft is ensured, and the diameter of the inner peripheral surface of the hollow shaft is ensured. The followability of the elastic body to the change in dimension is compensated by the biasing force of the spring.

請求項2の発明に係る中空軸用ダイナミックダンパは、請求項1に記載された構成において、弾性体が円周方向複数に分割されたことを特徴とするものである。   A dynamic damper for a hollow shaft according to a second aspect of the invention is characterized in that, in the configuration described in the first aspect, the elastic body is divided into a plurality of circumferential directions.

請求項2の構成を備える中空軸用ダイナミックダンパによれば、弾性体が円周方向複数に分割されたことによってその径方向の自由度が大きくなるため、中空軸の内周面の径寸法の変更に対する弾性体の追随性が一層向上する。   According to the dynamic damper for a hollow shaft having the configuration according to claim 2, since the degree of freedom in the radial direction is increased by dividing the elastic body into a plurality of circumferential directions, the radial dimension of the inner peripheral surface of the hollow shaft is increased. The followability of the elastic body to the change is further improved.

本発明に係る中空軸用ダイナミックダンパによれば、中空軸の内周面の径寸法の変更に対する弾性体の追随性がばねの付勢力によって向上し、中空軸の内周面に対する弾性体の嵌合力がばねの付勢力によって補償されるので、中空軸の内径寸法の変更に対する汎用性を向上させることができる。   According to the dynamic damper for a hollow shaft according to the present invention, the followability of the elastic body to a change in the diameter of the inner peripheral surface of the hollow shaft is improved by the biasing force of the spring, and the elastic body is fitted to the inner peripheral surface of the hollow shaft. Since the resultant force is compensated by the biasing force of the spring, versatility with respect to a change in the inner diameter dimension of the hollow shaft can be improved.

本発明に係る中空軸用ダイナミックダンパの好ましい実施の形態を、軸心を通る平面で切断して示す装着状態の断面図である。It is sectional drawing of the mounting state which cut | disconnects and shows preferable embodiment of the dynamic damper for hollow shafts which concerns on this invention by the plane which passes along an axial center. 本発明に係る中空軸用ダイナミックダンパの好ましい実施の形態を示す斜視図である。It is a perspective view which shows preferable embodiment of the dynamic damper for hollow shafts which concerns on this invention. 本発明に係る中空軸用ダイナミックダンパの好ましい実施の形態を、軸心を通る平面で切断して示す断面斜視図である。1 is a cross-sectional perspective view showing a preferred embodiment of a hollow shaft dynamic damper according to the present invention by cutting along a plane passing through an axis. 本発明で用いられるばねの一例を示す斜視図である。It is a perspective view which shows an example of the spring used by this invention. 本発明で用いられるばねの他の例を示す斜視図である。It is a perspective view which shows the other example of the spring used by this invention. 本発明に係る中空軸用ダイナミックダンパの好ましい実施の形態を異形のプロペラシャフトに装着した状態を、軸心を通る平面で切断して示す断面図である。It is sectional drawing which cut | disconnects the preferable embodiment of the dynamic damper for hollow shafts which concerns on this invention to the odd-shaped propeller shaft, and cut | disconnects by the plane which passes along an axial center. 従来の中空軸用ダイナミックダンパの一例を、軸心を通る平面で切断して示す断面図である。It is sectional drawing which cuts and shows an example of the conventional dynamic damper for hollow shafts in the plane which passes along an axial center. 従来の中空軸用ダイナミックダンパの他の例を、軸心を通る平面で切断して示す断面斜視図である。It is a cross-sectional perspective view which cuts and shows the other example of the conventional dynamic damper for hollow shafts in the plane which passes along an axial center. 従来の中空軸用ダイナミックダンパの他の例を、軸心を通る平面で切断して示す断面図である。It is sectional drawing which cuts and shows the other example of the conventional dynamic damper for hollow shafts in the plane which passes along an axial center. 従来の中空軸用ダイナミックダンパの他の例を、軸心を通る平面で切断して示す断面図である。It is sectional drawing which cuts and shows the other example of the conventional dynamic damper for hollow shafts in the plane which passes along an axial center.

以下、本発明に係る中空軸用ダイナミックダンパの好ましい実施の形態を、図面を参照しながら説明する。   Hereinafter, preferred embodiments of a dynamic damper for a hollow shaft according to the present invention will be described with reference to the drawings.

図1に示すように、この実施の形態におけるダイナミックダンパ1は、自動車のプロペラシャフト2の内周面2aに取り付けられるものである。なお、プロペラシャフト2は請求項1に記載された中空軸に相当する。   As shown in FIG. 1, the dynamic damper 1 in this embodiment is attached to an inner peripheral surface 2a of a propeller shaft 2 of an automobile. The propeller shaft 2 corresponds to the hollow shaft described in claim 1.

ダイナミックダンパ1は、振動低減対象のプロペラシャフト2の内周に遊挿される質量体11と、この質量体11に、その軸方向両側に位置してゴム状弾性材料(ゴム材料又はゴム状弾性を有する合成樹脂材料)で一体成形された弾性体12,12と、各弾性体12をその内周側から径方向外側へ向けて付勢するばね13,13を備える。   The dynamic damper 1 includes a mass body 11 that is loosely inserted into the inner periphery of the propeller shaft 2 that is subject to vibration reduction, and a rubber-like elastic material (rubber material or rubber-like elasticity that is positioned on both sides in the axial direction of the mass body 11. And the elastic bodies 12 and 12 integrally formed with the synthetic resin material) and springs 13 and 13 for urging each elastic body 12 from the inner peripheral side thereof toward the radially outer side.

このうち、質量体11は例えば金属製の比較的厚肉の円筒体からなるものであって、プロペラシャフト2の内周面2aよりも小径に形成されている。   Among these, the mass body 11 is made of a relatively thick cylindrical body made of metal, for example, and has a smaller diameter than the inner peripheral surface 2 a of the propeller shaft 2.

弾性体12,12は図2又は図3に示すようにそれぞれコレットチャックのような分割形状をなすものであって、すなわち、円錐台をV字凹部12a及びその最深部から径方向かつ軸方向へ延びる溝12bによって円周方向に分割した形状の、四つの弾性ブロック121からなり、円錐台の底面に相当する端面(円筒状の質量体11の中心軸線に対して直交する面)が軸方向外側を向くように、質量体11の軸方向両側に配置されると共に、各弾性ブロック121の根元部分が質量体11の軸方向両端部に加硫接着されている。   As shown in FIG. 2 or FIG. 3, each of the elastic bodies 12 and 12 has a divided shape like a collet chuck. That is, the truncated cone is formed in a radial direction and an axial direction from the V-shaped recess 12a and its deepest portion. It is composed of four elastic blocks 121 having a shape divided in the circumferential direction by the extending grooves 12b, and an end surface corresponding to the bottom surface of the truncated cone (a surface perpendicular to the central axis of the cylindrical mass body 11) is axially outside. Are arranged on both sides in the axial direction of the mass body 11, and the base portion of each elastic block 121 is vulcanized and bonded to both end portions in the axial direction of the mass body 11.

各弾性体12を構成する弾性ブロック121,121,・・・は、その根元部分が互いに円周方向へ連続している。   The elastic blocks 121, 121,... Constituting each elastic body 12 have their root portions continuous in the circumferential direction.

ばね13は、例えば図4に示すように、金属管131を輪切りにしてそれを円周方向一カ所で切断したものや、図5に示すように、ワイヤ132をC字形に成形したワイヤスプリングなどが好適に用いられる。そして各弾性体12の内周(弾性ブロック121の内周)は、円筒状の質量体11の内周穴11aと同心の円形穴12cとなっており、ばね13は、この円形穴12c内に配置されると共に、弾性体12における各弾性ブロック121の内周面と嵌合している。   For example, as shown in FIG. 4, the spring 13 is formed by cutting a metal tube 131 into a ring and cutting it at one place in the circumferential direction, as shown in FIG. 5, or a wire spring in which a wire 132 is formed in a C shape. Are preferably used. The inner periphery of each elastic body 12 (the inner periphery of the elastic block 121) is a circular hole 12c concentric with the inner peripheral hole 11a of the cylindrical mass body 11, and the spring 13 is in the circular hole 12c. It arrange | positions and it fits with the internal peripheral surface of each elastic block 121 in the elastic body 12. FIG.

なお、ばね13は図示のものには限定されないが、径方向への付勢力を発生するものであって線形又はそれに近似するばね特性を有するものであることが好ましい。   The spring 13 is not limited to the illustrated one, but preferably generates a biasing force in the radial direction and has a linear or approximate spring characteristic.

弾性体12の外径、言い換えれば各弾性ブロック121の外径部121aは、質量体11の外径より大径である。また、ばね13の拡径変形力により径方向外側へ向けて付勢された各弾性ブロック121の外径部121aは、プロペラシャフト2の内周面2aに対して適当な締め代をもっており、すなわちプロペラシャフト2への装着前の状態では、このプロペラシャフト2の内周面2aより適宜大径となっている。   The outer diameter of the elastic body 12, in other words, the outer diameter portion 121 a of each elastic block 121 is larger than the outer diameter of the mass body 11. Further, the outer diameter portion 121a of each elastic block 121 urged outward in the radial direction by the diameter expansion deformation force of the spring 13 has an appropriate tightening margin with respect to the inner peripheral surface 2a of the propeller shaft 2. In a state before being mounted on the propeller shaft 2, the diameter is appropriately larger than the inner peripheral surface 2a of the propeller shaft 2.

ダイナミックダンパ1の径方向共振周波数は、質量体11の質量と、弾性ブロック121の径方向剪断ばね定数によって、プロペラシャフト2に生じる径方向振動の振幅が最大となる周波数帯域に設定される。   The radial resonance frequency of the dynamic damper 1 is set to a frequency band in which the amplitude of radial vibration generated in the propeller shaft 2 is maximized by the mass of the mass body 11 and the radial shear spring constant of the elastic block 121.

以上のように構成されたダイナミックダンパ1は、図1に示すように、質量体11の軸方向両側の弾性体12,12を、プロペラシャフト2の内周面2aにおける所定の位置へ圧入嵌着することによって取り付けられる。   As shown in FIG. 1, the dynamic damper 1 configured as described above press-fits the elastic bodies 12, 12 on both sides in the axial direction of the mass body 11 to predetermined positions on the inner peripheral surface 2 a of the propeller shaft 2. It is attached by doing.

このとき、弾性体12,12は、プロペラシャフト2の内周面2aへの圧入によって各弾性ブロック121が径方向内側へ撓む。このため、各弾性体12の内周の円形穴12cに弾性ブロック121の内周面と嵌合状態で配置されたばね13が縮径変形を受けることによって、弾性体12(弾性ブロック121)をプロペラシャフト2の内周面2aに押し付ける付勢力を生じる。   At this time, in the elastic bodies 12, 12, each elastic block 121 is bent radially inward by press-fitting into the inner peripheral surface 2 a of the propeller shaft 2. For this reason, the elastic body 12 (elastic block 121) is propellerd by the diameter reduction deformation of the spring 13 disposed in a state of fitting with the inner peripheral surface of the elastic block 121 in the circular hole 12c on the inner periphery of each elastic body 12. An urging force that presses against the inner peripheral surface 2a of the shaft 2 is generated.

ここで、例えばダイナミックダンパの固定力を、プロペラシャフトへの圧入による弾性体の圧縮反力にのみ依存する場合は、ゴム状弾性材料の圧縮反力は圧縮量に対して非線形的に変化するため、圧縮量が僅かに小さいだけでもプロペラシャフトの内周面に対する固定力が著しく減少し、逆に圧縮量が僅かに大きくなるだけでもプロペラシャフトの内周面に対する固定力が著しく増大し、しかも径方向共振周波数も大きく変化してしまう。   Here, for example, when the fixing force of the dynamic damper depends only on the compression reaction force of the elastic body due to press-fitting into the propeller shaft, the compression reaction force of the rubber-like elastic material changes nonlinearly with the amount of compression. Even if the compression amount is slightly small, the fixing force on the inner peripheral surface of the propeller shaft is remarkably reduced. Conversely, even if the compression amount is slightly increased, the fixing force on the inner peripheral surface of the propeller shaft is remarkably increased. The directional resonance frequency also changes greatly.

これに対し、図示の実施の形態によれば、弾性体12は、それぞれ円周方向へ複数の弾性ブロック121に分割されたことによって径方向の自由度が大きく、しかも金属からなるばね13は、径方向への撓み量に対して線形的なばね特性を有するため、プロペラシャフト2の内周面2aに対する弾性体12(弾性ブロック121)の嵌合力を有効に補償することができる。すなわち、プロペラシャフト1の内径寸法の変更に対して弾性体12(弾性ブロック121)が追従して良好な嵌着状態を確保することができ、弾性体12自体の圧縮量の変化によるダンパ特性の変化も軽減されるため、プロペラシャフト1の内径寸法の変更に対する汎用性が向上する。   On the other hand, according to the illustrated embodiment, the elastic body 12 is divided into a plurality of elastic blocks 121 in the circumferential direction, thereby providing a large degree of freedom in the radial direction, and the spring 13 made of metal is Since it has a linear spring characteristic with respect to the amount of bending in the radial direction, the fitting force of the elastic body 12 (elastic block 121) to the inner peripheral surface 2a of the propeller shaft 2 can be effectively compensated. That is, the elastic body 12 (elastic block 121) can follow the change in the inner diameter dimension of the propeller shaft 1 to ensure a good fitting state, and the damper characteristic due to the change in the compression amount of the elastic body 12 itself. Since the change is also reduced, the versatility with respect to the change of the inner diameter dimension of the propeller shaft 1 is improved.

しかも、弾性ブロック121の外径部121aに、プロペラシャフト2の内周面2aとの圧接によるヘタリを生じても、それによる嵌合力の低下がばね13によって補償されるので、長期間にわたって安定した嵌合力を維持することができる。   In addition, even if the outer diameter portion 121a of the elastic block 121 is settling due to the pressure contact with the inner peripheral surface 2a of the propeller shaft 2, the decrease in the fitting force caused thereby is compensated by the spring 13, so that it is stable over a long period of time. The fitting force can be maintained.

また、図6に示すように、プロペラシャフト2が異形のもの、例えば大径部分21と、その軸方向両側に小径部分22が形成されたものであって、ダイナミックダンパ1を大径部分21の内周面21aに装着したいような場合、従来構造のものでは、小径部分22を通過させる際に弾性体の圧縮量が過大となって圧入抵抗が大きくなり、このため装着が困難であったが、本発明に係るダイナミックダンパ1によれば、径方向に対する弾性体12(弾性ブロック121)の自由度が大きいので、プロペラシャフト2の小径部分22の内周面22aを容易に通過することができ、小径部分22を通過した後はばね13の付勢力によって弾性ブロック121が拡径され、プロペラシャフト2の大径部分21の内周面21aに対する十分な嵌合力を確保することができる。   Further, as shown in FIG. 6, the propeller shaft 2 has an irregular shape, for example, a large diameter portion 21 and small diameter portions 22 formed on both sides in the axial direction, and the dynamic damper 1 is connected to the large diameter portion 21. When it is desired to attach to the inner peripheral surface 21a, in the case of the conventional structure, when the small diameter portion 22 is passed, the amount of compression of the elastic body becomes excessive and the press-fitting resistance increases, so that the attachment is difficult. According to the dynamic damper 1 according to the present invention, since the degree of freedom of the elastic body 12 (elastic block 121) in the radial direction is large, it can easily pass through the inner peripheral surface 22a of the small diameter portion 22 of the propeller shaft 2. After passing through the small-diameter portion 22, the elastic block 121 is expanded in diameter by the biasing force of the spring 13, and a sufficient fitting force with respect to the inner peripheral surface 21 a of the large-diameter portion 21 of the propeller shaft 2 is ensured. It can be.

1 ダイナミックダンパ
2 プロペラシャフト(中空軸)
11 質量体
12 弾性体
121 弾性ブロック
13 ばね
1 Dynamic damper 2 Propeller shaft (hollow shaft)
11 Mass body 12 Elastic body 121 Elastic block 13 Spring

Claims (2)

振動低減対象の中空軸の内周に遊挿される質量体と、この質量体の軸方向両側に結合されると共に前記中空軸の内周面に嵌着されるゴム状弾性材料からなる弾性体と、前記弾性体をその内周側から径方向へ向けて付勢するばねを備えることを特徴とする中空軸用ダイナミックダンパ。   A mass body loosely inserted into the inner periphery of the hollow shaft to be reduced in vibration, and an elastic body made of a rubber-like elastic material coupled to both sides in the axial direction of the mass body and fitted to the inner peripheral surface of the hollow shaft; A hollow shaft dynamic damper comprising a spring for urging the elastic body in a radial direction from an inner peripheral side thereof. 弾性体が円周方向複数に分割されたことを特徴とする請求項1に記載の中空軸用ダイナミックダンパ。   The hollow shaft dynamic damper according to claim 1, wherein the elastic body is divided into a plurality of circumferential directions.
JP2012199384A 2012-09-11 2012-09-11 Dynamic damper for hollow shaft Expired - Fee Related JP5944282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012199384A JP5944282B2 (en) 2012-09-11 2012-09-11 Dynamic damper for hollow shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012199384A JP5944282B2 (en) 2012-09-11 2012-09-11 Dynamic damper for hollow shaft

Publications (2)

Publication Number Publication Date
JP2014055602A true JP2014055602A (en) 2014-03-27
JP5944282B2 JP5944282B2 (en) 2016-07-05

Family

ID=50613106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012199384A Expired - Fee Related JP5944282B2 (en) 2012-09-11 2012-09-11 Dynamic damper for hollow shaft

Country Status (1)

Country Link
JP (1) JP5944282B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190001074A (en) * 2017-06-26 2019-01-04 주식회사 센트랄 Damper of hollow drive shaft
DE102018114237A1 (en) * 2018-06-14 2019-12-19 Henniges Automotive Gmbh & Co. Kg Vibration damper for hollow shafts

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5881129U (en) * 1981-11-30 1983-06-01 日野自動車株式会社 Propeller shaft vibration damping device
JPH05149386A (en) * 1991-11-25 1993-06-15 Tokai Rubber Ind Ltd Dynamic damper for hollow drive shaft
JPH0911762A (en) * 1995-06-27 1997-01-14 Showa:Kk Dynamic damper structure of propeller shaft
US6312340B1 (en) * 1997-06-20 2001-11-06 Contitech Formteile Gmbh Hollow drive shaft with integrated vibration absorber
JP2003247596A (en) * 2002-02-26 2003-09-05 Nok Corp Dynamic damper
JP2007147006A (en) * 2005-11-29 2007-06-14 Tokai Rubber Ind Ltd Vibration control device and its manufacturing method
JP2007177830A (en) * 2005-12-27 2007-07-12 Hokushin Ind Inc Dynamic damper and hollow propeller with it
JP2008185149A (en) * 2007-01-30 2008-08-14 Showa Corp Propeller shaft
JP2011140977A (en) * 2010-01-06 2011-07-21 Nok Corp Dynamic damper
JP2011220445A (en) * 2010-04-09 2011-11-04 Nok Corp Dynamic damper for hollow rotating shaft
JP2013245802A (en) * 2012-05-29 2013-12-09 Nok Corp Dynamic damper

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5881129U (en) * 1981-11-30 1983-06-01 日野自動車株式会社 Propeller shaft vibration damping device
JPH05149386A (en) * 1991-11-25 1993-06-15 Tokai Rubber Ind Ltd Dynamic damper for hollow drive shaft
JPH0911762A (en) * 1995-06-27 1997-01-14 Showa:Kk Dynamic damper structure of propeller shaft
US6312340B1 (en) * 1997-06-20 2001-11-06 Contitech Formteile Gmbh Hollow drive shaft with integrated vibration absorber
JP2003247596A (en) * 2002-02-26 2003-09-05 Nok Corp Dynamic damper
JP2007147006A (en) * 2005-11-29 2007-06-14 Tokai Rubber Ind Ltd Vibration control device and its manufacturing method
JP2007177830A (en) * 2005-12-27 2007-07-12 Hokushin Ind Inc Dynamic damper and hollow propeller with it
JP2008185149A (en) * 2007-01-30 2008-08-14 Showa Corp Propeller shaft
JP2011140977A (en) * 2010-01-06 2011-07-21 Nok Corp Dynamic damper
JP2011220445A (en) * 2010-04-09 2011-11-04 Nok Corp Dynamic damper for hollow rotating shaft
JP2013245802A (en) * 2012-05-29 2013-12-09 Nok Corp Dynamic damper

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190001074A (en) * 2017-06-26 2019-01-04 주식회사 센트랄 Damper of hollow drive shaft
KR102020348B1 (en) * 2017-06-26 2019-11-04 주식회사 센트랄 Damper of hollow drive shaft
DE102018114237A1 (en) * 2018-06-14 2019-12-19 Henniges Automotive Gmbh & Co. Kg Vibration damper for hollow shafts

Also Published As

Publication number Publication date
JP5944282B2 (en) 2016-07-05

Similar Documents

Publication Publication Date Title
US9447833B2 (en) Dynamic damper
JP6008090B2 (en) Center bearing support
JP5944282B2 (en) Dynamic damper for hollow shaft
JP2003247595A (en) Dynamic damper and propeller shaft
JP2012241822A (en) Dynamic damper for hollow shaft
JP6089719B2 (en) Dynamic damper
JP2009127822A (en) Cylindrical dynamic damper
KR101687694B1 (en) Double insulation hydro mount
JP5971613B2 (en) Dynamic damper
JP6100070B2 (en) Torque fluctuation absorbing damper
JP7079784B2 (en) Cylindrical motor mount for electric vehicles
JP2010216579A (en) Dynamic damper and propeller shaft
CN110259835A (en) Vehicle transmission axle bearing, vehicle transmission shaft assembly and automobile
JP2004176923A (en) Vibration absorbing device
JP2021081018A (en) Dynamic damper and manufacturing method thereof
JP2008002552A (en) Dynamic damper
JP2018048666A (en) Dynamic damper
JP6438309B2 (en) Torsional damper
JP2009079731A (en) Dynamic damper
JP2010031964A (en) Vehicular dynamic damper
JP2012180873A (en) Strut mount and method of manufacturing the same
JP2023105376A (en) Vibration suppression member for gear and gear
KR101648426B1 (en) Dynamic damper
JP6062253B2 (en) Anti-vibration bush
JP2016223591A (en) Air spring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160525

R150 Certificate of patent or registration of utility model

Ref document number: 5944282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees